Faster Replacement Paths and Distance Sensitivity Oracles

FABRIZIO GRANDONI, IDSIA, USI-SUPSI, Switzerland
VIRGINIA VASSILEVSKA WILLIAMS, Massachussetts Institute of Technology, USA

Shortest paths computation is one of the most fundamental problems in computer science. An important
variant of the problem is when edges can fail, and one needs to compute shortest paths that avoid a (failing)
edge. More formally, given a source node s, a target node ¢, and an edge e, a replacement path for the triple
(s, t,e) is a shortest s-t path avoiding edge e. Replacement paths computation can be seen either as a static
problem or as a data structure problem. In the static setting, a typical goal is to compute for fixed s and ¢, for
every possible failed edge e, the length of the best replacement path around e (replacement paths problem).
In the data structure setting, a typical goal is to design a data structure (distance sensitivity oracle) that, after
some preprocessing, quickly answers queries of the form: What is the length of the replacement path for the
triple (s, t,e)?

In this article, we focus on n-node directed graphs with integer edge weights in [-M, M], and present
improved replacement paths algorithms and distance sensitivity oracles based on fast matrix multiplication.
In more detail, we obtain the following main results:

e We describe a replacement paths algorithm with runtime O(Mn®), where w < 2.373 is the fast
matrix multiplication exponent. For a comparison, the previous fastest algorithms have runtime
é(Mnl+2w/ 3) [Weimann,Yuster—FOCS’10] and, in the unweighted case, O(n?-) [Roditty, Zwick—
ICALP’05]. Our result shows that, at least for small integer weights, the replacement paths problem
in directed graphs may be easier than the related all-pairs shortest paths problem, as the current best
runtime for the latter is O(M Ton?tTo): this is Q(n?-) even if & = 2. Our algorithm also implies
that the k shortest simple s-t paths can be computed in O(kMn®) time.

o We consider the single-source generalization of the replacement paths problem, where only the
source s is fixed. We show how to solve this problem in all-pairs shortest paths time, currently
om =9 n2+ﬁ). Our runtime reduces to O(Mn®) for positive weights, hence matching our men-
tioned result for the simpler replacement paths case (that, however, holds also for nonpositive
weights). One of the ingredients that we use is an algorithm to compute the distances from a set
S of source nodes to a set T of target nodes in O(Mn“’ + S| -1|T] - (Mn)ﬁ) time. This improves on a
result in Yuster,Zwick—FOCS’05.

e We present the first distance sensitivity oracle that achieves simultaneously subcubic preprocessing
time and sublinear query time. More precisely, for a given parameter a € [0, 1], our oracle has pre-
processing time O(Mn‘”% + Mn@+@(4=©)) and query time O(n'~%). The previous best oracle for

The first author was partially supported by the SNSF Grants APXNET 200021_159697/1 and SNSF Excellence Grant
200020B_182865/1. The second author was partially supported by NSF Grants CCF-1417238, CCF-1528078, CCF-1514339,
CCF-0830797, CCF-1118083, 1IS-0963478, and I1IS-0904325, BSF Grant BSF:2012338 and by AFOSR MURI Grant. This work
was initiated while V. V. W. was at UC Berkeley and at Stanford University. A preliminary version of this article appeared
in SODA’11 [41] and FOCS’12 [24].

Authors’ addresses: F. Grandoni, IDSIA, SUPSI-DTI, Galleria 2, Via Cantonale 2¢,6928 Manno, Switzerland; email:
fabrizio@idsia.ch; V. V. Williams, CSAIL, 32 Vassar Street, 02139 Cambridge, MA, USA; email: virgi@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee 15
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2019/12-ART15 $15.00

https://doi.org/10.1145/3365835

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

mailto:permissions@acm.org
https://doi.org/10.1145/3365835

15:2 F. Grandoni and V. V. Williams

small integer weights has O(Mn®*1~%) preprocessing time and (superlinear) O(n'*%) query time

[Weimann,Yuster-FOCS’10]. From a technical point of view, an interesting and novel aspect of our or-
acle is that it exploits as a subroutine our single-source replacement paths algorithm. We also present
an oracle with the same preprocessing time as in Weimann,Yuster—FOCS’10 and with smaller query

~ l1-a
time O(n'" % + n%%).
CCS Concepts: « Theory of computation — Shortest paths; Data structures design and analysis;

Additional Key Words and Phrases: Replacement paths, distance sensitivity oracles, shortest paths

ACM Reference format:

Fabrizio Grandoni and Virginia Vassilevska Williams. 2019. Faster Replacement Paths and Distance Sensitivity
Oracles. ACM Trans. Algorithms 16, 1, Article 15 (December 2019), 25 pages.

https://doi.org/10.1145/3365835

1 INTRODUCTION

Shortest paths computation is one of the most fundamental problems in computer science. A nat-
ural generalization of the shortest paths problem for failure prone graphs is to compute short-
est paths avoiding a (failing) edge e, so called replacement paths w.r.t. e. A typical motivation for
replacement paths computation is to quickly recover from edge failures. Replacement paths are
useful also in contexts where one may wish to satisfy other constraints beyond short length [30].
For instance, in biological sequence alignment [11] replacement paths are useful in determining
which pieces of an alignment are most important. The replacement paths problem is also used in
the computation of Vickrey Prices of edges that are owned by selfish agents in a network [25, 33],
and in finding the k shortest simple paths between two nodes [30, 36, 37, 46].

More formally, let G = (V, E) be an n-node m-edge directed graph, with integer edge weights (or
lengths) w : E — [-M, +M], where M is a positive integer.1 From now on, we will always assume
that the considered graph G contains no negative cycles, so shortest paths are well-defined. If there
are multiple shortest paths between two nodes in a given graph, then we will implicitly consider
a canonical shortest path obtained via some tie-breaking rule. In particular, Ps ; will denote the
(canonical) shortest path from s to ¢ in the input graph. By dist(s, t), we denote the length of the
shortest path from s to ¢ (distance from s to t) in G, and we will use the shortcut dist (s, t) when G
is clear from the context.” Given two nodes s and t and an edge e, a replacement path Py ; . for the
triple (s, ¢, e) is the shortest path from s to ¢ that avoids edge e, i.e., the shortest s-t path in G \ {e}.
Observe that, if e is not an edge of P ;, then we can assume w.Lo.g. that P ; . = P, ;. Hence, wl.o.g.,
we will assume from now on that e belongs to P; ;. For the sake of simplicity, we will next focus on
the computation of the lengths D ; . := distg\(e) (s, t) of the considered replacement paths Ps ; .
However, our approach can be adapted via standard techniques to allow for the computation of
any replacement path Ps ;. in time linear in its number of edges. Intuitively, we can associate
with each distance Ds ; ., the predecessor of t along P; ;.. This way, we can reconstruct P ; .
proceeding backward node-by-node.

In the literature, there are two main high-level approaches used to compute replacement paths.
In the first approach, one solves the problem statically by precomputing the lengths Ds ; . of all the
(non-trivial) replacement paths P; ; . and storing them in a table. Depending on the restrictions on
s and t, one obtains different variants of the problem. The so-called Replacement Path problem (RP)

!Throughout this article, for integers @ < b > 0, [a, b] = {a, a+1,...,b}and [b] = {1,2, ..., b}.
2The weight function associated with the considered graph G will always be clear from the context.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

https://doi.org/10.1145/3365835

Faster Replacement Paths and Distance Sensitivity Oracles 15:3

is obtained by fixing both s and t. In this article, we will also consider the Single-Source Replacement
Paths problem (SSRP), where s is fixed and ¢ is arbitrary. SSRP is a natural extension of RP, and
moreover, it turns out to be useful in the design of distance sensitivity oracles.

The second approach to replacement paths is to design a data structure that, after a preprocessing
step, quickly answers queries of the form (s, , e) by returning D ; .. Such a data structure is called
a Distance Sensitivity Oracle (DSO). As usual, one needs to compromise between the preprocessing
and query time. In this article, we will focus only on the all-pairs variant of DSOs (where both s
and t are arbitrary).

1.1 Related Work

1.1.1 Replacement Paths. RP is the best-studied variant of the replacement paths problem. Re-
call that here both the source s and the target ¢ are fixed. The naive way to solve RP is to remove
each edge e € P, ; in turn and compute the shortest path in G\ {e} from scratch. This approach
is, however, unnecessarily time-consuming as the shortest paths computations share a lot of in-
formation. RP can be solved very efficiently in undirected graphs: Malik et al. [31] gave an O(m)
time algorithm.* Nardelli et al. [32] used Thorup’s linear time algorithm for single-source shortest
paths [40] to improve the runtime to O(ma(n)) in the word-RAM model of computation, where
a(-) is the inverse Ackermann function.

The best algorithm for the problem in sparse directed graphs with arbitrary edge weights is
by Gotthilf and Lewenstein [23] and runs in O(mn + n? loglog n) time. For dense directed graphs,
nothing much better than cubic time is known.> Vassilevska Williams and Williams [43] showed
that RP in directed graphs is equivalent under subcubic reductions to the All-Pairs Shortest Paths
problem (APSP), i.e., the problem of computing all the pairwise distances in a given graph. This
essentially means that either both problems admit truly subcubic algorithms, i.e., algorithms with
runtime O(n*~¢) for some constant & > 0, or neither of them does. It is worth pointing out that this
apparent cubic time barrier is only due to the wish to compute the replacement distances exactly.
In contrast, Bernstein [3] described an algorithm for RP in directed graphs with positive weights
that for any constant ¢ > 0, computes (1 + ¢)-approximate replacement paths in é(%m) time. For
weighted planar digraphs, the runtime can be reduced to O(n) as shown by Emek et al. [18].

For unweighted directed graphs, Roditty and Zwick [37] gave a randomized combinatorial
algorithm that computes replacement paths in O(m+/n) time.* Weimann and Yuster [44] ap-
plied fast matrix multiplication techniques to the problem. Their randomized algorithm runs in
O(Mn'*2°/3) time, where w < 2.373 [21, 42] is fast square matrix multiplication exponent defined
as the smallest constant such that two n X n matrices can be multiplied using O(n®) elementary

3 Another important aspect is the space complexity; this is not the main focus of this article, and we will only have a brief
discussion of it.

“4For notational convenience, throughout this article, we use a modified O notation, which suppresses sub-polynomial
(rather than just poly-logarithmic) factors in Mn. However, the reader should be aware that in several cases the hidden
factor is only poly-logarithmic.

SSubpolynomial improvements are known. The best of these is achieved by combining the reduction from Replace-
ment Paths to APSP presented in this article with the current fastest algorithm for APSP by Williams [45] running in
n3/ 20(logn) time, leading to the same running time for RP.

