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Foliated fracton order in the Majorana checkerboard model
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We establish the presence of foliated fracton order in the Majorana checkerboard model. In particular, we
describe an entanglement renormalization group transformation which utilizes toric code layers as resources of
entanglement and furthermore discuss entanglement signatures and fractional excitations of the model. In fact,
we give an exact local unitary equivalence between the Majorana checkerboard model and the semionic X-cube
model augmented with decoupled fermionic modes. This mapping demonstrates that the model lies within the

X-cube foliated fracton phase.
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I. INTRODUCTION

Gapped quantum systems, such as discrete gauge theories
and fractional quantum Hall states, can reside in nontrivial
phases in the absence of symmetry if they are ‘topologi-
cal’ [1]. Such systems have low-energy effective descriptions
given by topological quantum field theory (TQFT) [2-4].
However, a class of recently discovered three-dimensional
gapped lattice models known as fracton models belong to non-
trivial phases but defy such a characterization [5-23]. Their
most salient, unifying properties are the presence of pointlike
fractional excitations with fundamentally constrained mobil-
ity and a degenerate ground space which grows exponentially
with linear system size. These features preclude a TQFT
description.

A particularly exotic class of fracton models are the fractal
spin liquids, in which the operators that transport pointlike
fractional excitations are constrained to have certain fractal
geometries [7-9]. This class includes so-called Type-II mod-
els such as the Haah code [7] whose fractional excitations
are all fully immobile as individual particles. On the other
hand, so-called Type-I models may contain mobile fractional
excitations [24]. A large subclass of Type-I models exhibit
three categories of pointlike excitations: fractons, which are
fully immobile, lineons, which can move along a line, and
planons, which are mobile within a plane [6,10]. The concept
of foliated fracton order was introduced recently in an attempt
to systematize the study of these models [25-29]. This notion
builds on the observation that many of these models have a
foliated structure of long-range entanglement, in the sense
that layers of 2D topological orders can be disentangled from
the bulk via local unitary operations, i.e., under entanglement
renormalization group flow. The identification of this struc-
ture has shed light on the scaling of ground space growth,
the structure of fractional excitations in such models, and
entanglement entropic signatures discussed previously in the
literature [27,30-32]. Furthermore, a more coarse notion of
gapped phases of matter is motivated by this observation: In
particular, a foliated fracton phase is defined as an equiv-
alence class of Hamiltonians under adiabatic deformation
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augmented with the possible addition of layers of 2D topo-
logical orders.

It remains unclear to what extent this framework captures
known Type-I fracton models. Partial progress has been made
toward understanding the phase relations between these mod-
els [26,29], but the picture is far from complete. Moreover, all
examples of foliated fracton order that have been studied thus
far are in models with bosonic degrees of freedom, and it is
not yet clear whether the notion can be extended to fermionic
models.

In this paper we address these questions by demonstrat-
ing that a prototypical example, the Majorana checkerboard
model introduced in Ref. [10], exhibits foliated fracton or-
der. In fact, we find that this model is actually a fermionic
version of a previously known fractonic spin model called
the semionic X-cube model, which was originally described
via the coupled layers construction of Ref. [12]. As it has
been shown that the semionic X-cube model has the same
foliated fracton order as the X-cube model [26], the Majorana
checkerboard model thus has the same order as well.

The paper’s contents are as follows: In Sec. II, we briefly
review the Majorana checkerboard model. In Sec. III, we
describe a renormalization group (RG) transformation for
the model which utilizes layers of toric code as resources
of entanglement, hence establishing that it possesses foliated
fracton order. In Sec. IV we discuss entanglement entropic
signatures of the foliated fracton order in the model, and
in Sec. V we discuss the structure of quotient superselec-
tion sectors (QSS). In the following Sec. VI, we describe a
mapping from the Majorana checkerboard model to a spin
Hamiltonian (plus decoupled fermions), and in Sec. VII a
mapping from this stabilizer code spin Hamiltonian to the
semionic X-cube model, hence establishing its equivalence
to the X-cube model as a foliated fracton order. Finally we
conclude with a discussion in Sec. VIIIL.

II. THE MAJORANA CHECKERBOARD MODEL

The Majorana checkerboard model was first introduced in
Ref. [10] as a Majorana stabilizer code with one Majorana

©2019 American Physical Society
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FIG. 1. Bipartition of a cubic lattice into A (shaded) and B
(unshaded) checkerboard sublattices. Majorana fermions are placed
at the vertices of the lattice. The operator O, acts on cubes ¢ in the A
sublattice and is defined as the product of the eight Majoranas at the
corners of cube c.

fermion on each vertex of a cubic lattice. The elementary
cubes are bipartitioned into A-B checkerboard sublattices (as
shown in Fig. 1), and the Hamiltonian is given by

H=-Y%0. (1)

where O. =[],y is the product of the eight Majorana
operators at the corners of cube c¢. The Hamiltonian terms
mutually commute as they share either zero or two Majorana
operators, and their energies can be simultaneously mini-
mized. The model exhibits a ground state degeneracy (GSD)
on a 2L, x 2L, x 2L, cubic lattice under periodic boundary
conditions which satisfies [10]

log, GSD = 2L, + 2L, 4 2L. — 3. 2)

Note that the number of logical qubits in the ground space is
half that of the spin checkerboard model on the same lattice
[11], as per the doubling lemma of Ref. [33].

