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ABSTRACT

Deep Reinforcement Learning (DRL) has been shown to be
a very powerful technique in recent years on a wide range
of applications. Much of the prior DRL work took the on-
line learning approach. However, given the challenges of
building accurate simulations for modeling student learn-
ing, we investigated applying DRL to induce a pedagogical
policy through an offline approach. In this work, we ex-
plored the effectiveness of offline DRL for pedagogical pol-
icy induction in an Intelligent Tutoring System. Generally
speaking, when applying offline DRL, we face two major
challenges: one is limited training data and the other is the
credit assignment problem caused by delayed rewards. In
this work, we used Gaussian Processes to solve the credit
assignment problem by estimating the inferred immediate
rewards from the final delayed rewards. We then applied
the DQN and Double-DQN algorithms to induce adaptive
pedagogical strategies tailored to individual students. Our
empirical results show that without solving the credit as-
signment problem, the DQN policy, although better than
Double-DQN, was no better than a random policy. How-
ever, when combining DQN with the inferred rewards, our
best DQN policy can outperform the random yet reasonable
policy, especially for students with high pre-test scores.

1. INTRODUCTION

Interactive e-Learning Environments such as Intelligent Tu-
toring Systems (ITSs) and educational games have become
increasingly prevalent in educational settings. In order to
design effective interactive learning environments, develop-
ers must form the basic core of the system and determine
what is to be taught and how. Pedagogical strategies are
policies that are used to decide the how part, what action
to take next in the face of alternatives. Each of these sys-
tems’ decisions will affect the user’s subsequent actions and
performance.

Reinforcement Learning (RL) is one of the best machine
learning approaches for decision making in interactive envi-
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ronments and RL algorithms are designed to induce effective
policies that determine the best action for an agent to take
in any given situation to maximize some predefined cumu-
lative reward. In recent years, deep neural networks have
enabled significant progress in RL research. For example,
Deep Q-Networks (DQNSs) [26] have successfully learned to
play Atari games at or exceeding human level performance
by combining deep convolutional neural networks and Q-
learning. Since then, DRL has achieved notable successes in
a variety of complex tasks such as robotics control [1] and
the game of Go [44]. From DQN, various DRL methods such
as Double DQN [51] or Actor-Critic methods [38, 39] were
proposed and shown to be more effective than the classic
DQN. Despite DRL’s great success, there are still many chal-
lenges preventing DRL from being applied more broadly in
practice, including applying it to educational systems. One
major problem is sample inefficiency of current DRL algo-
rithms. For example, it takes DQN hundreds of millions of
interactions with the environment to learn a good policy and
generalize to unseen states, while we seek to learn policies
from datasets with fewer than 800 student-tutor interaction

logs.

Generally speaking, there are two major categories of RL:
online and offline. Online RL algorithms learn policy while
the agent interacts with the environment; offline RL algo-
rithms, by contrast, learn the policy from pre-collected train-
ing data. Online RL methods are generally appropriate for
domains where the state representation is clear and interact-
ing with simulations and actual environments is relatively
computationally cheap and feasible, so most of prior work
on DRL mainly took an online learning approach. On the
other hand, for domains such as e-learning, building accurate
simulations or simulating students is especially challenging
because human learning is a rather complex, not fully under-
stood process; moreover, learning policies while interacting
with students may not be feasible and more importantly,
may not be ethical. Therefore, our DRL approach is offline.
This approach was achieved by, first, collecting a training
corpus. One common convention, and the one used in our
study, is to collect an ezploratory corpus by training a group
of students on an ITS that makes random yet reasonable
decisions and then apply RL to induce pedagogical policies
from that exploratory training corpus. An empirical study
was then conducted from a new group of human subjects
interacting with different versions of the system. The only
difference among the versions was the policy employed by
the ITS. Lastly, the students’ performance was statistically
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compared. Due to cost limitations, typically, only the best
RL-induced policy was deployed and compared against some
baseline policies.