The Roditty and Zwick algorithm can be extended to support integer edge weights in [1, M] in time O(mVMn): The
algorithm processes detours shorter than L in O(mL) time, and this works even in the weighted case. It processes de-
tours longer than L by sampling O(nlog n/L) vertices to hit every long detour. In the weighted case, we need to sample
O(nM log n/L) vertices instead. To obtain the new running time, one sets L = Vn.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:4 F. Grandoni and V. V. Williams

operations.7 Using rectangular matrix multiplication algorithms [14, 20, 27], the running time can
be slightly improved to O(Mn?-58*). Observe that, if @ = 2, Weimann and Yuster’s running time
would be O(Mn?-%3*). This would improve on Roditty and Zwick’s O(n?) running time (assuming
@ = 2) for dense unweighted graphs.

Somehow surprisingly, SSRP (where only the source s is fixed) has not received much atten-
tion in the literature. The only reference, to our knowledge, is a paper by Hershberger et al. [26],
which refers to the problem as edge-replacement shortest paths trees and shows that in the path-
comparison model of computation of Karger et al. [29], SSRP on directed graphs with arbitrary
edge weights requires Q(mn) comparisons. The aforementioned reduction from APSP to RP by
Reference [43] suggests that there is little hope for a truly subcubic algorithm for SSRP. SSRP is a
natural problem, and moreover, it is a basic primitive for designing DSOs, as we will describe in
this article.

The RP problem is closely related to the problem of finding the second shortest path between
two nodes, and in general to the k shortest paths problem. For directed graphs and nonnegative
edge weights, Eppstein [19] gave an algorithm that returns the k shortest paths from s to ¢ in
time O(m + nlogn + k). The paths that Eppstein’s algorithm returns, however, may not be simple.
When the k shortest paths are required to be simple, the fastest-known algorithms for the problem
use algorithms for replacement paths. In more detail, Roditty and Zwick [37] showed that the k
simple shortest paths problem can be reduced to O(k) computations of the second shortest simple
path, and hence to the solution of O(k) instances of RP.

1.1.2 Distance Sensitivity Oracles. DSOs are very well studied in the literature. For arbitrary
non-negative edge weights, there are two trivial approaches. The first does no precomputation and
each query (s, t, e) is answered by computing the shortest path between s and ¢ in G \ {e} explicitly
in O(m + nlog n) time using Dijkstra’s algorithm. The second approach takes O(mn?) preprocess-
ing time to compute for every source node s and for every edge e in the shortest paths tree rooted
at s, the new shortest paths tree from s in G\ {e}. The queries are then answered in O(1) time
by looking up the stored solutions. Similar DSOs can be obtained for graphs with possibly nega-
tive weights but no negative cycles by adding an extra preprocessing step to replace all negative
weights by non-negative ones, as in Reference [28]. This preprocessing step either takes O(mn)
time using the Bellman-Ford algorithm, or O(m+/nlog M) time using Goldberg’s scaling algorithm
[22].

The preprocessing time for DSOs with arbitrary edge weights was improved to é(mn%) by
Demetrescu et al. [15], while keeping the query time constant. Bernstein and Karger further im-
proved the preprocessing time to O(y/mn?) [4] and finally to O(mn) [5]. The latter preprocessing
time matches, up to poly-logarithmic factors, the best-known runtime for APSP in the same set-
ting, and seems therefore very hard to beat.

One can do better, at least in terms of preprocessing time, in the case of integer weights of small
absolute value. Weimann and Yuster [44] presented a DSO with preprocessing time O(Mn®*1~%)
and query time O(n'*%) for any given parameter « € [0,1]. In particular, they showed that the
problem can be solved with both subcubic preprocessing time and subquadratic query time.® An
obvious open problem is whether one can achieve subcubic preprocessing time with linear (or
even sublinear) query time. We answer this question affirmatively.

"The value w is defined for the arithmetic circuit model where the elementary operations are multiplication and addition
of elements from an underlying field such as the complex numbers.

8Reference [44] also considers the case of f = O(1) (simultaneous) failures; part of our results can be extended in that
direction, but this is out of the scope of this article.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:5

In this case one can also do better in terms of running time if one is allowed for a multiplicative or
additive error in the reported replacement path lengths (in some cases for general weights and/or
for multiple faults) [2, 12, 17]. In some cases, this is a direct consequence of fault-tolerant spanner
results [7-10, 13, 16, 34, 35]. We remark that the requirement of computing the replacement path
lengths exactly makes the problem substantially harder.

1.2 Our Results and Techniques

In this article, we present faster replacement paths algorithms and distance sensitivity oracles in
the case of dense graphs with small integer weights. All our results exploit fast matrix multiplica-
tion procedures. In more detail, we achieve the following main results:

1.2.1 Replacement Paths. Improving on References [37, 44], we present a faster algorithm for
the classical RP problem.

THEOREM 1.1. There is a randomized algorithm that solves RP in n-node directed graphs with
integer weights in [-M, M] in O(Mn®) time, with failure probability’ polynomially small in n.

Theorem 1.1 improves on Roditty and Zwick’s O(n?-%) runtime for dense unweighted graphs. It
also improves the range of M for which there is a subcubic algorithm for the problem: In the case
of Weimann and Yuster’s algorithm it is roughly M < n%#1¢ while for our algorithm it is roughly
M < n%®?7_ Our result also shows that, at least for small integer weights, the replacement paths
problem in directed graphs might actually be easier than APSP in directed graphs. In more detail,
Zwick’s algorithm [49] solves APSP in O(M*n?*+#a) time.!* Note that this runtime is Q(n?")
even in unweighted directed graphs and assuming @ = 2. Furthermore, improving on O(n®) for
replacement paths in directed unweighted graphs would likely require radically new techniques,
as the problem is closely related to Boolean matrix multiplication.

As a consequence of the aforementioned reduction from k shortest simple paths to RP in Refer-
ence [37], we obtain the following corollary:

COROLLARY 1.2. There is a randomized algorithm that solves k shortest simple paths in a directed
n-node graph with integer edge weights in [-M, M] in O(kMn®) time, with failure probability poly-
nomially small in n.

Our result is based on two main ingredients: On the one hand, we exploit a simple (determin-
istic) reduction from RP to APSP; on the other hand, we design a divide-and-conquer randomized
recursive strategy.

In more detail, as in previous work, we rely on the notion of detour. Let P = Ps; = {s = v; —
vy — - -+ = v = t} be the considered shortest path from s to ¢ in G. We next assume that P is
given, as well as all the distances between pairs of nodes along P. This can be easily computed in
O(n?) extra time. For k > j, a detour A(vj, vk) between v; and vy is a shortest path from v; to vy
that does not contain any other node of P. This detour is said to circumvent every edge between
vj and v in P. It is well known (see, e.g., Reference Bernstein [3], Lemma 2.1) that for any edge
e; := (v;,vi11) € E(P), the shortest path between s and ¢ in G \ {e;} is exactly the minimum out of
all paths of the form

s> v =0 0Av,vE) QU = - > L
where j < i,i+ 1 < k, and © denotes concatenation.
9 All the algorithms considered in this article return lengths that are never smaller than the correct ones; the failure prob-
ability refers to the event that a strictly larger length is returned.

19The runtime of Zwick’s algorithm can be slightly improved to O(M°-%81»2-532) by using fast rectangular matrix multi-
plication [20].

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:6 F. Grandoni and V. V. Williams

G\ P Reduction from
replacement
paths to APSP

Fig. 1. An example of the reduction from RP to APSP in the case of an unweighted graph.

Suppose that we are given for every v;, vx € P (j < k), the length of the detour A(v;, vr). We
will describe how to compute the lengths of all the replacement paths in only O(n?logn) ex-
tra time. First, we compute in O(n?) time for every detour A(vj, vg), the length €(v}, vy) of the
path s = -+ = v; © A(vj,vK) O v — --- — 1, as follows: As we are given P, we can in linear
time compute the length of each subpath s — --- — v; for all j and the length of each subpath
v — -+ — t for all k. Then £(v;, vi) can be computed in constant time by adding the lengths of
the two paths and that of the detour. After this, we sort the O(n?) triples (v}, vk, £(v;, vk)) in non-
decreasing order according to £(-), in O(n? logn) time. Furthermore, we store all the pairs (v;, 1)
with v; € P in a successor search data structure T (e.g., any balanced binary search tree), with
search key i. Intuitively, each such pair (v;, i) in T corresponds to an edge e; for which we did not
compute the replacement path length yet. We then scan the triples (v}, vk, £(v}, vx)) according to
the aforementioned sorted order. For any such triple, we find all the pairs (v;, i) still in T with
Jj < i< k-1 (in logarithmic time per pair). For any such pair (v;, i), we record that the shortest
replacement path length'! for e; is £(v}, vx), and then delete (v;, i) from T. Intuitively, all triples
(v}, vk, € (vj, vr)) with j < i < k — 1 induce a candidate replacement path of length £(v;, vy) for e;.
By construction, among these options, we consider only the shortest one.

Given the above construction, a reduction to APSP can be easily achieved as follows!?: For
every node v; of P, create two copies v!" and v?“!. Create a new graph G’ by taking (G \ P) U
{0I", 09"} ;¢ (k). For every edge (v;,u) for u € G\ P, add an edge (v9*!,u) of the same weight in
G'. Similarly, for every edge (u,v;) for u € G\ P, add an edge (u,v!") of the same weight in G’.
G’ is essentially G with the edges of P removed, except that each node of P is split into two.!* See
Figure 1 for an example conversion from G to G’. Now solve APSP in G’. The shortest path between

vf’”t and vJ’:” is exactly the optimal detour A(v;, v;) in G. Thus, with one call to an APSP algorithm,

and O(n?logn) extra time, we obtain an algorithm for RP. Applying Zwick’s [49] algorithm for
APSP, we can solve the problem in O(M o n2+ﬁ) (deterministic) time.

We are able to achieve a runtime strictly better than Zwick’s APSP algorithm via a bucket-
ing argument. Let us partition P into g subpaths Pi, ..., P, of size roughly n/q, for a carefully
chosen parameter q. Let us focus on the edges of one such subpath P’ between nodes v, and
vy. We construct an auxiliary graph Gps as follows: Let P! and P” be the subpaths of P to the
left and right of P’, respectively. Take G and remove all incoming edges to nodes on P! except
those in P and all outgoing edges from nodes on P” except those in P. This will ensure that any
path that we compute exiting P! does not reenter it and any path entering P" does not reexit it.
Now remove all edges in P’ and split each node v in W(P’) := V(P’) - {vy, vy} into two as be-
fore: a copy v'" with all the remaining incoming edges and a copy v°“! with all the remaining

HThe actual path can also be stored, as usual, with a matrix of successors.

12The possibility of such a reduction was mentioned in Reference [6]; here, we make it explicit and show that it can be
used to further improve the known runtime bounds.

