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TRULY SUBCUBIC ALGORITHMS FOR LANGUAGE EDIT
DISTANCE AND RNA FOLDING VIA FAST
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Abstract. It is a major open problem whether the (min,+)-product of two n × n matrices
has a truly subcubic (i.e., O(n3−ε) for ε > 0) time algorithm; in particular, since it is equivalent
to the famous all-pairs-shortest-paths problem (APSP) in n-vertex graphs. Some restrictions of the
(min,+)-product to special types of matrices are known to admit truly subcubic algorithms, each
giving rise to a special case of APSP that can be solved faster. In this paper we consider a new, differ-
ent, and powerful restriction in which all matrix entries are integers and one matrix can be arbitrary,
as long as the other matrix has “bounded differences” in either its columns or rows, i.e., any two con-
secutive entries differ by only a small amount. We obtain the first truly subcubic algorithm for this
bounded-difference (min,+)-product (answering an open problem of Chan and Lewenstein). Our new
algorithm, combined with a strengthening of an approach of Valiant for solving context-free grammar
parsing with matrix multiplication, yields the first truly subcubic algorithms for the following prob-
lems: language edit distance (a major problem in the parsing community), RNA folding (a major
problem in bioinformatics), and optimum stack generation (answering an open problem of Tarjan).
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1. Introduction. The (min,+)-product (also called min-plus or distance prod-
uct) of two integer matrices A and B is the matrix C = A � B such that Ci,j =
mink{Ai,k +Bk,j}.1 Computing a (min,+)-product is a basic primitive used in solv-
ing many other problems. For instance, Fischer and Meyer [20] showed that the
(min,+)-product of two n × n matrices has essentially the same time complexity as
that of the all pairs shortest paths (APSP) problem in n-node graphs, one of the
most basic problems in graph algorithms. APSP itself has a multitude of applica-
tions, from computing graph parameters such as the diameter, radius, and girth, to
computing replacement paths and distance sensitivity oracles (e.g., [12, 48, 22]) and
vertex centrality measures (e.g., [13, 2]).

While the (min,+)-product of two n× n matrices has a trivial O(n3) time algo-
rithm, it is a major open problem whether there is a truly subcubic algorithm for this
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482 BRINGMANN, GRANDONI, SAHA, AND WILLIAMS

problem, i.e., an O(n3−ε) time algorithm for some constant ε > 0. Following a mul-
titude of polylogarithmic improvements over n3 (e.g., [21, 44, 15]), a relatively recent

breakthrough of Williams [51] gave an O(n3/c
√
logn) time algorithm for a constant

c > 1. Note that despite this striking improvement, the running time is still not truly
subcubic.

For restricted types of matrices, truly subcubic algorithms are known. The prob-
ably most relevant examples are

(1) when all matrix entries are integers bounded in absolute value by M , then the
problem can be solved in Õ(Mnω) time2 [6], where ω < 2.373 is the matrix
multiplication exponent [47, 29];

(2) when each row of matrix A has at most D distinct values, then the
(min,+)-product of A with an arbitrary matrix B can be computed in time
Õ(Dn(3+ω)/2) [15, 52].3

Among other applications, these restricted (min,+)-products yield faster algorithms
for special cases of APSP. E.g., the distance product (1) is used to compute APSP in
both undirected [42, 43] and directed [54] graphs with bounded edge weights, while
the distance product (2) is used to compute APSP in graphs in which each vertex has
a bounded number of distinct edge weights on its incident edges [15, 52].

1.1. Our result. In this paper we significantly extend the family of matrices
for which a (min,+)-product can be computed in truly subcubic time to include the
following class.

Definition 1.1. A matrix X with integer entries is a W -bounded-difference (W -
BD) matrix if for every row i and every column j, the following holds:

|Xi,j −Xi,j+1| ≤W and |Xi,j −Xi+1,j | ≤W.

When W = O(1), we will refer to X as a bounded-difference (BD) matrix.

In this paper we present the first truly subcubic algorithm for the (min,+)-
product of BD matrices, answering a question of Chan and Lewenstein [16].

Theorem 1.2. There is an O(n2.8244) time randomized algorithm and an
O(n2.8603) time deterministic algorithm that computes the (min,+)-product of any
two n× n BD matrices.

Indeed, our algorithm produces a truly subcubic running time for W -BD matrices
for nonconstant values of W as well, as long as W = O(n3−ω−ε) for some constant
ε > 0. In fact, we are able to prove an even more general result: suppose that matrix
A only has BDs in its rows or its columns (and not necessarily both). Then, A can
be (min,+)-multiplied by an arbitrary matrix B in truly subcubic time.

Theorem 1.3. Let A,B be integer matrices, where B is arbitrary and we assume
either of the following:

(i) ∀i, j ∈ [n], |Ai,j −Ai+1,j | ≤W or (ii) ∀i, j ∈ [n], |Ai,j −Ai,j+1| ≤W.

If W ≤ O(n3−ω−ε) for any ε > 0, then A � B can be computed in randomized time
O(n3−Ω(ε)). If W = O(1), then A�B can be computed in randomized time O(n2.9217).

The main obstacle towards achieving a truly subcubic algorithm for the (min,+)-
product in general is the presence of entries of large absolute value. In order to

2The Õ-notation hides logarithmic factors, i.e., Õ(T ) = O(T · polylog(T )).
3The same holds if A is arbitrary and B has at most D distinct values per column.

D
ow

nl
oa

de
d 

02
/2

6/
20

 to
 1

28
.3

0.
51

.1
45

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRULY SUBCUBIC ALGORITHMS FOR LANGUAGE EDIT 483

compare our result with (1) and (2) from that point of view, assume for a moment that
ω = 2 (as conjectured by many). Then (1) can perform a (min,+)-product in truly
subcubic time if both A and B have entries of absolute value at most M = O(n1−ε)
for some constant ε > 0, while (2), without any other assumptions on A and B,
achieves the same if at least one of A and B has entries of absolute value at most
M = O(n1/2−ε). We can do the same when at least one of A and B has entries of
absolute value at most M = O(n1−ε).

1.2. Our approach. Our approach has three phases.
Phase 1: Additive approximation C̃ of the product C = A�B. For BDmatrices it

is quite easy to obtain an additive overestimate C̃ of C: let us subdivide A and B into
square blocks of size Δ×Δ for some small polynomial value Δ = nδ. Thus the overall
product reduces to the multiplication of O((n/Δ)3) pairs of blocks (A′, B′). By the
BD property, it is sufficient to compute A′

i,k +B′
k,j for some triple of indices (i, k, j)

in order to obtain an overestimate of all the entries in A′ �B′ within an additive error
of O(ΔW ). This way in truly subcubic time we can compute an additive O(ΔW )
overestimate C̃ of C.

Remark. It would seem that Phase 1 requires that the matrices are BD, and one
would not be able to use the same approach to attack the (min,+)-product of general
matrices. We note that this is not the case: Phase 1 can be performed for arbitrary
integer matrices A and B as well, provided one has an algorithm that, given a very
good approximation C̃, can compute the correct product C; this is exactly what the
remaining phases do. To show this, we use a scaling approach à la Seidel [42]. Assume
that the entries of A and B are nonnegative integers bounded by M , and obtain A′

and B′ by setting A′
i,j = �Ai,j/2� and B′

i,j = �Bi,j/2�. Recursively compute A′ � B′,
where the depth of the recursion is logM and the base case is when the entries of A
and B are bounded by a constant, in which case A′ � B′ can be computed in O(nω)
time. Then we can set C̃i,j = 2Ci,j for all i, j. This gives an overestimate that errs by
at most an additive 2 in each entry. Thus, if all remaining phases (which compute the
correct product C from the approximation C̃) could be made to work for arbitrary
matrices, then Phase 1 would also work.

Phase 2: Correcting C̃ up to a few bad triples. The heart of our approach comes
at this point. We perform a (nontrivial) perturbation of A and B, and then set to ∞
the entries of absolute value larger than c ·ΔW for an appropriate constant c. The
perturbation consists of adding the same vector V r

A (resp., V r
B) to each column of A

(resp., row of B). Here V r
A and V r

B are random vectors derived from the estimate C̃.
Let Ar and Br be the resulting matrices. Using result (1) from [6], we can compute
Cr = Ar � Br in truly subcubic time O(ΔWnω) for sufficiently small W and Δ. The
perturbation is such that it is possible to derive from (Cr)i,j the corresponding value
(A � B)i,j = Ai,k +Bk,j unless one of the entries Ar

i,k or Br
k,j was rounded to ∞.

The crux of our analysis is to show that after ρ rounds of perturbations and
associated bounded entry (min,+)-products, there are at most Õ(n3/ρ1/3) triples
(i, k, j) for which (a) |Ai,k + Bk,j − C̃i,j | ≤ O(ΔW ) (i.e., k is a potential witness for
Ci,j) and (b) none of the perturbations had both Ar

i,k and Br
k,j finite.

Interestingly, our proof of correctness of Phase 2 relies on an extremal graph
theoretical lemma that bounds from below the number of 4-cycles in sufficiently dense
bipartite graphs.

In a sense Phase 1 and 2 only leave Õ(n3/ρ1/3) work to be done: if we knew the
“bad” triples that are not covered by the perturbation steps, we could simply iterate
over them in a brute-force way, fixing C̃ to the correct product C. Since Phases 1 and
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484 BRINGMANN, GRANDONI, SAHA, AND WILLIAMS

2 do not use the fact that A and B are BD, if we could find the bad triples efficiently
we would obtain a truly subcubic algorithm for the (min,+)-product!

Phase 3: Finding and fixing the bad triples. To fix the bad triples, one could
try to keep track of the triples covered in each perturbation iteration. For arbitrary
matrices A and B this would not give a truly subcubic algorithm as the number of
triples is already n3. For BD matrices, however, we do not need to keep track of all
triples, but it suffices to consider the triples formed by the uppermost leftmost entries
of the blocks from Phase 1, since these entries are good additive approximations of
all block entries. The number of these block representative triples is only O((n/Δ)3),
where Δ is the block size (from Phase 1). Thus, instead of spending at least n3

time, we obtain an algorithm spending O(ρ · (n/Δ)3) time, where ρ is the number
of perturbation rounds (from Phase 2). After finding the bad block representative
triples, we can iterate over their blocks in a brute-force manner to fix C̃ and compute
C. Since each triple in the blocks of a bad block representative triple must also be
bad, the total number of triples considered by the brute-force procedure is Õ(n3/ρ1/3)
as this is the total number of bad triples.

We reiterate that this is the only phase of the algorithm that does not work for
arbitrary matrices A and B.

1.3. Applications. The notion of BD matrices is quite natural and has several
applications. Indeed, our original motivation for studying the (min,+)-product of
such matrices came from a natural scored version of the classical context-free grammar
(CFG) parsing problem. It turns out that a fast algorithm for a BD version of scored
parsing implies the first truly subcubic algorithms for some well-studied problems
such as language edit distance, RNA folding, and optimum stack generation.

Recall that in the parsing problem we are given a CFG G and a string σ =
σ1 . . . σn of n terminals. Our goal is to determine whether σ belongs to the language
L generated by G. For ease of presentation and since this covers most applications,
we will assume unless differently stated that the size of the grammar is |G| = O(1),
and we will not explicitly mention the dependency of running times on the grammar
size.4 We will also assume that G is given in Chomsky normal form (CNF).5 In a
breakthrough result Valiant [46] proved a reduction from parsing to Boolean matrix
multiplication: the parsing problem can be solved in O(nω) time.

One can naturally define a scored generalization of the parsing problem (see, e.g.,
[4]). Here each production rule p in G has an associated nonnegative integer score (or
cost) s(p). The goal is to find a sequence of production rules of minimum total score
that generates a given string σ. It is relatively easy to adapt Valiant’s parser to this
scored parsing problem, the main difference being that Boolean matrix multiplications
are replaced by (min,+)-products. It follows that scored parsing can be solved up
to logarithmic factors in the time needed to perform one (min,+)-product (see also
[41]). In particular, applying Williams’ algorithm for the (min,+)-product [51], one

can solve scored parsing in O(n3/2Θ(
√
logn)) time, which is the current best running

time for this problem.
For a nonterminal X let s(X, σ) be the minimum total score needed to generate

string σ from X (where the grammar G is assumed to be clear from the context).
Let us define a BD notion for CFGs. Intuitively, we require that adding or deleting
a terminal at one endpoint of a string does not change the corresponding score by
much.

4Our approach also works when |G| is a sufficiently small polynomial.
5Note that it is well known that any CFG can be transformed into an equivalent CNF grammar.
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Definition 1.4. A CFG G is a W -BD grammar if, for any nonterminal X,
terminal x, and nonempty string of terminals σ, the following holds:

|s(X, σ)− s(X, σx)| ≤W and |s(X, σ)− s(X, xσ)| ≤W.

When W = O(1), we will refer to G as a BD grammar.

Via a simple but very careful analysis of the scored version of Valiant’s parser, we
are able to show that the scored parsing problem on BD grammars can be reduced to
the (min,+)-product of BD matrices (see section 4).

Theorem 1.5. Let O(nα) be the time needed to perform one (min,+)-product of
two n × n BD matrices. Then the scored parsing problem on BD grammars in CNF
can be solved in time Õ(nα).