When applying offline DRL to ITSs, we often face one major
challenge: our rewards are often not only noisy but also de-
layed. Given the nature of ITS data collection, the training
data including our reward functions is often noisy and our
rewards are only the incomplete or imperfect observations
of underlying true reward mechanisms. Due to the complex
nature of student learning, the most appropriate rewards are
(delayed) student learning gains, which are only available af-
ter the entire training is complete. For example, hints might
improve immediate performance but negatively impact over-
all learning. On the other hand, when the size of the training
data is limited, the availability of “true” immediate rewards
is very important for offline RL. Immediate rewards are gen-
erally more effective than delayed rewards for offline RL be-
cause it is easier to assign appropriate credit or blame when
the feedback is tied to a single decision. The more we de-
lay rewards or punishments, the harder it becomes to assign
credit or blame properly. Therefore, the challenge is how to
distribute the delayed rewards to observable, immediate re-
wards along each student-system interactive trajectory while
taking the noise and uncertainty in the data into account.
To tackle this issue, we applied a Gaussian Processes based
(GP-based) approach to infer “immediate rewards” from the
delayed rewards and then applied DQN to induce two poli-
cies: one based on delayed rewards and the other based on
the inferred immediate rewards, referred to as DQN-Del and
DQN-Inf respectively.

In this work, we used a logic ITS and focused on apply-
ing DRL to induce a policy on one type of tutorial deci-
sion: whether to present a given problem as a problem solv-
ing (PS) or a worked example (WE). The tutor presents
a worked example (WE) by demonstrating the individual
steps in an expert solution to a problem. During PS, stu-
dents are required to complete the problem with tutor sup-
port (e.g. hints). The effectiveness of DQN-Del and DQN-
Inf are evaluated theoretically using Expected Cumulative
Reward (ECR) and empirically through two randomly con-
trolled experiments: one for evaluating the effectiveness of
DQN-Del in Spring 2018 and the other for evaluating DQN-
Inf in Fall 2018. In each experiment, the effectiveness of the
corresponding RL-induced policy was compared against the
Random policy that flips a coin to decide between WE/PS
and the students were randomly assigned into the two con-
ditions while balancing their incoming competence. Overall,
the results from both experiments showed no significant dif-
ference between the DQN-Del and Random in Spring 2018
and between the DQN-Inf and Random in Fall 2018 on every
measure of learning performance.

There are two potential explanations for such findings. First,
our random baseline policy is decently strong. While ran-
dom policies are usually bad in many RL tasks, in the con-
text of WE vs. PS, our random policies can be strong base-
lines. Indeed, some learning literature suggests that the best
instructional intervention is to alternate WE and PS [35,
41, 36]. Second, there may be an aptitude-treatment in-
teraction (ATI) effect [6, 47], where certain students are
less sensitive to the induced policies, meaning they achieve a

similar learning performance regardless of policies employed;
whereas other students are more sensitive, meaning their
learning is highly dependent on the effectiveness of the poli-
cies. Thus, we divided the students into High vs. Low based
on their incoming competence and investigated the ATI ef-
fect. While no ATT effect was found between DQN-Del and
Random for Spring 2018, a significant ATI effect was found
between DQN-Inf and Random in Fall 2018.

In short, we explored applying offline DRL for pedagogical
policy induction based on delayed and inferred immediate
rewards. Our results showed that no ATT effect was found
between DQN-Del and Random in Spring 2018, whereas
there was an ATI effect between DQN-Inf and Random in
Fall 2018. More specifically, the High incoming competence
group benefited significantly more from the DQN-Inf policy
than their peers in the Random condition. This result sug-
gests that the availability of inferred immediate rewards was
crucial for effectively applying offline DRL for pedagogical
policy induction.