As discussed in detail in Ref. [10], the model exhibits
pointlike excitations with a dimensional hierarchy of con-
strained mobility as depicted in Fig. 2. Fractons, which
are fundamentally immobile, are created at the corners of
rectangular membrane operators. Lineons, which can move
along a line only, are created at the endpoints of rigid string
operators and can be thought of as composites of two fractons.
Finally, planons, which are free to move within a plane, can
be thought of as composites of two lineons, or as composites
of two fractons in their own right. In Sec. V, we discuss how
the notion of quotient superselection sectors can be used to
analyze the fractional excitations of the model.

III. ENTANGLEMENT RENORMALIZATION

Entanglement renormalization group (RG) flow is a pow-
erful tool to study the long-range entanglement structure of
gapped systems [34-37]. The essential idea is to coarse grain
the underlying lattice via local unitary transformations on
the ground space of a given model [38]. In this section, we
discuss an entanglement RG transformation for the Majorana
checkerboard model, which utilizes copies of the toric code
as 2D resource layers. The existence of this transformation
establishes the presence of foliated fracton order in the model.
It can be compared to the analogous RG procedure for the
X-cube model [25]. The transformation consists of a fermion
parity-preserving local unitary map S between the Majorana

(b) (©)

FIG. 2. Pointlike excitations in the Majorana checkerboard
model. The colored cubes correspond to stabilizer terms which are
violated by a given excitation. The operator which creates a given
excitation is denoted by the product of the red Majoranas depicted.
(a) A lineon created at the end of a rigid string operator (green). (b) A
planon created at the end of a flexible string operator. (c) A fracton
created at the corner of a rectangular membrane operator (green).

checkerboard model on a 2L, x 2L, x 2L cubic lattice (de-
scribed by Hamiltonian Hp), augmented with one copy of the
toric code (Hp), and the Majorana checkerboard model on a
2L, x 2L, x 2(L; + 1) size lattice (H;):

S(Hy + Hop)S" = H. 3)

~

Here the relation = denotes that the two Hamiltonians are
equivalent as stabilizer codes and thus have identical ground
spaces. We call the 2D topological layers the “resource lay-
ers” for the RG transformation. An equivalent transformation
applies in the x and y directions as well.

In particular, suppose the toric code layer is inserted be-
tween layers zp and zp + 1 of the original lattice. Its degrees
of freedom consist of qubits placed between the lattice sites of
these two layers, as shown in Fig. 3. Its Hamiltonian is given

as
Hp=-Y T]z->_]1*% )

PEA iep PEB iep

Here, the 2D A-B checkerboard sublattices coincide with
the 3D A-B checkerboard sublattices. The unitary S maps
the combined Majorana and spin degrees of freedom to a
pure Majorana system with two additional Majoranas on the
links between zo and zo + 1. The latter system constitutes an
enlarged 2L, x 2L, x 2(L; + 1) size cubic lattice of Majorana
fermions. The two systems have identical Hilbert spaces. To
see this, for each (x,y) coordinate, denote the Majorana at
7 =29 by Y, the Majorana at z = z; by y, and the added
Majoranas by y, and y, (as in Fig. 3). On the left hand
side of Fig. 3, the combination of yy, y;, and the spin forms
a four-dimensional Hilbert space whose operator algebra is
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FIG. 3. Degrees of freedom in (left) the original Majorana
checkerboard model (black dots represent Majorana fermions) aug-
mented with one copy of the toric code (green diamonds represent
qubits), and (right) the enlarged Majorana checkerboard model, in
which the red and blue dots represent added Majoranas along z = a
and z = b and the black dots correspond to the original Majoranas.

generated by yy, y1, X, and Z. On the right hand side of
Fig. 3, the combination of yy, ¥, ¥, and y,; also forms a four-
dimensional Hilbert space. The two sides can be mapped into
each other under the following correspondence of operators:

Z = Y0Va> 7= y. (5)

X = YaVb, Yo = YoVaVbs

This mapping preserves the commutation relations of the local
operator algebra at each (x, y) coordinate as well as the global
fermionic parity, hence it describes a parity-preserving local
unitary transformation. In fact, it is exactly the local unitary
map S that is needed to implement the RG transformation.
Figure 4 illustrates the mapping of Hamiltonian stabilizers
under this unitary. Evidently, the resultant Hamiltonian gen-
erates the same stabilizer group as the enlarged Majorana
checkerboard Hamiltonian. In other words, we find that the

FIG. 4. Mapping of Hamiltonian stabilizers under the local uni-
tary transformation S.
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FIG. 5. (Left) Solid torus and (right) wire-frame entanglement
entropy schemes.

ground space of the original model tensored with the added
toric code ground space is local unitarily equivalent to the
ground space of the enlarged Majorana checkerboard model.

IV. ENTANGLEMENT SIGNATURES

In this section we briefly discuss entanglement entropic
signatures of the foliated fracton order in the Majorana
checkerboard model. The results suggest that the model may
lie in the X-cube foliated fracton phase. Two entanglement
schemes, solid torus and wire frame, among others, have
proven useful in characterizing such orders [27,30,31]. In each
scheme the quantity to be computed is the conditional mutual
information

I(A; BIC) = Sac + Spc — Sc — Sasc (6)

where S refers to the entanglement entropy of region R. The
geometries of the A, B, and C regions for the two schemes
are depicted in Fig. 5. These schemes generalize the notion of
topological entanglement entropy in two dimensions [39,40].

