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Faster Replacement Paths and Distance Sensitivity Oracles

FABRIZIO GRANDONI, IDSIA, USI-SUPSI, Switzerland

VIRGINIA VASSILEVSKA WILLIAMS, Massachussetts Institute of Technology, USA

Shortest paths computation is one of the most fundamental problems in computer science. An important

variant of the problem is when edges can fail, and one needs to compute shortest paths that avoid a (failing)

edge. More formally, given a source node s , a target node t , and an edge e , a replacement path for the triple

(s, t , e ) is a shortest s-t path avoiding edge e . Replacement paths computation can be seen either as a static

problem or as a data structure problem. In the static setting, a typical goal is to compute for fixed s and t , for
every possible failed edge e , the length of the best replacement path around e (replacement paths problem).

In the data structure setting, a typical goal is to design a data structure (distance sensitivity oracle) that, after

some preprocessing, quickly answers queries of the form: What is the length of the replacement path for the

triple (s, t , e )?
In this article, we focus on n-node directed graphs with integer edge weights in [−M,M], and present

improved replacement paths algorithms and distance sensitivity oracles based on fast matrix multiplication.

In more detail, we obtain the following main results:

• We describe a replacement paths algorithm with runtime Õ (Mnω ), where ω < 2.373 is the fast

matrix multiplication exponent. For a comparison, the previous fastest algorithms have runtime

Õ (Mn1+2ω/3) [Weimann,Yuster—FOCS’10] and, in the unweighted case, Õ (n2.5) [Roditty, Zwick—
ICALP’05]. Our result shows that, at least for small integer weights, the replacement paths problem

in directed graphs may be easier than the related all-pairs shortest paths problem, as the current best

runtime for the latter is Õ (M
1

4−ω n2+
1

4−ω ): this is Ω(n2.5) even if ω = 2. Our algorithm also implies

that the k shortest simple s-t paths can be computed in Õ (kMnω ) time.

• We consider the single-source generalization of the replacement paths problem, where only the

source s is fixed. We show how to solve this problem in all-pairs shortest paths time, currently

Õ (M
1

4−ω n2+
1

4−ω ). Our runtime reduces to Õ (Mnω ) for positive weights, hence matching our men-

tioned result for the simpler replacement paths case (that, however, holds also for nonpositive

weights). One of the ingredients that we use is an algorithm to compute the distances from a set

S of source nodes to a setT of target nodes in Õ (Mnω + |S | · |T | · (Mn)
1

4−ω ) time. This improves on a

result in Yuster,Zwick—FOCS’05.

• We present the first distance sensitivity oracle that achieves simultaneously subcubic preprocessing

time and sublinear query time. More precisely, for a given parameter α ∈ [0, 1], our oracle has pre-
processing time Õ (Mnω+

1
2 +Mnω+α (4−ω ) ) and query time Õ (n1−α ). The previous best oracle for

The first author was partially supported by the SNSF Grants APXNET 200021_159697/1 and SNSF Excellence Grant

200020B_182865/1. The second author was partially supported by NSF Grants CCF-1417238, CCF-1528078, CCF-1514339,

CCF-0830797, CCF-1118083, IIS-0963478, and IIS-0904325, BSF Grant BSF:2012338 and by AFOSR MURI Grant. This work

was initiated while V. V. W. was at UC Berkeley and at Stanford University. A preliminary version of this article appeared

in SODA’11 [41] and FOCS’12 [24].

Authors’ addresses: F. Grandoni, IDSIA, SUPSI-DTI, Galleria 2, Via Cantonale 2c,6928 Manno, Switzerland; email:

fabrizio@idsia.ch; V. V. Williams, CSAIL, 32 Vassar Street, 02139 Cambridge, MA, USA; email: virgi@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2019/12-ART15 $15.00

https://doi.org/10.1145/3365835

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3365835


15:2 F. Grandoni and V. V. Williams

small integer weights has Õ (Mnω+1−α ) preprocessing time and (superlinear) Õ (n1+α ) query time

[Weimann,Yuster-FOCS’10]. From a technical point of view, an interesting and novel aspect of our or-

acle is that it exploits as a subroutine our single-source replacement paths algorithm. We also present

an oracle with the same preprocessing time as in Weimann,Yuster—FOCS’10 and with smaller query

time Õ (n1−
1−α
4−ω + n2α ).
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1 INTRODUCTION

Shortest paths computation is one of the most fundamental problems in computer science. A nat-

ural generalization of the shortest paths problem for failure prone graphs is to compute short-

est paths avoiding a (failing) edge e , so called replacement paths w.r.t. e . A typical motivation for

replacement paths computation is to quickly recover from edge failures. Replacement paths are

useful also in contexts where one may wish to satisfy other constraints beyond short length [30].

For instance, in biological sequence alignment [11] replacement paths are useful in determining

which pieces of an alignment are most important. The replacement paths problem is also used in

the computation of Vickrey Prices of edges that are owned by selfish agents in a network [25, 33],

and in finding the k shortest simple paths between two nodes [30, 36, 37, 46].

More formally, letG = (V ,E) be an n-nodem-edge directed graph, with integer edge weights (or

lengths)w : E → [−M,+M], whereM is a positive integer.1 From now on, we will always assume

that the considered graphG contains no negative cycles, so shortest paths are well-defined. If there

are multiple shortest paths between two nodes in a given graph, then we will implicitly consider

a canonical shortest path obtained via some tie-breaking rule. In particular, Ps,t will denote the

(canonical) shortest path from s to t in the input graph. By distG (s, t ), we denote the length of the

shortest path from s to t (distance from s to t ) inG, and we will use the shortcut dist (s, t ) whenG
is clear from the context.2 Given two nodes s and t and an edge e , a replacement path Ps,t,e for the
triple (s, t , e ) is the shortest path from s to t that avoids edge e , i.e., the shortest s-t path inG \ {e}.
Observe that, if e is not an edge of Ps,t , thenwe can assumew.l.o.g. that Ps,t,e = Ps,t . Hence, w.l.o.g.,
we will assume from now on that e belongs to Ps,t . For the sake of simplicity, we will next focus on

the computation of the lengths Ds,t,e := distG\{e } (s, t ) of the considered replacement paths Ps,t,e .
However, our approach can be adapted via standard techniques to allow for the computation of

any replacement path Ps,t,e in time linear in its number of edges. Intuitively, we can associate

with each distance Ds,t,e , the predecessor of t along Ps,t,e . This way, we can reconstruct Ps,t,e
proceeding backward node-by-node.

In the literature, there are two main high-level approaches used to compute replacement paths.

In the first approach, one solves the problem statically by precomputing the lengthsDs,t,e of all the

(non-trivial) replacement paths Ps,t,e and storing them in a table. Depending on the restrictions on

s and t , one obtains different variants of the problem. The so-called Replacement Path problem (RP)

1Throughout this article, for integers a ≤ b > 0, [a, b] = {a, a + 1, . . . , b } and [b] = {1, 2, . . . , b }.
2The weight function associated with the considered graph G will always be clear from the context.
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is obtained by fixing both s and t . In this article, we will also consider the Single-Source Replacement

Paths problem (SSRP), where s is fixed and t is arbitrary. SSRP is a natural extension of RP, and

moreover, it turns out to be useful in the design of distance sensitivity oracles.

The second approach to replacement paths is to design a data structure that, after a preprocessing

step, quickly answers queries of the form (s, t , e ) by returning Ds,t,e . Such a data structure is called

a Distance Sensitivity Oracle (DSO). As usual, one needs to compromise between the preprocessing

and query time.3 In this article, we will focus only on the all-pairs variant of DSOs (where both s
and t are arbitrary).

1.1 Related Work

1.1.1 Replacement Paths. RP is the best-studied variant of the replacement paths problem. Re-

call that here both the source s and the target t are fixed. The naive way to solve RP is to remove

each edge e ∈ Ps,t in turn and compute the shortest path in G \ {e} from scratch. This approach

is, however, unnecessarily time-consuming as the shortest paths computations share a lot of in-

formation. RP can be solved very efficiently in undirected graphs: Malik et al. [31] gave an Õ (m)
time algorithm.4 Nardelli et al. [32] used Thorup’s linear time algorithm for single-source shortest

paths [40] to improve the runtime to O (mα (n)) in the word-RAM model of computation, where

α (·) is the inverse Ackermann function.

The best algorithm for the problem in sparse directed graphs with arbitrary edge weights is

by Gotthilf and Lewenstein [23] and runs in O (mn + n2 log logn) time. For dense directed graphs,

nothing much better than cubic time is known.5 Vassilevska Williams and Williams [43] showed

that RP in directed graphs is equivalent under subcubic reductions to the All-Pairs Shortest Paths

problem (APSP), i.e., the problem of computing all the pairwise distances in a given graph. This

essentially means that either both problems admit truly subcubic algorithms, i.e., algorithms with

runtime Õ (n3−ε ) for some constant ε > 0, or neither of them does. It is worth pointing out that this

apparent cubic time barrier is only due to the wish to compute the replacement distances exactly.

In contrast, Bernstein [3] described an algorithm for RP in directed graphs with positive weights

that for any constant ε > 0, computes (1 + ε )-approximate replacement paths in Õ ( 1
ε
m) time. For

weighted planar digraphs, the runtime can be reduced to Õ (n) as shown by Emek et al. [18].

For unweighted directed graphs, Roditty and Zwick [37] gave a randomized combinatorial

algorithm that computes replacement paths in Õ (m
√
n) time.6 Weimann and Yuster [44] ap-

plied fast matrix multiplication techniques to the problem. Their randomized algorithm runs in

Õ (Mn1+2ω/3) time, where ω < 2.373 [21, 42] is fast square matrix multiplication exponent defined

as the smallest constant such that two n × n matrices can be multiplied using Õ (nω ) elementary

3Another important aspect is the space complexity; this is not the main focus of this article, and we will only have a brief

discussion of it.
4For notational convenience, throughout this article, we use a modified Õ notation, which suppresses sub-polynomial

(rather than just poly-logarithmic) factors in Mn. However, the reader should be aware that in several cases the hidden

factor is only poly-logarithmic.
5Subpolynomial improvements are known. The best of these is achieved by combining the reduction from Replace-

ment Paths to APSP presented in this article with the current fastest algorithm for APSP by Williams [45] running in

n3/2Θ(
√
logn) time, leading to the same running time for RP.

