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Abstract. In interactive e-learning environments such as Intelligent Tutor-
ing Systems, there are pedagogical decisions to make at two main levels of
granularity: whole problems and single steps. Recent years have seen grow-
ing interest in data-driven techniques for such pedagogical decision making,
which can dynamically tailor students’ learning experiences. Most existing
data-driven approaches, however, treat these pedagogical decisions equally,
or independently, disregarding the long-term impact that tutor decisions may
have across these two levels of granularity. In this paper, we propose and apply
an offline, off-policy Gaussian Processes based Hierarchical Reinforcement
Learning (HRL) framework to induce a hierarchical pedagogical policy that
makes decisions at both problem and step levels. In an empirical classroom
study with 180 students, our results show that the HRL policy is significantly
more effective than a Deep Q-Network (DQN) induced policy and a random
yet reasonable baseline policy.
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1 Introduction

Interactive e-Learning Environments such as Intelligent Tutoring Systems (ITSs) and
educational games have become increasingly prevalent in educational settings. In
domains like math and science, solving a problem often requires producing one or
multiple steps, each of which is the result of applying a domain principle or rule. For
example, 2x+5=09 can be solved for z in two steps: 1) subtract the same term 5 from
both sides of the equation; and 2) divide both sides by 2. Tutoring in such domains
is thus often structured as a two-loop procedure [35]: the outer loop makes problem
level decisions, such as problem selection; while the inner loop controls step level
decisions, such as whether or not to give hints or give a feedback. As a result, there
are decisions to make and opportunities to give at different levels of granularity, such
as hints, worked examples, immediate feedback, or suggested subgoals, and some are
more important or impactful than others. Human decision-makers treat these distinct
levels of granularity differently and are capable of selecting between them [7,12].
Data-driven approaches, and especially reinforcement learning (RL), have been
shown to improve the effectiveness of ITSs [4,28, 19, 5, 29,9, 10, 39]. However, most
prior applications of RL for pedagogical policy induction treat all system decisions
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equally or independently and do not account for the long-term impact of higher-level
actions or the interaction of decisions made at different levels. In this paper, we
propose and apply an offline, off-policy Gaussian Processes-based (GP-based) Hierar-
chical Reinforcement Learning (HRL) framework to induce a hierarchical pedagogical
policy at two levels of granularity: problem and step. More specifically, our HRL policy
will first make a problem-level decision and then make step-level decisions based on
the problem-level decision. In this study, for example, our HRL policy first decides
whether the next problem should be a worked example (WE), problem solving (PS),
or a faded worked example (FWE). In WESs, students observe how the tutor solves
a problem; in PSs students solve the problem themselves; in FWEs, the students and
the tutor co-construct the solution. Based on the problem-level decision, the HRL
policy then makes step-level decisions on whether to elicit the next solution step
from the student, or to show it to the student directly. We refer to such decisions as
elicit/tell decisions. If WE is selected, an all-tell step policy will be carried out; if PS is
selected, an all-elicit policy will be executed; finally if FWE is selected, the tutor will
decide whether to elicit or to tell a step based on the corresponding induced step-level
policy. Both WE and PS can be seen as two extreme ends of FWEs. Therefore, one
non-hierarchical way to make decisions would be to focus on step-level decisions alone.

In a classroom study, we compared the HRL induced hierarchical policy (HRL)
with two step-level policies: a Deep Q-Network induced policy (DQN) and a random
yet reasonable (Random) policy because both elicit and tell are always considered
to be reasonable educational interventions in our learning context. 180 students were
randomly assigned to three conditions and our results showed that the HRL policy
was significantly more effective than the DQN and Random policies, and no significant
difference was found between the two latter policies. For time on task, no significant
difference was found between the HRL condition and Random but the former (HRL)
spent significantly more time than DQN. Finally, the induced HRL policy is more
likely to select PS and FWE than WE, which confirmed our hypothesis that HRL
would provide the right balance to pedagogical decision making, targeting WEs and
tells to just those problems and steps that need them.