Corollary 1.6. The scored parsing problem on BD grammars in CNF can be
solved in randomized time Õ(n2.8244) and deterministic time Õ(n2.8603).

BD grammars appear naturally in relevant applications. Consider for example
the well-studied language edit distance (LED) problem [4, 34, 30, 40, 41, 1, 38].
Here we are given a CFG G and a string σ of terminals. We are allowed to edit
σ by inserting, deleting, and substituting terminals. Our goal is to find a sequence
of such edit operations of minimum length so that the resulting string σ′ belongs
to the language L generated by G.6 As already observed by Aho and Peterson in
1972 [4], LED can be reduced to scored parsing. Indeed, it is sufficient to assign
score zero to the production rules of the input grammar, and then augment the
grammar with production rules of score 0 and 1 that model edit operations. We show
that, by performing the above steps carefully, the resulting scored grammar is BD,
leading to a truly subcubic algorithm for LED via Corollary 1.6 (see section 5.2).
We remark that finding a truly subcubic algorithm for LED was wide open even
for very restricted cases. For example, consider Dyck LED, where the underlying
CFG represents well-balanced strings of parentheses. Developing fast algorithms for
Dyck LED and understanding the parsing problem for the parenthesis grammar has
recently received considerable attention [9, 40, 26, 14, 31, 36]. Even for such restricted
grammars no truly subcubic exact algorithm was known prior to this work.

Another relevant application is related to RNA folding, a central problem in
bioinformatics defined by Nussinov and Jacobson in 1980 [35]. They proposed the
following optimization problem, and a simple O(n3) dynamic programming solution
to obtain the optimal folding. Let Σ be a set of letters and let Σ′ = {c′ | c ∈ Σ} be the
set of “matching” letters, such that for every letter c ∈ Σ the pair c, c′ matches. Given
a sequence of n letters over Σ ∪ Σ′, the RNA-folding problem asks for the maximum
number of noncrossing pairs {i, j} such that the ith and jth letters in the sequence
match. In particular, if letters in positions i and j are paired and if letters in positions
k and l are paired, and i < k, then either they are nested, i.e., i < k < l < j, or they
are nonintersecting, i.e., i < j < k < l. (In nature, there are 4 types of nucleotides in
an RNA molecule, with matching pairs A,U and C,G, i.e., |Σ| = 2.) We can rephrase
RNA folding as follows. We are given the CFG with productions S → SS | ε and
S → σSσ′ | σ′Sσ for any σ ∈ Σ with matching σ′ ∈ Σ′. The goal is to find the
minimum number of insertions and deletions of symbols on a given string σ that will
generate a string σ′ consistent with the above grammar. This is essentially a variant of

6In some variants of the problem each edit operation has some integer cost upper bounded by a
constant. Our approach clearly works also in that case.
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LED where only insertions and deletions (and no substitutions) are allowed. Despite
considerable efforts (e.g., [49, 5, 53, 35]), no truly subcubic algorithm for RNA folding
was known prior to our work. By essentially the same argument as for LED, it is easy
to obtain a BD scored grammar modeling RNA folding. Thus we immediately obtain
a truly subcubic algorithm to solve this problem via Corollary 1.6.

As a final application, consider the optimum stack generation (OSG) problem
described by Tarjan in [45]. Here, we are given a finite alphabet Σ, a stack S, and
a string σ ∈ Σ∗. We would like to print σ by a minimum length sequence of three
stack operations: push(), emit (i.e., print the top character in the stack), and pop,
ending in an empty stack. For example, the string BCCAB can be printed via
the following sequence of operations: push(B), emit(B), push(C), emit(C), emit(C),
pop(C), push(A), emit(A), pop(A), emit(B), pop(B). While there is a simple O(n3)
time algorithm for OSG, Tarjan suspected this could be improved. In section 5.3, we
show that OSG can be reduced to scored parsing on BD grammars. This leads to the
first truly subcubic algorithm for OSG.

Let us summarize the mentioned applications of our approach.

Theorem 1.7. LED, RNA folding, and OSG can be solved in randomized time
Õ(n2.8244) and deterministic time Õ(n2.8603) (on constant-size grammars or alphabet,
respectively).

Moreover, our techniques also lead to a truly subquadratic algorithm for bounded
monotone (min,+)-convolution. A subquadratic algorithm was already and very re-
cently achieved in a breakthrough result by Chan and Lewenstein [16]; however, with
very different techniques. For two sequences a = (a1, . . . , an) and b = (b1, . . . , bn) the
(min,+)-convolution of a and b is the vector c = (c1, . . . , cn) with ck = mini{ai+bk−i}.
Assume n = m2. A standard reduction from (min,+)-convolution to the (min,+)-
matrix product constructs them×mmatricesAr with Ar

i,k = arm+i+k (for 1 ≤ r ≤ m)
and B with Bk,j = bjm−k. Then from the products Ar �B we can infer the (min,+)-
convolution of a and b in time O(n3/2). Note that if a has BDs, then the matrices Ar

have BDs along the rows, while if b has BDs, then B has BDs along the columns. The-
orem 1.3 now allows us to compute the m (min,+)-products in time O(m ·m2.9217) =
O(n1.961), obtaining a subquadratic algorithm for BD (min,+)-convolution. Previ-
ously, Chan and Lewenstein [16] observed that computing the (min,+)-convolution
over bounded monotone sequences is equivalent to computing it over BD sequences,
and presented an O(n1.859) time algorithm for this case. Thus, our algorithm is not
faster, but it works in the more general setting of (min,+)-matrix multiplication.

We envision other applications of our BD (min,+)-product algorithm to come in
the future.

1.4. Related work.
Language edit distance. LED is among the most fundamental and best studied

problems related to strings and grammars [4, 34, 30, 40, 41, 1, 38]. It generalizes two
basic problems in computer science: parsing and string edit distance computation. In
1972, Aho and Peterson presented a dynamic programming algorithm for LED that
runs in time O(|G|2n3) [4], which was improved to O(|G|n3) by Myers in 1995 [34].
These algorithms are based on the popular Cooke–Younger–Kasami parsing algorithm
[3] with the observation that LED can be reduced to a scored parsing problem [4]. This

implies the previous best running time of O(n3/2Θ(
√
log n)). In a recent paper [41],

Saha showed that LED can be solved in O( nω

poly(ε) ) time if we approximate the exact

edit distance by a (1 + ε)-factor. Due to known conditional lower bound results for
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parsing [30, 1], LED cannot be approximated within any multiplicative factor in time
o(nω) (unless cliques can be found faster). Interestingly, if we only ask for insertions
as edit operations, Saha also showed that a truly subcubic exact algorithm is unlikely
due to a reduction from APSP [41, 48]. In contrast, here we show that with insertions
and deletions (and possibly substitutions) as edit operations, LED is solvable in truly
subcubic time. LED provides a very generic framework for modeling problems with
many applications (e.g., [25, 24, 50, 33, 39, 37, 23]). A fast exact algorithm for it is
likely to have tangible impact.

RNA folding. Computational approaches to finding the secondary structure of
RNA molecules are used extensively in bioinformatics applications. Since the seminal
work of Nussinov and Jacobson [35], a multitude of sophisticated RNA-folding algo-
rithms with complex objectives and softwares have been developed,7 but the basic
dynamic programming algorithm of Nussinov and Jacobson remains at the heart of
all of these. Despite much effort, only mild improvements in running time have been
achieved so far [49, 5, 53], and obtaining a truly subcubic algorithm for RNA folding
has remained open till this work.

Abboud, Backurs, and Vassilevska Williams [1] showed that obtaining an algo-
rithm for RNA folding that runs in O(nω−ε) time for any ε > 0 would result in a
breakthrough for the clique problem. Moreover, their results imply that any truly
subcubic algorithm for RNA folding must use fast matrix multiplication, unless there
are fast algorithms for clique that do not use fast matrix multiplication. Their results
hold for alphabet Σ of size 13, which was recently improved to |Σ| = 2 [17].

Dyck LED. A problem closely related to RNA folding is Dyck LED, which is LED
for the grammar of well-balanced parentheses. For example, [()] belongs to the Dyck
language, but [) or ][ do not. (The RNA grammar is often referred to as “two-sided
Dyck,” where ][ is also a valid match.) Dyck edit distance with insertion and deletion
generalizes the widely studied string edit distance problem [32, 27, 10, 11, 8, 7]. When
approximation is allowed, a near-linear time O(poly logn)-approximation algorithm
was developed by Saha [40]. Moreover, a (1 + ε)-approximation in O(nω) time was
shown in [41] for any constant ε > 0. Abboud, Backurs, and Vassilevska Williams [1]
related the Dyck LED problem to clique with the same implications as for RNA
folding. Thus, up to a breakthrough in clique algorithms, truly subcubic Dyck LED
requires fast matrix multiplication. Prior to our work, no subcubic exact algorithm
was known for Dyck LED.

1.5. Preliminaries and notation. In this paper, by “randomized time t(n)”
we mean a zero-error randomized algorithm running in time t(n) with high probability
(w.h.p.).8

Matrix multiplication. As is typical, we denote by ω < 2.3729 [47, 29] the expo-
nent of square matrix multiplication, i.e., ω is the infimum over all reals such that
n × n matrix multiplication over the complex numbers can be computed in nω+o(1)

time. For ease of notation and as is typical in the literature, we shall omit the o(1)
term and write O(nω) instead. We denote the running time to multiply an a × b
matrix with a b× c matrix byM(a, b, c) [28]. As in (1) above we have the following.

Lemma 1.8 (see [6]). Let A,B be a × b and b × c matrices with entries in
{−M,−M+1 . . . ,M}∪{∞}. Then A�B can be computed in time Õ(M ·M(a, b, c)).
In particular, for a = b = c = n this running time is Õ(Mnω).

7see https://en.wikipedia.org/wiki/List of RNA structure prediction software.
8An event happens w.h.p. if its probability is at least 1− 1/nc for some c > 0.
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CFGs and scored parsing. Let G = (N, T, P, S) be a CFG, where N and T are
the (disjoint) sets of nonterminals and terminals, respectively, P is the set of produc-
tions, and S ∈ N is the start symbol. We recall that a production rule p is of the
form X → α with X ∈ N and9 α ∈ (N ∪ T )∗, and applying p to (some instance
of) X ∈ N in a string σ ∈ (N ∪ T )∗ generates the string σ′ where X is replaced by
α. For α, β ∈ (N ∪ T )∗, we write α → β if β can be generated from α by applying
one production rule, and we write α →∗ β (“β can be derived from α”) if there is
a sequence of productions generating β from α. The language L(X) generated by a
nonterminal X ∈ N is the set of strings σ ∈ T ∗ that can be derived from X . We also
let L(G) := L(S) denote the language generated by G.

At many places in this paper we may assume that G is given in CNF. Specifically,
all productions are of the form Z → XY , Z → c, and S → ε, where X,Y ∈ N \ {S},
Z ∈ N , c ∈ T , and ε denotes the empty string.

A scored grammar is a CFG G, where each production rule p ∈ P is associated
with a nonnegative integer score s(p). Intuitively, applying production p has a cost
s(p). The total score of any derivation is simply the sum of all scores of productions
used in the derivation. For any X ∈ N and σ ∈ T ∗, we define sG(X, σ) = s(X, σ) as
the minimum total score of any derivation X →∗ σ, or as∞ if σ 
∈ L(X). The scored
language generated by X ∈ N is the set {(σ, s(X, σ)) | σ ∈ L(X)}, and the scored
language generated by G is the scored language generated by the start symbol S. In
the scored parsing problem on grammar G, we are given a string σ of length n, and
we wish to compute s(S, σ).

Organization. In section 2 we give our main technical result, a truly subcubic
algorithm for the (min,+)-product of BD matrices. In section 3, we show how to
further reduce the running time, how to derandomize our algorithm, and some gen-
eralizations of our approach. In section 4, we show how BD scored parsing can be
solved asymptotically in the same time as computing a single BD (min,+)-product.
Section 5 is devoted to prove reductions from LED, RNA folding, and OSG to scored
parsing on BD grammars.

2. Fast BD (min,+)-product. In this section we present our fast algorithm
for (min,+)-product on BD matrices. For ease of presentation, we will focus here only
on the case that both input matrices A and B are BD. Furthermore, we will present
a simplified randomized algorithm which is still truly subcubic. Refinements of the
running time, derandomization, and generalizations are discussed in section 3. Let A
and B be n × n matrices with W -BDs. We write C = A � B for the desired output
and denote by Ĉ the result computed by our algorithm. Our algorithm consists of
the following three main phases (see also Algorithm 1).

2.1. Phase 1: Computing an approximation. Let Δ be a positive integer
that we later fix as a small polynomial10 in n. We partition [n] into blocks of length
Δ by setting I(i′) := {i ∈ [n] | i′ −Δ < i ≤ i′} for any i′ divisible by Δ. From now
on, by i, k, j we denote indices in the matrices A,B, and C and by i′, k′, j′ we denote
numbers divisible by Δ, i.e., indices of blocks.

The first step of our algorithm is to compute an entrywise additive O(ΔW )-
approximation C̃ of A � B. Since A and B are W -BD, it suffices to approximately
evaluate A�B only for indices i′, k′, j′ divisible by Δ. Specifically, we compute C̃i′,j′ =

9Given a set of symbols U , by U∗ we denote as usual any, possibly empty, string of elements
from U .