2. BACKGROUND

A great deal of research has investigated the differing im-
pacts of worked examples (WE) and problem solving (PS)
on student learning [49, 22, 21, 23, 41, 27, 36]. McLaren
and colleagues compared WE-PS pairs with PS-only [22].
Every student was given a total of 10 training problems.
Students in the PS-only condition were required to solve ev-
ery problem while students in the WE-PS condition were
given 5 example-problem pairs. Each pair consisted of an
initial worked example problem followed by tutored prob-
lem solving. They found no significant difference in learning
performance between the two conditions. However, the WE-
PS group spent significantly less time than the PS group.

McLaren and his colleagues found similar results in two sub-
sequent studies [21, 23]. In the former, the authors com-
pared three conditions: WE, PS and WE-PS pairs, in the
domain of high school chemistry. All students were given 10
identical problems. As before, the authors found no signifi-
cant differences among the three groups in terms of learning
gains but the WE group spent significantly less time than
the other two conditions; and no significant time on task dif-
ference was found between the PS and WE-PS conditions.

In a follow-up study, conducted in the domain of high school
stoichiometry, McLaren and colleagues compared four con-
ditions: WE, tutored PS, untutored PS, and Erroneous Ex-
amples (EE) [23]. Students in the EE condition were given
incorrect worked examples containing between 1 and 4 errors
and were tasked with correcting them. The authors found
no significant differences among the conditions in terms of
learning gains, and as before the WE students spent signif-
icantly less time than the other groups. More specifically,
for time on task, they found that: WE < EE < untutored
PS < tutored PS. In fact, the WE students spent only 30%
of the total time that the tutored PS students spent.

The advantages of WEs were also demonstrated in another
study in the domain of electrical circuits [50]. The authors
of that study compared four conditions: WE, WE-PS pairs,
PS-WE pairs (problem-solving followed by an example prob-
lem), and PS only. They found that the WE and WE-PS
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students significantly outperformed the other two groups,
and no significant differences were found among four condi-
tions in terms of time on task.

In short, prior research has shown that WE can be similar
or more effective than PS or alternating PS with WE, and
the former can take significantly less time than the latter
two [49, 22, 21, 23, 41]. However, there is no widespread
consensus on how or when WE vs. PS should be used. This
is why we will derive pedagogical strategies for them directly
from empirical data.

2.1 ATI Effect

Previous work shows that the ATT effect commonly exists
in many real-world studies. More formally, the ATI effect
states that instructional treatments are more or less effective
to individual learners depending on their abilities [6]. For
example, Kalyuga et al. [17] empirically evaluated the effec-
tiveness of worked example (WE) vs. problem solving (PS)
on student learning in programmable logic. Their results
show that WE is more effective for inexperienced students
while PS is more effective for experienced learners.

Moreover, D’Mello et al. [7] compared two versions of ITSs:
one is an affect-sensitive tutor which selects the next prob-
lem based on students’ affective and cognitive states com-
bined, while the other is an original tutor which selects the
next problem based on students’ cognitive states alone. An
empirical study shows that there is no significant difference
between the two tutors for students with high prior knowl-
edge. However, there is a significant difference for students
with low prior knowledge: those who trained on the affect-
sensitive tutor had significantly higher learning gain than
their peers using the original tutor.

Chi and VanLehn [4] investigated the ATT effect in the do-
main of probability and physics, and their results showed
that high competence students can learn regardless of in-
structional interventions, while for students with low com-
petence, those who follow the effective instructional inter-
ventions learned significantly more than those who did not.
Shen and Chi [43] find that for pedagogical decisions on WE
vs. P8, certain learners are always less sensitive in that their
learning is not affected, while others are more sensitive to
variations in different policies. In their study, they divided
students into Fast and Slow groups based on time, and found
that the Slow groups are more sensitive to the pedagogical
decisions while the Fast groups are less sensitive.