6The Roditty and Zwick algorithm can be extended to support integer edge weights in [1, M] in time Õ (m
√
Mn): The

algorithm processes detours shorter than L in Õ (mL) time, and this works even in the weighted case. It processes de-

tours longer than L by sampling O (n logn/L) vertices to hit every long detour. In the weighted case, we need to sample

O (nM logn/L) vertices instead. To obtain the new running time, one sets L =
√
nM .
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operations.7 Using rectangular matrix multiplication algorithms [14, 20, 27], the running time can

be slightly improved to O (Mn2.584). Observe that, if ω = 2, Weimann and Yuster’s running time

would beO (Mn2.334). This would improve on Roditty and Zwick’sO (n2.5) running time (assuming

ω = 2) for dense unweighted graphs.

Somehow surprisingly, SSRP (where only the source s is fixed) has not received much atten-

tion in the literature. The only reference, to our knowledge, is a paper by Hershberger et al. [26],

which refers to the problem as edge-replacement shortest paths trees and shows that in the path-

comparison model of computation of Karger et al. [29], SSRP on directed graphs with arbitrary

edge weights requires Ω(mn) comparisons. The aforementioned reduction from APSP to RP by

Reference [43] suggests that there is little hope for a truly subcubic algorithm for SSRP. SSRP is a

natural problem, and moreover, it is a basic primitive for designing DSOs, as we will describe in

this article.

The RP problem is closely related to the problem of finding the second shortest path between

two nodes, and in general to the k shortest paths problem. For directed graphs and nonnegative

edge weights, Eppstein [19] gave an algorithm that returns the k shortest paths from s to t in

timeO (m + n logn + k ). The paths that Eppstein’s algorithm returns, however, may not be simple.

When the k shortest paths are required to be simple, the fastest-known algorithms for the problem

use algorithms for replacement paths. In more detail, Roditty and Zwick [37] showed that the k
simple shortest paths problem can be reduced toO (k ) computations of the second shortest simple

path, and hence to the solution of O (k ) instances of RP.

1.1.2 Distance Sensitivity Oracles. DSOs are very well studied in the literature. For arbitrary

non-negative edge weights, there are two trivial approaches. The first does no precomputation and

each query (s, t , e ) is answered by computing the shortest path between s and t inG \ {e} explicitly
inO (m + n logn) time using Dijkstra’s algorithm. The second approach takes Õ (mn2) preprocess-
ing time to compute for every source node s and for every edge e in the shortest paths tree rooted

at s , the new shortest paths tree from s in G \ {e}. The queries are then answered in O (1) time

by looking up the stored solutions. Similar DSOs can be obtained for graphs with possibly nega-

tive weights but no negative cycles by adding an extra preprocessing step to replace all negative

weights by non-negative ones, as in Reference [28]. This preprocessing step either takes Õ (mn)
time using the Bellman-Ford algorithm, orO (m

√
n logM ) time using Goldberg’s scaling algorithm

[22].

The preprocessing time for DSOs with arbitrary edge weights was improved to Õ (mn
3
2 ) by

Demetrescu et al. [15], while keeping the query time constant. Bernstein and Karger further im-

proved the preprocessing time to Õ (
√
mn2) [4] and finally to Õ (mn) [5]. The latter preprocessing

time matches, up to poly-logarithmic factors, the best-known runtime for APSP in the same set-

ting, and seems therefore very hard to beat.

One can do better, at least in terms of preprocessing time, in the case of integer weights of small

absolute value. Weimann and Yuster [44] presented a DSO with preprocessing time Õ (Mnω+1−α )
and query time Õ (n1+α ) for any given parameter α ∈ [0, 1]. In particular, they showed that the

problem can be solved with both subcubic preprocessing time and subquadratic query time.8 An

obvious open problem is whether one can achieve subcubic preprocessing time with linear (or

even sublinear) query time. We answer this question affirmatively.

7The value ω is defined for the arithmetic circuit model where the elementary operations are multiplication and addition

of elements from an underlying field such as the complex numbers.
8Reference [44] also considers the case of f = O (1) (simultaneous) failures; part of our results can be extended in that

direction, but this is out of the scope of this article.
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In this case one can also do better in terms of running time if one is allowed for amultiplicative or

additive error in the reported replacement path lengths (in some cases for general weights and/or

for multiple faults) [2, 12, 17]. In some cases, this is a direct consequence of fault-tolerant spanner

results [7–10, 13, 16, 34, 35]. We remark that the requirement of computing the replacement path

lengths exactly makes the problem substantially harder.

1.2 Our Results and Techniques

In this article, we present faster replacement paths algorithms and distance sensitivity oracles in

the case of dense graphs with small integer weights. All our results exploit fast matrix multiplica-

tion procedures. In more detail, we achieve the following main results:

1.2.1 Replacement Paths. Improving on References [37, 44], we present a faster algorithm for

the classical RP problem.

Theorem 1.1. There is a randomized algorithm that solves RP in n-node directed graphs with

integer weights in [−M,M] in Õ (Mnω ) time, with failure probability9 polynomially small in n.

Theorem 1.1 improves on Roditty and Zwick’sO (n2.5) runtime for dense unweighted graphs. It

also improves the range ofM for which there is a subcubic algorithm for the problem: In the case

of Weimann and Yuster’s algorithm it is roughlyM ≤ n0.416, while for our algorithm it is roughly

M ≤ n0.627. Our result also shows that, at least for small integer weights, the replacement paths

problem in directed graphs might actually be easier than APSP in directed graphs. In more detail,

Zwick’s algorithm [49] solves APSP in Õ (M
1

4−ω n2+
1

4−ω ) time.10 Note that this runtime is Ω(n2.5)
even in unweighted directed graphs and assuming ω = 2. Furthermore, improving on O (nω ) for
replacement paths in directed unweighted graphs would likely require radically new techniques,

as the problem is closely related to Boolean matrix multiplication.

As a consequence of the aforementioned reduction from k shortest simple paths to RP in Refer-

ence [37], we obtain the following corollary:

Corollary 1.2. There is a randomized algorithm that solves k shortest simple paths in a directed

n-node graph with integer edge weights in [−M,M] in Õ (kMnω ) time, with failure probability poly-

nomially small in n.

Our result is based on two main ingredients: On the one hand, we exploit a simple (determin-

istic) reduction from RP to APSP; on the other hand, we design a divide-and-conquer randomized

recursive strategy.

In more detail, as in previous work, we rely on the notion of detour. Let P = Ps,t = {s = v1 →
v2 → · · · → vk = t } be the considered shortest path from s to t in G. We next assume that P is

given, as well as all the distances between pairs of nodes along P . This can be easily computed in

Õ (n2) extra time. For k > j, a detour Δ(vj ,vk ) between vj and vk is a shortest path from vj to vk
that does not contain any other node of P . This detour is said to circumvent every edge between

vj and vk in P . It is well known (see, e.g., Reference Bernstein [3], Lemma 2.1) that for any edge

ei := (vi ,vi+1) ∈ E (P ), the shortest path between s and t inG \ {ei } is exactly the minimum out of

all paths of the form

s → v2 → · · · → vj � Δ(vj ,vk ) � vk → · · · → t ,

where j ≤ i , i + 1 ≤ k , and � denotes concatenation.

9All the algorithms considered in this article return lengths that are never smaller than the correct ones; the failure prob-

ability refers to the event that a strictly larger length is returned.
10The runtime of Zwick’s algorithm can be slightly improved to O (M0.681n2.532) by using fast rectangular matrix multi-

plication [20].

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 15. Publication date: December 2019.



15:6 F. Grandoni and V. V. Williams

Fig. 1. An example of the reduction from RP to APSP in the case of an unweighted graph.

Suppose that we are given for every vj ,vk ∈ P (j < k), the length of the detour Δ(vj ,vk ). We

will describe how to compute the lengths of all the replacement paths in only O (n2 logn) ex-
tra time. First, we compute in O (n2) time for every detour Δ(vj ,vk ), the length �(vj ,vk ) of the
path s → · · · → vj � Δ(vj ,vk ) � vk → · · · → t , as follows: As we are given P , we can in linear

time compute the length of each subpath s → · · · → vj for all j and the length of each subpath

vk → · · · → t for all k . Then �(vj ,vk ) can be computed in constant time by adding the lengths of

the two paths and that of the detour. After this, we sort theO (n2) triples (vj ,vk , �(vj ,vk )) in non-

decreasing order according to �(·), in O (n2 logn) time. Furthermore, we store all the pairs (vi , i )
with vi ∈ P in a successor search data structure T (e.g., any balanced binary search tree), with

search key i . Intuitively, each such pair (vi , i ) inT corresponds to an edge ei for which we did not

compute the replacement path length yet. We then scan the triples (vj ,vk , �(vj ,vk )) according to

the aforementioned sorted order. For any such triple, we find all the pairs (vi , i ) still in T with

j ≤ i ≤ k − 1 (in logarithmic time per pair). For any such pair (vi , i ), we record that the shortest

replacement path length11 for ei is �(vj ,vk ), and then delete (vi , i ) from T . Intuitively, all triples
(vj ,vk , �(vj ,vk )) with j ≤ i ≤ k − 1 induce a candidate replacement path of length �(vj ,vk ) for ei .
By construction, among these options, we consider only the shortest one.