10We can assume that both n and Δ are powers of two, so in particular we can assume that Δ
divides n.
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Algorithm 1 (min,+)-product A � B for n× n matrices A,B with W -BDs. Here Δ
and ρ are carefully chosen polynomial values. Also I(q) = {q −Δ+ 1, . . . , q}.


 Phase 1: compute entrywise additive 4ΔW -approximation C̃ of A � B
1: for any i′, j′ divisible by Δ do
2: C̃i′,j′ := min{Ai′,k′ +Bk′,j′ | k′ divisible by Δ}
3: for any i ∈ I(i′), j ∈ I(j′) do C̃i,j := C̃i′,j′


 Phase 2: randomized reduction to (min,+)-product with small entries
4: initialize all entries of Ĉ with ∞
5: for 1 ≤ r ≤ ρ do
6: pick ir and jr independently and uniformly at random from [n]
7: for all i, k do
8: set Ar

i,k := Ai,k +Bk,jr − C̃i,jr

9: if Ar
i,k 
∈ [−48ΔW, 48ΔW ] then set Ar

i,k :=∞
10: for all k, j do
11: set Br

k,j := Bk,j −Bk,jr + C̃ir ,jr − C̃ir ,j

12: if Br
k,j 
∈ [−48ΔW, 48ΔW ] then set Br

k,j :=∞
13: compute Cr := Ar � Br using Lemma 1.8
14: for all i, j do Ĉi,j := min{Ĉi,j , C

r
i,j + C̃i,jr − C̃ir ,jr + C̃ir ,j}


 Phase 3: exhaustive search over all relevant uncovered triples of indices
15: for all i′, k′, j′ divisible by Δ do
16: if |Ai′,k′ +Bk′,j′ − C̃i′,j′ | ≤ 8ΔW then
17: if for all r we have |Ar

i′,k′ | > 44ΔW or |Br
k′,j′ | > 44ΔW then

18: for all i ∈ I(i′), k ∈ I(k′), j ∈ I(j′) do
19: Ĉi,j := min{Ĉi,j , Ai,k +Bk,j}
20: return Ĉ

min{Ai′,k′+Bk′,j′ | k′ divisible by Δ}, and set C̃i,j := C̃i′,j′ for any i ∈ I(i′), j ∈ I(j′);
see lines 1–3 of Algorithm 1. The next lemma shows that C̃ is a good approximation
of C.

Lemma 2.1. For any i′, k′, j′ divisible by Δ and any (i, k, j) ∈ I(i′)×I(k′)×I(j′)
we have

(1) |Ai,k −Ai′,k′ | ≤ 2ΔW, (2) |Bk,j −Bk′,j′ | ≤ 2ΔW,

(3) |Ci,j − Ci′,j′ | ≤ 2ΔW, (4) |Ci,j − C̃i,j | ≤ 4ΔW.

Proof. Consider first (1). Observe that we can move from Ai,k to Ai′,k in i′−i ≤ Δ
steps each time changing the absolute value by at most W , hence |Ai,k−Ai′,k| ≤ ΔW .
Similarly, we can move from Ai′,k to Ai′,k′ . The overall absolute change is therefore
at most 2ΔW . The proof of (2) is analogous.

For (3), let k be such that Ci,j = Ai,k + Bk,j . Then Ci′,j′ ≤ Ai′,k + Bk,j′ ≤
Ai,k + Bk,j + 2ΔW = Ci,j + 2ΔW . In the second inequality we used the fact that
Ai′,k ≤ Ai,k + ΔW and Bk,j′ ≤ Bk,j + ΔW from the same argument as above.
Symmetrically, we obtain Ci′,j′ ≤ Ci,j + 2ΔW .

It remains to prove (4). Note that C̃i,j = C̃i′,j′ by construction. Let k′ be divisible
by Δ and such that C̃i′,j′ = Ai′,k′ + Bk′,j′ . Then Ci,j ≤ Ai,k′ + Bk′,j ≤ Ai′,k′ +

Bk′,j′ + 2ΔW = C̃i′,j′ + 2ΔW , where again the second inequality exploits the above
observation. For the other direction, let k be such that Ci,j = Ai,k+Bk,j , and consider
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490 BRINGMANN, GRANDONI, SAHA, AND WILLIAMS

k′ with k ∈ I(k′). Then C̃i′,j′ ≤ Ai′,k′ +Bk′,j′ ≤ Ai,k + Bk,j + 4ΔW = Ci,j + 4ΔW ,
where in the second inequality we exploited (1) and (2).

2.2. Phase 2: Randomized reduction to (min,+)-product with small
entries. The second step of our algorithm is the most involved one. The goal of
this step is to change A and B in a randomized way to obtain matrices where each
entry is ∞ or has small absolute value, thus reducing the problem to Lemma 1.8.
This step will cover most triples i, k, j, but not all: the third step of the algorithm
will cover the remaining triples by exhaustive search. We remark that Phase 2 works
with arbitrary matrices A and B (assuming we know an approximate answer C̃ as
computed in Phase 1).

The following observation is the heart of our argument. For any vector F =
(F1, . . . , Fn), adding Fk to every entry Ai,k (∀i) and subtracting Fk from every entry
Bk,j (∀j) does not change the product A � B. Similarly, for n-dimensional vectors X
and Y , adding Xi to every entry Ai,k and adding Yj to every entry Bk,j changes the
entry (A � B)i,j by +Xi + Yj , which we can cancel after computing the product.

Specifically, we may fix indices ir, jr and consider the matrices Ar with Ar
i,k :=

Ai,k + Bk,jr − C̃i,jr and Br with Br
k,j := Bk,j − Bk,jr + C̃ir ,jr − C̃ir ,j . Then from

Cr := Ar�Br we can infer C = A�B via the equation Ci,j = Cr
i,j+C̃i,jr−C̃ir ,jr+C̃ir ,j .

We will set an entry of Ar or Br to ∞ if its absolute value is more than 48ΔW .
This allows us to compute Cr = Ar � Br efficiently using Lemma 1.8. However, it
does not correctly compute C = A�B. Instead, we obtain values Ĉr

i,j := Cr
i,j+C̃i,jr−

C̃ir ,jr + C̃ir ,j that fulfill Ĉr
i,j ≥ Ci,j . Moreover, if neither Ar

i,k nor Br
k,j was set to ∞,

then Ĉr
i,j ≤ Ai,k +Bk,j ; in this case the contribution of i, k, j to Ci,j is incorporated

in Ĉr
ij (and we say that i, k, j is “covered” by Ar, Br; see Definition 2.2). We repeat

this procedure with independently and uniformly random ir, jr ∈ [n] for r = 1, . . . , ρ
many rounds, where 1 ≤ ρ ≤ n is a small polynomial in n to be fixed later. Then Ĉ
is set to the entrywise minimum over all Ĉr. This finishes the description of Phase 2;
see lines 4–14 of Algorithm 1.

In the analysis of this step of the algorithm, we want to show that w.h.p. most of
the “relevant” triples i, k, j get covered: in particular, all triples with Ai,k + Bk,j =
Ci,j are relevant, as these triples define the output. However, since this definition
would depend on the output Ci,j , we can only (approximately) check a weak ver-
sion of relevance; see Definition 2.2. Similarly, we need a weak version of being
covered.

Definition 2.2. We call a triple (i, k, j)
• strongly relevant if Ai,k +Bk,j = Ci,j,
• weakly relevant if |Ai,k +Bk,j − Ci,j | ≤ 16ΔW ,

• strongly r-uncovered if for all 1 ≤ r′ ≤ r we have |Ar′
i,k| > 48ΔW or |Br′

k,j | >
48ΔW , and

• weakly r-uncovered if for all 1 ≤ r′ ≤ r we have |Ar′
i,k| > 40ΔW or |Br′

k,j | >
40ΔW .

A triple is strongly (resp., weakly) uncovered if it is strongly (resp., weakly) ρ-uncovered.
Finally, a triple is strongly (resp., weakly) r-covered if it is not strongly (resp., weakly)
r-uncovered.

The next lemma gives a sufficient condition for being weakly r-covered.

Lemma 2.3. For any i, k, j and ir, jr, if all triples (i, k, jr), (ir, k, jr), (ir, k, j)
are weakly relevant then (i, k, j) is weakly r-covered.
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Proof. From the assumption and C̃ being an additive 4ΔW -approximation of C,
we obtain

|Ai,k+Bk,jr−C̃i,jr | ≤ |Ai,k+Bk,jr−Ci,jr |+ |C̃i,jr−Ci,jr | ≤ 16ΔW+4ΔW = 20ΔW.

Similarly, we also have |Air ,k + Bk,jr − C̃ir ,jr | ≤ 20ΔW and |Air ,k + Bk,j − C̃ir ,j| ≤
20ΔW .

Recall that in the algorithm we set Ar
i,k := Ai,k + Bk,jr − C̃i,jr and Br

k,j :=

Bk,j −Bk,jr + C̃ir ,jr − C̃ir ,j (and then reset them to ∞ if their absolute value is more
than 48ΔW ). From the above inequalities, we have |Ar

i,k| ≤ 20ΔW . Moreover, we

can write Br
k,j as (Air ,k +Bk,j − C̃ir ,j)− (Air ,k +Bk,jr − C̃ir ,jr ), where both terms in

brackets have absolute value bounded by 20ΔW , and thus |Br
k,j | ≤ 40ΔW . It follows

that the triple i, k, j gets weakly covered in round r.

We will crucially exploit the following well-known extremal graph-theoretic re-
sult [18, 19]. We present the easy proof for completeness.

Lemma 2.4. Let G = (U ∪ V,E) be a bipartite graph with |U | = |V | = n nodes
per partition and |E| = m edges. Let C be the number of 4-cycles of G. If m ≥ 2n3/2,
then C ≥ m4/(32n4).

Proof. For any pair of nodes v, v′ ∈ V , let N(v, v′) be the number of common
neighbors {u ∈ U | {u, v}, {u, v′} ∈ E}, and let N =

∑
{v,v′}∈(V2)N(v, v′). By d(w)

we denote the degree of node w in G. By convexity of
(
x
2

)
= x(x−1)

2 and Jensen’s
inequality, we have

N =
∑

{v,v′}∈(V2)
N(v, v′) =

∑
u∈U

(
d(u)

2

)
≥ n ·

(∑
u∈U d(u)/n

2

)

= n

(
m/n

2

)
=

m2

2n
− m

2
≥ m2

2n
− n2.

Since m ≥ 2n3/2 by assumption, we derive m2

2n ≥ 2n2 and thus we obtain N ≥ n2 >
2
(
n
2

)
as well as N ≥ m2/(4n).
By the same convexity argument as above, we also have

C =
∑

{v,v′}∈(V2)

(
N(v, v′)

2

)
≥
(
n

2

)
·
(
N/
(
n
2

)
2

)
=

(
N −

(
n

2

))
N

n(n− 1)
≥ N2

2n2
,

where in the last inequality above we used the fact that N ≥ 2
(
n
2

)
. Altogether, this

yields

C ≥ N2

2n2
≥ m4/(16n2)

2n2
=

m4

32n4
,

finishing the proof.

We are now ready to lower bound the progress made by the algorithm at each
round.

Lemma 2.5. W.h.p. for any ρ ≥ 1 the number of weakly relevant, weakly uncov-
ered triples is Õ(n2.5 + n3/ρ1/3).

Proof. Fix k ∈ [n]. We construct a bipartite graph Gk on n + n vertices (we
denote vertices in the left vertex set by i or ir and vertices in the right vertex set by
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j or jr). We add edge (i, j) to Gk if the triple (i, k, j) is weakly relevant. We also
consider the subgraph G′

k of Gk containing edge (i, j) if and only if (i, k, j) is weakly
“relevant” and weakly uncovered.

Let z = c(n2/ρ) lnn for any constant c > 3. Consider an edge (i, j) in Gk

that is contained in at least z 4-cycles. Now consider each round r in turn and let
i → � → p → j → i be a 4-cycle containing (i, j). If ir = p and jr = � are selected,
then since, by the definition of Gk, (i, k, �), (p, k, �), and (p, k, j) are weakly relevant,
by Lemma 2.3, (i, k, j) will be r-covered and thus (i, j) is not an edge in G′

k.
Thus, if in any round r the indices ir, jr are selected to be among the at least z

choices of vertices that complete (i, j) to a 4-cycle in Gk, then (i, j) is not in G′
k. For

a particular edge (i, j) with at least z 4-cycles in a particular Gk, the probability that
ir, jr are never picked to form a 4-cycle with (i, j) is

≤
(
1− z

n2

)ρ
=
(
1− z

n2

)c(n2/z) lnn

≤ 1

nc
.

By a union bound, over all i, j, k we obtain an error probability of at most 1/nc−3,
which is 1/poly(n) as we picked c > 3. Hence, w.h.p. every edge in every G′

k is
contained in less than z 4-cycles in Gk.

Let mk denote the number of edges of G′
k. Since w.h.p. every edge in G′

k is
contained in less than z 4-cycles in Gk (and thus also in G′

k), the number of 4-cycles
C(k) of G′

k is less than mkz. On the other hand, by Lemma 2.4, we have mk < 2n3/2

or C(k) ≥ (mk/n)
4/32. In the latter case, we obtain

(mk/n)
4 < 32mkz =⇒ m3

k < 32n4z =⇒ mk

<
(
32c

(
n6/ρ

)
lnn

)1/3
=⇒ mk ≤ Õ

(
n2/ρ1/3

)
.