3. RELATED WORK

Deep Reinforcement Learning: In recent years, many
DRL algorithms have been developed for various applica-
tions such as board games like Go [44, 46], Chess and Shogi
[45], robotic hand dexterity [33, 1], physics simulators [19,
29, 30], and so forth. While most DRL algorithms have
been mainly applied online, some of them can also be ap-
plied offline. More specifically, DRL algorithms such Vanilla
Policy Gradient (VPG) [48], Proximal Policy Optimization
(PPO) [39], Trust Region Policy Optimization (TRPO) [38],
or A3C [24] can only be applied for online learning by inter-
acting with simulations. Some other DRL algorithms can be
applied for offline learning using pre-collected training data.
These include the Q-learning based approaches such as Deep

Q-Network (DQN) [26], Double-DQN [51], prioritized expe-
rience replay [37], distributed prioritized experience replay
(Ape-X DQN) [14], and the Actor-Critic based methods such
as Deep Deterministic Policy Gradient (DDPG) [19], Twin
Delayed Deep Deterministic policy gradient (TD3) [9], or
Soft Actor-Critic (SAC) [11]. Among them, DQN and its
variants have been much more extensively studied, however,
it is still not clear whether they can be successfully applied
offline for pedagogical policy induction for ITSs.

Reinforcement Learning in Education: Prior research
using online RL to induce pedagogical policies has often re-
lied on simulations or simulated students, and the success of
RL is often heavily dependent on the accuracy of the simu-
lations. Beck et al. [3] applied temporal difference learning,
with off-policy e-greedy exploration, to induce pedagogical
policies that would minimize student time on task. Igle-
sias et al. applied another common online approach named
Q-learning to induce policies for efficient learning [15, 16].
More recently, Rafferty et al. applied POMDP with tree
search to induce policies for faster learning [32]. Wang et
al. applied an online Deep-RL approach to induce a policy
for adaptive narrative generation in educational game [52].
All of the models described above were evaluated by com-
paring the induced policy with some baseline policies via
simulations or classroom studies.

Offline RL approaches, on the other hand, “take advantage
of previously collected samples, and generally provide ro-
bust convergence guarantees” [40]. Shen et al. applied value
iteration and least square policy iteration on a pre-collected
training corpus to induce pedagogical policies for improv-
ing students’ learning performance [43, 42]. Chi et al. ap-
plied policy iteration to induce a pedagogical policy aimed
at improving students’ learning gains [5]. Mandel et al.
[20] applied an offline POMDP approach to induce a policy
which aims to improve student performance in an educa-
tional game. In classroom studies, most models above were
found to yield certain improved student learning relative to
a baseline policy.

DRL in Education is a subject of growing interest. DRL
adds deep neural networks to RL frameworks such as POMDP
for function approximation or state approximation [25, 26].
This enhancement makes the agent capable of achieving
complicated tasks. Wang et al. [52] applied a DRL frame-
work for personalizing interactive narratives in an educa-
tional game called CRYSTAL ISLAND. They designed the im-
mediate rewards based on normalized learning gain (NLG)
and found that the students with the DRL policy achieved a
higher NLG score than those following the linear RL: model
in simulation studies. Furthermore, Narasimhan et al. [28]
implemented a Deep Q-Network (DQN) approach in text-
based strategy games, constructed based on Evennia, which
is an open-source library and toolkit for building multi-users
online text-based games. Using simulations, they found that
the DRL policy significantly outperformed the random pol-
icy in terms of quest completion.

In summary, compared with MDP and POMDP, relatively
little research has been done on successfully applying DRL
to the field of ITS. None of the prior research has success-
fully applied DRL to ITSs without simulated environments,
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in order to learn an effective pedagogical strategy that makes
students learn in a more efficient manner. Furthermore, no
prior work has empirically evaluated any DRL-induced pol-
icy to confirm its benefits on real students.

4. METHODS

In RL, the agent interacts with an environment £, and the
goal of the agent is to learn a policy that will maximize
the sum of future discounted rewards (also known as the
return) along the trajectories, where each trajectory is one
run through the environment, starting in an initial state and
ending in a final state. This is done by learning which action
to take for each possible state. In our case, € is the learning
context, and the agent must learn to take the actions that
lead to the optimal student learning, by maximizing the re-
turn R = E?:o ~trs, where r; is the reward at time step ¢,
T is the time step that indicates the end of the trajectory,
and v € (0, 1] is the discount factor.