A simple technique for computing the ground state en-
tanglement entropy of generic Majorana stabilizer codes is
discussed in Appendix A. Applied to the Majorana checker-
board model, one finds that /(A; B|C) = 2L + 1 for the solid
torus scheme where L is the length of the overall cubic region
measured in twice the lattice constant, and /(A; B|C) = 1 for
the wire-frame scheme. For both schemes these results hold
provided the overall cubic region is aligned with the axes of
the cubic lattice. (In fact, the entanglement entropy of the
Majorana checkerboard model for a given region is exactly
half of that for the equivalent region of the spin checkerboard
model [27].)

As discussed in Ref. [27], the solid torus scheme serves as a
diagnostic of the underlying foliation structure, and indeed the
result is consistent with the triple foliation structure composed
of 2D toric code layers identified in the RG transformation of
the section prior. On the other hand, the wire-frame scheme
is engineered such that the contributions from the foliating
layers completely cancel, resulting in a constant value which
characterizes the foliated fracton phase. In the case of the
Majorana checkerboard model, the result I(A;B|C) =1 is
consistent with our finding that the model belongs to the
X-cube foliated fracton phase, as discussed in Secs. VI and
VIL
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TABLE I. Correspondences between the quotient superselection
sectors (QSS) and interferometric operators (I0s) of the Majorana
checkerboard and X-cube models.

Majorana QSS X-cube QSS Majorana I0s X-cube 10s

1 1 1 1

R f RGBY F

BY £, BY X

GB £y GB Y

GY L, GY z
RBY Oox f RG XF
RGB O x f RY YF
RGY L x f RB ZF

V. QUOTIENT SUPERSELECTION SECTORS

In Ref. [26], the notion of quotient superselection sectors
was introduced as a way to universally characterize fractional
excitations in a given foliated fracton phase. A quotient su-
perselection sector (QSS) is defined as an equivalence class
of ordinary superselection sectors modulo the planon super-
selection sectors that come from the resource layers used in
the RG procedure. In other words, two pointlike fractional
excitations belong to the same QSS if they are related to each
other through local operations and the addition or removal
of planon excitations that are unitarily equivalent to anyons
in the resource layers. In the Majorana checkerboard model,
all planons are transformed into toric code anyons under the
inverse RG transformation of Sec. III. To see this, note that
the planon string operators are mapped into toric code string
operators under the inverse RG transformation S7.

To describe the QSS of the Majorana checkerboard model,
it is helpful to further partition the A checkerboard sublattice
into four sublattices labeled R, G, B, and Y, as in Fig. 7.
Excited states may be labeled according to which Hamiltonian
stabilizers they violate (e.g., the error syndrome). Planon
excitations violate two stabilizers corresponding to adjacent
sites of either the R, G, B, or Y sublattice. For instance, the
planon depicted in Fig. 2 violates two adjacent B sublattice
Hamiltonian terms. Thus, the addition of planons on a given
sublattice acts as a pair creation/annihilation, or hopping,
operator for excitations of the stabilizers on that sublattice. As
aresult, we find that the QSS are characterized by the parity of
the error syndrome on each sublattice and can be labeled ac-
cordingly. For instance, the lineon depicted in Fig. 2 belongs
to the RB QSS because the state violates one R stabilizer and
one B stabilizer. However, since a local fermionic excitation
corresponds to a violation of one stabilizer of each of the R,
G, B, and Y sublattices, the RGBY QSS is in fact identified
with the vacuum sector (and RB is identified with GY, and so
forth). Therefore, a complete list of the eight QSS is given in
the first column of Table I.

In fact, in terms of the mobility of the excitations and their
fusion rules, there is an exact correspondence between the
QSS of the Majorana checkerboard model and those of the
X-cube foliated fracton phase, given in the table. In particular,
the three lineon sectors of the X-cube model correspond to the
BY, GB, and GY lineon sectors of the Majorana checkerboard
model, which likewise obey a triple fusion rule. On the other

hand, the R, G (RBY), B (RGY), and Y (RGB) fracton sectors
correspond to the fractonic sectors f, f x £, f x {,, and
f x £, of the X-cube model. Of course, there is an ambiguity
as to which of the Majorana checkerboard fracton sectors is
chosen to correspond to the f sector. In our case we have cho-
sen the R sector. As we will see in the following sections, this
correspondence must exist due to the local unitary equivalence
of the model with a fermionic version of the semionic X-cube
model, which is known to lie in the X-cube foliated fracton
phase.

Reference [26] also introduced the notion of interferomet-
ric operators, which are classes of unitary operators that de-
tect the QSS content of a given region but are insensitive to the
planon content of the region. The equivalence of the foliated
fracton order in the Majorana checkerboard model with that of
the X-cube model manifests not only as a correspondence be-
tween QSS but furthermore as a correspondence between the
interferometric operators of the two models. As discussed in
Ref. [26], there are eight classes of interferometric operators
for the X-cube model, which include a wire-frame operator F'
and three cylinder membrane operators X, Y, and Z (whose
axes lie along the x, y, and z directions), and the composites
XF, YF, and ZF. Each of these classes corresponds to a
class of operators in the Majorana checkerboard model whose
regions of support have the identical geometry (wire frame or
cylinder with axis along the x, y, or z direction) and whose
interferometric statistics agree exactly with the corresponding
statistics of the X-cube model.