Together, this yields mk = Õ(n1.5+n2/ρ1/3). Finally, note that the number of weakly
relevant, weakly uncovered triples is

∑
k mk = Õ(n2.5 + n3/ρ1/3).

2.3. Phase 3: Exhaustive search over all relevant uncovered triples of
indices. In the third and last phase we make sure to fix all strongly relevant, strongly
uncovered triples by exhaustive search, as these are the triples defining the output
matrix whose contribution is not yet incorporated into Ĉ. We are allowed to scan all
weakly relevant, weakly uncovered triples, as we know that their number is small by
Lemma 2.5. This is the only phase that requires that A and B are BD.

We use the following definitions of being approximately relevant or uncovered,
since they are identical for all triples (i, k, j) in a block i′, k′, j′ and thus can be
checked efficiently.

Definition 2.6. We call a triple (i, k, j) ∈ I(i′)× I(k′)× I(j′)
• approximately relevant if |Ai′,k′ +Bk′,j′ − C̃i′,j′ | ≤ 8ΔW , and

• approximately r-uncovered if for all 1 ≤ r′ ≤ r we have |Ar′
i′,k′ | > 44ΔW or

|Br′
k′,j′ | > 44ΔW .

A triple is approximately uncovered if it is approximately ρ-uncovered.

The notions of being strongly, weakly, and approximately relevant/uncovered are
related as follows.

Lemma 2.7. Any strongly relevant triple is also approximately relevant. Any ap-
proximately relevant triple is also weakly relevant. The same statements hold with
relevant replaced by “r-uncovered”.
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Proof. Let (i, k, j) ∈ I(i′) × I(k′) × I(j′). Using Lemma 2.1, we can bound the
absolute difference between Ai,k +Bk,j −Ci,j and Ai′,k′ +Bk′,j′ − C̃i′,j′ by the three

contributions |Ai,k − Ai′,k′ | ≤ 2ΔW , |Bk,j − Bk′,j′ | ≤ 2ΔW , and |Ci,j − C̃i′,j′ | =
|Ci,j − C̃i,j | ≤ 4ΔW . Thus, if Ai,k + Bk,j = Ci,j (i.e., (i, k, j) is strongly relevant),

then |Ai′,k′ +Bk′,j′ − C̃i′,j′ | ≤ 8ΔW (i.e., (i, k, j) is approximately relevant). On the
other hand, if (i, k, j) is approximately relevant, then |Ai,k + Bk,j − Ci,j | ≤ 16ΔW
(i.e., (i, k, j) is weakly relevant).

For the notion of being r′-uncovered, for any 1 ≤ r ≤ r′ we bound the absolute
differences |Ar

i,k −Ar
i′,k′ | and |Br

k,j −Br
k′,j′ |. Recall that we set Ar

i,j := Ai,j +Bk,jr −
C̃i,jr . Again using Lemma 2.1, we bound both |Ai,j − Ai′,j′ | and |Bk,jr − Bk′,jr | by
2ΔW . Since we have C̃i,jr = C̃i′,jr by definition, in total we obtain |Ar

i,k − Ar
i′,k′ | ≤

4ΔW . Similarly, recall that we set Br
k,j := Bk,j − Bk,jr + C̃ir ,jr − C̃ir ,j . The first

two terms both contribute at most 2ΔW , while the latter two terms are equal for
Br

k,j and Br
k′,j′ . Thus, |Br

k,j −Br
k′,j′ | ≤ 4ΔW . The statements on r-uncovered follow

immediately from these inequalities.

In our algorithm, we enumerate every triple (i′, k′, j′) whose indices are divisi-
ble by Δ, and check whether that triple is approximately relevant. Then we check
whether it is approximately uncovered. If so, we perform an exhaustive search over
the block i′, k′, j′: We iterate over all (i, k, j) ∈ I(i′) × I(k′) × I(j′) and update
Ĉi,j := min{Ĉi,j , Ai,k +Bk,j}; see lines 15–19 of Algorithm 1.

Note that i′, k′, j′ is approximately relevant (resp., approximately uncovered) if
and only if all (i, k, j) ∈ I(i′)×I(k′)×I(j′) are approximately relevant (resp., approx-
imately uncovered). Hence, we indeed enumerate all approximately relevant, approxi-
mately uncovered triples, and by Lemma 2.7 this is a superset of all strongly relevant,
strongly uncovered triples. Thus, every strongly relevant triple (i, k, j) contributes to
Ĉi,j in Phase 2 or Phase 3. This proves correctness of the output matrix Ĉ.

2.4. Running time. The running time of Phase 1 is O((n/Δ)3+n2) using brute
force. The running time of Phase 2 is Õ(ρΔWnω), since there are ρ invocations of
Lemma 1.8 on matrices whose finite entries have absolute value O(ΔW ). It remains
to consider Phase 3. Enumerating all blocks i′, k′, j′ and checking whether they are
approximately relevant and approximately uncovered takes time O((n/Δ)3ρ). The
approximately relevant and approximately uncovered triples form a subset of the
weakly relevant and weakly uncovered triples by Lemma 2.7. The number of the
latter triples is upper bounded by Õ(n2.5 + n3/ρ1/3) w.h.p. by Lemma 3.1. Thus,
w.h.p. Phase 3 takes total time Õ((n/Δ)3ρ + n3/ρ1/3 + n2.5). In total, the running
time of Algorithm 1 is w.h.p.

Õ
(
(n/Δ)3 + n2 + ρΔWnω + (n/Δ)3ρ+ n3/ρ1/3 + n2.5

)
.

A quick check shows that for appropriately chosen ρ and Δ (say ρ := Δ := n0.1)
and for sufficiently small W this running time is truly subcubic. We optimize by set-
ting ρ := (n3−ω/W )9/16 and Δ := (n3−ω/W )1/4, obtaining time Õ(W 3/16n(39+3ω)/16),
which is truly subcubic for W ≤ O(n3−ω−ε). For W = O(1) using ω ≤ 2.3729 [47, 29]
this running time evaluates to O(n2.8825).

3. BD (min,+)-product: Improvements, derandomization, and gener-
alizations. In this section, we prove Theorem 1.2 by improving on the running time
from section 2.
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3.1. Speeding up phase 2. We begin with a more refined version of Lemma 2.5.
Recall that ρ is the maximum number of iterations in Phase 2.

Lemma 3.1. W.h.p. for any 1 ≤ r ≤ ρ the number of weakly relevant, weakly
r-uncovered triples is Õ(n2.5 + n3/r1/3).

Proof. We first show a sufficient condition for not being weakly r-uncovered. Fix
k ∈ [n]. For any 1 ≤ r ≤ ρ+ 1, we construct a bipartite graph Gr,k on n+ n vertices
(we denote vertices in the left vertex set by i or ir and vertices in the right vertex
set by j or jr). We add edge {i, j} to Gr,k if the triple (i, k, j) is weakly relevant
and weakly (r − 1)-uncovered. Note that E(Gr,k) ⊇ E(Gr′,k) for r ≤ r′. Denote the
number of edges in Gr,k by mr,k and its density by αr,k = mr,k/n

2. In the following
we show that as a function of r the number of edges mr,k drops by a constant factor
after O(α−3

r,k log(n)) rounds w.h.p., as long as the density is large enough.
We denote by Cr,k(i, j) the number of 4-cycles in Gr,k containing edge {i, j}. (If

{i, j} is not an edge in Gr,k, we set Cr,k(i, j) = 0.) Observe that Cr,k(i, j) ≥ Cr′,k(i, j)
for r ≤ r′.

Now fix a round r. For r ≤ r′, we call {i, j} r′-heavy if Cr′,k(i, j) ≥ 2−8α3
r,kn

2.

Let r∗ be a round with r∗−r = Θ(α−3
r,k logn) (with sufficiently large hidden constant).

We claim that w.h.p. no {i, j} is r∗-heavy. Indeed, in any round r ≤ r′ < r∗, either
{i, j} is not r′-heavy, say because some of the edges in its 4-cycles got covered in the
last round, but then we are done. Or {i, j} is r′-heavy, but then with probability
Cr′,k(i, j)/n

2 = Ω(α3
r,k) we choose ir

′
, jr

′
as the remaining vertices in one of the 4-

cycles containing {i, j}. In this case, Lemma 2.3 shows that (i, k, j) will get weakly
covered in round r′, so in particular {i, j} is not (r′ + 1)-heavy. Over r∗ − r =
Θ(α−3

r,k logn) rounds, this event happens w.h.p.

Now we know that w.h.p. no {i, j} is r∗-heavy. Thus, each of the αr∗,kn
2 edges

of Gr∗,k is contained in less than 2−8α3
r,kn

2 4-cycles, so that the total number of

4-cycles in Gr∗,k is at most 2−8αr∗,kα
3
r,kn

4. On the other hand, Lemma 2.4 shows

that the number of 4-cycles is at least (αr∗,kn
2)4/(32n4) if αr∗,k ≥ 2/

√
n. Alto-

gether, we obtain αr∗,k ≤ max{αr,k/2, 2/
√
n}. In particular, w.h.p. in round r =

O(
∑t

i=0 2
3i logn) = O(23t logn) the density of Gr,k is at most 2−t, as long as 2−t ≥

2/
√
n. In other words, w.h.p. the density of Gr,k is O((log(n)/r)1/3 + n−1/2), and

mr,k ≤ O(n2(log(n)/r)1/3 + n3/2). Since mr+1,k counts the weakly relevant, weakly
r-uncovered triples (i, k, j) for fixed k, summing over all k ∈ [n] yields the claim.

Inspection of the proof of Lemma 3.1 shows that we only count triples i, k, j that
get covered in round r if the triple ir, k, jr is weakly relevant and weakly (r − 1)-
uncovered. Hence, after line 12 of Algorithm 1 we can remove all columns k from Ar

and all rows k from Br for which ir, k, jr is not weakly relevant or not weakly (r− 1)-
uncovered. Then Lemma 3.1 still holds, so the other steps are not affected. Note
that checking this property for ir, k, jr takes time O(ρ) for each k and each round r,
and thus in total incurs cost O(nρ2) ≤ O(ρn2), which is dominated by the remaining
running time of Phase 2. Using rectangular matrix multiplication to compute Ar ∗Br

(Lemma 1.8) we obtain the following improved running time.

Lemma 3.2. W.h.p. the improved step 2 takes time Õ(ρΔW · M(n, n/ρ1/3, n)).

Proof. Let sr denote the number of surviving k’s in round r, i.e., the number of
k’s such that ir, k, jr is weakly relevant, weakly (r− 1)-uncovered. Using Lemma 1.8,
the running time of step 2 is bounded by Õ

(∑ρ
r=1 ΔW · M(n, sr, n)

)
. Note that for

any x, y, we haveM(n, x, n) ≤ O((1+x/y)M(n, y, n)), by splitting columns and rows
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of length x into �x/y� ≤ 1 + x/y blocks. Hence, we can bound the running time by
Õ
(∑ρ

r=1 ΔW · (1 + srρ
1/3/n) ·M(n, n/ρ1/3, n)

)
. Thus, to show the desired bound of

Õ(ρΔW · M(n, n/ρ1/3, n)), it suffices to show that
∑ρ

r=1 sr ≤ Õ(nρ2/3) holds w.h.p.
W.h.p. the number of weakly relevant, weakly (r − 1)-uncovered triples is

Õ(n3/r1/3), by Lemma 3.1. Thus, for a random k the probability that ir, k, jr is
weakly relevant, weakly (r− 1)-uncovered is Õ(r−1/3). Summing over all k we obtain
E[sr] = Õ(n/r1/3) (note that the inequality sr ≤ n allows us to condition on any
w.h.p. event for evaluating the expected value). This yields the desired bound for the
expectation of the running time, since

∑ρ
r=1 E[sr] ≤ Õ(n

∑ρ
r=1 r

−1/3) ≤ Õ(nρ2/3).
For concentration, fix r∗ as any power of two and consider sr∗+sr∗+1+· · ·+s2r∗−1.

For any r∗ ≤ r < 2r∗ denote by s̄r the number of triples ir, k, jr that are weakly
relevant and weakly r∗-uncovered, and note that sr ≤ s̄r. Again we have E[s̄r] ≤
Õ(n/r1/3). Moreover, conditioned on the choices up to round r∗, the numbers s̄r,
r∗ ≤ r < 2r∗, are independent. Hence, a Chernoff bound (Lemma 3.3 below) on
variables s̄r/n ∈ [0, 1] shows that w.h.p.

s̄r∗ + s̄r∗+1 + · · ·+ s̄2r∗−1 ≤ O
(
E[s̄r∗ + s̄r∗+1 + · · ·+ s̄2r∗−1] + n logn

)
.

Hence, w.h.p.
∑ρ

r=1 sr ≤
∑ρ

r=1 s̄r ≤ O(n log(n) log(ρ) +
∑ρ

r=1 E[s̄r ]). Using our

bound on E[s̄r], we obtain w.h.p.
∑ρ

r=1 sr ≤ Õ(n+ nρ2/3) ≤ Õ(nρ2/3) as desired.