4.1 DOQN and Double-DQN

Deep Q-Network (DQN) is, fundamentally, a version of
Q-learning. In Q-learning, the goal is to learn the optimal
action-value function, @ (s, a), which is defined as the ex-
pected reward obtained when taking the optimal action a in
state s, and following the optimal policy 7* until the end of
the trajectory. For any state-action pair, the optimal action-
value function must follow the Bellman optimality equation
in that:

Q*(S,a)zT—l"YH}La’.XQ*(SI’aI) (1)

Here r is the expected immediate reward for taking action
a at state s; v is the discount factor; and Q*(s’,a’) is the
optimal action-value function for taking action a’ at the sub-
sequent state s’ and following policy m* thereafter.

Compared with the original Q-leaning, DQNs use neural net-
works (NNs) to approximate action-value functions. This is
because NNs are great universal function approximators and
they are able to handle continuous values in both their in-
puts and outputs. In order to train the DQN algorithm,
two neural networks with equal architectures are employed.
One is the main network and its weights are denoted 8 and
the other is the target network, and its weights are de-
noted 8~. The target value used to train the network is
y = 7 + ymax, Q(s’,a’;07). Thus, the loss function that
is minimized in order to train the main network is:

Loss(6) = El(y — Q(s,4;6))’] ()

The main network is trained on every training iteration,
while the target network is frozen for a number of train-
ing iterations. Every m training iterations, the weights of
the main neural network are copied into the target network.
This is one of the techniques used in order to avoid diver-
gence during the training process. Another one of these
techniques was the use of an experience replay buffer. This
buffer contains the p most recent (s,a,r) tuples, and the
algorithm randomly samples from the buffer when creating
the batch on each training iteration. We followed the same
procedure, but as our training was performed oflline, the
experience replay buffer consists of all the samples on our
training corpus, and it does not get refreshed over time.

Double-DQN or DDQN was proposed by Van Hasselt et
al. [12] who combined it with neural networks in the Double-
DQN algorithm [51]. The intuition behind it is to decouple
the action selection from the action evaluation. To achieve
this, the Double-DQN algorithm uses the main neural net-
work to first select the action that has the highest Q-value
for the next state (argmax,, @Q(s’,a’,0)) and then evaluates
the Q-value of the selected action using the target network
(Q(s',argmax,, Q(s’,a’;0);07)). This simple trick has been
proven to significantly reduce overestimations in Q-value cal-
culations, resulting in better final policies. With this tech-
nique, the target value used to optimize the main network
becomes:

y:=r+vQ(s',argmax Q(s',a’,0);07) 3)

The loss function is still the same as in equation 2, but the
target value y used in the formula is now updated to be the
one in equation 3.

4.2 Fully Connected vs. LSTM
For our NN architectures, we explored two options: Fully
connected NNs and Long Short Term Memory (LSTM).

Fully Connected or multi-layer perceptrons are the sim-
plest form of neural network units. They calculate a simple
weighted sum of all the input units, and each unit produces
an output value that is often passed to an activation func-
tion. We used these units to parametrize our neural net-
works. All the input units are connected to all the units in
the first hidden layer, and all those units are connected to
every unit in the next hidden layer. This process continues
until the final output layer.

B P 1

— yt

Figure 1: A single LSTM unit containing a forget, input and
ouput gate

Long Short-Term Memory (LSTM) is a type of re-
current neural network specifically designed to avoid the
vanishing and exploding gradient problems [13]. LSTMs
are particularly suitable for tasks where long-term tempo-
ral dependencies must be remembered. They achieve this
by maintaining the previous information of hidden states as
internal memory. Figure 1 shows the architecture of a single
LSTM unit. It consists of a memory cell state denoted by
C; and three gates: the forget gate f: € [0, 1], the input gate
it € [0,1], and the output gate o; € [0, 1]. These three gates
interact with each other to control the flow of information.
During training, the network learns what to memorize and
when to allow writing to the cell in order to minimize the
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* Problem Solving: 35 features such as the difficulty of
the current problem, the number of easy and difficult
problems solved on the curremt level, the number of
PS and WE problems seen in the current level, or the
number of nodes the student added in order to reach
the final solution.