Given the above construction, a reduction to APSP can be easily achieved as follows12: For

every node vi of P , create two copies vini and vouti . Create a new graph G ′ by taking (G \ P ) ∪
{vini ,vouti }i ∈[k]. For every edge (vi ,u) for u ∈ G \ P , add an edge (vouti ,u) of the same weight in

G ′. Similarly, for every edge (u,vi ) for u ∈ G \ P , add an edge (u,vini ) of the same weight in G ′.
G ′ is essentiallyG with the edges of P removed, except that each node of P is split into two.13 See

Figure 1 for an example conversion fromG toG ′. Now solve APSP inG ′. The shortest path between
vouti andvinj is exactly the optimal detour Δ(vi ,vj ) inG. Thus, with one call to an APSP algorithm,

and O (n2 logn) extra time, we obtain an algorithm for RP. Applying Zwick’s [49] algorithm for

APSP, we can solve the problem in Õ (M
1

4−ω n2+
1

4−ω ) (deterministic) time.

We are able to achieve a runtime strictly better than Zwick’s APSP algorithm via a bucket-

ing argument. Let us partition P into q subpaths P1, . . . , Pq of size roughly n/q, for a carefully

chosen parameter q. Let us focus on the edges of one such subpath P ′ between nodes vx and

vy . We construct an auxiliary graph GP ′ as follows: Let P
l and Pr be the subpaths of P to the

left and right of P ′, respectively. Take G and remove all incoming edges to nodes on P l except
those in P and all outgoing edges from nodes on Pr except those in P . This will ensure that any
path that we compute exiting P l does not reenter it and any path entering Pr does not reexit it.

Now remove all edges in P ′ and split each node v inW (P ′) := V (P ′) − {vx ,vy } into two as be-

fore: a copy vin with all the remaining incoming edges and a copy vout with all the remaining

11The actual path can also be stored, as usual, with a matrix of successors.
12The possibility of such a reduction was mentioned in Reference [6]; here, we make it explicit and show that it can be

used to further improve the known runtime bounds.
13Splitting the nodes in two is not strictly necessary. Our algorithms would work even without the splitting. However, the

analysis is simpler with the splitting, since this way all computed detours are disjoint from P .
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Fig. 2. An example of the transformation of a graph G into GP ′ , given P and v2-v5 subpath P ′. Notice that
edges (y,v2) and (v5,y) are removed, and that all nodes inW (P ′) = V (P ′) − {v2,v5} get split into two. The

relevant paths in GP ′ corresponding to detour paths circumventing edges in P are s → v2 → x → vin3 , s →
v2 → x → y → z → v5 → t , and vout4 → y → z → v5 → t .

outgoing edges. An example of the construction of GP ′ is given in Figure 2. Let us compute the

shortest path lengths from s and to t in GP ′ in Õ (n2) time. The shortest replacement path from

s to t avoiding all edges in P ′ is simply the shortest s-t path in GP ′ . Consider now the short-

est replacement path that leaves P not later than vx and reenters P at some node vi ∈W (Pi ).
This path is obtained by appending to the shortest s-vini path in GP ′ the subpath of P between vi
and t . Symmetrically, one can compute the shortest replacement path that leaves at some node

vi ∈W (P ′) and reenters P not earlier than vy . The only remaining replacement paths for edges in

P ′ have a detour with both endpoints inW (P ′). They can be derived by computing the shortest

paths distances between copies of nodes inW (P ′) in GP ′ . As we will discuss later, we are able

to perform the latter computation in time Õ (Mnω +M
1

4−ω n
3

4−ω |W (P ′) |2− 2
4−ω ). Therefore, the total

computation time is Õ (qMnω + qM
1

4−ω n
3

4−ω ( n
q
)2−

2
4−ω ). Choosing q = Θ(

√
(Mn)

1
4−ω /(Mnω−2)), so

n/q = Θ(

√
Mnω/(Mn)

1
4−ω ), the overall runtime of the algorithm is Õ (M

1
2 (1+

1
4−ω )n1+

1
2 (ω+

1
4−ω ) ). This

is strictly faster than Zwick’s APSP algorithm.

To achieve the claimed Õ (Mnω ) runtime, we use recursion in combination with a randomized

contraction step. The idea is to partition P into Z subpaths as in the bucketing algorithm. How-

ever, here Z is sub-polynomial (rather than polynomial). For each subpath Pi , we construct a con-
tracted versionG (Pi ) of the input graph, with slightly fewer nodes and slightly larger edgeweights.
GraphG (Pi ) preserves the replacement path lengths w.r.t. the edges of Pi , and it can be computed

efficiently.

1.2.2 Single-Source Replacement Paths. We present the first subcubic algorithms for SSRP in

case of small integer weights. Recall that Hershberger et al. [26] gave a cubic lower bound for the

problem in the path-comparison model of Karger et al. [29]. We avoid this lower bound due to our

use of fast matrix multiplication, which falls outside the path-comparison model.

Theorem 1.3. There is a randomized algorithm that solves SSRP in n-node directed graphs with

integer weights in [−M,M] in time Õ (M
1

4−ω n2+
1

4−ω ). For positive weights the runtime can be reduced

to Õ (Mnω ). The failure probability is polynomially small in n.

We remark that the runtime of our SSRP algorithm for integer weights in [−M,M] matches the

runtime of Zwick’s APSP algorithm [49]. We also remark that the runtime of our algorithm for

positive weights matches our own improved result for the simpler RP problem.We suspect that the

case in which the weights can be negative might be intrinsically harder, as the problem seems to

be more tightly related to APSP. Showing that this is the case, or obtaining an Õ (Mnω ) algorithm
for possibly negative weights as well, is an interesting open problem.
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We give some intuition about our approach in the following: Let Ts be the shortest paths tree
from source s . Pv,u denotes the path fromv tou inTs , anddist (v,u) its length. For a pair (t , e ) ∈ V ×
E, if e does not lie along Ps,t , then Ps,t,e = Ps,t . We call the remaining pairs (t , e ) relevant, and focus
on them. The first step in our algorithm is a partition of Ts into a small (subpolynomial) number

of subtrees T ′. Using balanced tree separators, we can guarantee that each T ′ contains roughly
the same number of nodes (modulo constants). Let P ′ be the path from s to the root ofT ′. For any
relevant pair (t , e ) there must exist some subtreeT ′ such that t ∈ V (T ′) and either (a) e ∈ E (T ′) or
(b) e ∈ E (P ′). This way, we identify a collection of subproblems, where each subproblem is of the

following two forms:

• In a subtree problem, we are given a subtree T ′ of T , and we want to compute replacement

paths Ps,t,e where both t and e belong to T ′ (handling (a) above).
• In a subpath problem, we are given a subpath P ′ of T from the source s to a node t ′, and a

subtree T ′ of T rooted at t ′, and we want to compute replacement paths Ps,t,e with t in T ′

and e in P ′ (handling (b) above).

We solve each subtree problem T ′ recursively, after a preliminary compression step where we

replace the nodes outside T ′ with a subpolynomially smaller random subset B of them, adding

auxiliary edges (with subpolynomially larger weights) representing shortest paths between the

sampled nodes.

Handling subpath problems (P ′,T ′) is the crux of our approach. The portion of Ps,t,e not in Ps,t
is called a detour and (w.l.o.g.) is a path that starts at some nodev of Ps,t (before edge e) and ends at
some other node u of Ps,t (after edge e). Note that possiblyv = s and/or u = t . For a given subpath

problem (P ′,T ′), we distinguish two types of replacement paths Ps,t,e depending on their detour:

• In jumping paths, detours have both endpoints in P ′;
• In departing paths, detours have only the starting node in P ′.

We can reduce the computation of jumping paths to an instance of the RP problem that we solve

in Õ (Mnω ) time with our own RP algorithm.

The computation of departing paths essentially reduces to the computation of their detours. For

positive weights, we are able to compute such detours in Õ (Mnω ) time.We adapt an idea of Roditty

and Zwick [37] used in their unweighted RP algorithm. Roughly speaking, consider the detour P̃v,u
of a departing path Ps,t,e , going from some v ∈ V (P ′) to some u ∈ V (T ′) − {t ′}. Suppose that P̃v,u
has X nodes and hence length at mostMX . Consequently, also the length of the shortest path Pv,u
fromv tou is at mostMX , which implies that Pv,u contains at mostMX nodes (here, we exploit the

positiveness of the weights). This forces v to be one of the finalMX nodes of P ′ (since u � V (P ′)).
We exploit the above observation as follows: Let L be a proper integer threshold. We compute all

the distances inG − E (P ′) from the finalML nodes of P ′ toV (T ′); this way, we obtain the detours

with X ≤ L. Then, we sample a random set B of Õ (n/L) nodes so w.h.p. B hits all the detours with

X ≥ L. We compute the shortest paths from V (P ′) to B and from B to V (T ′), and then derive the

desired detour lengths by going through all the triples (v,b,u) ∈ V (P ′) × B ×V (T ′).
Consider the computation of shortest paths in the two stages of the algorithm. In both cases,

we have to solve an instance of the following S-T shortest paths problem (STSP): Given a directed

edge-weighted graph G = (V ,E), and two subsets of nodes S,T ⊆ V , compute all the distances

between pairs (s, t ) ∈ S ×T . The best-known algorithm for STSP (forM small enough) is given in

Reference [47] and has runtime Õ (Mnω +M
1

4−ω n
3

4−ω ( |S | |T |)1− 1
4−ω ). We improve this to:
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Theorem 1.4. There is a randomized algorithm that solves STSP in n-node directed graphs with in-

teger weights in [−M,M] in time Õ (Mnω + |S | · |T | · (Mn)
1

4−ω ), with failure probability polynomially

small in n.

Incidentally, Yuster and Zwick mention that with their distance oracle one can compute shortest

paths trees from Θ̃(Mnw−2) sources in Õ (Mnw ) time.We can do the same from Θ̃(M
1− 1

4−ω nω−1−
1

4−ω )
sources, which is Θ̃(

√
n) even forM = O (1) and ω = 2, whereas the number of sources Yuster and

Zwick can handle is only Θ̃(1) in that case.