13Splitting the nodes in two is not strictly necessary. Our algorithms would work even without the splitting. However, the
analysis is simpler with the splitting, since this way all computed detours are disjoint from P.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:7

Fig. 2. An example of the transformation of a graph G into Gpr, given P and vy-vs subpath P’. Notice that
edges (y,v2) and (vs, y) are removed, and that all nodes in W(P”) = V(P’) — {vg, vs} get split into two. The

relevant paths in Gps corresponding to detour paths circumventing edges in P are s = vy = x — vé", s—

out

vg—>x—>y—>z—>v5—>t,andv4

—Sy—-z—ouv5 oL

outgoing edges. An example of the construction of Gp/ is given in Figure 2. Let us compute the
shortest path lengths from s and to in Gp: in O(n?) time. The shortest replacement path from
s to t avoiding all edges in P’ is simply the shortest s-t path in Gp. Consider now the short-
est replacement path that leaves P not later than v, and reenters P at some node v; € W(P;).
This path is obtained by appending to the shortest s-v!" path in Gp' the subpath of P between v;
and t. Symmetrically, one can compute the shortest replacement path that leaves at some node
v; € W(P’) and reenters P not earlier than v,,. The only remaining replacement paths for edges in
P’ have a detour with both endpoints in W(P’). They can be derived by computing the shortest
paths distances between copies of nodes in W(P’) in Gpr. As we will discuss later, we are able
to perform the latter computation in time O(Mn® + M Fonto |W (P’)Iz_ﬁ). Therefore, the total

computation time is O(an” + qMﬁ nﬁ(g)Z—ﬁ)_ Choosing q = @(\/(Mn)ﬁ/(Mn‘*"z)), SO

n/q = ©(y/Mn®/(Mn) ¥), the overall runtime of the algorithm is O(Mz(1*#5)n!*2(©*+£5)). This
is strictly faster than Zwick’s APSP algorithm.

To achieve the claimed O(Mn®) runtime, we use recursion in combination with a randomized
contraction step. The idea is to partition P into Z subpaths as in the bucketing algorithm. How-
ever, here Z is sub-polynomial (rather than polynomial). For each subpath P;, we construct a con-
tracted version G(P;) of the input graph, with slightly fewer nodes and slightly larger edge weights.
Graph G(P;) preserves the replacement path lengths w.r.t. the edges of P;, and it can be computed
efficiently.

1.2.2 Single-Source Replacement Paths. We present the first subcubic algorithms for SSRP in
case of small integer weights. Recall that Hershberger et al. [26] gave a cubic lower bound for the
problem in the path-comparison model of Karger et al. [29]. We avoid this lower bound due to our
use of fast matrix multiplication, which falls outside the path-comparison model.

THEOREM 1.3. There is a randomized algorithm that solves SSRP in n-node directed graphs with
integer weights in [—M, M] in time O(Mﬁ nz*ﬁ). For positive weights the runtime can be reduced
to O(Mn®). The failure probability is polynomially small in n.

We remark that the runtime of our SSRP algorithm for integer weights in [-M, M] matches the
runtime of Zwick’s APSP algorithm [49]. We also remark that the runtime of our algorithm for
positive weights matches our own improved result for the simpler RP problem. We suspect that the
case in which the weights can be negative might be intrinsically harder, as the problem seems to
be more tightly related to APSP. Showing that this is the case, or obtaining an O(Mn®) algorithm
for possibly negative weights as well, is an interesting open problem.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:8 F. Grandoni and V. V. Williams

We give some intuition about our approach in the following: Let T be the shortest paths tree
from source s. P, ,, denotes the path from v to u in Ty, and dist (v, u) its length. For a pair (t,e) € V X
E,if e does not lie along P ;, then Ps ; . = Ps ;. We call the remaining pairs (t, e) relevant, and focus
on them. The first step in our algorithm is a partition of T into a small (subpolynomial) number
of subtrees T’. Using balanced tree separators, we can guarantee that each T’ contains roughly
the same number of nodes (modulo constants). Let P’ be the path from s to the root of T’. For any
relevant pair (t, e) there must exist some subtree T’ such that t € V(T’) and either (a) e € E(T’) or
(b) e € E(P’). This way, we identify a collection of subproblems, where each subproblem is of the
following two forms:

e In a subtree problem, we are given a subtree T’ of T, and we want to compute replacement
paths P; ; . where both t and e belong to T’ (handling (a) above).

o In a subpath problem, we are given a subpath P’ of T from the source s to a node ¢, and a
subtree T” of T rooted at t’, and we want to compute replacement paths Ps ; . with ¢ in T’
and e in P’ (handling (b) above).

We solve each subtree problem T’ recursively, after a preliminary compression step where we
replace the nodes outside 77 with a subpolynomially smaller random subset B of them, adding
auxiliary edges (with subpolynomially larger weights) representing shortest paths between the
sampled nodes.

Handling subpath problems (P’, T”) is the crux of our approach. The portion of P; ; . not in P ;
is called a detour and (w.l.0.g.) is a path that starts at some node v of P; ; (before edge ¢) and ends at
some other node u of P; ; (after edge e). Note that possibly v = s and/or u = t. For a given subpath
problem (P’, T’), we distinguish two types of replacement paths Ps ; . depending on their detour:

o In jumping paths, detours have both endpoints in P’;
e In departing paths, detours have only the starting node in P’.

We can reduce the computation of jumping paths to an instance of the RP problem that we solve
in O(Mn®) time with our own RP algorithm.

The computation of departing paths essentially reduces to the computation of their detours. For
positive weights, we are able to compute such detours in O(Mn®) time. We adapt an idea of Roditty
and Zwick [37] used in their unweighted RP algorithm. Roughly speaking, consider the detour P,, ,,
of a departing path P; ; ., going from some v € V(P’) to some u € V(T’) — {t'}. Suppose that P,, ,
has X nodes and hence length at most MX. Consequently, also the length of the shortest path P,, ,,
from v to u is at most M X, which implies that P,, ,, contains at most MX nodes (here, we exploit the
positiveness of the weights). This forces v to be one of the final MX nodes of P’ (since u ¢ V(P’)).
We exploit the above observation as follows: Let L be a proper integer threshold. We compute all
the distances in G — E(P’) from the final ML nodes of P’ to V(T"); this way, we obtain the detours
with X < L. Then, we sample a random set B of O(n/L) nodes so w.h.p. B hits all the detours with
X > L. We compute the shortest paths from V(P’) to B and from B to V(T’), and then derive the
desired detour lengths by going through all the triples (v, b,u) € V(P") x Bx V(T’).

Consider the computation of shortest paths in the two stages of the algorithm. In both cases,
we have to solve an instance of the following S-T shortest paths problem (STSP): Given a directed
edge-weighted graph G = (V,E), and two subsets of nodes S,T C V, compute all the distances
between pairs (s,) € S X T. The best-known algorithm for STSP (for M small enough) is given in
Reference [47] and has runtime O(Mn® + M7onts (IS] ITI)I_ﬁ). We improve this to:

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:9

THEOREM 1.4. There is a randomized algorithm that solves STSP in n-node directed graphs with in-
teger weights in [-M, M] in time O(Mn® +1S| - |T| - (Mn)ﬁ), with failure probability polynomially
small in n.

Incidentally, Yuster and Zwick mention that with their distance oracle one can compute shortest

paths trees from ©(Mn"~2) sources in O(Mn") time. We can do the same from (:D(MPﬁ n“’_l_ﬁ)
sources, which is ©(y/n) even for M = O(1) and w = 2, whereas the number of sources Yuster and
Zwick can handle is only ©(1) in that case.

Using our STSP algorithm and choosing L properly, we are able to solve a subpath problem in
time O(Mn® + M e gt s). This is O(Mn®) for w big enough (in particular, it holds for the
current best upper bound—namely, 2.373). To obtain a runtime of O(Mn®) for any value of w, we
use a scaling trick. We consider a logarithmic subset of intervals [X, 2X) = [X,2X — 1], X > L, and
search for the detours with a number of nodes in the interval by considering the detours that start
in the last 2MX nodes of P’ and pass through a sample of O(n/X) nodes. This way, going through
the triples (v, b, u) costs only O(Mn?) rather than O(n®/L).

For arbitrary weights the idea of considering the final MX nodes of P’ does not work: Here, a
very low weight path might contain many nodes due to negative (or even zero) edge weights. In
this case, we simply solve APSP in G — E(P’) with Zwick’s algorithm (using our STSP algorithm
does not help, since possibly |V (P")| = Q(n) = |V(T’)|). This solves SSRP for integer weights in
[-M, M] in the claimed O(MTa n** %5) time.

1.2.3 Distance Sensitivity Oracles. In this article, we present the first distance sensitivity oracle
that achieves simultaneously subcubic preprocessing time and sublinear query time.

THEOREM 1.5. For any integer 1 < S < n, there is a randomized distance sensitivity oracle for n-
node directed graphs with integer weights in [—M, M], with preprocessing time O(Mn® - (S* ¢ +
Vn)), query time O(%), and failure probability polynomially small in n.

In particular, by choosing S = @(n2(4+‘°)), one obtains subcubic preprocessing time O(M n®*z) <
O(Mn?*®7) and sublinear query time é(n17ﬂ4_if“)) < O(n%%%). Recall that the oracle by Refer-
ence [44] has preprocessing time O(Mn®*'~%) and query time O(n'*%), for any given parameter

€ [0, 1]. Our oracle is always better than that in terms of query time, and for & < % it improves
also on the preprocessing time.

The DSO in Reference [44] distinguishes between hop-short replacement paths, which contain at
most L = ©(n!~%) nodes, and the remaining hop-long paths. Hop-short path lengths are computed
in O(n) time (at query time) by considering O(L) (properly chosen) random subgraphs, and pre-
computing for each such graph the distance oracle in Reference [47] in O(Mn®) time. For hop-long
replacement paths Ps ; ., the algorithm exploits a more involved procedure, based on the compu-
tation of an s-t shortest path in a proper auxiliary graph, whose construction (at query time) takes
superlinear time O(n?/L).

We are able to reduce the query time for hop-short paths by a careful use of known techniques.
To address hop-long paths, we exploit a completely different approach. Let B be a random sample of
O(n/L) nodes so w.h.p. every hop-long replacement path P, . contains some node b € B. Observe
that the portion of P ; . from s to b must be the replacement path for the triple (s, b, e). Similarly
for the triple (b,t, e). Suppose, then, that for every b € B, we precomputed the quantities Dy p .
and Dy, ; .. Then, we can trivially answer the query (s, ¢,) by computing Ds ; , = minyep{Ds p, e +
Dy, 1. }. This takes O(IBI) = (3(%) time, which is sublinear. Note that the computation of D,, . is
equivalent to the computation of D, ,, . after reversing all edge directions.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:10 F. Grandoni and V. V. Williams

From the above discussion, we can reduce the problem of designing an improved DSO to the
problem of efficiently solving SSRP for all source nodes s € B. In the case of positive weights,
the claimed result can be obtained directly by exploiting our O(Mn®) time SSRP algorithm. We
can achieve the same performance of the DSO for positive weights also in the case of arbitrary
weights (despite the fact that we are not able to solve SSRP equally fast in the two cases) by
means of a variant of our SSRP algorithm. Recall that we need to compute hop-long replacement
paths containing at least L nodes, for a proper integer threshold L. Also in this case, we exploit a
scaling trick: For a logarithmically large set of intervals [X, 2X), X > L, we address the problem of
computing replacement paths with a number of nodes in the considered interval. To do this, we
sample O(n/X) random nodes B, and solve SSRP on each b € B, but only considering replacement
paths on at most 2X nodes. The last assumption allows us to reduce the runtime of the SSRP
algorithm, since in each subpath problem (P’,T’), we need to consider only detours of departing
paths that start from the last 2X nodes of P’ (otherwise, the corresponding replacement paths
would have > 2X nodes). The runtime of the modified SSRP algorithm turns out to be O(Mn® +
XMTa n”ﬁ). For increasing X, each execution of the modified SSRP algorithm becomes more
expensive, but this is compensated by the smaller number of executions (i.e., O(n/X)).