2 Background & Related Work

2.1 Previous Research on Applying RL to ITSs

Generally speaking, RL approaches can be classified as online, where the agent learns
a policy in real time by interacting with the environment, or offline, where the
agent learns from pre-collected training data. RL approaches can also be divided
into on-policy vs. off-policy, based on the relationship between their behavior and
estimation policies [32]. In on-policy RL, the behavior policy used to control how the
agent explores the environment (online), or collects training data (offline), is the same
as the estimation policy being learned. In off-policy methods, these two policies may
be unrelated. Both online and offline RL approaches have been used for pedagogical
policy induction in recent years; among them, prior research mainly took an off-policy
RL approach [3,9,10, 19, 36, 28,4, 39, 13]. Next, we will describe prior RL work from
the online vs. offline perspective.
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Online RL research to induce pedagogical policies has often relied on simulations
or simulated students. As a consequence, the success of these approaches is heavily
dependent on the accuracy of the simulations. Beck et al. [3] applied temporal
difference, with off-policy e-greedy exploration, to induce pedagogical policies that
would minimize the students’ time on task. Iglesias et al. applied another common
online, off-policy approach named Q-learning to induce policies for efficient learning [9,
10]. More recently, Rafferty et al. applied POMDP with off-policy tree search to induce
policies for faster learning [19]. Wang et al. applied an online, off-policy Deep-RL
approach to induce a policy for adaptive narrative generation in educational game [36].
All of the models described above were evaluated via simulations or classroom studies,
yielding improved student learning and/or behaviors as compared to baseline policies.

Offline RL approaches, on the other hand, “take advantage of previous collected
samples, and generally provide robust convergence guarantees” [25]. The success of
offline RL is thus often heavily dependent on the quality of the training data. One
common convention is to collect an exploratory corpus by training students on an I'TS
that makes random yet reasonable decisions and then apply RL to induce pedagogical
policies from that corpus. Shen et al. applied value iteration and least square policy
iteration on a pre-collected training corpus to induce pedagogical policies aimed at
improving students’ learning performance [28, 27]. Chi et al. applied policy iteration to
induce a pedagogical policy aimed at improving students’ learning gains [4]. Mandel et
al. [13] applied an offline POMDP approach to induce a policy which aims to improve
student performance in an educational game. In classroom studies, most models above
were found to yield certain improved student learning relative to a baseline policy.

Despite these successes, the necessity for accurate simulations (online) or large
training corpora (offline) has limited the wide use of RL for policy induction. Addition-
ally, prior research on both online RL and offline RL has not taken the granularity of
decisions into account when applying RL techniques for the induction of pedagogical
policies. In the remainder of the paper, we will refer to these approaches as flat RL
to differentiate them from our new HRL approach.

It has been widely shown that HRL can be more effective and data-efficient than
flat RL approaches [6,22,18,37,11]. HRL generally breaks down a large decision-
making problem into a hierarchy of small sub-problems and induces a policy for each
of them. Since the sub-problems are small, they usually require less data to find the
optimal policies. For example, Cuayhuitl et al. induced navigation policies [6] at 3
levels: buildings, floors, and corridors, showing that HRL converged to an optimal
policy in much fewer iterations. Peng et al. showed success using temporal HRL to
induce locomotion control policies for path following and soccer dribbling while flat
policies could not complete these tasks [18]. Although promising, the use of hierarchy
requires additional information, such as the transitions and rewards at different levels
of granularity, to induce a policy, and this may be hard to get from pre-collected data.
Therefore, most existing HRL applications have been online, but here, we propose
and apply an offline, off-policy HRL approach. To the best of our knowledge, this
is the first attempt to apply HRL to induce pedagogical policies.
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2.2 WE, PS and FWE

Prior research has investigated the effectiveness of WE, PS, FWE, and their various
combinations [31, 16, 15, 14, 33,21, 26, 17, 23]. When focusing on PS and WE, Mclaren
et al. found no significant difference in learning performance between studying WE-PS
pairs and doing PS-only, but the former spent significantly less time than the PS-only
[16]. In a subsequent study, Mclaren et al. compared three conditions: WE-only,
PS-only and WE-PS pairs [15]. Similarly, no significant differences were found among
them in terms of learning gains, but the WE condition spent significantly less time
than the other two; and no significant time on task difference was found between
PS-only and WE-PS pairs.