Lemma 3.3. Let X1, . . . , Xn be independent random variables taking values in
[0, 1], and set X :=

∑n
i=1 Xi. Then for any c ≥ 1 we have

Pr[X > (1 + 6ec)E[X ] + c logn] ≤ n−c.

Proof. If E[X ] < log(n)/2e we use the standard Chernoff bound Pr[X > t] ≤ 2−t

for t > 2eE[X ] with t := c logn. Otherwise, we use the standard Chernoff bound
Pr[X > (1 + δ)E[X ]] ≤ exp(−δE[X ]/3) for δ ≥ 1 with δ := 6ec.

3.2. Speeding up Phase 3.
Enumerating approximately uncovered blocks. In line 17 of Algorithm 1 we check

for each block i′, k′, j′ of approximately relevant triples whether it consists of ap-
proximately uncovered triples. This step can be improved using rectangular ma-
trix multiplication as follows. For each block k′ we construct an (n/Δ) × ρ ma-
trix Uk′

and a ρ × (n/Δ) matrix V k′
with entries Uk′

xr := [|Ar
xΔ,k′ | ≤ 44ΔW ] and

V k′
ry := [|Br

k′,yΔ| ≤ 44ΔW ]. Then from the Boolean matrix product Uk′ · V k′
we can

infer for any block i′, k′, j′ whether it consists of approximately uncovered triples by
checking (Uk′ ·V k′

)i′/Δ,j′/Δ = 1. Hence, enumerating the approximately relevant, ap-
proximately uncovered triples i′, k′, j′ can be done in time O((n/Δ)·M(n/Δ, ρ, n/Δ)).

Recursion. In the exhaustive search in step 3 (see lines 18–19 of Algorithm 1),
we essentially compute the (min,+)-product of the matrices (Aik)i∈I(i′),k∈I(k′) and
(Bkj)k∈I(k′),j∈I(j′). These matrices again have W -BD, so we can use Algorithm 1
recursively to compute their product. Writing T (n,W ) for the running time of our
algorithm, this reduces the time complexity of one invocation of lines 18–19 from
O(Δ3) to T (Δ,W ), which in total reduces the running time of the exhaustive search
from Õ(n3/ρ1/3) to Õ((T (Δ,W )/Δ3) · n3/ρ1/3) w.h.p.

3.3. Total running time. Recall that step 1 takes time O((n/Δ)3 + n2), step
2 now runs in Õ(ρΔW · M(n, n/ρ1/3, n)) w.h.p., and step 3 now runs in Õ((n/Δ) ·
M(n/Δ, ρ, n/Δ) + (T (Δ,W )/Δ3) · n3/ρ1/3) w.h.p. This yields the complicated re-
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cursion

T (n,W ) ≤ Õ

(
ρΔW ·M

(
n,

n

ρ1/3
, n
)
+

n

Δ
·M

( n

Δ
, ρ,

n

Δ

)
+

T (Δ,W )

Δ3
· n3

ρ1/3

)
,

while the trivial algorithm yields T (n,W ) ≤ O(n3).
In the remainder, we focus on the caseW = O(1), so that T (n,W ) = T (n,O(1)) =:

T (n). Setting Δ := nδ and ρ := ns logc n for constants δ, s ∈ (0, 1) and sufficiently
large c > 0, and usingM(a, Õ(b), c) ≤ Õ(M(a, b, c)), we obtain

T (n) ≤ Õ
(
nδ+sM

(
n, n1−s/3, n

)
+ n1−δM (

n1−δ, ns, n1−δ
))

+ n3−3δ−s/3T
(
nδ
)
.

This is a recursion of the form T (n) ≤ Õ(nα) + nβT (nγ), which solves to T (n) ≤
Õ(nα + nβ/(1−γ)), by an argument similar to the master theorem. Hence, we obtain

T (n) ≤ Õ
(
nδ+sM

(
n, n1−s/3, n

)
+ n1−δM (

n1−δ, ns, n1−δ
)
+ n(3−3δ−s/3)/(1−δ)

)
.

We optimize this expression using the bounds on rectangular matrix multiplica-
tion by Le Gall [28]. Specifically, we set δ := 0.0772 and s := 0.4863 to ob-
tain a bound of O(n2.8244), which proves part of Theorem 1.2. Here we use the
boundsM(m,m1−s/3,m) ≤M(m,m0.85,m) ≤ O(m2.260830) andM(m,ms/(1−δ),m)
≤ M(m,m0.5302,m) ≤ O(m2.060396) by Le Gall [28] for m = n and m = n1−δ,
respectively.

We remark that if perfect rectangular matrix multiplication exists, i.e.,
M(a, b, c) = Õ(ab+ bc+ ac), then our running time becomes

T (n) ≤ Õ(n2+δ+s + n3−3δ + n(3−3δ−s/3)/(1−δ)),

which is optimized for δ = (13 − √133)/18 and s = (2
√
133 − 17)/9, yielding an

exponent of (5 +
√
133)/6 ≈ 2.7554. This seems to be a barrier for our approach.

3.4. Derandomization. The only random choice in Algorithm 1 is to pick ir, jr

uniformly at random from [n]. In the following we show how to derandomize this
choice, at the cost of increasing the running time of step 2 by O(ρ(n/Δ)1+ω). We
then show that we still obtain a truly subcubic total running time.

Fix round r. Similarly to the proof of Lemma 3.1, for any k′ divisible by Δ we
construct a bipartite graph G′

r,k′ with vertex sets {Δ, 2Δ, . . . , n} and {Δ, 2Δ, . . . , n}
(we denote vertices in the left vertex set by i′ or ir and vertices in the right vertex
set by j′ or jr). We connect i′, j′ by an edge in G′

r,k′ if i′, k′, j′ is approximately
relevant and approximately (r − 1)-uncovered. In G′

r,k′ we count the number of 3-
paths between any i′, j′. Now we pick ir, jr as the pair i′, j′ maximizing the sum over
all k′ of the number of 3-paths in G′

r,k′ containing i′, j′. This finishes the description
of the adapted algorithm.

It is easy to see that this adaptation of the algorithm increases the running time
of step 2 by at most O(ρ(n/Δ)ω+1). Indeed, constructing all graphs G′

r,k′ over the

ρ rounds takes time O(ρ(n/Δ)3), and computing the number of 3-paths between any
pair of vertices can be done in O(|V (G′

r,k′ )|ω), which over all r and k′ incurs a total

cost of O(ρ(n/Δ)ω+1).
It remains to argue that an analog of Lemma 3.1 still holds. Note that the

number of 3-paths in G′
r,k′ containing ir, jr counts the number of i′, j′ such that

(i′, k′, j′), (ir, k′, j′), (i′, k′, jr), (ir, k′, jr) are all approximately relevant and approxi-
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mately (r − 1)-uncovered. For any such (i′, k′, j′), any (i, k, j) ∈ I(i′) × I(k′)× I(j′)
gets covered in round r, in fact, these are the triples counted in Lemma 3.1 (after re-
placing “weakly” by “approximately” relevant and uncovered). As we maximize this
number, we cover at least as many new triples as in expectation, so that Lemma 3.1
still holds, after replacing “weakly” by “approximately” relevant and uncovered: for
any 1 ≤ r ≤ ρ the number of approximately relevant, approximately r-uncovered
triples is Õ(n3/r1/3). Since this is sufficient for the analysis of step 3, we obtain the
same running time bound as for the randomized algorithm, except that step 2 takes
additional time O(ρ(n/Δ)1+ω).

Total running time. Adapting the basic Algorithm 1 yields, as in section 2.4,
a running time of Õ(ρΔWnω + ρ(n/Δ)1+ω + n3/ρ1/3 + n2.5). We optimize this by

setting Δ := (n/W )1/(ω+2) and ρ := n3(5+ω−ω2)/(4ω+8)W−3(ω+1)/(4ω+8). This yields a

running time of Õ(n3−(5+ω−ω2)/(4ω+8)W (ω+1)/(4ω+8)) ≤ O(n2.9004W 0.1929), using the
current bound of ω ≤ 2.3728639 [29]. In particular, the algorithm has truly subcubic
running time whenever W ≤ O(n2−ω+3/(ω+1)−ε) ≈ O(n0.5165−ε) for any ε > 0.

For W = O(1), adapting the improved algorithm from section 3.3 yields

T (n) ≤ Õ
(
nδ+sM

(
n, n1−s/3, n

)
+ n1−δM (

n1−δ, ns, n1−δ
)

+ n(3−3δ−s/3)/(1−δ) + n(1+ω)(1−δ)+s
)
,

which is O(n2.8603) for δ := 0.2463 and s := 0.3159, finishing the proof of Theorem 1.2.
Here we use the bounds M(m,m1−s/3,m) ≤ M(m,m0.90,m) ≤ O(m2.298048) and
M(m,ms/(1−δ),m) ≤M(m,m0.45,m) ≤ O(m2.027102) by Le Gall [28] for m = n and
m = n1−δ, respectively.

3.5. Generalizations. In this section we study generalizations of Theorem 1.2.
In particular, we will see that it suffices if A has BDs along either the columns or the
rows, while B may be arbitrary. Since A � B = (BT � AT )T , a symmetric algorithm
works if A is arbitrary and B has BDs along either its columns or its rows.

Theorem 3.4. Let A,B be integer matrices, where B is arbitrary and we assume
either of the following:

(1) for an appropriately chosen 1 ≤ Δ ≤ n we are given a partitioning [n] =
I1 ∪ · · · ∪ In/Δ such that maxi∈I� Ai,k −mini∈I� Ai,k ≤ ΔW for all k, �, or

(2) for an appropriately chosen 1 ≤ Δ ≤ n we are given a partitioning [n] =
K1 ∪ · · · ∪Kn/Δ such that maxk∈K�

Ai,k −mink∈K�
Ai,k ≤ ΔW for all i, �.

If W ≤ O(n3−ω−ε), then A � B can be computed in randomized time O(n3−Ω(ε)). If
W = O(1), then A � B can be computed in randomized time O(n2.9217).

Important special cases of the above theorem are that A has W -BD only along
columns (|Ai+1,k −Ai,k| ≤W for all i, k) or only along the rows (|Ai,k+1−Ai,k| ≤W
for all i, k). In these cases the assumption is indeed satisfied, since we can choose
each I
 or K
 as a contiguous subset of Δ elements of [n], thus amounting to a total
difference of at most ΔW .

Proof. (1) For the first assumption, adapting Algorithm 1 is straightforward.
Instead of blocks I(I ′) × I(k′) × I(j′) we now consider blocks I
 × {k} × {j} for
any � ∈ [n/Δ], k, j ∈ [n]. Within any such block, Ai,k varies by at most ΔW by
assumption. Moreover, Bkj does not vary at all, since k, j are fixed. We adapt step

1 by computing for each block I
 × {k} × {j} one entry C̃i∗j = (A � B)i∗j exactly

for some i∗ ∈ I
, and setting C̃ij := C̃i∗j for all other i ∈ I
. It is easy to see that
Lemma 2.1 still holds. Note that step 1 now runs in time O(n3/Δ).
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Step 2 does not have to be adapted at all, since as we remarked in section 2.2 it
works for arbitrary matrices.

For step 3, we have analogous notions of being approximately relevant or uncov-
ered, by replacing the notion of “blocks.” Thus, we now iterate over every �, k, j,
check whether it is approximately relevant (i.e., |Ai∗k + Bkj − C̃i∗j | ≤ 8ΔW for
some i∗ ∈ I
), check whether it is approximately uncovered (i.e., for all rounds r we
have |Ar

i∗k| > 44ΔW or |Br
kj | > 44ΔW ), and, if so, we exhaustively search over all

i ∈ I
, setting Ĉij := min{Ĉij , Aik + Bkj}. Then Lemma 2.7 still holds and cor-
rectness and running time analysis hold almost verbatim. Step 3 now runs in time
Õ(ρn3/Δ+ n3/ρ1/3) w.h.p.

The total running time is w.h.p. Õ(ρΔWnω + ρn3/Δ + n3/ρ1/3). We opti-
mize this by setting Δ := n(3−ω)/2/W 1/2 and ρ := n3(3−ω)/8/W 3/8, obtaining time
Õ(n3−(3−ω)/8W 1/8). As desired, this is n3−Ω(ε) for W = O(n3−ω−ε), while for
W = O(1) it evaluates to Õ(n3−(3−ω)/8) ≤ O(n2.9217). The latter bound can be
slightly improved by incorporating the improvements from section 3; we omit the
details.

(2′) Before we consider the second assumption, we first discuss a stronger as-
sumption where B is nice also along the columns: assume that for an appropriately
chosen 1 ≤ Δ ≤ n we are given a partitioning [n] = K1 ∪ · · · ∪ Kn/Δ such that
maxk∈K�

Ai,k−mink∈K�
Ai,k ≤ ΔW for all i, � and maxk∈K�

Bkj−mink∈K�
Bkj ≤ ΔW

for all �, j.
In this case, adapting Algorithm 1 is straightforward and similar to the last case.

Instead of blocks I
×{k}×{j} we now consider blocks {i}×I
×{j} for any � ∈ [n/Δ],
i, j ∈ [n]. Within any such block, A and B vary by at most ΔW by assumption. We
adapt step 1 by computing, for each i, �, j for some value k∗ ∈ K
, the sum Aik∗+Bk∗j .