These interferometric operators can be written as products
of Hamiltonian terms within a large cubic region. In particular,
we will denote by RGBY the product of all R, G, B, and Y cube
terms within the large cubic region, by BY the product of all B
and Y cube terms, and so on and so forth. In this notation,
the wire-frame operator corresponds to RGBY whereas the
three cylindrical membrane operators correspond to BY, GB,
and GY respectively. These operators are illustrated in Fig. 6,
and the full correspondence is given in the table above. As an
example, the X membrane operator yields a 7 phase when
it acts on a state with quotient charge ¢,, £,, f{,, or f¢..
Correspondingly, the BY membrane operator has a 7 statistic
with the GB, GY, RGB, and RGY quotient sectors.

VI. MAPPING THE MAJORANA CHECKERBOARD
MODEL TO A SPIN MODEL

A. Mapping to a spin model

In this section, we describe a local unitary transformation
from the Majorana checkerboard model to a bosonic stabi-
lizer code augmented with decoupled fermionic degrees of
freedom. A mapping of the same spirit between the Majorana
color code on the square-octagon lattice [33,41] and the Wen
plaquette model plus decoupled fermions on a square lattice
[42] is briefly discussed in Appendix B.

For our purposes we consider a unit cell of the Majorana
checkerboard model as a 2 x 2 x 2 cell of the underlying cu-
bic lattice, which contains one cube of each of the R, G, B, and
Y sublattices and eight Majorana fermion degrees of freedom,
labeled as shown in Fig. 7(a). The spin model we consider has
one qubit degree of freedom on each edge of a cubic lattice,
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FIG. 6. Interferometric operators in the Majorana checkerboard,
which correspond to products of Majoranas over the red sites. RGBY
wireframe operator (top left), and BY, GB, and GY cylindrical
membrane operators (top right, bottom left, bottom right).

and thus has three qubits per unit cell, which are labeled
according to the direction of the edge as in Fig. 7(b). This
bosonic Hilbert space augmented with two Majorana fermions
per unit cell, labeled y,4 and yg, is identical to the Hilbert
space of the Majorana checkerboard model (each being 16-
dimensional in a unit cell). We describe a parity-preserving
local unitary transformation U from the composite spin and
Majorana Hilbert space to the pure Majorana Hilbert space
via its action on the generators of the operator algebra. In
particular, within each unit cell, U ¥ maps

XY = y1vs. 2" — vsveY1)s (7
X' — »3va, 20— »avsveys (8
X' = vev1, Z' = v3vayivs )
YA = V2V3V4, VB —> V1V5YeY1Vs- (10

or A2

/l
T
v B 68 B
A
Y

FIG. 7. (Left) Unit cell of the Majorana checkerboard model
with the Majorana degrees of freedom labeled from 1 to 8. The unit
cell contains one cube of each of the R, G, B, and Y sublattices.
(Right) Unit cell of the spin model containing a qubit degree of
freedom on the green edges labeled x, y, and z.

Note that the commutation relations of the algebra are pre-
served as well as the global fermionic parity.

The G, B, and Y sublattice stabilizer terms of the Majorana
checkerboard model are transformed under U to the bosonic
stabilizers shown in Fig. 8, whereas the R sublattice terms map
to the local parity check y4yp. Therefore U decouples the
system into a bosonic stabilizer code and a trivial Majorana
stabilizer code.

The bosonic code can be further massaged into a more
amenable form. In particular, consider the local unitary op-
erator

V= H(HCZ’ Zcz;;”) (11)

where the index i runs over all unit cells of the underlying
cubic lattice, the operator CZ* i ! is the controlled-Z operator
acting on the p-oriented edge of unit cell i and the v-oriented
edge of unit cell j, and H is a global Hadamard rotation. The
unitary V is depicted graphically in Fig. 8. Under conjuga-
tion by H(CZ)H, the two-qubit Pauli operators transform as
follows:

X1 — XI,
Zl - ZX,

IX — IX,

12
1Z - XZ. (12)

Hence, the stabilizers of the qubit stabilizer code are trans-
formed under V as shown in Fig. 8. Finally, it is convenient to
redefine the unit cell by shifting the vertical edges by one unit
to the right, thus yielding the stabilizer terms on the far right
side of Fig. 8. Let us denote the Hamiltonian corresponding to

these stabilizers as Hs%m In summary, we find that

(UV)HWUV)" = HY;, + Hy, (13)

where H is the Majorana checkerboard Hamiltonian and Hy =
—iY_ yays stabilizes the ancillary Majorana degrees of free-
dom. Here the relation = denotes that the two Hamiltonians
have identical ground spaces.

B. Analysis of the spin model

It is instructive to consider a Hamiltonian Hgy, which is
equivalent as a stabilizer code to H&in but whose form is anal-
ogous to that of the X-cube model [11]. This representation
will highlight the differences between this spin model and the
X-cube model; as we will see in the next section, the model
is in fact a stabilizer code realization of the semionic X-cube
model [12]. In particular, we define

Hpn ==Y (A} +A) +A3) = Y B (14)
v Cc
where v runs over all vertices and ¢ over all elementary cubes.