Several studies were conducted comparing different combinations of WE, PS,
and FWE. Renkl et al. compared WE-FWE-PS with WE-PS pairs, and the former
significantly outperformed the latter on student learning performance while no
significant difference was found between them on time on task [21]. Similarly, Najar
et al. compared adaptive WE/FWE/PS with WE-PS pairs [17]. They found that
the former significantly outperformed WE-PS pairs in terms of learning outcomes
and the former also spent significantly less time on task than the latter. For adaptive
WE/FWE/PS, they used expert rules to make decisions based on student learning
states. Finally, Salden et al. compared three conditions: WE-FWE-PS, FWE, and
PS-only [23]. Their results showed that FWE outperformed WE-FWE-PS, which
in turn outperformed PS-only, and no significant time on task difference was found
among the three conditions. Note that in their study, the order of WE, FWE, and PS
were fixed in WE-FWE-PS; while in FWE;, the tutor used an adaptive pedagogical
policy, expert rules combined with data-driven student models. In short, previous
studies have shown that alternating among WE, PS, and FWEs can be more effective
than only alternating between WE and PS; however, it is not clear whether the former
can be more effective than only using FWEs. On the other hand, prior research either
used a fixed policy (WE-FWE-PS) or hand-coded expert rules combined with data-
driven student models to make decisions. In this work, we applied an offline, off-policy
HRL framework to derive a hierarchical pedagogical policy directly from empirical
data. Its effectiveness is directly compared against another data-driven FWE policy
induced by applying one of the state-of-the-art flat RL methods: Deep Q-Network.

3 Policy Induction

In this work, both our proposed HRL framework and DQN are offline, off-policy in that
they induce policies from a historical dataset D collected by training students on the
ITS that makes random yet reasonable decisions. RL focuses on inducing effective de-
cision making policies for an agent with the goal of maximizing the agent’s cumulative
rewards. In many domains, RL is applied with immediate rewards. In an automatic call
center system, for example, the agent can receive an immediate reward for every ques-
tion it asks because the impact of each question can be assessed instantaneously [38].
Immediate rewards are generally more effective than delayed rewards for RL-based
policy induction. This is because it is easier to assign appropriate credit or blame when
the feedback is tied to a single decision. The more we delay the rewards or punishments,
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the harder it becomes to assign credit or blame properly. The availability of immediate
rewards is especially important for HRL approaches. On the other hand, the most
appropriate reward to use in I'TSs is student learning gains, which are typically unavail-
able until the entire training process is complete. This is due to the complex nature of
the learning process which makes it difficult to assess students’ learning moment by
moment and more importantly, many instructional interventions that boost short-term
performance may not be effective over the long-term. Therefore, we first proposed and
applied a Gaussian Processes based (GP-based) approach to infer ”immediate rewards”
from the delayed rewards and then applied HRL and DQN to induce the correspond-
ing hierarchical or step-level policies based on the inferred immediate rewards. In the
following, we will briefly describe: 1) our proposed GP-based approach to infer immedi-
ate rewards, 2) our offline, off-policy GP-based HRL framework, and 3) DQN. We now
present a few critical details of the process, but many have been omitted to save space.