» Performance: b7 features such as the numher of in-
correct steps, and the ratio of correct to incorrect rule
applications for different types of rules.

¢ Hints: 11 features such as the total mumber of hints
requested or the number of hints the tutor provided
without the student asking for them.

The features contain non-negative continuous values. As
their range varies significantly (time can be a large num-
ber while problem difficulty is always between 1 and 9), we
normalized each feature to the range [0, 1]. Input feature
normalization has been shown to improve the stability of
the learning process on neural networks, and often leads to
faster convergence.

To induce our pedagogical policy, while previcus research
mainly used learning gains or time on task as reward func-
tion, our reward function here i based on the improvement
of learning efficiency, which balances both learning gain im-
provement and time on task improvement. In this way, if
two students have the same amount of learning gain, the
one who takea shorter time would get higher reward. To
calculate their learning efficiency, we used students’ scores
obtained on each level divided by the training time on the
level. Students must solve the last problem on each level
without help, and we use this as a level score. The range
of the score for each level ia [—100,+100], and the learning
gain for level L is calculated as Scorer, — Scorep—1, thus
having a range of [—200, +200].

5.3 Training Process

For both DQN and Double DQN, we explored using Fully
Connected {(FC) NNa or using LSTM to estimate the action-
value function Q. Our FC has four fully connected layers of
128 units each, uses Rectified Linear Unit (ReL.U) as the
activation function. Cur LSTM architecture consista of two
layers of 100 LSTM units each, with a fully connected layer
at the end. Additionally, for either FC or LSTM, for a given
time ¢, we explored three input settings: to use only the
current atate observation s, {k = 1), to use the last two
state observations: ;) and 8; {(k = 2), and to use the last
three: $¢—2, 9;—1 and 8, (k = 3).

In the case of the fully connected (FC) model, the observa-
tions are concatenated and passed to the input layer as a
flat array of values. For LSTM, the input state observations
are passed to the network in a sequential manner. These
peaat observations provide extra information about the per-
formance of the student in the previous states. However,
including previous states also add complexity to the net-
work, which can slow down the learning process and can
increase the risk of converging to a weaker final policy. As
the number of parameters increases in the NNs, the chance
that our NN would get stuck at a local optima increases, es-
pecially when our training data is limited. 1.2 regularization

PDIS

Figure 3: Importance sampling results.

was used to get 8 model that generalizes better. We trained
our models for 50,000 iterations, using a batch size of 200,

5.4 Induced Policy

First, we induced the DQN-Del policy using delayed rewards
only. Our training data was split: 90% of the students for
training data and 10% for testing data. We trained all 12
of our models (DQN and Double-DQN with either FC lay-
ers or LSTM layers, and with k = {1,2,3}) on the training
data and evaluated their performance on testing data. We
repeated this process twice with two different test sets and
reported their average performance on a series of popular
off-policy evaluation metrics. Among them, Expected Cu-
mulative Reward (ECR) is the most widely used. However,
Per-Decision Importance Sampling (PDIS) has shown to be
more robust [31] .

ECR is simply calculated by averaging over the highest Q-
value for all the initial states in the validation set. The
formula is described in Equation 9.

BOR= " maxQ(ss, a) (©)

=1

8; i an initial state, and N denotes the number of trajecto-
Ties in the validation set.