Here A¥ are vertex terms and B is a cube term, as depicted

in Fig. 9. Note that B;"" can be decomposed as a product of
Pauli Z operators followed by the product of Pauli X operators
over the 12 edges of the cube c. The vertex terms are identical
to those of the X-cube model, whereas the cube term differs
inasmuch as it contain factors of Z operators in addition to the
product of X operators. Note that Hy, indeed generates the
same stabilizer group as HS%m: The additional vertex term is

generated by the other two vertex terms and hence redundant,
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FIG. 8. Mapping from the green, blue, and yellow sublattice cube terms of the Majorana checkerboard Hamiltonian to the stabilizer terms
of the new spin Hamiltonian Hs%in' The spin stabilizers are tensor products of Pauli operators acting on the qubits on the colored edges: blue
for Pauli X, green for —iY = XZ, and orange for Z. The first step is the unitary U, whereas the second step is the unitary V. A unit cell of
V is depicted in the inset, where an arrow between two qubits represents the gate H(CZ)H. The final step of the transformation is simply a

redefinition of the unit cell.

whereas B is generated by the stabilizer in the top right
corner of Fig. 8 along with two nearby vertex terms. The
fractional excitations of the model can be organized into
fracton and lineon sectors, which, respectively, correspond to
violations of the cube and vertex terms.

The fracton sector of Hpy, is identical to the fracton sector
of the X-cube model. In particular, fractons are created at
the corners of rectangular membrane operators, which are
products of Pauli Z operators and hence commute with all
vertex terms but anticommute with the cube stabilizers at the
corners of the membrane. Moreover, fracton dipoles, which
are composites of adjacent fracton excitations, are planons, as
in the X-cube model.

Conversely, the lineon sector of the model is subtly differ-
ent from that of the X-cube model. As in the X-cube model,
the product of all cube terms B™" within a large cubic region
yields a large operator with support near the wire frame of the
large cubic region, as depicted in Fig. 10. (It is for this reason
that we have chosen the particular form of B™). In fact,
this wire-frame operator corresponds to a physical process in
which lineons travel along all of the edges of the cube, fusing
and splitting at the corners according to triple fusion rules

FIG. 9. Cube (B‘Z,Pi", left) and vertex (A, right) terms of the
stabilizer code Hamiltonian Hyy;,,. The stabilizers are tensor products
of Pauli operators acting on the qubits on the colored edges: blue for

Pauli X, green for —iY = XZ, and orange for Z.

in which a lineon in each of the x, y, and z directions come
together and annihilate into the vacuum. Thus, the rigid string
operators which transport lineons in this model have the same
form as the edges of the wireframe operator.

From this observation, it becomes clear by inspecting the
wire-frame operator in Fig. 10 that pairs of perpendicularly-
moving lineons which are involved in a triple fusion rule have
a mutual ‘semionic braiding’ statistic, in the sense that the
rigid string operators which create these lineons anticommute
with each other. This property lies in stark contrast to the
X-cube model where lineons satisfying a triple fusion rule al-
ways have trivial mutual ‘braiding.” In fact, this characteristic
is the only essential difference between the X-cube model and
the spin model here.

The structure of nonlocal excitations in Hgpy, is highly
reminiscent of the discussion of quasiparticles in the semionic
X-cube model of Ref. [12]. Indeed, it was shown that that

FIG. 10. Wire-frame operator of the spin model Hyy,, which is
equal to the product of cube terms B within the large cubic region.
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model differs fundamentally from the X-cube model only
insofar as lineons satisfying a triple fusion rule have mutually
anticommuting, as opposed to commuting, string operators.
Therefore, we see that in fact the semionic X-cube model and
our spin Hamiltonian have isomorphic structures of nonlocal
excitations in terms of fusion and braiding. It is thus natural
to expect that they are in fact equivalent models under local
unitary transformation. We will see in the next section an
explicit description of such a transformation.

VII. MAPPING THE SPIN MODEL TO THE SEMIONIC
X-CUBE MODEL

In this section, we describe a local unitary transformation
between the ground spaces of the semionic X-cube model and
the stabilizer code spin model Hp, obtained in the previous
section.

A. Semionic X-cube model

The semionic X-cube model, as first discussed in Ref. [12],
is obtained by coupling together three mutually perpendicular
interpenetrating stacks of 2D double semion models [36]
on the square-octagon lattice. For our purposes, it is more
convenient to work with a microscopic realization of the
double semion model whose degrees of freedom are qubits
on a square lattice (see Appendix C). The Hamiltonian takes

the form
Hps=—) A~ B, (15)
v p

where v runs over all vertices of the square lattice and p
runs over all plaquettes. The vertex term A, is defined as the
product of Pauli Z operators over the edges adjacent to v,
whereas the plaquette term B), is defined as follows:

~ 144,
B,=B,[] T (16)

vep

where v runs over the vertices surrounding plaquette p and
B, is a unitary operator which is depicted graphically in
Fig. 11(a). Explicitly,

B, = X, X, X3X,515,538455565755CZ14C 23 (17)

where the qubits are numbered as in Fig. 11(a). Here CZ;;
denotes the controlled-Z gate between qubits i and j and
S=i7 = diag(l, ).