We set C̃ij as the minimum over all � of the computed value. It is easy to see that
Lemma 2.1 still holds. Step 1 now runs in time O(n3/Δ).

Step 2 does not have to be adapted at all, since as we remarked in section 2.2 it
works for arbitrary matrices.

For step 3, we now iterate over every i, �, j, check whether it is approximately rel-
evant (i.e., |Aik∗ +Bk∗j− C̃ij | ≤ 8ΔW for some k∗ ∈ K
), check whether it is approx-
imately uncovered (i.e., for all rounds r we have |Ar

ik∗ | > 44ΔW or |Br
k∗j | > 44ΔW ),

and if so we exhaustively search over all k ∈ K
, setting Ĉij := min{Ĉij , Aik +Bkj}.
Then Lemma 2.7 still holds and correctness and running time analysis hold almost
verbatim. Step 3 now runs in time Õ(ρn3/Δ+ n3/ρ1/3) w.h.p.

We obtain the same running time as in the last case.
(2) For the second assumption, compute for all �, j the value v(�, j) :=

min{Bkj | k ∈ K
}, and consider a matrix B′ with B′
kj := min{Bkj , v(�, j) + 2ΔW},

where k ∈ K
. Note that for any i, k, j with k ∈ K
 and k∗ ∈ K
 such that
Bk∗j = v(�, j), we haveAik+(v(�, j)+2ΔW ) ≥ Aik∗+Bk∗j+ΔW > Cij , since A varies
by at most ΔW . Hence, no entry Bkj = v(�, j) + 2ΔW is strongly relevant, which
implies A � B′ = A � B. Note that B′ satisfies maxk∈K�

Bkj −mink∈K�
Bkj ≤ 2ΔW

for all �, j, so we can use case (2′) to compute A � B′. Since B′ can be computed in
time O(n2), the result follows.

4. Fast scored parsing. In this section, we prove Theorem 1.5 that reduces the
scored parsing problem for BD grammars to the (min,+)-product for BD matrices.
For a square matrix M , we let n(M) denote its number of rows and columns.

We will exploit a generalization of Valiant’s parser [46]. We start by describing
Valiant’s classic approach in section 4.1. Then in section 4.2 we show how to modify
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Valiant’s parser to solve the scored parsing problem, thereby replacing Boolean matrix
multiplications by (min,+)-products. Finally, in section 4.3 we show that all (min,+)-
products in our scored parser involve BD matrices.

4.1. Valiant’s parser. Given a CFG G = (N, T, P, S) and a string σ = σ1σ2 . . .
σn ∈ T ∗, the parsing problem is to determine whether σ ∈ L(G). In a breakthrough
paper [46], Valiant presented a reduction from parsing to Boolean matrix multipli-
cation, which we describe in the following (for a more detailed description, see [46]).
Let us define a (product) operator “.” as follows. For N1, N2 ⊆ N ,

N1.N2 = {Z ∈ N : ∃X ∈ N1, ∃Y ∈ N2 : (Z → XY ) ∈ P}.

Note the above operator is not associative in general, namely, (N1.N2).N3 might be
different from N1.(N2.N3).

Given an a × b matrix A and a b × c matrix B, whose entries are subsets of N ,
we can naturally define a matrix product C = A.B, where Ci,j =

⋃b
k=1 Ai,k.Bk,j .

Observe that this “.” operator can be reduced to the computation of a constant11

number of standard Boolean matrix multiplications. Indeed, for a matrix M and
nonterminal X , we let M(X) be the 0-1 matrix with the same dimensions as X and
entries M(X)i,j = 1 if and only if X ∈ Mi,j. In order to compute the product C =
A.B, we initialize matrix C with empty entries. Then we consider each production
rule Z → XY separately, and we compute C′(Z) = A(X) · B(Y ), where · is the
standard Boolean matrix multiplication. Then, for all i, j, we add Z to the set Ci,j if
C′(Z)i,j = 1.

The transitive closure A+ of an m×m matrix A of the above kind is defined as

A+ =

m⋃
i=1

A(i),

where

A(1) = A and A(i) =

i−1⋃
j=1

A(j).A(i−j).

Here unions are taken componentwise.
Given the above definitions we can formulate the parsing problem as follows. We

initialize an (n + 1) × (n + 1) matrix A with Ai,i+1 = {X ∈ N : (X → σi) ∈ P}
and Ai,j = ∅ for j 
= i + 1. Then by the definition of the operator “.” it turns out
that X ∈ (A+)i,j if and only if σi . . . σj−1 ∈ L(X). Hence one can solve the parsing
problem by computing A+ and checking whether S ∈ A+

1,n+1.
Suppose that, for two given n×n matrices, the “.” operation can be performed in

time O(nα) for some 2 ≤ α ≤ 3, and note that the “∪” operation can be performed in
time O(n2). Crucially, we cannot simply use the usual squaring technique to compute
A+ in time Õ(nα), due to the fact that “.” is not associative. However, Valiant
describes a more sophisticated approach to achieve the same running time. It then
follows that the parsing problem can be solved in time Õ(nω), where 2 ≤ ω < 2.373
is the exponent of fast Boolean matrix multiplication [47, 29] (O(nω) if ω > 2).

For the sake of simplicity we assume that n+ 1 is a power of 2. This way we can
avoid the use of ceilings and floors in the definition of some indices. It is not hard

11Here we ignore the (polynomial) dependence on the size of the grammar G, as we assume for
simplicity that G has constant size.
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to handle the general case either by introducing ceilings and floors or by introducing
dummy entries (with a mild adaptation of some definitions). Valiant’s fast procedure
to compute the transitive closure of a given matrix is described in Algorithm 2. In this
algorithm, we use the following notation: for two sets of indices I and J , by BJ

I we
denote the submatrix of B given by entries Bi,j with i ∈ I and j ∈ J . The algorithm
involves 4 recursive procedures: Parse, Parse2, Parse3, and Parse4. Each one of them
receives as input an n(B) × n(B) matrix B, and the result of the computation is
stored in B (i.e., B is passed by reference). Assuming that n + 1 is a power of 2, it
is easy to see that the sizes of the input matrices to Parse and Parse2 are all powers
of 2. This guarantees that all the indices used in the algorithm are integers (this way
we can avoid ceilings and floors as mentioned earlier).

Algorithm 2 Valiant’s parser. In all the subroutines the input is an n(B) × n(B)
matrix B, which is passed by reference. By BJ

I we denote the submatrix of B having
entries Bi,j with i ∈ I and j ∈ J .

Parse(B):

1: if n(B) > 1 then

2: Parse(B
[1,n(B)/2]
[1,n(B)/2])

3: Parse(B
[n(B)/2+1,n(B)]
[n(B)/2+1,n(B)])

4: Parse2(B)

Parse2(B):

1: if n(B) > 2 then

2: Parse2(B
[n(B)/4+1,3n(B)/4]
[n(B)/4+1,3n(B)/4])

3: Parse3(B
[1,3n(B)/4]
[1,3n(B)/4])

4: Parse3(B
[n(B)/4+1,n(B)]
[n(B)/4+1,n(B)])

5: Parse4(B)

Parse3(B):

1: Let I1 = [1, n(B)/3], I2 = [n(B)/3 + 1, 2n(B)/3], and I3 = [2n(B)/3 + 1, n(B)]
2: BI3

I1
← BI3

I1
∪ (BI2

I1
. BI3

I2
)

3: C ← matrix obtained from B by deleting row/column indices in I2
4: Parse2(C)
5: B ← matrix obtained from C by reintroducing the rows and columns deleted in

Step 3

Parse4(B):

1: Let I1 = [1, n(B)/4], I2 = [n(B)/4 + 1, 2n(B)/4], I3 = [2n(B)/4 + 1, 3n(B)/4],
and I4 = [3n(B)/4 + 1, n(B)]

2: BI4
I1
← BI4

I1
∪ (BI2

I1
. BI4

I2
) ∪ (BI3

I1
. BI4

I3
)

3: C ← matrix obtained from B by deleting row/column indices in I2 ∪ I3
4: Parse2(C)
5: B ← matrix obtained from C by reintroducing the rows and columns deleted in

Step 3

The running time bound Õ(nω) follows by standard arguments. For the (subtle)
correctness argument we refer to [46], but the argument is also implicit in Lemma 4.2
below.
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4.2. Scored parser and (min,+)-products. We can adapt Valiant’s ap-
proach to scored parsing as follows.12 Let G = (N, T, P, S) be a scored grammar
with score function s (mapping productions to nonnegative integers). Let us consider
the set FN of all functions F : N → N≥0 ∪ {∞}. We interpret F (X) as the score of
nonterminal X ∈ N , and thus F is a score function on the nonterminals. We write
∞ for the score function mapping each X ∈ N to ∞. Let F1, F2 ∈ FN . We redefine
the operator “∪” as pointwise minimum:

(F1 ∪ F2)(X) := min{F1(X), F2(X)}.
We also redefine the operator “.” as follows (where the minimum is ∞ if the set is
empty):

(F1.F2)(X) = min{s(X → Y Z) + F1(Y ) + F2(Z) | (X → Y Z) ∈ P}.
Given the above operations “.” and “∪”, we can define the product of two ma-

trices whose entries are in FN as well as the transitive closure of one such square
matrix in the same way as before, i.e., C = A.B is defined via Ci,j =

⋃
k Ai,k.Bk,j ,

and for an m × m-matrix A we have A+ =
⋃m

i=1 A
(i), where A(1) = A and A(i) =⋃i−1

j=1 A
(j).A(i−j). We can then solve the scored parsing problem as follows. For a

given string σ of length n, we define an (n+ 1)× (n+ 1) matrix A whose entries are
in FN , where

Ai,i+1(X) = min{s(X → σi) | (X → σi) ∈ P}
for i = 1, . . . , n and Ai,j =∞ for j 
= i+1. Then by the definition of the operator “.”
it follows that (A+)i,j evaluated at X equals the score s(X, σi . . . σj−1). Hence, the
solution to the scored parsing problem is (A+)1,n+1 evaluated at the starting symbol
S ∈ N .

Crucially for our goals, the “.” operator can be implemented with a reduction to
a constant (for constant grammar size) number of (min,+)-products � with a natural
adaptation of the previously described reduction to Boolean matrix multiplication.
For a matrix M with entries in FN and for X ∈ N , let M(X) be the matrix with
the same dimension as M and having M(X)i,j = Mi,j(X). With the same notation
as before, in order to compute the product C = A.B we initialize matrix C with ∞
entries. Then we consider each production rule Z → XY separately, and we compute
C′(Z) = A(X) � B(Y ). Then we set Ci,j(Z) = min{Ci,j(Z), s(Z → XY ) + C ′(Z)i,j}
for all i, j. This computes C = A.B.

With the above modifications, the same Algorithm 2 computes A+ in the scored
setting. This is proven formally in the next section.

4.3. Reduction to BD (min,+)-product. In this section, we show that Algo-
rithm 2 also works in the scored setting. More importantly, we prove that the matrix
products BJ

I .B
J′
I′ called by this algorithm can be implemented using (min,+)-products

of W -BD matrices, if the scored grammar is W -BD (recall Definition 1.4). This allows
us to use our main result to obtain a good running time bound for Algorithm 2 and
thus for scored parsing of BD grammars.

We start by proving the correctness of Algorithm 2 in the scored setting; see
Lemma 4.2 below. Some properties that we show along the way will also be crucial
for the BD property and running time analysis.

We first prove a technical lemma that relates the indices of the input square
matrices B in the various procedures to the indices of the original matrix A. Note

12This has already been done in [41], but we give details here for the sake of completeness.
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that each such matrix B corresponds to some submatrix of A; however, indices of B
might map discontinuously to indices of A (i.e., the latter indices do not form one
interval). This is due to step 3 of Parse3(B) and Parse4(B) that construct a matrix C
by removing central rows and columns of B. Note also that by construction the row
indices ofA associated with B are equal to the corresponding column indices (since the
mentioned step removes the same set of rows and columns). We denote bymapB(i) the
row/column index of A corresponding to row/column index i of B. We say that B is
contiguous if {mapB(i)}i=1,...,n(B) = {mapB(1),mapB(1)+1, . . . ,mapB(1)+n(B)−1}.
In other words, the indices of A corresponding to B form an interval of contiguous
indices. We say that B has a discontinuity at index 1 < a < n(B) if B is not

contiguous but the submatrices B
[1,a]
[1,a] and B

[a+1,n(B)]
[a+1,n(B)] are contiguous. We call the

indices J = {mapB(a) + 1, . . . ,mapB(a+ 1)− 1} the missing indices of B.

Lemma 4.1. Any input matrix B considered by the procedures in the scored parser
1. is contiguous if it is the input to Parse;
2. is contiguous or has a discontinuity at n(B)/2 if it is the input to Parse2 or

Parse4;
3. is contiguous or has a discontinuity at n(B)/3 or 2n(B)/3 if it is the input

to Parse3.

Proof. We prove the claims by induction on the partial order induced by the
recursion tree.

Parse(B) satisfies the claim in the starting call with B = A. In the remaining

cases Parse(B) is called by Parse(D) with B = D
[1,n(D)/2]
[1,n(D)/2] or B = D

[n(D)/2+1,n(D)]
[n(D)/2+1,n(D)].