Using our STSP algorithm and choosing L properly, we are able to solve a subpath problem in

time Õ (Mnω +M
1
2+

1
2(4−ω ) n2+

1
2(4−ω ) ). This is Õ (Mnω ) for ω big enough (in particular, it holds for the

current best upper bound—namely, 2.373). To obtain a runtime of Õ (Mnω ) for any value of ω, we
use a scaling trick. We consider a logarithmic subset of intervals [X , 2X ) = [X , 2X − 1],X ≥ L, and
search for the detours with a number of nodes in the interval by considering the detours that start

in the last 2MX nodes of P ′ and pass through a sample of Õ (n/X ) nodes. This way, going through
the triples (v,b,u) costs only Õ (Mn2) rather than Õ (n3/L).
For arbitrary weights the idea of considering the final MX nodes of P ′ does not work: Here, a

very low weight path might contain many nodes due to negative (or even zero) edge weights. In

this case, we simply solve APSP in G − E (P ′) with Zwick’s algorithm (using our STSP algorithm

does not help, since possibly |V (P ′) | = Ω(n) = |V (T ′) |). This solves SSRP for integer weights in

[−M,M] in the claimed Õ (M
1

4−ω n2+
1

4−ω ) time.

1.2.3 Distance Sensitivity Oracles. In this article, we present the first distance sensitivity oracle

that achieves simultaneously subcubic preprocessing time and sublinear query time.

Theorem 1.5. For any integer 1 ≤ S ≤ n, there is a randomized distance sensitivity oracle for n-
node directed graphs with integer weights in [−M,M], with preprocessing time Õ (Mnω · (S4−ω +√
n)), query time Õ ( n

S
), and failure probability polynomially small in n.

In particular, by choosing S = Θ(n
1

2(4−ω ) ), one obtains subcubic preprocessing time Õ (Mnω+
1
2 ) <

O (Mn2.873) and sublinear query time Õ (n1−
1

2(4−ω ) ) < O (n0.693). Recall that the oracle by Refer-

ence [44] has preprocessing time Õ (Mnω+1−α ) and query time Õ (n1+α ), for any given parameter

α ∈ [0, 1]. Our oracle is always better than that in terms of query time, and for α < 1
2 it improves

also on the preprocessing time.

The DSO in Reference [44] distinguishes between hop-short replacement paths, which contain at

most L = Θ(n1−α ) nodes, and the remaining hop-long paths. Hop-short path lengths are computed

in Õ (n) time (at query time) by considering Õ (L) (properly chosen) random subgraphs, and pre-

computing for each such graph the distance oracle in Reference [47] in Õ (Mnω ) time. For hop-long

replacement paths Ps,t,e , the algorithm exploits a more involved procedure, based on the compu-

tation of an s-t shortest path in a proper auxiliary graph, whose construction (at query time) takes

superlinear time Õ (n2/L).
We are able to reduce the query time for hop-short paths by a careful use of known techniques.

To address hop-long paths, we exploit a completely different approach. LetB be a random sample of

Õ (n/L) nodes so w.h.p. every hop-long replacement path Ps,t,e contains some node b ∈ B. Observe
that the portion of Ps,t,e from s to b must be the replacement path for the triple (s,b, e ). Similarly

for the triple (b, t , e ). Suppose, then, that for every b ∈ B, we precomputed the quantities Ds,b,e

andDb,t,e . Then, we can trivially answer the query (s, t , e ) by computingDs,t,e = minb ∈B {Ds,b,e +

Db,t,e }. This takes Õ ( |B |) = Õ ( n
L
) time, which is sublinear. Note that the computation of Dv,b,e is

equivalent to the computation of Db,v,e after reversing all edge directions.
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From the above discussion, we can reduce the problem of designing an improved DSO to the

problem of efficiently solving SSRP for all source nodes s ∈ B. In the case of positive weights,

the claimed result can be obtained directly by exploiting our Õ (Mnω ) time SSRP algorithm. We

can achieve the same performance of the DSO for positive weights also in the case of arbitrary

weights (despite the fact that we are not able to solve SSRP equally fast in the two cases) by

means of a variant of our SSRP algorithm. Recall that we need to compute hop-long replacement

paths containing at least L nodes, for a proper integer threshold L. Also in this case, we exploit a

scaling trick: For a logarithmically large set of intervals [X , 2X ), X ≥ L, we address the problem of

computing replacement paths with a number of nodes in the considered interval. To do this, we

sample Õ (n/X ) random nodes B, and solve SSRP on each b ∈ B, but only considering replacement

paths on at most 2X nodes. The last assumption allows us to reduce the runtime of the SSRP

algorithm, since in each subpath problem (P ′,T ′), we need to consider only detours of departing

paths that start from the last 2X nodes of P ′ (otherwise, the corresponding replacement paths

would have > 2X nodes). The runtime of the modified SSRP algorithm turns out to be Õ (Mnω +

XM
1

4−ω n1+
1

4−ω ). For increasing X , each execution of the modified SSRP algorithm becomes more

expensive, but this is compensated by the smaller number of executions (i.e., Õ (n/X )).
Incidentally, we are also able to obtain a variant of the DSO in Reference [44] with the same

preprocessing time, but with an improved query time.

Theorem 1.6. For any integer 1 ≤ L ≤ n, there is a randomized distance sensitivity oracle for n-
node directed graphs with integer weights in [−M,M], with preprocessing time Õ (LMnω ), query time

Õ (n/L
1

4−ω + (n/L)2), and failure probability polynomially small in n.

Choosing L = Θ(n1−α ), this gives Õ (Mnω+1−α ) ≤ O (Mn3.373−α ) preprocessing time and

Õ (n1−
1−α
4−ω + n2α ) ≤ Õ (n0.386+0.615α + n2α ) query time. While this DSO does not involve drastic new

techniques on top of the techniques needed for Theorem 1.5, we present it for the sake of com-

pleteness, since it implies a strict improvement on Reference [44] also for α > 1
2 .

While we state our results as randomized algorithms, we note that using Zwick’s bridging set

techniques [49] and the modification in Section 8 of Reference [47], our results can be derandom-

ized with no significant loss in the running time.

1.3 Organization

The rest of this article is organized as follows: In Section 2, we introduce some preliminary defi-

nitions and results that will be needed in the rest of the article. In Section 3, we present our S-T

shortest paths algorithm. In Sections 4 and 5, we describe our algorithms for RP and SSRP, respec-

tively. Finally, in Section 6, we present our distance sensitivity oracles.

2 PRELIMINARIES

We use standard graph notation. When the base of a logarithm is not specified, we assume it to

be 2. Throughout this article with high probability (w.h.p.) means with probability at least 1 − n−Q
for some constant Q > 0. By adapting the constants in our algorithm, we can make Q arbitrarily

large. As mentioned earlier, we use a modified Õ notation that supresses no (1) factors.14

2.1 Matrix Multiplication and Shortest Paths

Matrix multiplication is a common tool to solve shortest path problems in the presence of small

integer weights. One of the key ingredients to that aim is the notion of distance product of two

14This notation is particularly useful for algorithms based on matrix multiplication, as the matrix multiplication exponent

ω is defined as an infimum, and the fastest n × n matrix multiplication algorithm really runs in nω+o (1) time anyway.
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matrices. The distance productA� B of an a × b matrixA by a b × c matrix B is the a × c matrixC
such that Ci j = mink=1, ...,b {Aik + Bk j }. Alon, Galil, and Margalit [1], following Yuval [48], show

the following result:

Lemma 2.1. The distance product of an a × b matrix by a b × c matrix, where each entry is in

[−M,M] ∪ {+∞}, can be computed in time Õ (min{abc,M · abc
(min{a,b,c })3−ω }). In particular, for a =

b = c = n, this runtime is Õ (min{n3,Mnω }).
Based on the above result, and exploiting a clever random sampling approach, Zwick [49] ob-

tained the currently fastest APSP algorithm for directed graphs with small integer weights (more

details about this algorithm are given later).

Theorem 2.2 [49]. Given a directed n-node graph G with integer weights in [−M,M], one can

solve APSP in G in time Õ (M
1

4−ω n2+
1

4−ω ).

This improves and generalizes earlier work by Alon et al. [1]. The runtime of Zwick’s algorithm

can be slightly improved to O (M0.681n2.532) by using fast rectangular matrix multiplication [20,

27]. Similar improvements can be achieved for most of our results, but we omit the straightforward

technical details here. We remark that in undirected graphs APSP can be solved faster—namely, in

Õ (Mnω ) time [38, 39].

Sometimes, we will need to compute only a restricted subset of shortest paths. To this aim, the

following result in Reference [47] turns out to be useful:

Lemma 2.3 [47]. Given a directed n-node graph G with integer weights in [−M,M], one can com-

pute in Õ (Mnω ) time an n × nmatrixD so the (i, j ) entry of the distance productD �D is the distance

between nodes i and j inG. Furthermore, by the properties of D, the length of a shortest s-t path con-

taining at least L nodes can be computed in Õ (n/L) extra time.

The final claim of the previous lemma is only implicit in Reference [47], but it is crucial for

the design of our improved DSOs. We remark that the above result can also be interpreted as a

Distance Oracle that, after a Õ (Mnω ) time preprocessing step, answers queries of the form (s, t ,L)
by returning the length of the shortest s-t path containing at least L nodes in Õ (n/L) time (hence,

as a special case, the shortest path length can be derived in Õ (n) time). The techniques from the

above lemma can also be used to solve the Single-Source Shortest Paths problem (SSSP), asking to

compute the distances from a given source node s to all other vertices (and an associated shortest

path tree Ts ).

Corollary 2.4 [47]. Given a directed n-node graph G with integer weights in [−M,M], one can

solve SSSP in Õ (Mnω ) time.

2.2 Hitting Hop-long Paths

In our algorithms, we sometimes use a random sampling approach to deal with long paths in a

faster way. One key ingredient in our analysis will be the following lemma, which is inspired by

Reference [44]. We remark that, while the upper bound L in the following lemma is used similarly

in the DSO by Reference [44], the lower bound L/8 is crucial to analyze our improved DSO from

Theorem 1.6.

Lemma 2.5. Given a set P of paths and two parameters 1 ≤ L ≤ n and N > 0, sample 4Nn/L nodes
B uniformly at random.15 With probability at least 1 − |P|ne−N for each P ∈ P there exists B (P ) ⊆ B
that partitions P into subpaths of at least min{|V (P ) |,L/8} and at most L nodes each.