Incidentally, we are also able to obtain a variant of the DSO in Reference [44] with the same
preprocessing time, but with an improved query time.

THEOREM 1.6. For any integer 1 < L < n, there is a randomized distance sensitivity oracle for n-
node directed graphs with integer weights in [—-M, M], with preprocessing time O(LMn®), query time
é(n/Lﬁ + (n/L)?), and failure probability polynomially small in n.

Choosing L = O(n'~%), this gives O(Mn®*'~%) < O(Mn3>3>%) preprocessing time and
O(n'=T6 + n?®) < O(n®-386+0-6152 4 p2a) query time. While this DSO does not involve drastic new
techniques on top of the techniques needed for Theorem 1.5, we present it for the sake of com-
pleteness, since it implies a strict improvement on Reference [44] also for a > %

While we state our results as randomized algorithms, we note that using Zwick’s bridging set
techniques [49] and the modification in Section 8 of Reference [47], our results can be derandom-
ized with no significant loss in the running time.

1.3 Organization

The rest of this article is organized as follows: In Section 2, we introduce some preliminary defi-
nitions and results that will be needed in the rest of the article. In Section 3, we present our S-T
shortest paths algorithm. In Sections 4 and 5, we describe our algorithms for RP and SSRP, respec-
tively. Finally, in Section 6, we present our distance sensitivity oracles.

2 PRELIMINARIES

We use standard graph notation. When the base of a logarithm is not specified, we assume it to
be 2. Throughout this article with high probability (w.h.p.) means with probability at least 1 — n™9
for some constant Q > 0. By adapting the constants in our algorithm, we can make Q arbitrarily
large. As mentioned earlier, we use a modified O notation that supresses n°W factors.!*

2.1 Matrix Multiplication and Shortest Paths

Matrix multiplication is a common tool to solve shortest path problems in the presence of small
integer weights. One of the key ingredients to that aim is the notion of distance product of two

4This notation is particularly useful for algorithms based on matrix multiplication, as the matrix multiplication exponent
w is defined as an infimum, and the fastest n X n matrix multiplication algorithm really runs in n®+°() time anyway.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:11

matrices. The distance product A x B of an a X b matrix A by a b X ¢ matrix B is the a X ¢ matrix C
such that Cj; = ming—y, __p{A;x + Bk;}. Alon, Galil, and Margalit [1], following Yuval [48], show
the following result:

LEMMA 2.1. The distance product of an a X b matrix by a b X ¢ matrix, where each entry is in
[-M, M] U {+0c0}, can be computed in time O(min{abc, M - ——abe __\) I particular, for a =

(min{a,b,c})>®

b = ¢ = n, this runtime is O(min{n3,Mn“’}).

Based on the above result, and exploiting a clever random sampling approach, Zwick [49] ob-
tained the currently fastest APSP algorithm for directed graphs with small integer weights (more
details about this algorithm are given later).

THEOREM 2.2 [49]. Given a directed n-node graph G with integer weights in [-M, M], one can
solve APSP in G in time O(M%a n®* %),

This improves and generalizes earlier work by Alon et al. [1]. The runtime of Zwick’s algorithm
can be slightly improved to O(M%-%81n?-332) by using fast rectangular matrix multiplication [20,
27]. Similar improvements can be achieved for most of our results, but we omit the straightforward
technical details here. We remark that in undirected graphs APSP can be solved faster—namely, in
O(Mn®) time [38, 39].

Sometimes, we will need to compute only a restricted subset of shortest paths. To this aim, the
following result in Reference [47] turns out to be useful:

LEmMA 2.3 [47]. Given a directed n-node graph G with integer weights in [—M, M], one can com-
pute in O(Mn®) time an n X n matrix D so the (i, j) entry of the distance product D % D is the distance
between nodes i and j in G. Furthermore, by the properties of D, the length of a shortest s-t path con-
taining at least L nodes can be computed in O(n/L) extra time.

The final claim of the previous lemma is only implicit in Reference [47], but it is crucial for
the design of our improved DSOs. We remark that the above result can also be interpreted as a
Distance Oracle that, after a O(Mn®) time preprocessing step, answers queries of the form (s, t, L)
by returning the length of the shortest s-t path containing at least L nodes in O(n/L) time (hence,
as a special case, the shortest path length can be derived in O(n) time). The techniques from the
above lemma can also be used to solve the Single-Source Shortest Paths problem (SSSP), asking to
compute the distances from a given source node s to all other vertices (and an associated shortest
path tree Ts).

COROLLARY 2.4 [47]. Given a directed n-node graph G with integer weights in [-M, M], one can
solve SSSP in O(Mn®) time.

2.2 Hitting Hop-long Paths

In our algorithms, we sometimes use a random sampling approach to deal with long paths in a
faster way. One key ingredient in our analysis will be the following lemma, which is inspired by
Reference [44]. We remark that, while the upper bound L in the following lemma is used similarly
in the DSO by Reference [44], the lower bound L/8 is crucial to analyze our improved DSO from
Theorem 1.6.

LEMMA 2.5. Given a set P of paths and two parameters1 < L < nand N > 0, sample 4Nn/L nodes
B uniformly at random.” With probability at least 1 — |P|ne™™ for each P € P there exists B(P) C B
that partitions P into subpaths of at least min{|V (P)|, L/8} and at most L nodes each.
15We can sample B with replacement.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:12 F. Grandoni and V. V. Williams

Proor. We show that the probability that the considered event does not hold for a fixed path
P from s to t is at most ne™N; the full claim follows from the union bound. If P contains at most L
nodes, then the claim is trivially true by choosing B(P) = (). Otherwise, let us iteratively remove
the first L/2 nodes of P until the remaining path contains less than L/2 nodes. This partitions P into
at most ZT" intervals containing L/2 nodes and a last interval that contains between 0 and L/2 — 1
nodes. Let us consider the central subinterval of L/4 nodes of each interval, except possibly the
last one.

Suppose that each central subinterval contains some node from B. In that case, we let B(P)
consist of one arbitrary node of B per subinterval. It is not hard to see that two consecutive nodes in
B(P) U {s, t} in the order induced by P are at hop-distance at least L/8 and at most L. From the union

bound, the probability that there exists one subinterval not hit by B is at most an(l - ﬁ)WTn <

ne V. a

COROLLARY 2.6. Let N and n’ be such that N > n > n’ > 1, and let C > 0 be any constant. Let B
be a random sample of (C + 3)n’ In N nodes of V. With probability at least 1 — 1/N€, the nodes of B
touch all detours on at least n/n’ edges, so the nodes of B partition every detour into subpaths on at
most 2n/n’ edges each.

Proor. It is sufficient to apply Lemma 2.5 with L = 2n/n’ and observe that the number of the
considered detours is at most n?.]

2.3 Distance Sensitivity Oracles

The following lemma is at the heart of the DSO in Reference [44], and it will be crucial for us as
well.

LEMMA 2.7 [44]. For an integer 1 < L < n and a constant C > 0, sample s = L - Clogn graphs
{G1,...,Gs}, where each G; is obtained from G by independently removing each edge with probability
1/L. ForC large enough, the following two claims hold w.h.p.: (a) For any edgee € G, there are ©(log n)
graphs G; not containing e. (b) For any replacement path Ps ; . on at most L nodes, there is at least
one G; that does not contain e but contains Ps ¢ .

3 A FASTER STSP ALGORITHM

Recall that in the S-T shortest paths problem (STSP), we are given a directed edge-weighted graph
G = (V,E), and two subsets of nodes S, T C V. Our goal is to compute all the distances between
pairs (s,t) € S X T.

Our STSP algorithm builds upon Zwick’s APSP algorithm [49] by combining a new idea with
an approach from Reference [47]. Let us start by sketching how Zwick’s algorithm works. For
a matrix D and V', V" C V, let D[V’, V"] denote the matrix obtained by considering only the
rows and columns indexed by V' and V", respectively. The algorithm consists of a sequence of
iterations i = 1, .. ., [log, /2 n]. At iteration i, one is given a distance matrix D, containing upper
bounds on the distances between nodes. Initially D contains edge weights (+oo for missing edges).
The algorithm samples a subset B; of bridge nodes, where each node is sampled independently
with probability p; = min{1, 91;" }, si = (3/2)%. Then one sets,

D « min{D, round;,s;(D[V, B;]) * rounds, s»s(D[B;, V])},

where the minimum is computed element-wise. Here roundyy (-) is a function that takes as input
a matrix and returns the same matrix where the entries of absolute value larger than M’ are set to
+00. Zwick shows that for any i and any two nodes u, v, if there is a shortest path from u to v on at
most (3/2)" edges, then after iteration i w.h.p. D[u, v] = dist(u, v). By Lemma 2.1, the runtime of

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:13

the algorithm up until some given iteration ¢ is O(Mn“sf,“"), and after that iteration is O(n®/s):
hence, the overall runtime is é(M 1/(4-w) p2+1/ (4_“’)). At the end of the algorithm, the shortest path
distances are given by D with probability at least 1 — 1/n. It is not hard to show that, by replacing
the factor 9 in the probability p; with 3Q + 6 for Q > 1, the failure probability decreases to n=?; we
next consider this variant of the algorithm. By halting the algorithm after ¢ iterations, we obtain
the following corollary that we will need later:

CoROLLARY 3.1. The distances between all pairs of nodes that have shortest paths on at most S
nodes can be computed in time O(Mn®S>~®), with failure probability polynomially small in n.

We next adapt Zwick’s algorithm to solve STSP, by making the following changes:

(1) Starting from By = V, we let B; be arandom subset of B;_; so |B;| = p; - |V|, whereas before
pi = min{1, (91nn)/s;}.
(2) We update only a portion of the matrix D at each iteration according to the formula

D[S U Bi, TU B,] — mm{D[S U Bi,T U Bi],
rounds, p (D[S U B;, B;]) * rounds, 51 (D[B;, T U B;])}.

At the end of the process the submatrix D[S, T] contains the desired distances. The first change
introduces a dependency between the sets B; at different iterations, which is crucial for our pur-
poses. This type of dependency was also used by Yuster and Zwick [47] in the construction of their
distance oracle. The second step allows us to save time while computing distances for the relevant
pairs of nodes as in Zwick’s original algorithm. This step is where we improve on the runtime for
STSP obtained by applying the distance oracle of Reference [47] directly.