3.1 GP-Based Approach for Immediate Reward Inference

Our historical dataset D consists of student-ITS interaction trajectories with different
lengths. Each trajectory d can be viewed as: s; —%% 5o 225 g, —2 Here
S; %siﬂ indicated that at the i, turn in d, the learning environment was in state
s;, agent executed action a; and received reward 7;, and then the learning environment
transferred into state s; 1. Because our primary interest is to improve students’ final
learning, we used Normalized Learning Gain (NLG) as the reward because it measures
students’ gain irrespective of their incoming competence. N LG = %\/%j:“ where
pretest and posttest refer to the students’ test scores before and after the ITS training
respectively and 1 is the maximum score. Given that a student’s NLG will not be
available until the entire training is completed, only terminal states have non-zero
rewards. Thus for a trajectory d, r; -, r,_1 are all equal to 0, and only the final
reward 7, is equal to the student’s VLG x 100, which is in the range of (-oco, 100].
To infer the immediate rewards from the final delayed reward for each trajectory,
we applied Gaussian Processes (GP) to learn a distribution function f for the expected
values and the standard deviations of all of the immediate rewards. More specifically,
a prior probability is given to each possible function before observation. Then, higher
probabilities are given to the functions where the sum of the generated immediate
rewards is close to the observed delayed reward. In other words, the immediate rewards
inside each trajectory were inferred by minimizing the mean square error (MMSE)
of additive Gaussian distributions [8]. The immediate rewards were distributed inside
each trajectory by assuming that they follow Gaussian distributions and that these
rewards add up to the delayed reward for each trajectory. Following the Gaussian
Process Regression [20, 1] and the shared mutual information existed in the feature

representation, we can thus infer the immediate rewards from delayed rewards.

3.2 An Offline, Off-policy GP-based HRL for Policy Induction

Most HRL research is based upon an extension of Markov Decision Processes (MDPs)
called Discrete Semi-Markov decision processes (SMDPs) and the central idea behind
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the HRL approach is to transform the problem of inducing effective pedagogical
policies into one of computing an optimal policy for choosing actions in SMDPs. An
MDP describes a stochastic control process and formally corresponds to a 4-tuple: <
S,A,T,R>. When inducing pedagogical policies, the states S are vector representations
composed of relevant learning environment features such as the difficulty level of a
problem, percentage of the correct entries a student entered so far and so. In this
study, we have a total of 142 state features to describe the learning environment;
the actions A are selected from {WE,FWE,PS} for problem-level decisions and
from{elicit, tell} for steps; the reward function R is calculated from the system’s
success measures: students NLG. Once the {S,A,R} has been defined, the transition
probabilities T are estimated from the training corpus, D. Once a complete MDP
is constructed, calculation of an optimal policy via policy iteration is straightforward.

SMDPs extend the existing MDP framework with the addition of a set of complex
activities [2] or options [30], each of which can invoke other activities recursively,
thus allowing for hierarchical policy functions. The complex activities are distinct
from the primitive actions in that a complex activity may contain multiple primitive
actions. In our applications, WE, PS and FWE are complex activities while elicit and
tell are primitive actions. A complex activity consists of three elements: a policy 7
that maps states to each available option, a termination condition, and an initiation
set. A solution to the SMDP mentioned above is an optimal policy (7*), a mapping
from state to complex activities or primitive actions, that maximizes the expected
discounted cumulative reward for each state.

The complex activities in SMDPs can take a variable number of low-level activity
(or actions) to execute across multiple time steps. This makes it necessary to extend
the state-transition function to take into account the activity length. If an activity
a takes t’ time steps to be executed in state s, then the state transition probability
function given s and a is defined by the joint distribution of the result state s’ and the
number of time steps ¢’ when action a is performed in the state s: P(s',t’|s,a). The
expected reward function is also extended to accumulate over the waiting time in s
given action a. More specifically, the Q-value function Q(s,a) represents the expected
discounted reward the agent will gain if it takes an action a in a state s and follows
the policy to the end and for SMDP, the Bellman equation can be re-written as:

Q(s.a)=R(s.a)+) " P(s't[s.a)ymaxQ(s' o) (1)

s/t

0<~v<1 is a discount factor. If 7y is less than 1, then it will discount rewards obtained
later. For HRL, learning occurs at multiple levels. The global learning generates a
policy for the top level decision and local learning generates a policy for each complex
activity. This process retains the fundamental assumption of RL: that goals are
defined by their association with reward, and thus that the objective is to discover
actions that maximize the long-term cumulative reward. Local learning focuses not on
learning the best policy for the overall task but the best policy for the corresponding
complex activity.