15We can sample B with replacement.
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Proof. We show that the probability that the considered event does not hold for a fixed path

P from s to t is at most ne−N ; the full claim follows from the union bound. If P contains at most L
nodes, then the claim is trivially true by choosing B (P ) = ∅. Otherwise, let us iteratively remove

the first L/2 nodes of P until the remaining path contains less than L/2 nodes. This partitions P into

at most 2n
L
intervals containing L/2 nodes and a last interval that contains between 0 and L/2 − 1

nodes. Let us consider the central subinterval of L/4 nodes of each interval, except possibly the

last one.

Suppose that each central subinterval contains some node from B. In that case, we let B (P )
consist of one arbitrary node of B per subinterval. It is not hard to see that two consecutive nodes in

B (P ) ∪ {s, t } in the order induced by P are at hop-distance at least L/8 and atmost L. From the union

bound, the probability that there exists one subinterval not hit by B is at most 2n
L
(1 − L

4n )
4Nn
L ≤

ne−N . �

Corollary 2.6. Let N and n′ be such that N ≥ n ≥ n′ ≥ 1, and let C > 0 be any constant. Let B
be a random sample of (C + 3)n′ lnN nodes of V . With probability at least 1 − 1/NC , the nodes of B
touch all detours on at least n/n′ edges, so the nodes of B partition every detour into subpaths on at

most 2n/n′ edges each.

Proof. It is sufficient to apply Lemma 2.5 with L = 2n/n′ and observe that the number of the

considered detours is at most n2. �

2.3 Distance Sensitivity Oracles

The following lemma is at the heart of the DSO in Reference [44], and it will be crucial for us as

well.

Lemma 2.7 [44]. For an integer 1 ≤ L ≤ n and a constant C > 0, sample s = L ·C logn graphs

{G1, . . . ,Gs }, where eachGi is obtained fromG by independently removing each edge with probability

1/L. ForC large enough, the following two claims hold w.h.p.: (a) For any edge e ∈ G, there areΘ(logn)
graphs Gi not containing e . (b) For any replacement path Ps,t,e on at most L nodes, there is at least

one Gi that does not contain e but contains Ps,t,e .

3 A FASTER STSP ALGORITHM

Recall that in the S-T shortest paths problem (STSP), we are given a directed edge-weighted graph

G = (V ,E), and two subsets of nodes S,T ⊆ V . Our goal is to compute all the distances between

pairs (s, t ) ∈ S ×T .
Our STSP algorithm builds upon Zwick’s APSP algorithm [49] by combining a new idea with

an approach from Reference [47]. Let us start by sketching how Zwick’s algorithm works. For

a matrix D and V ′,V ′′ ⊆ V , let D[V ′,V ′′] denote the matrix obtained by considering only the

rows and columns indexed by V ′ and V ′′, respectively. The algorithm consists of a sequence of

iterations i = 1, . . . , 
log3/2 n�. At iteration i , one is given a distance matrix D, containing upper

bounds on the distances between nodes. Initially D contains edge weights (+∞ for missing edges).

The algorithm samples a subset Bi of bridge nodes, where each node is sampled independently

with probability pi = min{1, 9 lnn
si
}, si = (3/2)i . Then one sets,

D ← min{D, roundsiM (D[V ,Bi ]) � roundsiM (D[Bi ,V ])},

where the minimum is computed element-wise. Here roundM ′ (·) is a function that takes as input

a matrix and returns the same matrix where the entries of absolute value larger thanM ′ are set to
+∞. Zwick shows that for any i and any two nodesu,v , if there is a shortest path fromu tov on at

most (3/2)i edges, then after iteration i w.h.p. D[u,v] = dist (u,v ). By Lemma 2.1, the runtime of
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the algorithm up until some given iteration � is Õ (Mnωs3−ω
�

), and after that iteration is Õ (n3/s� ):

hence, the overall runtime is Õ (M1/(4−ω )n2+1/(4−ω ) ). At the end of the algorithm, the shortest path

distances are given by D with probability at least 1 − 1/n. It is not hard to show that, by replacing

the factor 9 in the probability pi with 3Q + 6 forQ > 1, the failure probability decreases to n−Q ; we
next consider this variant of the algorithm. By halting the algorithm after � iterations, we obtain
the following corollary that we will need later:

Corollary 3.1. The distances between all pairs of nodes that have shortest paths on at most S
nodes can be computed in time Õ (MnωS3−ω ), with failure probability polynomially small in n.

We next adapt Zwick’s algorithm to solve STSP, by making the following changes:

(1) Starting fromB0 = V , we letBi be a random subset ofBi−1 so |Bi | = pi · |V |, whereas before
pi = min{1, (9 lnn)/si }.

(2) We update only a portion of the matrix D at each iteration according to the formula

D[S ∪ Bi ,T ∪ Bi ]← min{D[S ∪ Bi ,T ∪ Bi ],
roundsiM (D[S ∪ Bi ,Bi ]) � roundsiM (D[Bi ,T ∪ Bi ])}.

At the end of the process the submatrix D[S,T ] contains the desired distances. The first change

introduces a dependency between the sets Bi at different iterations, which is crucial for our pur-

poses. This type of dependency was also used by Yuster and Zwick [47] in the construction of their

distance oracle. The second step allows us to save time while computing distances for the relevant

pairs of nodes as in Zwick’s original algorithm. This step is where we improve on the runtime for

STSP obtained by applying the distance oracle of Reference [47] directly.

Reminder of Theorem 1.4. There is a randomized algorithm that solves STSP in n-node directed

graphs with integer weights in [−M,M] in time Õ (Mnω + |S | · |T | · (Mn)
1

4−ω ), with failure probability
polynomially small in n.

Proof. The correctness analysis follows along the same line as in References [49] and [47].

Consider next the runtime. Let us assume σ := |S | ≤ |T | =: τ , the other case being symmetric. We

also letγ ≤ σ be a proper threshold to be fixed later, and βi := |Bi |. At a given iteration i , we need to
compute the distance product of a (σ + βi ) × βi matrix by a βi × (τ + βi )matrix with entries (other

than +∞) of absolute value at most Õ (Mn/βi ): this costs the minimum of Õ ((σ + βi )βi (τ + βi ))

and Õ ( Mn
β 3−ω
i

(σ + βi ) (τ + βi )) by Lemma 2.1. For βi ≥ σ , this is at most Õ ( Mn2

β 2−ω
i

) ≤ Õ (Mnω ). For

σ > βi ≥ γ , this is at most Õ ( Mn
β 3−ω
i

σ τ ) ≤ Õ ( Mn
γ 3−ω σ τ ). In the remaining case γ > βi the runtime is

Õ (σ τ βi ) ≤ Õ (σ τ γ ). Choosing γ = (Mn)
1

4−ω gives the claimed runtime. �

We will need the following corollary, which is similar in spirit to Corollary 3.1:

Corollary 3.2. Given an n-node directed graph G with integer edge weights in [−M,M], an in-

teger 1 ≤ Z ≤ n − 1, and a subsetW of q nodes with q = Õ ( n
Z
). In time Õ (Mnω ) one can compute

upper bounds on the pairwise distances among nodes inW so, with failure probability polynomially

small in n, the distance is computed correctly whenever there exists a shortest path of hop-length at

most Z .

Proof. It is sufficient to truncate the execution of the algorithm from Theorem 1.4 as soon as

si ≥ Z . Modulo poly-logarithmic factors, the running time is


log3/2 Z �)∑
i=1

Msi

(
n

si

)ω
= Mnω


log3/2 Z �)∑
i=1

(
1

si

)ω−1
= O (Mnω ). �
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Fig. 3. Algorithm rp for RP. The input to the problem is (G, s, t ). Here L, P , s , t , and distP (·, ·) are considered
as global variables used by Procedure recRP.

4 REPLACEMENT PATHS

In this section, we present our recursive RP algorithm rp running in time Õ (Mnω ). The main

algorithm is described in Figure 3. In the pseudocode, we assume that each variable corresponding

to a graph also carries the associated edge weights.

The algorithm initially (lines 1–2) computes the shortest s-t path Ps,t = P = (s = v1,v2, . . . ,vl =
t ), as well as all the distances distP (vi ,vj ) between pairs of nodes along P with i < j. Then (lines

3–4), it fills in a list L of triples of type (vi ,vj ,d ), with i < j, where d is the length of some s-t
path avoiding all edges along P between vi and vj . Finally (lines 6–15), the list L is processed as

described in Section 1.2.1 to obtain all the replacement path lengths.

We next focus on the recursive procedure recRP, which is the core of our algorithm. The proce-

dure is described in Figure 4. Let Z be a sub-polynomial function of n to be fixed later. The input to

the procedure is a pair (G̃, P̃ ). Here G̃ is an edge-weighted multi-digraph with ñ nodes and largest

absolute weight M̃ containing nodes s and t . Furthermore, P̃ is a path in G̃ from s̃ to t̃ that is also a
subpath of P . Initially G̃ = G and P̃ = P . As it will be clearer later, by construction there are at most

O (logZ n) parallel edges between each pair of nodes in G̃. As standard, to compute distances in G̃
or in its subgraphs, it is sufficient to keep a minimum length edge for each set of parallel (equally

directed) edges. This does not affect the asymptotic runtime. We assume that parallel edges16 are

labeled, so we are able to identify edges corresponding to the original path P .
The goal of the procedure is to compute all the lengths of replacement paths for edges in E (P̃ ),

and add a corresponding entry to L. Recall thatW (P̃ ) := V (P̃ ) \ {s̃, t̃ }. We can classify the detours

of such replacement paths in four types according to their starting node ṽ and ending node ũ:

(1) ṽ, ũ �W (P̃ );
(2) ṽ �W (P̃ ) and ũ ∈W (P̃ );
(3) ṽ ∈W (P̃ ) and ũ �W (P̃ );
(4) ṽ, ũ ∈W (P̃ ).