The claim follows by inductive hypothesis on Parse(D).
Parse4(B) is called by Parse2(B). The claim follows by inductive hypothesis on

Parse2(B).

Parse3(B) is called by Parse2(D), with (i) B = D
[1,3n(D)/4]
[1,3n(D)/4] or (ii) B =

D
[n(D)/4+1,n(D)]
[n(D)/4+1,n(D)]. By inductive hypothesis D is contiguous or has a discontinuity

at n(D)/2. Hence B, if not contiguous, has a discontinuity at 2n(B)/3 in case (i) and
at n(B)/3 in case (ii). The claim follows.

Finally consider Parse2(B). If it is called by Parse(B), the claim follows by induc-

tive hypothesis on Parse(B). If it is called by Parse2(D) with B = D
[n(D)/4+1,3n(D)/4]
[n(D)/4+1,3n(D)/4],

the claim follows by inductive hypothesis on Parse2(D). Suppose it is called by
Parse4(D). Then D has size n(D) = 2n(B), and is contiguous or has a disconti-
nuity at n(D)/2 by inductive hypothesis. In this case B is obtained by removing
the n(D)/2 central columns and rows of D. Therefore B has a discontinuity at
n(B)/2. The remaining case is that Parse2(B) is called by Parse3(D), where D has
size n(D) = 3n(B)/2. In this case B is obtained by removing the n(D)/3 central
columns and rows of D. Since D is contiguous or has a discontinuity at n(D)/3 or
2n(D)/3 by inductive hypothesis on Parse3(D), B has a discontinuity at n(B)/2.

The following lemma proves the correctness of our algorithm, and is also crucial
for analyzing its running time.

Lemma 4.2. Let A be the input matrix and B be any submatrix in input to some
call to Parsek, k ∈ {2, 3, 4}. Then we have the input property

Bi,j = (A+)mapB(i),mapB(j) ∀i, j ∈ [1, n(B)− n(B)/k],

Bi,j = (A+)mapB(i),mapB(j) ∀i, j ∈ [n(B)/k + 1, n(B)].(1)
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Furthermore, let J be the missing indices in B if B has a discontinuity, and let J = ∅
if B is contiguous. Then for all i ∈ [1, n(B)/k] and j ∈ [n(B)−n(B)/k+1, n(B)] we
have the additional input property

Bi,j = AmapB(i),mapB(j) ∪
⋃
k∈J

(A+)mapB(i),k.(A
+)k,mapB(j).(2)

The matrix B at the end of the procedure has the following output property,

Bi,j = (A+)mapB(i),mapB(j) ∀i, j ∈ [1, n(B)].

The same output property holds for procedure Parse.

Proof. We prove the claim by induction on the total order defined by the begin-
ning and the end of each procedure during the execution of the algorithm starting
from Parse(A).

Consider the input property of some call Parse2(B). Suppose Parse2(B) is called
in step 4 of Parse(B). Let I1 = [1, n(B)/2] and I2 = [n(B)/2 + 1, n(B)]. The input
property (1) follows by the output property of Parse2(B

I1
I1
) and Parse2(B

I2
I2
) called

in steps 2 and 3. Since B is contiguous, we have J = ∅, and thus input property
(2) requires Bi,j = AmapB(i),mapB(j) for all i ∈ I1 and j ∈ I2. Since in the calls of
Parse(B) the input top-right quadrant is as in the initial matrix A, and this is not
affected by steps 2 and 3, input property (2) is satisfied.

If Parse2(B) is called in step 2 of Parse2(D) for someD, the input property follows
by inductive hypothesis on the input property of Parse2(D). Otherwise Parse2(B)
is called in step 4 of Parsek(D), for some D and k ∈ {3, 4}. Input property (1)
directly follows from the input property of Parsek(D). It remains to show that input
property (2) holds. Let S = [1, n(D)/k], M = [n(D)/k + 1, n(D) − n(D)/k], and
L = [n(D)− n(D)/k + 1, n(D)]. We need to show that BL

S has the desired property.
Let J be the missing indices in D (or ∅, if D is contiguous). Observe that, by step 3
of Parsek(D), the missing indices in B will be J ′ = M ∪J . By the input property (2)
of D, we have

Di,j = AmapD(i),mapD(j) ∪
⋃
k∈J

(A+)mapD(i),k.(A
+)k,mapD(j) ∀i ∈ S ∀j ∈ L.

Therefore at the end of step 2 of Parsek(D) one has, for all i ∈ S and j ∈ L,

Di,j = AmapD(i),mapD(j) ∪
(⋃

k∈J

(A+)mapD(i),k.(A
+)k,mapD(j)

)
∪
⋃
k∈M

Di,k.Dk,j

= AmapD(i),mapD(j) ∪
(⋃

k∈J

(A+)mapD(i),k.(A
+)k,mapD(j)

)

∪
⋃
k∈M

(A+)mapD(i),k.(A
+)k,mapD(j)

= AmapD(i),mapD(j) ∪
⋃

k∈J∪M

(A+)mapD(i),k.(A
+)k,mapD(j),

where in the second equality we used the input property (1) of Parsek(D). This
implies input property (2) for Parse2(B).

Let us consider the input property of some call Parse3(B). Note that Parse3(B)
is called either in step 3 or in step 4 of Parse2(D) for some D. Consider the first
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case, the second one is analogous. Let I1 = [1, n(D)/4], I2 = [n(D)/4 + 1, 2n(D)/4],
I3 = [2n(D)/4 + 1, 3n(D)/4], and I4 = [3n(D)/4 + 1, n(D)]. By the input property
of D and the output property of Parse2(D

I2∪I3
I2∪I3

), the input property (1) of B follows.
The input property (2) of B follows directly from the input property (2) of D since
the missing indices in D and B are the same.

Finally consider the input property of Parse4(B). Note that Parse4(B) is called in
step 5 of Parse2(B). With the same notation as above, the input property (1) of B fol-
lows directly from the output property of Parse3(B

I1∪I2∪I3
I1∪I2∪I3

) and of Parse3(B
I2∪I3∪I4
I2∪I3∪I4

).
The input property (2) of B follows directly from the input property (2) of B at the
beginning of Parse2(B) since BI4

I1
is not modified by steps 2–4.

It remains to discuss the output properties. Let us start with the output property
of Parse(B). The base case is n(B) = 1. In this case the unique entry B1,1 corresponds
to an entry in the main diagonal of the input matrix, and these entries are never
updated by the algorithm. In other words, B1,1 = AmapB(1),mapB(1), where A is the
input matrix (in particular, this is a trivial entry with all∞ values). This is the correct
answer since trivially (A+)i,i = Ai,i = ∞ for all i = 1, . . . , n + 1. For n(B) ≥ 2, the
output property follows from the output property of Parse2(B).

Consider next the output property of Parse2(B). The base case is n(B) = 2. In
this case the input property of B coincides with its output property. More precisely,
let J be the indices strictly between i = mapB(1) and j = mapB(2). Then the entry
B1,2 satisfies

B1,2 = Ai,j ∪
⋃
k∈J

(A+)i,k.(A
+)k,j = (A+)i,j ,

where the last equality follows from the definition of A+. For n(B) > 2, the output
property follows from the output property of Parse4(B).

Consider the output property of Parse3(B). Let I1 = [1, n(B)/3], I2 =
[n(B)/3 + 1, 2n(B)/3], and I3 = [2n(B)/3 + 1, n(B)]. By the input property (1)
of B, at the beginning of the procedure the only part of B which might not satisfy
the output property is BI3

I1
. This property is enforced on BI3

I1
at the end of step 4

due to the output property of Parse2(C). The output property of Parse4(B) can be
shown analogously: Here the part of B that needs to fixed is BI4

I1
with I1 = [1, n(B)/4]

and I4 = [3n(B)/4 + 1, n(B)]. This is done in step 4 due to the output property of
Parse2(C).

It remains to argue that all (explicit) matrix products performed by the scored
parser can be implemented using (min,+)-products of BD matrices.

Recall that in the scored parser the only explicit matrix products that we perform
are of type BJ

I .B
K
J in procedures Parsek(B), k ∈ {3, 4}. Recall that in order to

implement a product BJ
I .B

K
J we consider each production rule Z → XY (the number

of such rules is constant), we derive integer matrices BJ
I (X) and BK

J (Y ), and then we
compute the (min,+)-product BJ

I (X) � BK
J (Y ). In the next corollary we prove that

each such product involves two BD matrices. Therefore we can perform it in time
O(n(B)α) for some 2 ≤ α < 3 using our faster algorithm for BD (min,+)-product. It
follows from the previous discussion that the overall running time of our scored parser
is Õ(nα) (or O(nα) if α > 2).

Lemma 4.3. If the scored grammar G is W -BD, then the products in step 2 of
Parsek, k ∈ {3, 4}, involve W -BD submatrices.

Proof. Consider first Parse3(B). Recall that we perform the product BI2
I1

. BI3
I2
,

where I1 = [1, n(B)/3], I2 = [n(B)/3+1, 2n(B)/3], and I3 = [2n(B)/3+1, n(B)]. By
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Lemma 4.1, B is contiguous or has a discontinuity at n(B)/3 or 2n(B)/3. Thus each
such Ij forms a contiguous set of indices w.r.t. the input matrix A. By Lemma 4.2

(input property), the submatrices BI2
I1

and BI3
I2

are equal to the corresponding con-
tiguous submatrices of A+. Since the scored grammar is W -BD, and since (A+)i,j
evaluated at nonterminal X equals the score s(X, σi . . . σj−1), the matrix A+(X) is

W -BD for any X ∈ N . It follows that also BI2
I1
(X) and BI3

I2
(X) are W -BD for any

X ∈ N .
The proof in the case of Parse4(B) is analogous. Recall that we perform the

products BI2
I1

. BI4
I2

and BI3
I1

. BI4
I3
, where I1 = [1, n(B)/4], I2 = [n(B)/4 + 1, 2n(B)/4],

I3 = [2n(B)/4 + 1, 3n(B)/4], and I4 = [3n(B)/4 + 1, n(B)]. By Lemma 4.1, B is
contiguous or has a discontinuity at n(B)/2. Thus each such Ij forms a contiguous set
of indices w.r.t. the input matrix A. By Lemma 4.2 (input property), the submatrices
BI2

I1
, BI3

I1
, BI4

I2
, and BI4

I3
are equal to contiguous submatrices of A+. Since A+(X) is

W -BD for any X ∈ N , BI2
I1
(X), BI3

I1
(X), BI4

I2
(X), and BI4

I3
(X) are also W -BD for any

X ∈ N .

5. Applications. We show that LED, RNA folding, and OSG can be cast as
scored parsing problems on BD grammars. To apply Theorem 1.5 we also have to
make sure that the grammars are in CNF. To relax the latter condition, we first show
that it suffices to obtain grammars that are “almost CNF,” as is made precise in the
following section.

Recall that a scored grammar G is W -BD if for any nonterminal X , terminal x,
and string of terminals σ 
= ε the following holds:∣∣s(X, σ)− s(X, σx)

∣∣ ≤W and
∣∣s(X, σ)− s(X, xσ)

∣∣ ≤W.

5.1. From almost-CNF to CNF.

Definition 5.1. We call a (scored) grammar G almost-CNF if every production
is of the form

• X → Y Z for nonterminals X,Y, Z,
• X → c for a nonterminal X and a terminal c,
• X → ε for a nonterminal X, or
• X → Y for nonterminals X,Y .

That is, we relax CNF by allowing (1) ε-productions for all nonterminals, (2) unit
productions X → Y , and (3) the starting symbol to appear on the right-hand side.

We show that any scored grammar that is almost-CNF can be transformed into
a scored grammar in CNF, keeping BD properties. Hence, for our applications it
suffices to design almost-CNF grammars.

Lemma 5.2. Let G be a scored grammar G that is almost-CNF. In time
O(poly(|G|)) we can compute a scored grammar G′ in CNF generating the same scored
language as G, i.e., for the start symbols S, S′ of G,G′, respectively, and any string
of terminals σ 
= ε we have sG(S, σ) = sG′(S′, σ). Moreover, if G is W -BD then G′

is also W -BD.

The remainder of this section is devoted to the proof of this lemma. We follow
the standard conversion of CFGs into CNF, but we can skip some steps since G is
already almost-CNF. In this conversion, whenever we add a new production X → α
with score s, if there already exists the production X → α with score s′, then we only
keep the production with lowest cost min{s, s′}. We denote the set of nonterminals
of G by N and the set of productions by P . The size |G| is equal to |N |+ |P | up to
constant factors.
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Eliminating ε-productions. We eliminate productions of the form X → ε as fol-
lows.

Step 1: For any nonterminal X from which we can derive the empty string ε, let
s be the lowest score of any derivation X →∗ ε. We add the production X → ε with
score s.

Step 2: For any production p of the form X → Y Z or X → ZY , where Y → ε
is a production in the current grammar and X 
= Z, add a new production X → Z
with a score of s(X → Z) = s(p) + s(Y → ε).