In our offline off-policy HRL framework, both problem- and step-level policies
were learned by recursively using the Gaussian Processes to estimate the Q-value
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function in equation 1. Using an actor-critic policy iteration framework, we iteratively
update the policy. This process continues until the Q-value function and the induced
policy converged. We assume that the Q-value function follows a prior distribution
and by combining the prior of Q-value function and the inferred immediate rewards,
the Gaussian Process Regression can provide the posterior distribution of the Q-value
function approximation in a tractable way. In this work, our training corpus contains
a total number of 1118 students’ interaction logs collected from a series of seven
prior studies which followed the identical procedure and learning materials as the
students in this study described below. To induce the hierarchical policy, we defined
a problem-level semi-MDP for determining whether the next problem should be WE,
PS or FWE and for each of the training problems, we defined a step-level semi-MDP
for inducing a step-level policy to determine elicit vs. tell if a complex activity FWE
is selected for that training problem.

3.3 DQN for Policy Induction

A Double DQN approach [34] with the prioritized experience replay technique [24] was
applied to induce the DQN step-level policy. A multi-layer perceptron neural network
was used to approximate the Q-function. The inputs to the neural network were the
last 3 step observations of a student and the outputs were the Q values for each possible
step level action (in our case, elicit and tell). The network consists of two 64-unit layers
with the rectified linear unit (ReLU) activation function (except that the output layer
has no activation function). As a convention for this algorithm, an experience replay
buffer and a target network were used to stabilize the training. The data and immediate
rewards used for DQN policy induction were identical to those used for HRL.

4 Empirical Experiment

Participants This study was conducted in the undergraduate Discrete Mathe-
matics course at the Department of Computer Science at North Carolina State
University in the Fall of 2018. The study was given as one of the regular home-
work assignments; students had one week to complete it and were graded based
upon their demonstrated effort rather than performance. Students (N=180) were
randomly assigned into three conditions (60 in each of HRL, DQN, and Ran-
dom). Due to preparations for exams and the length of the experiment, 140 stu-
dents completed the study. 3 students who scored perfectly in the pre-test were
excluded from our subsequent analysis. In addition, 9 students who completed
the study in groups were excluded. The remaining 128 students were distributed
as follows: N = 44 for HRL, N = 45 for DQN, and N = 39 for Random. A
x? test shows that the participants’ completion rate did not differ by condition:
X?(2)=1.03,p=0.598.

Pyrenees is a web-based ITS that teaches students a general problem solving strat-
egy and 10 major principles of probability, such as the Complement Theorem and
Bayes’ Rule. It provides students with step-by-step instruction, immediate feedback,
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and on-demand help. Specifically, the help is provided via a sequence of increasingly
specific hints. The last hint in the sequence, i.e., the bottom-out hint, tells student
exactly what to do. Except for the decision granularity, the remaining components
of the tutor, including the GUI interface, the training problems, and the tutorial
support were identical for all students.

Procedure All three conditions went through the same four phases: 1) textbook,
2) pre-test, 3) training on the ITS, and 4) post-test. The only difference among them
was the policy employed by the ITS. During textbook, all students read a general
description of each principle, reviewed some examples, and solved some training
problems. The students then took a pre-test which contained a total of 14 single-
and multiple-principle problems. Students were not given feedback on their answers,
nor were they allowed to go back to earlier questions (this was also true for the
post-test). During training on the ITS, all three conditions received the same 12
problems in the same order. Each domain principle was applied at least twice. Finally,
all students took the 20-problem post-test; 14 of the problems were isomorphic to
the pre-test. The remainder were non-isomorphic multiple-principle problems.