REMINDER OF THEOREM 1.4. There is a randomized algorithm that solves STSP in n-node directed
graphs with integer weights in [-M, M] in time O(Mn® + |S| - |T| - (Mn)#3), with failure probability
polynomially small in n.

Proor. The correctness analysis follows along the same line as in References [49] and [47].
Consider next the runtime. Let us assume o := |S| < |T| =: 7, the other case being symmetric. We
alsolety < o be aproper threshold to be fixed later, and f; := |B;|. Ata given iteration i, we need to
compute the distance product of a (o + ;) X f; matrix by a ; X (7 + ;) matrix with entries (other
than +c0) of absolute value at most O(Mn/,[ii): this costs the minimum of O((c + Bi)Bi(r + Bi))
and O(A2 (¢ + ;)(r + B;)) by Lemma 2.1. For f§; > o, this is at most O(Mn®) < O(Mn®). For

ﬁ?*(u ’B;_wa
o > f; >y, this is at most O(%a 7) <0 %O’ 7). In the remaining case y > f; the runtime is
O(o Tfi) < O(or y)- Choosing y = (Mn)ﬁ gives the claimed runtime. O

We will need the following corollary, which is similar in spirit to Corollary 3.1:

COROLLARY 3.2. Given an n-node directed graph G with integer edge weights in [-M, M], an in-
teger 1 < Z < n—1, and a subset W of q nodes with q = O(%) In time O(Mn®) one can compute
upper bounds on the pairwise distances among nodes in W so, with failure probability polynomially
small in n, the distance is computed correctly whenever there exists a shortest path of hop-length at
most Z.

Proor. It is sufficient to truncate the execution of the algorithm from Theorem 1.4 as soon as
s; > Z. Modulo poly-logarithmic factors, the running time is

rlogz/z Z1) n) rlng/z Z1) 1 w-1
Z Ms; (—) = Mn® Z (—) = O(Mn®). o
i=1 Si i=1 Si

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:14 F. Grandoni and V. V. Williams

1: Find the shortest s-t pathP = (s =v1 > vp = ..., v =)
2: Find Yv;,v; € P their distance distp(v;,vj) in P
3: Set L « 0; Initialize bs, t,e < +ooforalle € E(P)
4: Call recRP(G, P)
5: Sort all elements (v, vy, d) € L in nondecreasing order of d
6: Store every (v;, i) in a binary search tree T with search key i
7: while L # 0 do
8: Pop (v}, vg,d) from L
9: Find the successor vq of vj in T
10: for every (vp,p) € T withqg<p <k-1do
11: Set ﬁs’t’vpvp+l —d
12: Remove (vp, p) from T
13: end for
14: end while
15: Output {DS’ t,e}eEE(P)
Fig. 3. Algorithm rp for RP. The input to the problem is (G, s, t). Here L, P, s, t, and distp(-, -) are considered

as global variables used by Procedure recRP.

4 REPLACEMENT PATHS

In this section, we present our recursive RP algorithm rp running in time O(Mn®). The main
algorithm is described in Figure 3. In the pseudocode, we assume that each variable corresponding
to a graph also carries the associated edge weights.

The algorithm initially (lines 1-2) computes the shortest s-t path P ; = P = (s = v1,02,...,0; =
t), as well as all the distances distp(v;,vj) between pairs of nodes along P with i < j. Then (lines
3-4), it fills in a list L of triples of type (v;,v;,d), with i < j, where d is the length of some s-¢
path avoiding all edges along P between v; and v;. Finally (lines 6-15), the list L is processed as
described in Section 1.2.1 to obtain all the replacement path lengths.

We next focus on the recursive procedure recRP, which is the core of our algorithm. The proce-
dure is described in Figure 4. Let Z be a sub-polynomial function of n to be fixed later. The input to
the procedure is a pair (G, P). Here G is an edge-weighted multi-digraph with 7 nodes and largest
absolute weight M containing nodes s and ¢. Furthermore, Pis apath in G from § to f that is also a
subpath of P. Initially G = G and P = P. As it will be clearer later, by construction there are at most
O(log,, n) parallel edges between each pair of nodes in G. As standard, to compute distances in G
or in its subgraphs, it is sufficient to keep a minimum length edge for each set of parallel (equally
directed) edges. This does not affect the asymptotic runtime. We assume that parallel edges'® are
labeled, so we are able to identify edges corresponding to the original path P.

The goal of the procedure is to compute all the lengths of replacement paths for edges in E(P),
and add a corresponding entry to L. Recall that W (P) := V(P) \ {5, {}. We can classify the detours
of such replacement paths in four types according to their starting node ¢ and ending node :

(1) 9,4 ¢ W(P);
(2) 0 ¢ W(P) and i1 € W(P);
(3) o€ W(P) and i1 ¢ W(P);
(4) 3,1 € W(P).
The replacement paths of the first three types are handled in lines 1-9. The procedure initially
computes the graph éf) as described in Section 1.2.1. Recall that in this graph, we remove the edges

161t is possible to avoid parallel edges, but the algorithm and analysis become more technical.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:15

1: Compute graph Gﬁ, as described in Section 1.2.1

2: Compute distances distép (s,+) and distép(~, t) using Corollary 2.4

3: Add (5, , distép (s,1)) to L

4: for all nodes of type vf" € V(Gﬁ.) do

5. Add (S, vi,disté}_)(s, vi") + distp(vi, t)) to L

6: end for

7: for all nodes of type v;’“[€ V(G~I~,) do

8: Add (v;,t,distp(s,v;) + distép(vf”t, t)) to L

9: end for
10: if 1 < Z then
11: Compute distances diStG—E(P) (+,-) between all pairs of nodes in w(P)
12: forevery v;,v; € W(P),i < jdo
13: Add (vi, vj, distp(s,v;) + diStG_E(p)(Ui, vj) +distp(vj,t)) to L
14: end for
15: else

16: Partition P into Z subpaths Py, . . ., Pz with roughly the same number of edges
17: fori=1,...,Zdo

18: Sample @(% log n) nodes B; uniformly at random as in Corollary 2.6

19: Construct a complete digraph G; on node set V; := V(P;) UB; U{s, t} with edge weights w; initialized
to +oco.

20: Compute estimates dist’ (-, -) of pairwise distances among nodes V; in G — E(P;) using Corollary 3.2
with parameter Z.

21: for every uv € E(G;) do

22: if |dist’(u,v)| < ZM then

23: wi(uv) « dist’(u,v)

24: end if

25: end for

26: Add E(P;), with the associated weights, to G; .

27: Call recRP(G;, P;)

28: end for

29: end if

Fig.4. Procedure recRP. The input is a pair (G, P). By /i and M, we denote the number of nodes and the largest
absolute weight in G, respectively. The starting and ending nodes of P are denoted by § and £, respectively.
Here Z is a sub-polynomial function of n, while L, P, s, t, and distp(-, -) are considered as global variables.

of P and split all nodes v; € W(P) into 0" (with no outgoing edges) and v?*! (with no incoming
edges). The shortest s-t path in Gla gives the best replacement path of Type (1). The replacement
paths of Type (2) are handled in lines 4-6. Any such path corresponds to a shortest path from s to
some v!", v; € W(P), in éi’ plus the portion of P from v; to t. The replacement paths of Type (3)
are handled symmetrically in lines 7-9. In each case, we add a proper triple (9, @, d) to L, so the
corresponding replacement path lengths are computed correctly in lines 5-15 of rp.

It remains to consider replacement paths of Type (4), which are handled recursively. The base of
the recursion (lines 10-15) is when 72 < Z. In this case, we use a brute-force approach: We simply
compute the shortest paths between all pair of nodes in W (P) in the graph G — E(P), and from
that we derive the corresponding entries of L.

The recursive case (lines 16—-27) works as follows: First, we partition Pinto Z subpaths Py, ..., Pz
of roughly the same length (i.e., of length | |E (15)| /Z]or [|E (13)| /Z1). This is similar to the bucketing
algorithm described in Section 1.2.1; however, here Z is a sub-polynomial (rather than polynomial)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:16 F. Grandoni and V. V. Williams

function of n. For each subpath P;, we perform the following steps: First, we sample a set B; of
@(% -log n) nodes uniformly at random as in Corollary 2.6 (where N, n, and n” are replaced by n,
n, and 2n/Z, respectively). We construct a complete digraph G; on nodes V; := V(P;) U B; U {s, t}.
Next, we compute the distances in G — E(P;) between pairs of nodes in V;. We label each edge of
G; with the corresponding distance if its absolute value is at most ZM , and otherwise, we label it
with +oo. At this point, we add back the edges of E(P;). Finally, we apply the procedure recursively
to the pair (G;, P;).
We first consider the runtime of rp.

LEMMA 4.1. Procedure rp runs in O(Mn®) time.

PRrOOF. Line 1 can be executed in time O(Mn®) using Corollary 2.4. Line 2 can be easily imple-
mented in O(n?) time.

We next consider how many triples are ever added by the algorithm to L. We will show that that
number is O(n?), and hence lines 7-15 of Algorithm rp can be executed in O(n?) time.

The depth of the recursion is O(log, n) < O(logn), and the number of generated subproblems
in recursion level p is at most Z?. Line 3 of recRP adds at most one entry to L for each subproblem.
Observe that the number of such subproblems is at most O(n). Indeed, consider the recursion tree
(that has one node per subproblem). The leaves of such tree induce a partition of the edges of
the input path, hence there are at most n many such leaves. The internal nodes of the recursion
tree have degree Z > 2, hence their number is upper bounded by the number of leaves. Each node
vl is considered at most O(log n) times in line 4, hence line 5 adds at most O(nlogn) entries to
L altogether. The same holds for line 8. The total number of pairs (v;,v;) considered in line 13
in recursion level p is O(Z? (n/ZP)?) = O(n?/ZP), and summing over all levels, we get that O(n?)
triples are added to L by line 13. Finally, each edge v;v},; is considered at most O(log n) times in
line 23, hence the total number of entries added to L in line 24 is O(nlog n). The claim follows.

We next analyze the runtime of the calls to recRP. Consider some level p =0, ...,0(log, n)
of the recursion tree. At this level the algorithm generates at most Z? instances. Consider one
such instance (G, P). Observe that G and P contain i = ©(n/ZP - logPn) and ©(n/Z?) nodes, re-
spectively. Furthermore, the largest absolute weight in G is M < MZ?. Intuitively, the increase of
the value of M in the subproblems is compensated by a comparable decrease of the number 7 of
considered nodes.

The total runtime of lines 1-9 is dominated by the execution of line 2, which can be performed in
time O(M#®)) by Corollary 2.4. Consider next lines 17-27 (excluding the time spent on recursive
calls). The algorithm generates Z subproblems. The time spent on each subproblem (lines 19-27)
is dominated by the distances computation of line 20, which can be performed in time O(MA®) by
Corollary 3.2.