To obtain the semionic X-cube model, we consider three
stacks of double semion layers in the x, y, and z directions,
whose edges coincide with the edges of a cubic lattice. The
layers in the stack are oriented as illustrated in Fig. 11(b).
Each edge thus lies at the intersection of two double semion
layers and contains two qubit degrees of freedom. The two
qubits on each edge are subsequently subjected to a ZZ cou-
pling. To be precise, we consider the following Hamiltonian:

H=Y H—1Y 7"zl (18)
L e

where L indexes the layers of all three stacks, e runs over
all edges of the cubic lattice, Hgs is the double semion
Hamiltonian in layer L, and Z}“ and Z,iz are Pauli operators

6
_2_ 5

"|J |

SI p N h|v

L4

v 7 4
8
v h

h h/\>v

(a) (b)

FIG. 11. (a) The component B, of the double semion model
plaquette term Bp. Here, dashed orange edges represent the phase
gate § = i¥, blue-orange dashed edges represent the operator X S,
and the red arcs represent the controlled-Z gate between the two
linked edges. The action of the CZ gates precedes the action of the
X S operators. (b) The orientations of the double semion layers in the
three stacks prior to coupling.

acting on the two qubits on edge e. In the strong coupling limit
J — 00, the two qubits on each edge effectively combine into
one degree of freedom. The effective Hamiltonian to leading
order in 1/J is given by

Hem ==Y (A} +A) +A3) =Y B, (19)

[

where the vertex terms A/ are the same as those of the X-cube
model and Hyy. In fact, note that this Hamiltonian is identical
to Hyyin apart from the cube term B°™. The cube term B™ can
be written as

B =TT T “;Ag. (20)

VEC U=X,),Z

Here the factors on the right-hand side project into the
subspace satisfying the vertex constraints at the corners of
the cube c. The unitary operator B¢ is depicted graphically
in Fig. 12(a). It can be decomposed as a unitary operator
diagonal in the Pauli Z basis followed by a product of the
Pauli X operators around the 12 edges of the cube c.

B. Mapping to Hy;;,
First, let us define a modified spin Hamiltonian ﬁspin which

is identical to Hypin except for the replacement By in _, pepin
where

Brr =B [T [1 %. 21)

VEC U=X,),2

Here v runs over the corners of the cube c. Since the additional
factors on the right-hand side simply project into the subspace
satisfying all of the vertex constraints around c, it is clear
that ﬁspm has the same ground space as the stabilizer code
Hg,in. We will now describe a local unitary operator W such
that W HemW = I-Tspm, demonstrating that Hgp, is in fact a
stabilizer code realization of the semionic X-cube model.
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(a) (b)

(c) (d) (e)

FIG. 12. Graphical depictions of the operators (a) B¢, (b) B’Z ,(©) B, (d) Bf,’ ,and (e) B¢. Operators B¢, Bf , and B¢ are simply tensor products
of Pauli operators acting on the qubits on the colored edges: blue for Pauli X, green for —iY = XZ, and orange for Z. Conversely, B¢ and
B? are each composed of two pieces: first, the tensor product of the controlled-Z two-qubit gates depicted as red arcs linking the two qubits.
Second, the tensor product of single-qubit gates illustrated: blue, orange, and green for the Pauli operators, dashed orange for the phase gate S,
and light green edges for the operator X SZ. The gray edges are simply placeholders.

The operator W can be decomposed as W = W,W, where
W, and W, are both unitary. Consider as a unit cell the three
edges depicted on the right-hand side of Fig. 7(b). The first
factor W, is defined as

Wi =[] (CSiy x CS;Y < CSY) (22)

i

where CSI"’,’S is a controlled-phase gate between the p-oriented
edge in unit cell i and the v-oriented edge in unit cell j, and
the index i runs over all unit cells (see Fig. 13). In matrix
form, CS = diag(1, 1, 1, i). The action of CS by conjugation
is given by

X1 — X]SzCZ]g (23)
X2 — X251CZ12 (24)

where CZ, is the controlled-Z gate acting on qubits 1 and 2,
and S (X)) and S, (X») are the S (X) operators acting on qubits
1 and 2, respectively. It hence follows that W]TBE‘WI = Bf s
where B is the operator depicted in Fig. 12(b). Furthermore,
since B? is equivalent to B¢ within the subspace satisfying the
vertex constraints around c¢ (see Fig. 14), it follows that

N 1+ Ax
wiBemw =B [ [] +T (25)
VEC U=X,y,2

Here B¢ is the operator depicted in Fig. 12(c).

SNCS
Cst v
— LY -
V o e

FIG. 13. Illustration of a unit cell of the unitary operators W,
(left) and W, (right). Here the dashed arrows represent controlled-
phase gates between the two endpoints, whereas the solid arrows
represent controlled-Z gates.