Grading criteria The pre- and post-test problems required students to derive an
answer by writing and solving one or more equations. We used three scoring rubrics:
binary, partial credit, and one-point-per-principle. Under the binary rubric, a solution
was worth 1 point if it was completely correct or 0 if not. Under the partial credit
rubric, each problem score was defined by the proportion of correct principle applica-
tions evident in the solution. A student who correctly applied 4 of 5 possible principles
would get a score of 0.8. The One-point-per-principle rubric in turn gave a point
for each correct principle application. All of the tests were graded in a double-blind
manner by a single experienced grader. The results presented below were based upon
the partial-credit rubric but the same results hold for the other two. For comparison
purposes, all test scores were normalized to the range of [0,100].

5 Results

Despite of random assignment, a one-way ANOVA analysis on the pre-test score
showed a marginally significant difference among the three conditions: F'(2,125)=
2.805, p=0.064, n=0.043. Subsequent contrast analysis showed that DQN scored
significantly higher than HRL: #(125) =2.06, p=0.042, d =0.46 and Random: #(125) =
2.01, p =0.046, d = 0.46; but there is no significant difference between HRL and
Random: ¢(125)=0.02, p=0.986, d =0.00. The results suggest that while our random
assignment indeed balanced the HRL and Random conditions’ incoming competence,
it did not do so for the DQN condition. Therefore, we mainly focus on comparing
learning performances that consider the pre-test differences, that is, adjusted post-test
and NLG especially the latter because it is the reward we used for policy induction.

Table 1 shows the mean and standard deviation (SD) of students’ learning per-
formance and total training time results across three conditions. From left to right, it
shows the condition with the number of students in parentheses, pre-test (Pre), isomor-
phic post-test (Iso Post), full post-test (Full Post), adjusted post-test (Adj Post), Nor-
malized Learning Gain (NLG), and the total training time on the ITS in hours (Time).
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Table 1. Learning Performance and Time on Task

Condition Pre Iso Post | Full Post | Adj Post | NLG |Time (hours)
HRL(44) |66.4(18.8)|85.8(14.6) | 75.3(16.9) | 77.7(10.3) | 14.3(19.2) | 2.19(.64)
DQN(45) |73.9(13.6) |85.2(13.1) | 74.2(14.6) | 71.2(12.0) | -2.2(20.4) |  1.81(.58)
Random(39) | 66.3(18.9) | 80.5(19.5) | 69.0(19.6) | 71.4(13.8) | -0.1(35.0) | 1.97(.52)

Isomorphic Post-test To measure students’ learning improvement, we compared
their isomorphic post-test scores with their pre-test scores. A repeated measures anal-
ysis using test type (pre-test vs. isomorphic post-test) as a factor and test score as the
dependent measure showed a main effect for test type: F(1,127)=158.63, p <0.0001,
1n=0.555 in that students scored significantly higher in the isomorphic post-test than
in the pre-test. More specifically, all three conditions scored significantly higher in the
isomorphic post-test than in the pre-test: F(1,43)=110.74, p <0.0001, n=0.720 for
HRL, F(1,44)=34.73, p<0.0001, n=0.441 for DQN, and F(1,38)=38.47, p <0.0001,
1=0.503 for Random. This showed that the basic practice and problems, domain
exposure, and interactivity of our ITS effectively help students acquire knowledge,
even when the decisions are made randomly yet reasonably.

Adjusted Post-test To comprehensively evaluate students’ final performance, we
performed analysis on the full post-test score which has an additional six multiple-
principle problems. An ANCOVA analysis on the post-test using the pre-test score as
a covariate showed a significant difference among the three conditions: F'(2,124)=3.86,
p=0.024, n=0.030. Subsequent contrast analysis on the adjusted post-test score
showed that the HRL condition scored significantly higher than the DQN condition:
t(125)=2.53, p=0.013, d=0.57 and the Random condition: ¢(125)=2.36, p=0.020,
d=0.52. No significant difference was found between DQN and Random. The results
suggest that the HRL policy is significantly more effective than the DQN policy and
the Random policy.