Altogether each instance of level p requires time O(ZMa®) = O(ZP*'M ("loz—g:")“’). Since there
are ZP such instances, the total runtime on level p is

logf“ n)

~ W
(0] (ZMn Zr@D

We can guarantee that lines 1-9 plus 17-27 at level p in the recursion (hence, altogether) take
time O(Mn®) by imposing the following conditions on Z: for @ > 2, set Z = 2log®/(“~) n, and for
= 2, choose Z so Z = n°Y and (log n)lOgZ" = po). eg.,”Z = 2CVlogn w1k,

It remains to consider the total time spent on base cases (lines 10-15). There are O(n/Z) base
case instances, each one involving at most Z nodes. We can compute all-pairs distances trivially in

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:17

O(Z3) time in each such instance. Hence, the total runtime of solving these instances is O(nZ?) =
O(n). The claim follows. O

We next discuss the correctness of rp.

LEMMA 4.2. For every pair (G, P) on which we execute recRP, the distances between nodes in V (G)
are the same in G — E(P) and in G — E(P) w.h.p.

Proor. Let us assume that the high probability events of Corollaries 2.6 and 3.2 hold whenever
we execute lines 18 and 20. The claim on the probability then follows by the union bound for a
sufficiently large constant C, observing that the total number of recursive calls is polynomially
bounded.

We prove the claim by induction. The base case is when (é, 15) = (G, P), where the claim trivially
holds. Next assume that the claim holds for a given pair (G, P). It is sufficient to show that it then
holds also for any associated subproblem (G;, P;). By assumption any shortest path in G — E(P;)
between nodes in {s,t} U V(P;) is partitioned by B; into subpaths of at most Z edges (hence, of
absolute value at most ZM). Therefore, G; — E(P;) preserves the distances of G — E(P;) between
nodes V; = V(G;). Thus, by inductive hypothesis, the same holds w.r.t. to G — E(P;). O

LEMMA 4.3. Procedure rp solves RP with polynomially small failure probability in n.

Proor. Let us assume that the high-probability event of Lemma 4.2 holds. Consider a given
edge e € E(P), and the associated replacement path of length d. Let the corresponding detour start
at node v and end at node . By the previous discussion it is sufficient to show that a triple (0, @, d)
is added to L at some point. Let recRP(G, P) be the lowest level call of recRP where both @ and @
belong to P. If the considered call is a base case, then a proper triple is added to L in lines 10-15.
Otherwise, the considered detour must correspond to one of the cases (1), (2), and (3) described
before, and a corresponding triple is added to L in lines 1-9. O

We are now ready to prove Theorem 1.1.

REMINDER OF THEOREM 1.1. There is a randomized algorithm that solves RP in n-node directed
graphs with integer weights in [-M, M] in O(Mn®) time, with failure probability polynomially small
inn.

Proor. Consider algorithm rp. Its runtime is O(Mn®) by Lemma 4.1. This algorithm is correct
with high probability by Lemma 4.3. The claim follows. O

5 SINGLE-SOURCE REPLACEMENT PATHS

We show how to solve SSRP, by reducing it to a small (subpolynomial) set of subpath problems
and smaller instances (Section 5.1), and by solving each subpath problem efficiently (Section 5.2).

Recall that in SSRP, we are given as input a graph G with edge weights w(-) and a source node
s.For any t € V(G) and for any edge e along the shortest path P; ; from s to ¢, we wish to compute
the length D ; . of the replacement path for the triple (s, ¢, e).

The shortest path tree T; and the corresponding distances dist (s, -) can be computed in O(Mn®)
time by Corollary 2.4. If u is a descendant of v in T, then one can derive in constant time the values
distg(v,u) = distg(s,u) — distg(s, v). Hence, we will assume that the latter quantities are implic-
itly given. Our estimates ﬁs, +.e of Ds ;. are initialized to +co and considered as global variables as
well.

By Z, we will denote a suitably chosen subpolynomial function of n, which is a global vari-
able. Similarly to the RP case, for w > 2, one can set Z = polylog(n) and otherwise (say) Z =

2\/10g nloglogn
ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:18 F. Grandoni and V. V. Williams

1: if n < Z then
2: Compute with the trivial cubic algorithm all Dg ;. values w.r.t. G, (t,e) € V(T) x E(T), and set
Ds te < mln{Ds t,esDs,t,e}

3: return

4: end if

5: Using balanced tree separators, partition T into subtrees Ty, . .., Tz, Z’ = ©(Z), each one with @(%)
nodes.

6: fori=1,...,Z" do

7: Call subpath(G, T;)

8: Sample % - Clog n nodes B; uniformly at random

9: Construct a complete digraph G; on node set V; := V(T;) U B; U {s} with edge weights w; initialized to

+00.

10: Compute estimates dist’ (-, -) of pairwise distances among nodes V; in G — E(T;) using Corollary 3.2
with parameter Z.

11: for every uv € E(G;) do

12: if IdistG_E(Ti)(u,u)l < ZM then
13: wi(uv) « disté_E(Ti)(u,v)
14: end if

15: end for

16: Add E(T;), with the associated weights, to G; .
17: Call ssrp(G;, T;)

18: end for

Fig. 5. Recursive algorithm ssrp for SSRP. The input is a pair (G, T). Here fi and M are the number of nodes
and largest absolute weight in G, respectively. As usual, the weight function of G is considered implicit. Tree
T, rooted at 7, is a subtree of T;. Here Z is a subpolynomial function of the original number of nodes n, and
C > 0 is a sufficiently large constant.

5.1 From SSRP to Subpath Problems

We next describe a recursive procedure ssrp to solve SSRP. This procedure takes as input a pair
(G, T). Here G is an fi-node multi- -digraph G with edge weights w(-) of absolute value at most M,
containing the source node s of the starting input instance. We will guarantee that there are at most
O(log,, n) parallel edges at any time, hence the cost of handhng such parallel edges is negllglble
analogously to the RP case. Furthermore, T is a subtree of G and of T, rooted at the node 7 in T at
minimum hop-distance from s in T;. By P, we will denote the shortest path from s to f.

The goal of the procedure is to compute D ; . for all (t,e) € V(T) x E(T)."" It is then sufficient
to call this procedure on input (G, T).

We remark that by n, we denote the number of nodes in the input graph G: We will guarantee
that the failure probability of ssrp is polynomially small in n (and hence the overall algorithm fails
with polynomially small probability by the union bound).

We consider Algorithm ssrp in Figure 5. Steps 1-4 address the base case, where the problem is
solved with the trivial cubic algorithm for small enough 7.

Otherwise, in Step 5, we partition T into Z’ = ©(Z) subtrees with roughly the same number of
nodes 8(%) using balanced tree separators. In more detail, recall that for each tree T of n nodes
there exists a node v (balanced tree separator) such that T can be split into two edge-disjoint trees
T’ and T” sharing node v only, and each one containing at least n/3 + 1 nodes. By applying this

7Whenever e ¢ E(Ps;), we implicitly assume that the pair (¢, e) is neglected. This is to slightly simplify the notation.
ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:19

procedure recursively it is easy to obtain Z’ € [Z,3Z] trees each one containing between % and
% nodes. Each splitting step, and hence the overall procedure, can be performed in O(f) time.

Then for each tree T; the algorithm works as follows: Let P; be the shortest path in G between
s and the root ¢; of T;. For each t € V(T;), the relevant pairs (t,) are of the following two types:
(a) e € E(P;) or (b) e € E(T;). We define the subproblem of computing Dj ; . for the pairs (t, e) of
the first and second type a subpath problem and a subtree problem, respectively.

The subpath problem associated with T; is solved by calling in Step 7 procedure subpath, which
is described in next subsection.

The subtree problem associated with T; is instead addressed recursively in Steps 8—17. In more
detail, we start by building a compressed multi-digraph G; analogously to the RP case in Steps
8-16. Each such graph contains O() nodes and has edge weights of absolute value at most ZM.
By a similar argument as in the RP case, distances between nodes of G; are the same in G; — E(T;)
and in G — E(T;) (hence, in G — E(T;) by induction) w.h.p. Then, in Step 17, we call recursively
ssrp on (G;, T;).

Given the above algorithm, we can prove the following lemma:

LEMMA 5.1. Given an algorithm that solves a subpath problem in time O(M*#”) with failure prob-
ability at most n™?, for constants Q > 0 and B > a + 1 > 1, there is an algorithm that solves SSRP in
time O(Mn® + M%nP) with failure probability at most O(n~9*1).

Proor. By the union bound, the failure probability of the algorithm can be upper-bounded by
summing the failure probabilities of the O(n) subpath problems and the O(n) compression steps.
Analogously to the RP case, the compression step in each subtree problem preserves the correct
replacement path distances with a failure probability that can be made as small as n~< by choosing
properly the constants in the sampling step and in the computation of shortest paths. The claim
follows.

Now consider the runtime. In each recursive call involving 7 nodes and absolute weights at most
M, we partition the tree into at most 3Z subtrees containing at most 7i/Z nodes each, and then we
perform a compression step that increases the number of nodes to at most 2Crnlogn/Z and the
absolute weights to at most MZ. Thus, at level i > 0 of the recursion tree, the algorithm executes
at most (3Z)"*! compression steps and subpath procedures on instances on at most n(2C log n)'/Z*
nodes and with weights of absolute value at most MZ'. The number of recursive levels is at most
1087/ (2¢ 105 n) M- The (leaf) instances on at most Z nodes are solved using the cubic time algorithm

in overall time O(nZ%) = O(n). We analyze the rest of the runtime.

Consider first the compression steps. Each compression step can be performed in time Mi®g(n)
for some subpolynomial function g(-). Hence, all the compression steps generated by SSRP in-
stances at level i in the recursion tree can be performed in time

2Clogn\'\” > .
ogn)) g(n) ws>2 Mn®3Z g(n) - (6Clogn)' <.

(32)™* . (MZ) (n (

Summing over all the levels i of the recursion tree, the runtime of the compression steps is

IOgZ/(ZClogn) n

Mn®3Z g(n) Z (6Clogn)'

i=0

1
< Mn®3Z g(n)logn - 2 108(6C 108) ezroocTogm

Z=2\/10g nloglogn
< Mn® g 20(\llognloglog n)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:20 F. Grandoni and V. V. Williams

1: Solve the RP problem induced by P using the algorithm from Theorem 1.1, and let f)s’ i.e be the obtained
estimates of D ; .

2: Set Dy, 1,e < min{Dy 1, Dy j , + distg (. 1)} for all (t,e) € V(T) x E(T).

3: Initialize {Dget“’”r}(v eV (Byxv (T) to +o0 and let G’ := G — E(P).

4: Compute distg (v, 1) for all (v,t) € Vi X V(T) using the STSP algorithm from Theorem 1.4, and set
Ddefour distgr (v, 1)

5: fori=0,...,[log, }1do

6: Sample i1/X; - Clogn nodes B;, where X; = 20L.