PDIS [31] is an alternative to regular Importance Sampling,
to reduce variance in the estimations. The PDIS results
of the 12 models are shown in Figure 3. The PDIS result
of the random policy is used to set y = 0 {the red line)
in Figure 3. Much to our surprise, while double DQN has
shown to be much more robust in online DRL applications,
ite performance is generally worse than DQN here, especially
when k = 1 and k = 2. Figure 3 showg that the best policy
is induced using DQN with the LSTM architecture for k =
3, and thus is selected as DQN-Del. We also compere the
selected policy with the remaining ones using ECR and other
evaluation metrica and the results showed using DON with
the LSTM architecture for & = 3 is always amang the best
policies across different evaluation metrics.

To evaluate the impact of Inferred rewards on the DQN in-
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Learning Efficiency

T T
Low High

Figure 3: Post-Test Learning Efficiency across different
groups for the Fall 2018 study.

7.2 Experiment 2 Results

In fall 2018, again no significant difference was found on
the pre-test efficiency between the Random and DQN-Inf
groups: t(82) = —0.333,p = 0.739. The students were also
divided into high pre-test efficiency (n = 42) and low pre-
test efficiency (n = 42) groups. A t-test showed a significant
difference between the high and low efficiency students on
the pre-test efficiency: t(82) = 6.38,p < 0.001. The same
four groups were formed, based upon their incoming effi-
ciency and condition: DQN-Inf-High (n = 20), DQN-Inf-
Low (n = 21), Random-High {n = 22), and Random-Low
{n = 21). A t-test showed no significant difference on the
pre-test efficiencies when comparing the Random-Low and
DQN-Inf-Low groups: £{40) = 0.027,» = 0.978. No signifi-
cant difference was found either, when performing a t-test on
the two high efficiency groups: t(40) = —0.698,p = 0.489.
This shows that there is no significant difference on the pre-
test efficiency across conditions during the Fall 2018 study.

A two-way ANOVA test using Condition {Random, DQN-
Inf} and Incoming Competency {Low, High} as two factors
showed a gignificant interaction effect on students’ post-test
efficiency: F(1,80) = 5.038,p = 0.027 {(as shown in Fig-
ure 5}. To be more strict, we ran a two-way ANCOVA test
uging Condition and Incoming Competency as two factors
and pre-test efficiency as a covariate. This analysis also
showed a significant interaction effect on students’ post-test
efficiency: F(1,79) = 4.687,p = 0.033. Thus, by taking the
pre-test efficiency into congideration, there is still a signifi-
cant interaction effect. No significant main effect was found
from either Condition or Incoming Competency. A one-way
ANCOVA test on the post-test efficiency for the Low com-
petency groups, using Condition {Random-Low, DQN-Inf-
Low} as a factor and pre-test competency as a covariate
showed no gignificant difference on the post-test efficiency
F(1,39) = 0429, p = 0.516. However, a significant dif-
ference was found for the High groups F(1,39) = 5.513,
p = 0.024, with means -0.719 for Random-High and 2.916
for DQN-Inf-High (as shown in Figure 5).

7.3 Log Analysis

This section will show more details on the different types of
tutorial decisions made across the different conditions and
studies. The features that were analyzed include the total
number of problems each student encountered (TotalCount),
the number of problems solved (PSCount), the number of
difficult problems solved (diffPSCount), the number of WEs
seen (WECount), and the number of difficult WEs seen (dif-
fWECount). Table 1 shows the summary of these five fea-
tures for each condition and study. Columns 3 and 4 show
the mean and standard deviation of each condition for thege
categories. Column 5 shows the statistical results of different
t-tests comparing the two conditions.

No significant difference is found for the total number of
problems seen by each group. However, we observed that
for the features difPS3Count, WECount and diff WECount,
a significant difference was found only during the Spring
2018 study. Looking at the mean values, we notice that the
DQN-Del policy assigned fewer WE and more PS problems.
However, this did not improve the performance of the stu-
dents in the DQN-Del group during this study. During the
Fall 2018 study, we only observe a significant difference in
the number of PS problems assigned. No significant differ-
ence was found in the remaining categories.