The second factor W, is defined as (see Fig. 13)

wo =TT (czi. xczlyy, x czi;

i+2,z

xCZ}Y)  (26)

L

where CZ;:’V‘ is a controlled-Z gate between the p-oriented
edge in unit cell i and the v-oriented edge in unit cell j, and the
index 7 runs over all unit cells. Since CZ acts by conjugation as

Xl — XZ,
zZl — 71,

IX — ZX,
1Z — 1Z, 27)

it follows that W, B'W; = BY, where B? is depicted

graphically in Fig. 12(d). Finally, this yields the result

wiBew =B [] HZAZL (28)

VEC U=X,),Z

due to the equivalence of B and B¢ within the projected
subspace. The unitary B¢ is depicted in Fig. 12(e). Since
B¢ = B, it thus follows that W B*™W = B"". Since W is
diagonal in the Z basis, it leaves the vertex terms unaffected,
and hence altogether W' HeemW = Hypin.

We have therefore verified the intuitive correspondence
between the Majorana checkerboard model and the semionic
X-cube model (plus decoupled fermionic modes) by explicitly
describing a local unitary transformation between the two
models. As an intermediate step we have demonstrated how
to decouple the fermionic degrees of freedom of the Majorana
checkerboard model from a hidden bosonic stabilizer code
representation of the semionic X-cube model. Indeed, in light
of the exact correspondence between the structure of nonlocal

o

< =1

112

1
1

FIG. 14. Operator relations that hold within the subspace satis-
fying the vertex constraints. These relations can be used to equate B?
and B¢ within this subspace. Here, the red arcs represent controlled-Z
gates, solid orange represents Z, dashed orange represents S, and
dotted orange represents ST = SZ.
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excitations of Hgi, and Hgen, the existence of such a local
unitary equivalence is to be expected.

In a previous work, it was demonstrated that the semionic
X-cube model lies in the same foliated fracton phase as the
X-cube model [26]. Indeed, the anticommutation of string
operators which satisfy a triple fusion rule in the semionic
X-cube model can be completely canceled by the addition
of three mutually perpendicular stacks of 2D double semion
layers. Consequently, the result of the current work implies
that the Majorana checkerboard model too lies in the X-cube
foliated fracton phase.

VIII. DISCUSSION

To summarize, we have shown in this paper that the
Majorana checkerboard model, first introduced in Ref. [10],
has foliated fracton order as defined in Refs. [25,27]. That is,
2D topological states are extracted from the bulk when renor-
malization group transformations are applied to the ground
state wave function to reduce the total system size. More-
over, we show through explicit mapping that the Majorana
checkerboard model has the same foliated fracton order as the
X-cube model. This equivalence may not be straightforward
to see given the many differences between the two models:
The Majorana checkerboard model is fermionic while the X-
cube model is bosonic; moreover, the Majorana checkerboard
model has a ‘dimensional hierarchy’ of quasiparticle fusion
while this does not seem to be the case in the X-cube model.
By calculating the universal properties of foliated fracton
phases as discussed in Refs. [26-29], we see that the two
models could actually be in the same foliated fracton phase,
and the explicit mapping discussed in Secs. VI and VII further
confirms this result.

So far we have found, using the same procedure as in this
paper, phase relations between several Type-I fracton models
including the X-cube model, the checkerboard model (as two
copies of X-cube) [29], the semionic X-cube model [26], and
the Majorana checkerboard model. These models all belong
to the same foliated fracton phase. On the other hand, other
types of foliated fracton phase can also exist. We have found
that some Type-I fracton models have foliated fracton order
distinct from that of the X-cube model. These results will be
presented in a separate work [43].
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APPENDIX A: ENTANGLEMENT ENTROPY IN
MAJORANA CODES

In this Appendix, we show that the entanglement entropy
of a subregion of a Majorana code is equal to half that of

the corresponding ‘doubled” CSS code. This self-dual CSS
code is constructed by replacing each Majorana fermion with
a qubit, and each Majorana stabilizer by one X type qubit
stabilizer and one Z type qubit stabilizer [33]. For instance,
the spin checkerboard model arises as the ‘double’ of the
Majorana checkerboard model. The method of calculation
straightforwardly generalizes that of qubit stabilizer codes
[46].

Consider a Majorana code with stabilizer group S gener-
ated by n independent commuting Majorana stabilizer opera-
tors gy, . . . , g, on a Hilbert space of 2n Majorana modes. The
stabilizers are of the form g; = [] ;. i'/?y;, where S; labels
the support of g;. To calculate the ground state entanglement
entropy of a subregion A, the ground state density matrix
p = |¥) (¥| may be written as

1
P=ﬁ28o

ges

(AD

The reduced density matrix py = Trzp can be evaluated by
taking the partial trace over individual stabilizer group ele-
ments.

If the support of g intersects with A, then g may be ex-
pressed as g = ¥ ... ¥ ® h where h has support exclusively
in A. Since the first factor has vanishing trace, it follows that
Tr;g = 0. Thus

1 1
1 =53 D Tag = 35 D8
ges 8ESA

(A2)

where n4 is the number of Majorana modes in A and S, is
the stabilizer subgroup generated by elements g with support
exclusively in A. This operator is proportional to the projector
on to the subspace stabilized by S4, which has dimension
20u=ISaD where |S,| is the number of independent generators
of S4. The entanglement entropy is therefore
EA = —TI',OA 10g PA = Np — |SA| (A3)
The corresponding ‘doubled’ CSS code has 2n qubits, n
independent X type stabilizer generators, and n independent
Z type generators. The entanglement entropy of region A