The replacement paths of the first three types are handled in lines 1–9. The procedure initially

computes the graph G̃P̃ as described in Section 1.2.1. Recall that in this graph, we remove the edges

16It is possible to avoid parallel edges, but the algorithm and analysis become more technical.
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Fig. 4. Procedure recRP. The input is a pair (G̃, P̃ ). By ñ and M̃ , we denote the number of nodes and the largest

absolute weight in G̃, respectively. The starting and ending nodes of P̃ are denoted by s̃ and t̃ , respectively.
Here Z is a sub-polynomial function of n, while L, P , s , t , and distP (·, ·) are considered as global variables.

of P̃ and split all nodes vi ∈W (P̃ ) into vini (with no outgoing edges) and vouti (with no incoming

edges). The shortest s-t path in G̃P̃ gives the best replacement path of Type (1). The replacement

paths of Type (2) are handled in lines 4–6. Any such path corresponds to a shortest path from s to
some vini , vi ∈W (P̃ ), in G̃P̃ plus the portion of P from vi to t . The replacement paths of Type (3)

are handled symmetrically in lines 7–9. In each case, we add a proper triple (ṽ, ũ,d ) to L, so the

corresponding replacement path lengths are computed correctly in lines 5–15 of rp.
It remains to consider replacement paths of Type (4), which are handled recursively. The base of

the recursion (lines 10–15) is when ñ ≤ Z . In this case, we use a brute-force approach: We simply

compute the shortest paths between all pair of nodes inW (P̃ ) in the graph G̃ − E (P̃ ), and from

that we derive the corresponding entries of L.
The recursive case (lines 16–27)works as follows: First, we partition P̃ intoZ subpaths P1, . . . , PZ

of roughly the same length (i.e., of length �|E (P̃ ) |/Z � or 
|E (P̃ ) |/Z �). This is similar to the bucketing

algorithm described in Section 1.2.1; however, hereZ is a sub-polynomial (rather than polynomial)
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function of n. For each subpath Pi , we perform the following steps: First, we sample a set Bi of
Θ( ñ

Z
· logn) nodes uniformly at random as in Corollary 2.6 (where N , n, and n′ are replaced by n,

ñ, and 2ñ/Z , respectively). We construct a complete digraph Gi on nodes Vi := V (Pi ) ∪ Bi ∪ {s, t }.
Next, we compute the distances in G̃ − E (Pi ) between pairs of nodes in Vi . We label each edge of

Gi with the corresponding distance if its absolute value is at most ZM̃ , and otherwise, we label it

with +∞. At this point, we add back the edges of E (Pi ). Finally, we apply the procedure recursively
to the pair (Gi , Pi ).

We first consider the runtime of rp.

Lemma 4.1. Procedure rp runs in Õ (Mnω ) time.

Proof. Line 1 can be executed in time Õ (Mnω ) using Corollary 2.4. Line 2 can be easily imple-

mented in O (n2) time.

We next consider howmany triples are ever added by the algorithm to L. We will show that that

number is O (n2), and hence lines 7–15 of Algorithm rp can be executed in Õ (n2) time.

The depth of the recursion is O (logZ n) ≤ O (logn), and the number of generated subproblems

in recursion level p is at most Zp . Line 3 of recRP adds at most one entry to L for each subproblem.

Observe that the number of such subproblems is at mostO (n). Indeed, consider the recursion tree

(that has one node per subproblem). The leaves of such tree induce a partition of the edges of

the input path, hence there are at most n many such leaves. The internal nodes of the recursion

tree have degree Z ≥ 2, hence their number is upper bounded by the number of leaves. Each node

vini is considered at most O (logn) times in line 4, hence line 5 adds at most O (n logn) entries to
L altogether. The same holds for line 8. The total number of pairs (vi ,vj ) considered in line 13

in recursion level p is O (Zp (n/Zp )2) = O (n2/Zp ), and summing over all levels, we get that O (n2)
triples are added to L by line 13. Finally, each edge vjvj+1 is considered at most O (logn) times in

line 23, hence the total number of entries added to L in line 24 is O (n logn). The claim follows.

We next analyze the runtime of the calls to recRP. Consider some level p = 0, . . . ,O (logZ n)
of the recursion tree. At this level the algorithm generates at most Zp instances. Consider one

such instance (G̃, P̃ ). Observe that G̃ and P̃ contain ñ = Θ(n/Zp · loдpn) and Θ(n/Zp ) nodes, re-
spectively. Furthermore, the largest absolute weight in G̃ is M̃ ≤ MZp . Intuitively, the increase of

the value of M̃ in the subproblems is compensated by a comparable decrease of the number ñ of

considered nodes.

The total runtime of lines 1–9 is dominated by the execution of line 2, which can be performed in

time Õ (M̃ñω )) by Corollary 2.4. Consider next lines 17–27 (excluding the time spent on recursive

calls). The algorithm generates Z subproblems. The time spent on each subproblem (lines 19–27)

is dominated by the distances computation of line 20, which can be performed in time Õ (M̃ñω ) by
Corollary 3.2.

Altogether each instance of level p requires time Õ (ZM̃ñω ) = Õ (Zp+1M (
n logp n
Zp )ω ). Since there

are Zp such instances, the total runtime on level p is

Õ

(
ZMnω

logpω n

Zp (ω−2)

)
.

We can guarantee that lines 1–9 plus 17–27 at level p in the recursion (hence, altogether) take

time Õ (Mnω ) by imposing the following conditions on Z : forω > 2, set Z = 2 logω/(ω−2) n, and for

ω = 2, choose Z so Z = no (1) and (logn)logZ n = no (1) ; e.g., Z = 2C
√
logn works.

It remains to consider the total time spent on base cases (lines 10–15). There are O (n/Z ) base
case instances, each one involving at most Z nodes. We can compute all-pairs distances trivially in
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O (Z 3) time in each such instance. Hence, the total runtime of solving these instances isO (nZ 2) =
Õ (n). The claim follows. �

We next discuss the correctness of rp.

Lemma 4.2. For every pair (G̃, P̃ ) on which we execute recRP, the distances between nodes inV (G̃ )
are the same in G − E (P̃ ) and in G̃ − E (P̃ ) w.h.p.
Proof. Let us assume that the high probability events of Corollaries 2.6 and 3.2 hold whenever

we execute lines 18 and 20. The claim on the probability then follows by the union bound for a

sufficiently large constant C , observing that the total number of recursive calls is polynomially

bounded.

We prove the claim by induction. The base case is when (G̃, P̃ ) = (G, P ), where the claim trivially

holds. Next assume that the claim holds for a given pair (G̃, P̃ ). It is sufficient to show that it then

holds also for any associated subproblem (Gi , Pi ). By assumption any shortest path in G̃ − E (Pi )
between nodes in {s, t } ∪V (Pi ) is partitioned by Bi into subpaths of at most Z edges (hence, of

absolute value at most ZM̃). Therefore, Gi − E (Pi ) preserves the distances of G̃ − E (Pi ) between
nodes Vi = V (Gi ). Thus, by inductive hypothesis, the same holds w.r.t. toG − E (Pi ). �

Lemma 4.3. Procedure rp solves RP with polynomially small failure probability in n.

Proof. Let us assume that the high-probability event of Lemma 4.2 holds. Consider a given

edge e ∈ E (P ), and the associated replacement path of length d . Let the corresponding detour start
at node ṽ and end at node ũ. By the previous discussion it is sufficient to show that a triple (ṽ, ũ,d )
is added to L at some point. Let recRP(G̃, P̃ ) be the lowest level call of recRP where both ṽ and ũ
belong to P̃ . If the considered call is a base case, then a proper triple is added to L in lines 10–15.

Otherwise, the considered detour must correspond to one of the cases (1), (2), and (3) described

before, and a corresponding triple is added to L in lines 1–9. �

We are now ready to prove Theorem 1.1.

Reminder of Theorem 1.1. There is a randomized algorithm that solves RP in n-node directed
graphs with integer weights in [−M,M] in Õ (Mnω ) time, with failure probability polynomially small

in n.

Proof. Consider algorithm rp. Its runtime is Õ (Mnω ) by Lemma 4.1. This algorithm is correct

with high probability by Lemma 4.3. The claim follows. �

5 SINGLE-SOURCE REPLACEMENT PATHS

We show how to solve SSRP, by reducing it to a small (subpolynomial) set of subpath problems

and smaller instances (Section 5.1), and by solving each subpath problem efficiently (Section 5.2).

Recall that in SSRP, we are given as input a graph G with edge weightsw (·) and a source node

s . For any t ∈ V (G ) and for any edge e along the shortest path Ps,t from s to t , we wish to compute

the length Ds,t,e of the replacement path for the triple (s, t , e ).
The shortest path treeTs and the corresponding distancesdistG (s, ·) can be computed inO (Mnω )

time by Corollary 2.4. Ifu is a descendant ofv inTs , then one can derive in constant time the values

distG (v,u) = distG (s,u) − distG (s,v ). Hence, we will assume that the latter quantities are implic-

itly given. Our estimates D̃s,t,e of Ds,t,e are initialized to +∞ and considered as global variables as

well.

By Z , we will denote a suitably chosen subpolynomial function of n, which is a global vari-

able. Similarly to the RP case, for ω > 2, one can set Z = poly log(n) and otherwise (say) Z =

2
√
logn log logn .
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Fig. 5. Recursive algorithm ssrp for SSRP. The input is a pair (G̃, T̃ ). Here ñ and M̃ are the number of nodes

and largest absolute weight in G̃, respectively. As usual, the weight function of G̃ is considered implicit. Tree

T̃ , rooted at t̃ , is a subtree of Ts . Here Z is a subpolynomial function of the original number of nodes n, and
C > 0 is a sufficiently large constant.