Step 3: Delete all productions of the form X → ε.
Note that this does not change the set of nonterminals.13 Call the resulting

grammar G1. We claim that any nonterminal generates the same scored language in
G and G1, except that we delete the empty string from this language. In particular,
the BD property is not affected, as it ignores the empty string. To prove the claim,
consider any derivation X →∗ σ in G, where σ 
= ε is a string of terminals. Consider
any nonterminal Y that appears in the derivation and generates the empty string ε,
such that Y was derived from a production p of the form A → BY | Y B. Then we
can replace the use of p by the newly added production A→ B, while not increasing
the score. Iterating this eventually yields a derivation not using any ε-production,
i.e., a derivation in G1. For the other direction, by construction we can replace any
newly added production in G1 by a derivation in G with the same score.

Efficient emplementation. Steps 2 and 3 clearly run in linear time. To efficiently
implement Step 1, we use a Bellman–Ford-like algorithm. For each nonterminal X
initialize sX as the score of the production X → ε, or as ∞, if no such production
exists. At the end of the algorithm, sX will hold the minimal cost of any derivation
X →∗ ε, or∞ if there is no such derivation. Repeat the following for |N | rounds. For
each production of the form X → Y Z with score s, set sX := min{sX , s+ sY + sZ}.
For each production of the form X → Y with score s, set sX := min{sX , s+ sY }.

The running time of this algorithm is clearly O(|N | · |P |) ≤ O(|G|2). Correctness
is implied by the following claim, asserting that we can restrict our attention to
derivations of depth at most |N |, where the depth of a derivation is to be understood
as the depth of the corresponding parse tree. Observe that all such derivations are
incorporated in the output of our algorithm.

Claim 1. For any nonterminal X such that there exists a derivation X →∗ ε, let
s be the minimal score of any such derivation. Then there exists a derivation X →∗ ε
of score s and depth at most |N |.

Proof. Among the derivations X →∗ ε of (minimal) score s, consider one of
minimum length. In this derivation, the nonterminal X cannot appear anywhere
(except for the first step), as any appearance ofX would give rise to another derivation
X →∗ ε with score at most s and smaller length, which is a contradiction.

We can now argue inductively. If the first production is X → Y Z, then the
remaining derivations Y →∗ ε and Z →∗ ε without loss of generality only use nonter-
minals in N \ {X}, and thus inductively they have depth at most |N |− 1. This yields
depth at most |N | for the derivation X →∗ ε.

Eliminating the start symbol from the right-hand side. Let S be the start symbol
of the grammar G1 resulting from the last step. We introduce a new nonterminal
S′ and add the production S′ → S, making S′ the new start symbol. This does

13Some nonterminals might not appear in any productions anymore; we still keep them in the set
of nonterminals N .
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not change the generated language and eliminates the start symbol from the right-
hand side of all productions. Moreover, since S′ generates the same language as S, it
inherits the BD property, so the resulting grammar has the same BD properties as G.

If the original grammar G can generate the empty string, then we add the pro-
duction S′ → ε. Since G1 generates the same language as G except that we delete
the empty string, the resulting grammar G2 generates exactly the same language as
G. Moreover, since the BD property ignores the empty string, it is not affected by
this change.

Eliminating unit productions. We now eliminate productions of the form X → Y .
Interpret any production X → Y with score s as an edge from vertex X to vertex Y
with weight s, and compute APSP on the resulting graph. Using Dijkstra, this runs
in time Õ(|N | · |P |) ≤ Õ(|G|2). Iterate over all productions X → α with α of the
form Y Z (for nonterminals Y, Z) or of the form c (for a terminal c). Iterate over all
nonterminals W , and let s be the shortest path length from W to X . If s <∞, add
the production W → α with score s(W → α) = s + s(X → α). Finally, delete all
productions of the form X → Y .

It is easy to see that this procedure for eliminating unit productions runs in time
Õ(|N |·|P |) ≤ Õ(|G|2) (note that up to the construction of G1 we increased the sizes of
N and P at most by constant factors). We claim that in the resulting grammarG′, any
nonterminal generates the same scored language as in G2. Hence, BD properties are
again not affected by this change. To prove the claim, consider any derivationX →∗ σ
in G2, where σ 
= ε is a string of terminals. In this derivation, replace any maximal
sequence of unit productions followed by a nonunit production by the corresponding
newly added production in G′. This yields a derivation X → σ in G′, while not
increasing the score. For the other direction, note that any newly added production
in G′ by construction can be replaced by productions in G2 with the same score.

Observe that the resulting grammar G′ is indeed in CNF. Thus, the above steps
prove Lemma 5.2.

5.2. From LED and RNA folding to scored parsing. We show that LED
can be reduced to scored parsing on BD grammars. Recall that in LED we are given
a CFG G in CNF and a string σ of terminals, and we want to compute the smallest
edit distance of σ to a string σ′ in the language generated by G. The possible edit
operations are insertions, deletions, and substitions, and all have cost 1. However, our
construction also works if we only allow insertions and deletions (and no substitution).

Recall from the introduction that RNA folding can be cast as an LED problem
without substitutions, where the grammar is given by the productions S → SS | ε
and S → σSσ′ | σ′Sσ for any symbol σ ∈ Σ with matching symbol σ′ ∈ Σ′. Then
if d is the edit distance (using only insertions and deletions) of a given string σ to
this RNA grammar, then (|σ| − d)/2 is the maximum number of bases that can be
paired in the corresponding RNA sequence. Therefore, RNA folding is covered by our
construction for LED without substitutions.

We assume that we are given a scored grammar G = (N, T, P, S) in CNF. In the
following we describe how to adapt this grammar. In this procedure, whenever we
add a new production X → α with score s, if there already exists the production
X → α with score s′, then we only keep the production with lowest cost min{s, s′}.
Initially, all productions in G get score 0.

Modeling substitutions. (For the LED problem without substitutions, simply ig-
nore this paragraph.) To model substitutions, for any production of the form X → c
(for a nonterminal X and a terminal c) in the original grammar, and for each terminal
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c′ ∈ T , we add a production X → c′ with score 1. Note that this allows us to sub-
stitute any terminal at a cost of 1 in any derivation X →∗ σ. In other words, in the
resulting scored grammar Ĝ the score of any string of terminals σ is the minimal num-
ber of substitutions to transform σ into a string σ′ in the language generated by G.
Note that Ĝ is still in CNF. This transformation increases the number of productions
by at most |N | · |T |.

Modeling insertions. Without loss of generality we can assume that for each ter-
minal a ∈ T , there exists a nonterminal Xa and the production Xa → a with score
0, and this is the only production with Xa on the left-hand side (if not, we intro-
duce a new nonterminal Xa and the corresponding production; this does not change
the generated language or the fact that the grammar is in CNF). In order to model
insertions, we create a new nonterminal I, and add the following productions:

I → XaI (score = 1) | IXa (score = 1) | ε (score = 0) for every a ∈ T,

X → XI (score = 0) | IX (score = 0) for every nonterminal X ∈ N .

Observe that I can generate any string of terminals, and the associated score is the
length of the string. Moreover, I can be inserted at any point of a string generated
by any nonterminal.

Modeling insertions. In order to model deletions, for any nonterminal X , if there
exists a production of the form X → c with terminal c, then we add the production

X → ε (score = 1).

This production allows us, in any derivation where X produces a single terminal, to
delete this terminal at a cost of 1.

This creates an augmented grammar G′ of size polynomial in |G|. It has been
shown in [4] that the LED problem on grammar G is equivalent to the scored parsing
problem on G′. Since G′ is almost-CNF by construction, we can use Lemma 5.2 to
obtain an equivalent scored grammar G′′ in CNF, again with size polynomial in |G|.
In order to use Corollary 1.6 for solving the scored parsing problem on G′′, it only
remains to show that G′ (and thus also G′′) is a BD grammar.

Claim 2. G′ is a 1-BD grammar.

Proof. Consider any nonterminal X ∈ N and string of terminals σ, and let s :=
sG′(X, σ). Then for any terminal x, X → IX → XxIX → XxX → xX →∗ xσ is a
valid derivation of xσ with score s + 1. For X = I we similarly use the derivation
I → XxI → xI →∗ xσ.

For the other direction, consider a derivation X →∗ xσ with total score s′. In this
derivation, the first terminal x must be generated using a production of the form Y →
x. By replacing this production with Y → ε we obtain a derivation of the string σ,
while increasing the score by at most 1. In total, we obtain |sG′(X, σ)−sG′(X, xσ)| ≤
1. The other condition |sG′(X, σ)− sG′(X, σx)| ≤ 1 can be shown symmetrically.

Proposition 5.3. LED and RNA folding can be reduced to scored parsing prob-
lems of 1-BD grammars. The blowup in the grammar size is polynomial, and the input
string is not changed by the reduction.

5.3. From optimal stack generation to scored parsing. We show that OSG
can be reduced to a scored parsing problem on a 3-BD grammar in almost-CNF. Recall
that in OSG we are given a string σ over an alphabet Σ, and we want to print σ by a
minimum length sequence of three stack operations: push(), emit (i.e., print the top
character in the stack), and pop, ending with an empty stack.
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We model this problem as a scored parsing problem as follows. We have a start
symbol S representing that the stack is empty, and a nonterminal Xc for any c ∈ Σ
representing that the topmost symbol on the stack is c. Moreover, we use a symbol
Nc for emitting symbol c, and call a production producing Nc a “preemit.” Note that
this grammar is already almost-CNF:

S → ε (score 0) end of string,

S → XcS (score 1) push c for any c ∈ Σ,

Xc → NcXc (score 0) pre-emit c for any c ∈ Σ,

Xc → Xc′Xc (score 1) push c′ for any c, c′ ∈ Σ,

Xc → ε (score 1) pop c for any c ∈ Σ,

Nc → c (score 1) emit c for any c ∈ Σ.

Indeed, these productions model that from an empty stack the only possible operation
is to push some symbol c, while if the topmost symbol is c then we may (pre)emit c,
or push another symbol c′, or pop c. It is immediate that the scored parsing problem
on this grammar is equivalent to OSG.

For an example, consider the string bccab. This string can be generated as follows,
where we always resolve the leftmost nonterminal. Note that the suffix of nonterminals
always corresponds to the current content of the stack:

S → XbS → NbXbS → bXbS → bXcXbS → bNcXcXbS → bcXcXbS → bcNcXcXbS

→ bccXcXbS → bccXbS → bccXaXbS → bccNaXaXbS → bccaXaXbS → bccaXbS

→ bccaNbXbS → bccabXbS → bccabS → bccab.

BDs. In order to obtain a BD grammar, we slightly change the above grammar
by adding the following productions:

Nc → Xc′ (score 1) helper for BD for any c, c′ ∈ Σ.

This does not change the scored language generated by the grammar. Indeed, when-
ever Nc appears in a derivation starting from S, then it was produced by an appli-
cation of the rule Xc → NcXc. Using the new production Nc → Xc′ thus results in
Xc → NcXc → Xc′Xc, with total score 1. However, this derivation can be performed
directly using the productions modeling push operations, with the same score. As this
is the only way to use the newly added productions in any derivation starting from
S, the generated language of the grammar is not changed (in fact, only the scored
language generated by Nc is changed).

Call the resulting grammar G. Note that G is still almost-CNF. We show that it
is also BD.

Claim 3. G is a 5-BD grammar.

Proof. Consider a string σ 
= ε over Σ and a symbol x ∈ Σ. We have to show
that for any nonterminal X of G,∣∣s(X, σ)− s(X, σx)

∣∣ ≤ 5 and
∣∣s(X, σ)− s(X, xσ)

∣∣ ≤ 5.

Consider a derivation X →∗ xσ. At some point we produce the first terminal x via
the production Nx → x. We change the derivation by instead using Nx → Xx → ε,
obtaining a derivation of σ. This increases the score by 1 (as the scores of Nx → x,

D
ow

nl
oa

de
d 

02
/2

6/
20

 to
 1

28
.3

0.
51

.1
45

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

510 BRINGMANN, GRANDONI, SAHA, AND WILLIAMS

Nx → Xx, and Xx → ε are all 1). Hence, s(X, σ) ≤ s(X, xσ) + 1. The inequality
s(X, σ) ≤ s(X, σx) + 1 can be shown symmetrically.

For the other direction, first consider a nonterminalX in {S}∪{Xc | c ∈ Σ}. Con-
sider a derivation X →∗ σ. Then the adapted derivation X → XxX → NxXxX →
xXxX → xX →∗ xσ increases the score by 3 and generates xσ.

Similarly, to generate σx, note that X is always the rightmost symbol during
the whole derivation, until we delete it with the rule X → ε. At the point in the
derivation X →∗ σ, where we delete X via X → ε, instead using the derivation
X → XxX → NxXxX → xXxX → xX → x to produce x at a cost of 3. Then the
adapted derivation generates σx.

For nonterminals X = Nc (for any c ∈ Σ) we argue as follows. If the first step
of the derivation is Nc → Xc′ , then we can instead argue about Xc′ , which we have
done above. Otherwise, the derivation is Nc → c, and σ = c. Then to produce xc we
instead use the derivation

Nc → Xc → XxXc → NxXxXc → xXxXc → xXc → xNcXc → xcXc → xc,

at a cost of 6, increasing the score of Nc → c by 5. The case σx is symmetric.
In all cases, the scores of σ and xσ (or σx) differ by at most 5.

Together with Lemma 5.2 we now obtain the following.

Proposition 5.4. OSG can be reduced to a scored parsing problem of a BD gram-
mar. The size of the grammar is polynomial in |Σ|, and the input string is not changed
by the reduction.
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