‘When we analyze the logs for the High competency students,
table 2 shows the values of those same features, but only
for the High competency students in each study. During
the Spring 2018 semester, we find a statistically significant
difference for TotalCount, PSCount, and dif WECount, and
we find a marginal difference for WECount. This shows that
the DQN-Del policy gave more PS problems, fewer WE, and
fewer difficult WE problems, but no significant difference
was found in students’ post-test performance. The Fall 2018
study results show no significant or marginal difference in
any of the five categories. Despite this fact, the DQN-Inf
policy implemented in the Fall 2018 study outperformed the
Random policy for the High comnpetency students. We can
also observe how, in Table 2, the standard deviation for the
DQN groups is often larger than the standard deviation for
the Random groups. This makes sense because we expect all
the students in the Random group to have a similar values
in each category. However, it looks like the DQN policy
in assigning more PS to certain students, and more WE to
other students, resulting in a larger standard deviation.

In short, our log analysis results show that it is not about
the total amount of PSs and WEs that students received
that matters, but rather how or when they receive which.

8. CONCLUSIONS

We used offline Deep Reinforcement Learning algorithms in
conjunction with inferred immediate rewards to induce a
pedagogical policy to improve the students’ learning effi-
ciency for a logic tutor. Our results showed that our DRL-
induced pedagogical policy can outperform the Random pol-
icy, which is a strong baseline here. More specifically, there
was an ATI effect in the Fall 2018 study in that the high in-
coming competency students were benefited more from our
DRI-induced policy, by achieving better post-test learning
efficiency than other groups. Our results showed that our
proposed Gaussian Processes based approach to infer “im-
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Table 1: Log analysis results for per semester and condition.

Feature Semester Random DQN Significance
Spring | 22.68(5.05) | 24.02(5.29) | {72) = —1.118, p=0.267
TotalCount Fall | 23.81(332) | 25.26(5.37) | #(82) = —1.489, p=0.141
— Spring | 14.82(5.20) | 17.08(6.11) | #(72) = —1.601, _p = 0.005e
Fall | 14.38(2.30) | 15.73(3.68) | t(82) = -2.020, p = 0.046*
) Spring | 5.10(1.74) | 4.85(2.06) | #72) = 0.765,  p=0.446
diffPSCount | "pp 7.54(1.57) | 8.19(231) | #82) = —1.501, p=0.137
WECount Spring | 7.85(1.17) | 6.94(1.87) | t(72) = 2.466, p = 0.016*
Fall 9.43(1.57) | 9.52(2.37) | 482) = —0.210, p=0.833
) Spring | 8.85(1.33) | 2.61(1.87) | t(72) = 3.226, p = 0.002*
difftWECount | "5 p 2.15(1.42) | 2.02(1.23) | #(82) = 0.469, p = 0.639

Table 2: Log analysis results for the high competency groups per semester.

Feature Semester Random DQN Significance
Spring | 21.52(2.18) | 24.31(4.07) | {(35) = -2.471, p = 0.021*
TotalCount Fall | 24.27(0.76) | 25.95(7.58) | #40) = —0.984, p=0.337
PSCount Spring | 18.61(2.49) | 17.50(4.67) | £(35) = -3.008, p — 0.006*
Fall 14.59(0.66) | 15.95(4.98) | #40) = —1.208, p=0.241
. Spring | 557(1.43) | 5.12(2.30) | #35) = 0.680, p = 0.502
diffPSCount Fall 7.68(0.83) | 8.75(2.93) | #40)=-1.570, p=10.130
Spring | 7.00(1.33) | 6.81(1.86) | 35) = 1.981, p = 0.058¢
WECount Fall | 9.68(0.94) | 10.00(3.19) | #(40) = —0.428, p=0.672
) Spring | 4.23(1.41) | 2.43(1.82) | £(35) = 3.271, p = 0.002*
diff WECount | 5y 2.18(1.46) | 2.50(1.27) | #40)=—0.750, p=0.457

mediate rewards” from the delayed rewards seems reasonable
and works pretty well here. Thus, offline DRL can be suc-
cessfully applied to real-life environments even with a limited
training dataset with delayed rewards.
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