5.1 From SSRP to Subpath Problems

We next describe a recursive procedure ssrp to solve SSRP. This procedure takes as input a pair

(G̃, T̃ ). Here G̃ is an ñ-node multi-digraph G̃ with edge weights w̃ (·) of absolute value at most M̃ ,

containing the source node s of the starting input instance.Wewill guarantee that there are at most

O (logZ n) parallel edges at any time, hence the cost of handling such parallel edges is negligible

analogously to the RP case. Furthermore, T̃ is a subtree of G̃ and ofTs , rooted at the node t̃ in T̃ at

minimum hop-distance from s in Ts . By P̃ , we will denote the shortest path from s to t̃ .
The goal of the procedure is to compute Ds,t,e for all (t , e ) ∈ V (T̃ ) × E (T̃ ).17 It is then sufficient

to call this procedure on input (G,Ts ).
We remark that by n, we denote the number of nodes in the input graph G: We will guarantee

that the failure probability of ssrp is polynomially small in n (and hence the overall algorithm fails

with polynomially small probability by the union bound).

We consider Algorithm ssrp in Figure 5. Steps 1–4 address the base case, where the problem is

solved with the trivial cubic algorithm for small enough ñ.
Otherwise, in Step 5, we partition T̃ into Z ′ = Θ(Z ) subtrees with roughly the same number of

nodes Θ( ñ
Z
) using balanced tree separators. In more detail, recall that for each tree T of n nodes

there exists a nodev (balanced tree separator) such thatT can be split into two edge-disjoint trees

T ′ and T ′′ sharing node v only, and each one containing at least n/3 + 1 nodes. By applying this

17Whenever e � E (Pst ), we implicitly assume that the pair (t, e ) is neglected. This is to slightly simplify the notation.
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procedure recursively it is easy to obtain Z ′ ∈ [Z , 3Z ] trees each one containing between ñ
3Z and

ñ
Z
nodes. Each splitting step, and hence the overall procedure, can be performed in Õ (ñ) time.

Then for each tree Ti the algorithm works as follows: Let Pi be the shortest path in G̃ between

s and the root ti of Ti . For each t ∈ V (Ti ), the relevant pairs (t , e ) are of the following two types:

(a) e ∈ E (Pi ) or (b) e ∈ E (Ti ). We define the subproblem of computing Ds,t,e for the pairs (t , e ) of
the first and second type a subpath problem and a subtree problem, respectively.

The subpath problem associated withTi is solved by calling in Step 7 procedure subpath, which
is described in next subsection.

The subtree problem associated with Ti is instead addressed recursively in Steps 8–17. In more

detail, we start by building a compressed multi-digraph Gi analogously to the RP case in Steps

8–16. Each such graph contains Õ ( ñ
Z
) nodes and has edge weights of absolute value at most ZM̃ .

By a similar argument as in the RP case, distances between nodes ofGi are the same inGi − E (Ti )
and in G̃ − E (Ti ) (hence, in G − E (Ti ) by induction) w.h.p. Then, in Step 17, we call recursively

ssrp on (Gi ,Ti ).
Given the above algorithm, we can prove the following lemma:

Lemma 5.1. Given an algorithm that solves a subpath problem in time Õ (M̃α ñβ ) with failure prob-
ability at most n−Q , for constantsQ > 0 and β ≥ α + 1 ≥ 1, there is an algorithm that solves SSRP in

time Õ (Mnω +Mαnβ ) with failure probability at most Õ (n−Q+1).

Proof. By the union bound, the failure probability of the algorithm can be upper-bounded by

summing the failure probabilities of the Õ (n) subpath problems and the Õ (n) compression steps.

Analogously to the RP case, the compression step in each subtree problem preserves the correct

replacement path distances with a failure probability that can be made as small as n−Q by choosing

properly the constants in the sampling step and in the computation of shortest paths. The claim

follows.

Now consider the runtime. In each recursive call involving ñ nodes and absolute weights at most

M̃ , we partition the tree into at most 3Z subtrees containing at most ñ/Z nodes each, and then we

perform a compression step that increases the number of nodes to at most 2Cñ logn/Z and the

absolute weights to at most M̃Z . Thus, at level i ≥ 0 of the recursion tree, the algorithm executes

at most (3Z )i+1 compression steps and subpath procedures on instances on at mostn(2C logn)i/Z i

nodes and with weights of absolute value at most MZ i . The number of recursive levels is at most

logZ /(2C logn) n. The (leaf) instances on at most Z nodes are solved using the cubic time algorithm

in overall time O (nZ 3) = Õ (n). We analyze the rest of the runtime.

Consider first the compression steps. Each compression step can be performed in time M̃ñωд(n)
for some subpolynomial function д(·). Hence, all the compression steps generated by SSRP in-

stances at level i in the recursion tree can be performed in time

(3Z )i+1 · (MZ i ) �
�
n

(
2C logn

Z

) i
�
�

ω

д(n)
ω≥2
≤ Mnω3Z д(n) · (6C logn)i ω .

Summing over all the levels i of the recursion tree, the runtime of the compression steps is

Mnω3Z д(n)

logZ /(2C logn ) n∑
i=0

(6C logn)iω

≤ Mnω3Z д(n) logn · 2ω log(6C logn)
logn

logZ−log(2C logn )

Z=2
√
logn log logn

≤ Mnωд(n) · 2O (
√
logn log logn) .
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Fig. 6. Procedure subpath to solve a subpath problem (G̃, T̃ ). Here G̃ has ñ nodes and largest absolute weight
M̃ . By P̃ = (v1,v2, . . . ,vh ), we denote the shortest path in G̃ from s to the root t̃ of T̃ , and by Vx the last

x nodes of that path. Here L is a proper integer parameter. In the case of arbitrary weights Steps 3–9 are

replaced by D̃detour
v,t ← dist

G̃−E (P̃ ) (v, t ) for any (v, t ) ∈ V (P̃ ) ×V (T̃ ), where such distances are computed

with the algorithm from Theorem 2.2.

In the first inequality above, we simply upper bounded the sum with 1 + logZ /(2C logn) n ≤ logn
times the largest term in the sum, which is achieved for the largest value of i .
Similarly, the subpath problems generated by SSRP instances at level i ≥ 0 in the recursion tree

take time at most

(3Z )i+1 · (MZ i )α �
�
n

(
2C logn

Z

) i
�
�

β

д(n)
β ≥α+1
≤ Mαnβ3Z д(n) · (6C logn)i β ,

and hence their total execution time is at most

Mαnβ3Z д(n) logn · 2β log(6C logn)
logn

logZ−log(2C logn ) ≤ Mαnβд(n) · 2O (
√
logn log logn) .

The claim on the runtime follows. �

5.2 Solving Subpath Problems

Consider a subpath problem (G̃, T̃ ), where as usual G̃ has ñ nodes and largest absolute weight M̃ . By

P̃ , we denote the shortest path in G̃ between s and the root t̃ of T̃ . Recall that our goal is to compute

Ds,t,e for all (t , e ) ∈ V (T̃ ) × E (P̃ ). We will show how to do that in time Õ (M̃ñω ). W.l.o.g., we can

assume that M̃ ≤ ñ3−ω , since, otherwise, we can solve trivially the problem in Õ (ñ3) ⊆ Õ (M̃ñω )
time.

We use procedure subpath described in Figure 6. As mentioned in the introduction, we dis-

tinguish between two types of replacement paths Ps,t,e for the considered pairs (t , e ), e = uv . A

jumping path Ps,t,e leaves P̃ at some node (between s and u) and then meets P̃ again at some other

node (betweenv and t̃ ). A departing path Ps,t,e leaves P̃ at some node (between s and u) and never

meets P̃ again.

Jumping paths are addressed in Steps 1–2 via a simple reduction to RP; indeed, in this case,

the considered replacement path for the triple (s, t , e ) is a replacement path for the triple (s, t̃ , e )
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followed by a shortest path from t̃ to t . Here, we fix the parameters in the algorithm (without

substantially affecting the runtime), so the failure probability is polynomially small in n (rather

than in ñ). Alternatively, it is sufficient to repeat Steps 1–2 for Θ(logn/ log ñ) many times.

It remains to consider the departing paths. Consider first the case of arbitrary weights. We start

by observing that it is sufficient to compute all the distances distG′ (v, t ) from nodesv in P̃ to nodes

t in T̃ in the graph G ′ := G̃ − E (P̃ ). Let s = v1,v2 . . .vh = t̃ be the sequence of nodes in P̃ . For e =
vivi+1 and any t ∈ V (T̃ ), the shortest departing path for (s, t , e ) has length minj≤i {distG (s,vj ) +
distG′ (vj , t )}. For a fixed t , we can compute these quantities for all e ∈ P̃ via a single scan of the

nodes of P̃ fromv1 tovh (updating the corresponding minimum each time). This takesO (n2) time,

and is performed in Steps 10–13. For the computation of the distances distG′ (v, t ) one can directly

apply Zwick’s APSP algorithm to graph G ′.

Lemma 5.2. There is an algorithm that solves a given subpath problem on an ñ-node directed graph

with integer weights in [−M̃, M̃] in time Õ (M̃
1

4−ω ñ2+
1

4−ω ), with failure probability polynomially small

in n.

The part of Theorem 1.3 relative to negative weights follows from Lemmas 5.1 and 5.2.

The rest of this section is devoted to the computation of departing paths in the case of positive

weights (Steps 3–9). Let Vx be the final x nodes of P̃ . We first consider the detours (of departing

paths), which contain at most L nodes, for a proper parameter L. As we already mentioned in the

introduction, such detours must start at some node inVM̃L . Indeed, the length of these detours is at

most M̃ (L − 1), and this is also an upper bound on the length of the original shortest paths among

the same endpoints; since weights are strictly positive integers, the latter paths cannot contain

more than M̃ (L − 1) + 1 ≤ M̃L nodes. Notice that such a claim would not hold in the presence of

negative (or even zero) weights.

We use the STSP algorithm fromTheorem 1.4 to compute the distancesdistG′ (v, t ) fromv ∈ VM̃L

to all t ∈ V (T̃ ) in G ′. For the remaining detours, let us define O (log ñ) intervals [Xi , 2Xi ) with
Xi = 2iL and 0 ≤ i ≤ 
log2 ñ

L
�. For each i , we search for detours with a number of nodes in [Xi , 2Xi )

as follows: We sample a bridge set Bi of
ñ
Xi
·C logn nodes, so Bi hits any detour on at least Xi

nodes with polynomially (in n) small failure probability according to Corollary 2.6. We compute

the distances inG ′ from any node inV2M̃Xi
to any node in Bi and from any node in Bi to any node

inV (Ti ), using our STSP algorithm from Theorem 1.4. For each (v, t ) ∈ V2M̃Xi
×V (Ti ), the desired

distance is minb ∈Bi {distG′ (v,b) + distG′ (b, t )}.