FIG. 15. (Left) Square-octagon lattice of the Majorana color
code, containing one Majorana fermion at each vertex. The four
Majoranas around each green plaquette are labeled 7, y,, ,, and ..
(Right) Square lattice of the Wen plaquette model, containing a qubit
and two ancillary Majoranas y, and yp at each vertex.
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ZYAB X
11 —

XyAVB iz

ZYB iX
@ —

X’yA’yB A

—1YAYB

FIG. 16. Transformation of plaquette stabilizers under the uni-
tary mapping defined by (B3).

is [46]

ESSS =2ny — |S$5%] = 2ny — 2|S4| = 2E,. (A4)

APPENDIX B: MAPPING THE MAJORANA COLOR CODE
TO THE TORIC CODE

In this Appendix, we briefly discuss a unitary mapping
which decouples the fermionic modes of the Majorana color
code on the square-octagon lattice [33,41,47] from its un-
derlying toric code topological order. In this model, one
Majorana fermion lies at each vertex of the square-octagon

I

;5
ﬂ XS'JCZ Ixs
) i oz
sl
s
|
(b) (c)
|
W N s CZr‘S
Sl

lattice (Fig. 15). The Hamiltonian has the form

H:—ZO,, (B1)
P

where p runs over all plaquettes, square or octagonal, and O,
takes the form

0, =[1i"*n- (B2)

vep

Since the square-octagon lattice is three colorable, the plaque-
tte terms are mutually commuting and unfrustrated.

To decouple the fermionic modes, we identify the four
Majorana Hilbert space around each green square plaquette
with the Hilbert space of one qubit and two Majoranas. Denote
the four Majoranas by 7, yx, ¥y, and y; (as shown in Fig. 16),
and the Pauli operators and two Majoranas of the latter space
by X, Z, ya, and yg. We can unitarily map between these two
Hilbert spaces according to the following transformation of
operators:

n—>va Ya—>veX, w—ovY, v.—>wlZ (B3

where Y = iXZ is the Pauli operator. This local mapping
preserves the commutation relations and the fermionic parity,
hence it represents a parity-preserving local unitary operator.

The plaquette terms of the Majorana color code Hamilto-
nian transform according to Fig. 16. In particular, the green
square terms —1nyxYy Y. are mapped into stabilizer generators
for the ancillary fermionic modes, —iy4yp, whereas the red
and blue octagon terms are mapped into stabilizer generators

()

FIG. 17. (a) The component B, of the double semion plaquette term on the honeycomb lattice. (b) A unit cell of the local unitary U which
disentangles the short edge qubits from the rest of the system. The arrow represents the CX gate with control at the tail and target at the head.
(c) The image operator B, = U'B,U (here, the W gates precede the X gates, and act on the three edges adjacent to the magenta vertices).
(d) The component B, of the plaquette term on the square lattice (here, the CZ gates precede the XS gates). (e) Mapping of vertex constraints
under conjugation by U. The top constraints become terms in the ancillary Hamiltonian Hj, whereas the bottom constraints (product of two
vertex constraints) become the vertex terms of the square lattice Hamiltonian. (f) Operator relations which hold within the subspace satisfying

the vertex (and ancillary) constraints.
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XiZi13Xits4+9Ziys of the Wen plaquette model [42] (modulo
two nearby fermionic stabilizers), which is local unitarily
equivalent to the toric code.

APPENDIX C: DOUBLE SEMION MODEL ON A
SQUARE LATTICE

In this Appendix, we briefly discuss a local unitary trans-
formation that allows one to write the double semion model,
originally defined on the honeycomb lattice [36], as a model
of qubits on the edges of a square lattice. The double semion
model contains one qubit on each edge of the honeycomb
lattice and has Hamiltonian

H:—ZAU—ZB;, (C1)
v 14

where v indexes vertices and & indexes hexagonal plaquettes.
The vertex constraint is A, = Z;Z,Z3 acting on the three
adjacent edges, and the hexagon term is

BhZBhl_Il-zAv,

vep

B, = ]_[ X, ]_[ S;. (C2)

ech leh

Here e runs over the six edges of hexagon h, whereas / runs
. . . 1=z
over the six legs external to %, as shown in Fig. 17(a). § = i

is the phase gate.

It is possible to disentangle the qubits lying on the short
edges of the honeycomb lattice from the rest of the system,
leaving behind a square lattice. In particular, the unitary oper-
ator U accomplishes this task, which is a translation-invariant
array of CX gates as shown in Fig. 17(b). To be precise,

U'HU = H' + H, (C3)

where Hj stabilizes the ancillary qubits and H’ is the double
semion Hamiltonian on the square lattice:

H =— ZAU - ZB,,. (C4)
v P
Here A, = Z,7,757,4, acting on the four adjacent edges, and

3 1+A
Bp:Bpl_[ 5 v (C5)

vep

where B, is depicted graphically in Fig. 17(d). The relation =
indicates that the two sides have identical ground spaces.

To see this, note that S3 — Wjy3 under conjugation by
CX15CX>3, where we have defined Wip3 = i%, and thus
By, is mapped to the operator B; shown in Fig. 17(c). More-
over, U maps the original vertex constraints according to
Fig. 17(e), yielding the vertex terms on the square lattice as
well as the ancillary terms comprising Hy. Finally, B, is equiv-
alent to B, in the subspace satisfying the vertex constraints,
due to the relations shown in Fig. 17(f).
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