7. Compute distg (b, v) and distgs (v, b) for all b € B; and v € V using the STSP algorithm from Theorem

1.4.
8 Set f)gff"”r — min{Dgff"”r,distG/ (v,b) +distg (b, 1)} for every (v, b,t) € Vaprx, X Bi X V(T).
9: end for

10: forall t € V(T) do

11: Setd; « f)gjt"“r, and d; <« min{d;_1,distg(s,v;) + f)gfft"“r} fori=2,...,h—1.
12: Set Ds,t,e,— — min{Ds,mi,di} fori=1,...,h—1ande; := V;Vj+1.

13: end for

Fig. 6. Procedure subpath to solve a subpath problem (G, T). Here G has fi nodes and largest absolute weight
M. By P= (v1,v2,...,vp), we denote the shortest path in G from s to the root f of T, and by Vi the last
x nodes of that path. Here L is a proper integer parameter. In the case of arbitrary weights Steps 3-9 are
replaced by ﬁgff”“r — disté_E(ﬁ) (v,t) for any (v,t) € V(P) x V(T), where such distances are computed
with the algorithm from Theorem 2.2.

In the first inequality above, we simply upper bounded the sum with 1 + log, /(2Clogn) I < logn
times the largest term in the sum, which is achieved for the largest value of i.

Similarly, the subpath problems generated by SSRP instances at level i > 0 in the recursion tree
take time at most

i\
; ; 2C1 pza+l ;
(32)" - (MZH)* (n (ngn) > g(n) S+ M*nP3Z g(n) - (6Clogn)’,

and hence their total execution time is at most
Man'B3Zg(n) logn - 2,Blog(6clogn)lmgz,11;§% < Manﬁg(n) . 20(\/lognloglogn)'

The claim on the runtime follows. |

5.2 Solving Subpath Problems

Consider a subpath problem (G, T), where as usual G has 7i nodes and largest absolute weight M. By
P, we denote the shortest path in G between s and the root f of T. Recall that our goal is to compute
Dy 4. for all (t,e) € V(T) x E(P). We will show how to do that in time O(MA®). W.l.o.g., we can
assume that M < 7>, since, otherwise, we can solve trivially the problem in O(7%) € O(Ma®)
time.

We use procedure subpath described in Figure 6. As mentioned in the introduction, we dis-
tinguish between two types of replacement paths Ps ; . for the considered pairs (t,e), e = uv. A
jumping path P ;. leaves P at some node (between s and u) and then meets P again at some other
node (between v and t). A departing path P; ;. leaves P at some node (between s and u) and never
meets P again.

Jumping paths are addressed in Steps 1-2 via a simple reduction to RP; indeed, in this case,
the considered replacement path for the triple (s, , e) is a replacement path for the triple (s, f, €)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:21

followed by a shortest path from to t. Here, we fix the parameters in the algorithm (without
substantially affecting the runtime), so the failure probability is polynomially small in n (rather
than in n). Alternatively, it is sufficient to repeat Steps 1-2 for ©(log n/ log 1) many times.

It remains to consider the departing paths. Consider first the case of arbitrary weights. We start
by observing that it is sufficient to compute all the distances distg (v, t) from nodes v in P to nodes
t in T in the graph G’ := G — E(P). Let s = v;,v; ... v}, = I be the sequence of nodes in P. For e =
v;v;41 and any t € V(T), the shortest departing path for (s, t,e) has length min;<;{distg(s,v;) +
diste (v], t)}. For a fixed t, we can compute these quantities for all e € P via a single scan of the
nodes of P from v; to vy, (updating the corresponding minimum each time). This takes O(n?) time,
and is performed in Steps 10-13. For the computation of the distances dists (v, t) one can directly
apply Zwick’s APSP algorithm to graph G’.

LEmMA 5.2. There is an algorithm that solves a given subpath problem on an fi-node directed graph
with integer weights in [-M, M] in time ON(A;Iﬁ AttEa), with failure probability polynomially small
inn.

The part of Theorem 1.3 relative to negative weights follows from Lemmas 5.1 and 5.2.

The rest of this section is devoted to the computation of departing paths in the case of positive
weights (Steps 3-9). Let Vy be the final x nodes of P. We first consider the detours (of departing
paths), which contain at most L nodes, for a proper parameter L. As we already mentioned in the
introduction, such detours must start at some node in Vy;, . Indeed, the length of these detours is at
most M(L — 1), and this is also an upper bound on the length of the original shortest paths among
the same endpoints; since weights are strictly positive integers, the latter paths cannot contain
more than M(L — 1) + 1 < ML nodes. Notice that such a claim would not hold in the presence of
negative (or even zero) weights.

We use the STSP algorithm from Theorem 1.4 to compute the distances distg (v, t) fromv € Vy,
to all t € V(T) in G’. For the remaining detours, let us define O(log /1) intervals [X;, 2X;) with
X; =2'Land0 < i < [log, f] For each i, we search for detours with a number of nodes in [X;, 2X;)
as follows: We sample a bridge set B; of "L - Clogn nodes, so B; hits any detour on at least X;
nodes with polynomially (in n) small failure probability according to Corollary 2.6. We compute
the distances in G’ from any node in V, ;. to any node in B; and from any node in B; to any node
in V(T;), using our STSP algorithm from Theorem 1.4. For each (v, t) € V, 5. X V(T;), the desired
distance is mingep, {distg (v, b) + distg (b, t)}.

LEMMA 5.3. There is an algorithm that solves a given subpath problem on an n-node directed graph
with integer weights in [1, M] in time O(Mn®), with failure probability polynomially small in n.

Proor. Consider the above algorithm. The algorithm fails if either the execution of the RP
algorithm fails, or at least one of the executions of the STSP algorithm fails, or for some i the
sample B; does not hit all the detours on at least X; nodes. The claim on the failure probability
follows.

The computation of jumping paths and of departing paths from their detours takes O(M#a®)
time. The computation of the detours themselves takes time

O(MA® + ML 7 (Mi)™a) + Z 0 (Mﬁ“

i

~ ~ ~ }712 ~ 1
=0 [Mn® + MLn+f (Mn)&a |.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:22 F. Grandoni and V. V. Williams

OOSlng = n Y glVeS an overall runtime o) Nn + Nn% ~n ﬁ , wnicn 1s) Nn or
Choosing L = +/fi/M gi 1l runtime of O(Ma® + \M#a? (M7 hich is O(MA®) f

any value of w € [2,3], since by assumption M < 7>~¢ < i7-2%, m

Combining Lemmas 5.1 and 5.3, one obtains the part of Theorem 1.3 corresponding to positive
weights (note that the compression step in procedure ssrp does not create negative weights if the
input weights are positive).

6 DISTANCE SENSITIVITY ORACLES

In this section, we present our improved DSOs. We start with the DSO from Theorem 1.5. We
consider first the case of positive integer weights (Section 6.1), and later extend the result to al-
low for non-positive weights (Section 6.2). In Section 6.3, we describe the alternative DSO from
Theorem 1.6. We conclude the section with a brief discussion about the space complexity.

6.1 Positive Weights

The basic strategy is as follows: Given two integer parameters 0 < S < L < n, we distinguish three
types of replacement paths: hop-long and hop-short replacement paths contain at least L and at most
S nodes, respectively; the remaining paths are hop-average. We design a distinct oracle for each
kind of path. In particular, the oracle for hop-long paths will crucially exploit our SSRP algorithm.
The preprocessing and query time of the overall oracle is given by the sum of the preprocessing
and query times of these three oracles.

(1) Hop-short paths. We sample S - Clog n random graphs Gi, . .., Gs.clogn as in Lemma 2.7.
We compute all-pairs shortest paths on at most S nodes in each G; as in Corollary 3.1, in time
O(S*“Mn®) per graph, and hence O(S*“Mn®) altogether. For a query (s, t, e), it is sufficient to
return the shortest distance from s to t in the graphs G; not containing e. By Lemma 2.7 w.h.p.
the number of considered graphs (and hence the query time) is O(log n), and at least one of them
contains P ; if it is hop-short.

(2) Hop-average paths. We sample L - Clog nrandom graphs G, . . ., Gr.clog n @8 in Lemma 2.7.
We apply the preprocessing step of the distance oracle from Lemma 2.3 to each sampled graph.
This takes O(LMn®) preprocessing time and allows us to answer a query (s, ¢, e), by considering
all the ©(log n) graphs G; not containing e and querying the corresponding distance oracles in
(j(n/S) time. By Lemmas 2.7 and 2.3, w.h.p. the answer is correct if P; ; . is hop-average.

(3) Hop-long paths. We sample 7 - Clogn nodes B as in Lemma 2.5 so w.h.p. B hits all the
replacement paths on at least L nodes. We solve SSRP from any source b € B both in the original
graph and in the graph where we reverse all the edges. The preprocessing time is é(%Mn“’). To
answer a query (s,t,e), it is sufficient to consider the concatenation of replacement paths P p .
and Pp ;. for any b € B; this takes O(n/L) time and returns the correct answer w.hp. if Ps ;e is
hop-long.

Altogether, we obtain an O(Mn®(S*® + L + 7)) preprocessing time and an é(g) query time.
Setting L = ©(max{+/n, S}) concludes the proof of Theorem 1.5 for positive weights.

6.2 Negative Weights

We use the same approach as above for hop-short and hop-average paths (which also works in the
presence of non-positive weights). For hop-long paths, we exploit a variant of our SSRP algorithm,
where we are only interested in computing correctly the replacement paths on at most X nodes.
Observe that, in each subpath problem (P’, T’), it is sufficient to consider the detours of departing
paths that start in the first X nodes; otherwise, the departing replacement path would be too long.
Using our STSP algorithm, the runtime reduces to O(Mn® + XM Ton'tre). Note that we can use

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

Faster Replacement Paths and Distance Sensitivity Oracles 15:23

the same parameter X also in the recursive calls, since the compression step can only reduce the
number of nodes in each path. By the same argument as in Lemma 5.1, this also upper-bounds the
overall runtime of the algorithm.

LEmMMA 6.1. For any 0 < X < n, there is an algorithm of runtime O(Mn® +XM7a n“ﬁ) for
SSRP that computes correctly all the replacement path distances of paths with at most X nodes with
failure probability polynomially small in n.

We exploit the modified SSRP algorithm as follows: We define O(log n) intervals [X;, 2X;) with
L < X; := 2'L < 2n. To compute the replacement paths with a number of nodes in [X;, 2X;), we
sample XL, - Clogn nodes B; as in Lemma 2.5 so w.h.p. B; hits all the replacement paths on at
least X; nodes. We solve SSRP from each source b € B; in the original graph and in the graph with
reversed edge directions, using the modified SSRP algorithm with parameter X = 2X;. The prepro-
cessing time is O(XiiMn“’ + ¥ Xi M*an*vs) < O(2Mn® + M75 n?*¥5). For a query (s, 1, e), it
is sufficient to consider all the triples (s, b, t) with b € B;, which takes O(Xll) < é(%) time. Since

LMn® + ZMn® > Mn®*s > M7an?*7s for any o € [2,3], the extra term MTan?* 7o is irrele-
vant in the runtime of the preprocessing stage. Hence, we obtain (modulo polylogarithmic factors)
the same preprocessing and query time as in the case of positive weights. This concludes the proof
of Theorem 1.5.