NLG Similarly, a one-way ANOVA analysis on the NLG showed that there is a
significant difference among the three conditions: F'(2,125)=4.39, p=0.014, =0.066.
Subsequent contrast analysis showed that the HRL condition scored significantly
higher than the DQN condition: #(125)=2.75, p=0.007, d =0.66 and the Random
condition: #(125) =2.30, p =0.023, d =0.52. Again, no significant difference was
found between DQN and Random. The results suggest again that the HRL policy
significantly outperformed the DQN policy and the Random policy.

Time on Task A one-way ANOVA analysis on time on task showed a significant
difference among the three conditions: F(2,125)=4.74, p =0.010, n=0.071. More
specifically, the HRL condition spent significantly more time than the DQN condition:
t(125) =3.07, p =0.003, d =0.62 and marginally significantly more time than the
Random condition: ¢(125)=—1.75, p=0.082, d =0.39.

Tutor Decisions Our preliminary log analysis revealed that for the HRL condition,
the average number of problem-level decisions students received are: .95(1.16) for
WE, 5.07(2.58) for PS and 3.98(2.49) for FWE. Thus the HRL policy was more likely
to choose PS and FWE than WE. Table 2 shows the number of step-level decisions
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Table 2. Step Level Tutor Decisions

Condition Elicit Tell Pct Tell
HRL 300.0(60.4) | 88.7(66.1) | 22.025(15.870)
DQN 205.8(51.6) 188.9(53.0) 47.794(12.974)

Random | 200.5(15.9) | 203.5(17.4) | 50.354(2.482)

students received across the three conditions. The first column shows the condition
followed by the number of elicit and tell and finally the percentage of tell. Our
preliminary step-level log analysis results showed that the HRL condition received
more elicit than tell; while the other two conditions received a relatively balanced
amount. A one-way ANOVA analysis on the percentage of tell revealed a significant
difference among the three conditions: F(2,125) = 71.47, p < 0.0001, n = 0.533.
Subsequent contrast analysis showed that the HRL condition received significantly
less tell than the DQN condition: ¢(125) = —10.00, p < 0.0001, d = 1.78 and the
Random condition: ¢(125)=—10.60, p <0.0001, d =2.42. In addition, the HRL and the
DQ@N condition had a much higher SD on tell percentage. This suggests that the HRL
policy and the DQN policy made more personalized decisions than the Random policy.

6 Conclusion and Discussion

In this study, we proposed and applied an offline, off-policy GP-based HRL framework
to induce a hierarchical pedagogical policy. The policy makes decisions first at the
problem level and then the step level. At the problem level, it decides whether the
next problem should be WE, PS or FWE. If FWE is selected, a corresponding
step-level policy will be activated to decide whether the next step should be elicit
or tell. In an empirical classroom study, we compared the HRL policy with a DQN
induced step-level policy and a Random step-level policy. Our results showed that the
HRL policy was significantly more effective than the DQN policy and the Random
policy and no significant difference was found between the latter two policies. For
time on task, there was no significant difference between the HRL condition and
the Random condition, but the former spent significant more time than the DQN
condition. Finally, the HRL policy was more likely to choose PS and FWE than WE.

The results suggest that HRL can be more effective than flat RL in pedagogical
policy induction. One possible explanation is that HRL has an explicit problem-level
vision. At the problem level, HRL views a problem as an atomic action, and this
abstraction has two potential advantages: 1) it aggregates the effects of all steps in
a problem and 2) it converts a long step-level sequence into a short problem-level
sequence. The aggregation of steps across a problem may provide HRL with a better
estimation of the effect of taking a series of steps; while the problem sequence may
give HRL a better view of the long-term effects of each problem. Theoretically, flat
RL could learn the impact of a problem by aggregating step-level information, but
there is no guarantee that it would. Our results confirm the intuition that HRL should
outperform flat RL on pedagogical policy induction because it can simultaneously learn
at two levels of granularity - the problem level outer loop and the step level inner loop.
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