Lemma 5.3. There is an algorithm that solves a given subpath problem on an ñ-node directed graph
with integer weights in [1, M̃] in time Õ (M̃ñω ), with failure probability polynomially small in n.

Proof. Consider the above algorithm. The algorithm fails if either the execution of the RP

algorithm fails, or at least one of the executions of the STSP algorithm fails, or for some i the
sample Bi does not hit all the detours on at least Xi nodes. The claim on the failure probability

follows.

The computation of jumping paths and of departing paths from their detours takes Õ (M̃ñω )
time. The computation of the detours themselves takes time

Õ (M̃ñω + M̃L ñ (M̃ñ)
1

4−ω ) +
∑
i

Õ

(
M̃ñω +

ñ

Xi
ñ(M̃ñ)

1
4−ω + M̃Xi

ñ

Xi
ñ

)

= Õ

(
M̃ñω +

(
M̃Lñ +

ñ2

L

)
(M̃ñ)

1
4−ω

)
.
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Choosing L =

√
ñ/M̃ gives an overall runtime of Õ (M̃ñω +

√
M̃ñ

3
2 (M̃ñ)

1
4−ω ), which is Õ (M̃ñω ) for

any value of ω ∈ [2, 3], since by assumption M̃ ≤ ñ3−ω < ñ7−2ω . �

Combining Lemmas 5.1 and 5.3, one obtains the part of Theorem 1.3 corresponding to positive

weights (note that the compression step in procedure ssrp does not create negative weights if the
input weights are positive).

6 DISTANCE SENSITIVITY ORACLES

In this section, we present our improved DSOs. We start with the DSO from Theorem 1.5. We

consider first the case of positive integer weights (Section 6.1), and later extend the result to al-

low for non-positive weights (Section 6.2). In Section 6.3, we describe the alternative DSO from

Theorem 1.6. We conclude the section with a brief discussion about the space complexity.

6.1 Positive Weights

The basic strategy is as follows: Given two integer parameters 0 ≤ S ≤ L ≤ n, we distinguish three
types of replacement paths: hop-long and hop-short replacement paths contain at least L and atmost

S nodes, respectively; the remaining paths are hop-average. We design a distinct oracle for each

kind of path. In particular, the oracle for hop-long paths will crucially exploit our SSRP algorithm.

The preprocessing and query time of the overall oracle is given by the sum of the preprocessing

and query times of these three oracles.

(1) Hop-short paths. We sample S ·C logn random graphs G1, . . . ,GS ·C logn as in Lemma 2.7.

We compute all-pairs shortest paths on at most S nodes in each Gi as in Corollary 3.1, in time

Õ (S3−ωMnω ) per graph, and hence Õ (S4−ωMnω ) altogether. For a query (s, t , e ), it is sufficient to

return the shortest distance from s to t in the graphs Gi not containing e . By Lemma 2.7 w.h.p.

the number of considered graphs (and hence the query time) is O (logn), and at least one of them

contains Ps,t,e if it is hop-short.
(2)Hop-average paths.We sample L ·C logn randomgraphsG1, . . . ,GL ·C logn as in Lemma 2.7.

We apply the preprocessing step of the distance oracle from Lemma 2.3 to each sampled graph.

This takes Õ (LMnω ) preprocessing time and allows us to answer a query (s, t , e ), by considering

all the Θ(logn) graphs Gi not containing e and querying the corresponding distance oracles in

Õ (n/S ) time. By Lemmas 2.7 and 2.3, w.h.p. the answer is correct if Ps,t,e is hop-average.
(3) Hop-long paths. We sample n

L
·C logn nodes B as in Lemma 2.5 so w.h.p. B hits all the

replacement paths on at least L nodes. We solve SSRP from any source b ∈ B both in the original

graph and in the graph where we reverse all the edges. The preprocessing time is Õ ( n
L
Mnω ). To

answer a query (s, t , e ), it is sufficient to consider the concatenation of replacement paths Ps,b,e
and Pb,t,e for any b ∈ B; this takes Õ (n/L) time and returns the correct answer w.h.p. if Ps,t,e is

hop-long.

Altogether, we obtain an Õ (Mnω (S4−ω + L + n
L
)) preprocessing time and an Õ ( n

S
) query time.

Setting L = Θ(max{
√
n, S }) concludes the proof of Theorem 1.5 for positive weights.

6.2 Negative Weights

We use the same approach as above for hop-short and hop-average paths (which also works in the

presence of non-positive weights). For hop-long paths, we exploit a variant of our SSRP algorithm,

where we are only interested in computing correctly the replacement paths on at most X nodes.

Observe that, in each subpath problem (P ′,T ′), it is sufficient to consider the detours of departing

paths that start in the first X nodes; otherwise, the departing replacement path would be too long.

Using our STSP algorithm, the runtime reduces to Õ (Mnω + XM
1

4−ω n1+
1

4−ω ). Note that we can use
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the same parameter X also in the recursive calls, since the compression step can only reduce the

number of nodes in each path. By the same argument as in Lemma 5.1, this also upper-bounds the

overall runtime of the algorithm.

Lemma 6.1. For any 0 ≤ X ≤ n, there is an algorithm of runtime Õ (Mnω + XM
1

4−ω n1+
1

4−ω ) for
SSRP that computes correctly all the replacement path distances of paths with at most X nodes with

failure probability polynomially small in n.

We exploit the modified SSRP algorithm as follows: We defineO (logn) intervals [Xi , 2Xi ) with
L ≤ Xi := 2iL < 2n. To compute the replacement paths with a number of nodes in [Xi , 2Xi ), we
sample n

Xi
·C logn nodes Bi as in Lemma 2.5 so w.h.p. Bi hits all the replacement paths on at

least Xi nodes. We solve SSRP from each source b ∈ Bi in the original graph and in the graph with

reversed edge directions, using the modified SSRP algorithm with parameterX = 2Xi . The prepro-

cessing time is Õ ( n
Xi
Mnω + n

Xi
Xi M

1
4−ω n1+

1
4−ω ) ≤ Õ ( n

L
Mnω +M

1
4−ω n2+

1
4−ω ). For a query (s, t , e ), it

is sufficient to consider all the triples (s,b, t ) with b ∈ Bi , which takes Õ ( n
Xi
) ≤ Õ ( n

L
) time. Since

LMnω + n
L
Mnω ≥ Mnω+

1
2 ≥ M

1
4−ω n2+

1
4−ω for any ω ∈ [2, 3], the extra term M

1
4−ω n2+

1
4−ω is irrele-

vant in the runtime of the preprocessing stage. Hence, we obtain (modulo polylogarithmic factors)

the same preprocessing and query time as in the case of positive weights. This concludes the proof

of Theorem 1.5.

6.3 An Alternative Oracle

We next describe the DSO from Theorem 1.6. We again distinguish between hop-short, hop-

average, and hop-long paths. We handle the first two types of paths as we did before. This takes

Õ (Mnω (S4−ω + L)) preprocessing time and Õ ( n
S
) query time.

Consider next hop-long paths. We exploit the Õ (L) random graphsGi that we used in the com-

putation of hop-average paths. Recall that we precomputed the distance oracle from Lemma 2.3

for each such graph. We sample n
L
·C logn nodes B as in Lemma 2.5, and we compute all the dis-

tances of absolute value at most ML between pairs of nodes in B in each Gi . This can be done

in Õ (Mnω ) time per graph as observed in Reference [44]. We also construct an auxiliary graph

with a dummy node r and edges of cost zero from r to any other node. In this graph, we compute

distances d (v ) := dist (r ,v ) from r in time Õ (Mnω ).
Given a query (s, t , e ), we construct an auxiliary graph on node set B ∪ {s, t }. For any pairb1,b2 ∈

B, we set the weight w ′(b1b2) of edge b1b2 to the minimum (precomputed) distance from b1 to b2
in any graph Gi not containing e . Since there are O (logn) such graphs, this step costs Õ ( |B |2). At
this point, we set the distances from s to B and from B to t . It is here that our algorithm (for hop-

long paths) deviates from Reference [44]. In Reference [44] the authors query the distance oracle

for any pair (s,b) and (b, t ) with b ∈ B. Since each query takes Õ (n) time, altogether this costs

Õ (n |B |) time. We rather observe that, due to the lower bound part of Lemma 2.5, it is sufficient to

consider only the shortest paths from s and to t that contain Ω(L) nodes. This costs only Õ (n/L)
by the final claim of Lemma 2.3. Therefore, we are able to construct the auxiliary graph in Õ (n/L ·
|B | + |B |2) time only. The rest of the query proceeds as in Reference [44]: We add d (u) − d (v ) to
each auxiliary weight w ′(uv ), which makes edge weights non-negative. Then, we use Dijkstra’s

algorithm to compute the shortest s-t path in the auxiliary graph in time Õ ( |B |2). Summarizing,

the preprocessing time for hop-long paths is Õ (LMnω ), and the query time is Õ (n2/L2).
The overall failure probability is polynomially small in n by the usual arguments. Choosing

S = L
1

4−ω completes the proof of Theorem 1.6.
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6.4 Space Complexity

Consider first the DSO from Theorem 1.6. Note that for hop-average replacement paths it is

sufficient to store, for each relevant distance oracle, only the portion corresponding to paths

containing at least S nodes: this takes O (n2/S ) space only. Altogether, the space complexity is

Õ (n2S + n2L/S + (n/L)2L) = Õ (n2L
1

4−ω ). For the DSO from Theorem 1.5, we need to add to the

above space complexity a term Õ (n2 |B |) = Õ (n3/L). For a comparison, the DSO in Reference [44]

has space complexity Õ (n2L); this is always worse than Õ (n2L
1

4−ω ) and worse than Õ (n3/L) for L
large enough.
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