6.3 An Alternative Oracle

We next describe the DSO from Theorem 1.6. We again distinguish between hop-short, hop-
average, and hop-long paths. We handle the first two types of paths as we did before. This takes
O(Mn®(S*~® + L)) preprocessing time and O($) query time.

Consider next hop-long paths. We exploit the O(L) random graphs G; that we used in the com-
putation of hop-average paths. Recall that we precomputed the distance oracle from Lemma 2.3
for each such graph. We sample 7 - Clogn nodes B as in Lemma 2.5, and we compute all the dis-
tances of absolute value at most ML between pairs of nodes in B in each G;. This can be done
in O(Mn®) time per graph as observed in Reference [44]. We also construct an auxiliary graph
with a dummy node r and edges of cost zero from r to any other node. In this graph, we compute
distances d(v) := dist(r,v) from r in time O(Mn®).

Given a query (s, ¢,), we construct an auxiliary graph on node set B U {s, t}. For any pair by, b, €
B, we set the weight w’(b1b,) of edge b;b; to the minimum (precomputed) distance from b; to b,
in any graph G; not containing e. Since there are O(log n) such graphs, this step costs O(|B|?). At
this point, we set the distances from s to B and from B to t. It is here that our algorithm (for hop-
long paths) deviates from Reference [44]. In Reference [44] the authors query the distance oracle
for any pair (s, b) and (b, t) with b € B. Since each query takes O(n) time, altogether this costs
é(n|B|) time. We rather observe that, due to the lower bound part of Lemma 2.5, it is sufficient to
consider only the shortest paths from s and to ¢ that contain Q(L) nodes. This costs only O(n/L)
by the final claim of Lemma 2.3. Therefore, we are able to construct the auxiliary graph in O(n/L -
|B| + |B|?) time only. The rest of the query proceeds as in Reference [44]: We add d(u) — d(v) to
each auxiliary weight w’(uv), which makes edge weights non-negative. Then, we use Dijkstra’s
algorithm to compute the shortest s-t path in the auxiliary graph in time O(|B|?). Summarizing,
the preprocessing time for hop-long paths is O(LMn®), and the query time is O(n?/L?).

The overall failure probability is polynomially small in n by the usual arguments. Choosing
S=L¥vs completes the proof of Theorem 1.6.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

15:24 F. Grandoni and V. V. Williams

6.4 Space Complexity

Consider first the DSO from Theorem 1.6. Note that for hop-average replacement paths it is
sufficient to store, for each relevant distance oracle, only the portion corresponding to paths
containing at least S nodes: this takes O(n?/S) space only. Altogether, the space complexity is
O(n®S + n*L/S + (n/L)*L) = CN)(n2L4—1w). For the DSO from Theorem 1.5, we need to add to the
above space complexity a term O(n?|B|) = O(n*/L). For a comparison, the DSO in Reference [44]

has space complexity O(n?L); this is always worse than é(nzLﬁ) and worse than O(n®/L) for L
large enough.

REFERENCES

[1] N. Alon, Z. Galil, and O. Margalit. 1997. On the exponent of the all-pairs shortest path problem. 7. Comput. Syst. Sci.
54, 2 (1997), 255-262.

[2] S.Baswana and N. Khanna. 2013. Approximate shortest paths avoiding a failed vertex: Near optimal data structures
for undirected unweighted graphs. Algorithmica 66, 1 (2013), 18-50.

[3] A.Bernstein. 2010. A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in
general graphs. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 742-755.

[4] A.Bernstein and D. R. Karger. 2008. Improved distance sensitivity oracles via random sampling. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA’08). 34-43.

[5] A.Bernstein and D. R. Karger. 2009. A nearly optimal oracle for avoiding failed vertices and edges. In Proceedings of
the ACM Symposium on Theory of Computing (STOC’09). 101-110.

[6] A. M. Bhosle and T. F. Gonzalez. 2004. Replacement paths for pairs of shortest path edges in directed graphs. In
Proceedings of the International Conference on Parallel and Distributed Computing and Systems (PDCS’04). 94-99.

[7] D. Bilo, F. Grandoni, L. Guala, S. Leucci, and G. Proietti. 2015. Improved purely additive fault-tolerant spanners. In
Proceedings of the European Symposium on Algorithms (ESA’15). 167-178.

[8] Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. 2017. Optimal vertex fault tolerant
spanners (for fixed stretch). In Proceedings of the Twenty-Ninth Annual (ACM-SIAM) Symposium on Discrete Algorithms
(SODA’18). 1884-1900. https://doi.org/10.1137/1.9781611975031.123

[9] GregBodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. 2017. Preserving distances in very
faulty graphs. CoRR abs/1703.10293 (2017). Retrieved from: http://arxiv.org/abs/1703.10293.

[10] G. Braunschvig, S. Chechik, D. Peleg, and A. Sealfon. 2015. Fault tolerant additive and (u, «)-spanners. Theoret.
Comput. Sci. 580 (2015), 94-100.

[11] T. H. Byers and M. S. Waterman. 1984. Determining all optimal and near optimal solutions when solving shortest
path problems by dynamic programming. Op. Res. 32 (1984), 1381-1384.

[12] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. 2017. (1 + €)-approximate f-sensitive distance oracles. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA’17). 1479-1496.

[13] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. 2009. Fault-tolerant spanners for general graphs. In Proceedings of
the ACM Symposium on Theory of Computing (STOC’09). 435-444.

[14] D. Coppersmith. 1997. Rectangular matrix multiplication revisited. J. Complex. 13, 1 (1997), 42-49.

[15] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran. 2008. Oracles for distances avoiding a failed
node or link. STAM J. Comput. 37, 5 (2008), 1299-1318.

[16] M. Dinitz and R. Krauthgamer. 2011. Fault-tolerant spanners: Better and simpler. In Proceedings of the ACM Sympo-
sium on Principles of Distributed Computing (PODC’11). 169-178.

[17] R.Duan and S. Pettie. 2009. Dual-failure distance and connectivity oracles. In Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’09). 506-515.

[18] Y. Emek, D. Peleg, and L. Roditty. 2010. A near-linear-time algorithm for computing replacement paths in planar
directed graphs. ACM Trans. Algor. 6, 4 (2010).

[19] D. Eppstein. 1994. Finding the k shortest paths. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS’94). 154-165.

[20] Francois Le Gall. 2012. Faster algorithms for rectangular matrix multiplication. In Proceedings of the 53rd IEEE Sym-
posium on Foundations of Computer Science (FOCS’12). 514-523.

[21] Francois Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’14). 296-303.

[22] Andrew V. Goldberg. 1995. Scaling algorithms for the shortest paths problem. SIAM 7. Comput. 24, 3 (1995), 494-504.

[23] Z. Gotthilf and M. Lewenstein. 2009. Improved algorithms for the k simple shortest paths and the replacement paths
problems. Inform. Process. Lett. 109, 7 (2009), 352-355.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

https://doi.org/10.1137/1.9781611975031.123
http://arxiv.org/abs/1703.10293

Faster Replacement Paths and Distance Sensitivity Oracles 15:25

[24]
[25]
[26]

[27]

[42]

F. Grandoni and V. Vassilevska Williams. 2012. Improved distance sensitivity oracles via fast single-source replace-
ment paths. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’12). 748-757.

J. Hershberger and S. Suri. 2001. Vickrey prices and shortest paths: What is an edge worth? In Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS’01). 252-259.

J. Hershberger, S. Suri, and A. Bhosle. 2003. On the difficulty of some shortest path problems. In Proceedings of the
Symposium on Theoretical Aspects of Computer Science (STACS’03). 343-354.

X. Huang and V. Y. Pan. 1998. Fast rectangular matrix multiplication and applications. 7. Complex. 14, 2 (1998), 257
299.

D. B. Johnson. 1977. Efficient algorithms for shortest paths in sparse networks. J. ACM 24, 1 (1977), 1-13.

D. Karger, D. Koller, and S. Phillips. 1993. Finding the hidden path: Time bounds for all-pairs shortest paths. SIAM .
Comput. 22, 6 (1993), 1199-1217.

E. L. Lawler. 1972. A procedure for computing the k best solutions to discrete optimization problems and its applica-
tion to the shortest path problem. Manag. Sci. 18 (1972), 401-405.

K. Malik, A. K. Mittal, and S. K. Gupta. 1989. The k most vital arcs in the shortest path problem. Op. Res. Lett. 8, 4
(1989), 223-227.

E. Nardelli, G. Proietti, and P. Widmayer. 2001. A faster computation of the most vital edge of a shortest path. Inform.
Process. Lett. 79, 2 (2001), 81-85.

N. Nisan and A. Ronen. 2001. Algorithmic mechanism design. Games Econ. Behav. 35 (2001), 166—196.

Merav Parter. 2014. Vertex fault tolerant additive spanners. In Proceedings of the Symposium on Distributed Computing
(DISC’14). 167-181.

M. Parter and D. Peleg. 2014. Fault tolerant approximate BES structures. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA’14). 1073-1092.

L. Roditty. 2007. On the k-simple shortest paths problem in weighted directed graphs. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA’07). 920-928.

L. Roditty and U. Zwick. 2005. Replacement paths and k simple shortest paths in unweighted directed graphs. In
Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP’05). 249-260.
Raimund Seidel. 1995. On the all-pairs-shortest-path problem in unweighted undirected graphs. 7. Comput. Syst. Sci.
51, 3 (1995), 400-403.

A. Shoshan and U. Zwick. 1999. All pairs shortest paths in undirected graphs with integer weights. In Proceedings of
the IEEE Symposium on Foundations of Computer Science (FOCS’99). 605-614.

M. Thorup. 1999. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46, 3
(1999), 362-394.

V. Vassilevska Williams. 2011. Faster replacement paths. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA’11). 1337-1346.

V. Vassilevska Williams. 2012. Multiplying matrices faster than Coppersmith Winograd. In Proceedings of the ACM
Symposium on Theory of Computing (STOC’12). 887-898.

V. Vassilevska Williams and R. Williams. 2010. Subcubic equivalences between path, matrix, and triangle problems.
In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’10). 645-654.

O. Weimann and R. Yuster. 2010. Replacement paths via fast matrix multiplication. In Proceedings of the IEEE Sympo-
sium on Foundations of Computer Science (FOCS’10). 655-662.

Ryan Williams. 2014. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the Symposium on Theory
of Computing (STOC’14). 664—673.

J. Y. Yen. 1971. Finding the k shortest loopless paths in a network. Manag. Sci. 17 (1971), 712-716.

R. Yuster and U. Zwick. 2005. Answering distance queries in directed graphs using fast matrix multiplication. In
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS’05). 389-396.

G. Yuval. 1976. An algorithm for finding all shortest paths using N2-8! infinite-precision multiplications. Inform.
Process. Lett. 4 (1976), 155-156.

U. Zwick. 2002. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 3 (2002),
289-317.

Received December 2018; revised September 2019; accepted September 2019

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

RIGHTSE LI MN iy

