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ABSTRACT
For many forms of e-learning environments, the system’s
behaviors can be viewed as a sequential decision process
wherein, at each discrete step, the system is responsible for
deciding the next system action when there are multiple ones
available. Each of these system decisions affects the user’s
successive actions and performance and some of them are
more important than others. Thus, this raises an open ques-
tion: how can we identify the critical system interactive de-
cisions that are linked to student learning from a long trajec-
tory of decisions? In this work, we proposed and evaluated
Critical-Reinforcement Learning (Critical-RL), an adversar-
ial deep reinforcement learning (ADRL) based framework to
identify critical decisions and induce compact yet effective
policies. Specifically, it induces a pair of adversarial policies
based upon Deep Q-Network (DQN) with opposite goals:
one is to improve student learning while the other is to hin-
der; critical decisions are identified by comparing the two
adversarial policies and using their corresponding Q-value
differences; finally, a Critical policy is induced by giving op-
timal action on critical decisions but random yet reason-
able decisions on others. We evaluated the effectiveness of
Critical policy against a random yet reasonable (Random)
policy. While no significant difference was found between
the two condition, it is probably because of small sample
sizes. Much to our surprise, we found that students often
experience so-called Critical phase: a consecutive sequence
of critical decisions with the same action. Students were
further divided into High vs. Low based on the number of
Critical phases they experienced and our results showed that
while no significant was found between the two Low groups,
the High Critical group learned significantly more than the
High Random group.
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1. INTRODUCTION
Intelligent Tutor Systems (ITSs) are a type of highly inter-
active e-learning environment which facilitates learning by
providing contextualized feedback and step-by-step support
to individual students [4, 14]. These step-by-step behaviors
can be viewed as a sequential decision process where at each
step the system chooses an action (e.g. give a hint, show an
example) from a set of options. During tutoring, the system
makes a series of decisions to provide adaptive instructions.
Some of the decisions might be more important and impact-
ful than others. This raises a major open question: How
can we identify the critical system interactive deci-
sions that are linked to student learning especially in
a long trajectory of decisions? For example, in our ITS,
the tutor makes more than 400 sequential decisions during
training.

Reinforcement Learning (RL) offers one of the most promis-
ing approaches to data-driven decision-making applications
and RL algorithms are designed to induce effective policies
that determine the best action for an agent to take in any
given situation so as to maximize some predefined cumula-
tive reward. A number of researchers have studied the appli-
cation of existing RL algorithms to improve the effectiveness
of ITSs [2, 13, 12, 3]. However, relatively little work has been
done to analyze, interpret, and explain RL-induced poli-
cies. While traditional hypothesis-driven, cause-and-effect
approaches offer clear conceptual and causal insights that
can be evaluated and interpreted, RL-induced policies are
often large, cumbersome, and difficult to understand. In
this work we propose to induce compact RL policies that
highlight key or critical decisions by taking advantage of
the structure of the domain and the structure of our in-
duced policies by leveraging the conditional independence
relationships among the state features.

We propose Critical-RL, an adversarial deep reinforcement
learning (ADRL) based framework to induce compact poli-
cies that make critical decisions. By inferring critical deci-
sions we can identify which tutor actions are minimally nec-
essary for the tutoring process to be effective, which holds
great implications for systems research. Additionally, in-
ference of critical relationships is one of the central tasks
of science and it is one of the most challenging topics in
many disciplines, particularly in the areas where controlled
experiments are comparatively expensive or even impossi-
ble. In this work, we propose a general framework that
fully integrates automatic critical inference and standard



reinforcement learning in an ITS setting. We expect that
our framework can be spread to other similar domains for
related critical tasks.

2. RELATED WORK
2.1 Applying RL to ITSs
Prior work has applied a variety of RL approaches to in-
duce pedagogical policies to improve the effectiveness ITS
[1, 6, 15, 10]. For example, Beck et al. [1] applied tem-
poral difference learning on simulated students to induce a
policy that would minimize student time on task. Results
showed that the policy group indeed spent significantly less
time than the non-policy group. Shen et al. [13] applied
MDP to induce a pedagogical policy aimed at improving
students’ learning performance. Results showed that the
induced policy was significantly more effective than a ran-
dom baseline policy for certain learners. Mandel et al. [6]
applied a POMDP based approach to induce a pedagogical
policy targeted at improving students’ learning gain. The
RL-induced policy was then compared with an expert pol-
icy and a random baseline policy. Results revealed that the
RL-induced policy significantly outperformed the other two.
Wang et al.[15] applied a variety of deep RL approaches on
simulated students to induce pedagogical policies that would
improve students’ normalized learning gain in an educational
game. Simulation results suggested that deep RL policies
were more effective than linear model based RL policies.

To summarize, prior work has shown that RL induced poli-
cies can lead to improved student learning/behavior as com-
pared to baseline policies. However, prior work has mainly
focused on inducing effective policies from pre-collected data
or simulated student, but put relatively less effort to identify
the exact part that makes them effective.

2.2 Deep Reinforcement Learning (DRL)
Recent advance in deep learning has allowed RL to work in
complex interactive environments which was often imprac-
tical in before. Recent work showed that RL can induce
effective policies for a variety of tasks, such as game playing
[8, 9], robotic control [5, 19], recommendation generation
[17, 16] and also ITS control [15, 10]. However, all of the
state-of-art RL algorithms focused on inducing effective poli-
cies. None of them considered interpreting, explaining and
identifying critical decisions from RL induced policies.

2.3 Exploiting Q-value Difference
Some prior work has exploited the Q-value difference be-
tween actions to simplify the decision-making process/problem.
For example, Mitchell et al. [7] relied on the Q-value dif-
ference to select features for RL. They proposed a Q-value
difference based policy evaluation metric, which was then
used to guide feature selection for RL. Zhou et al. [18] re-
lied on Q-value difference to reduce the policy space. More
specifically, they applied weighted decision tree with post-
pruning to extract a compact set of 529 rules from a full set
of 3706 rules. During the extraction, each rule was weighted
by the Q-value difference between two alternative actions
and thus increased the carry-out likelihood of more impor-
tant decisions. Results showed that the full RL policy and
the compact DT policy together were significantly more ef-
fective than a random policy and there is no significantly

difference between the full RL policy and the compact DT
policy.

In sum, prior studies have used Q-value difference to mea-
sure action importance and results suggest that it is an effec-
tive measure. However, prior work used Q-value difference
to reduce the feature space or the policy space, but we used
it to reduce the decision space.

3. METHOD
3.1 Adversarial Reinforcement Learning
Adversarial Reinforcement Learning (ARL) is a category of
RL which can induce a pair of policies for opposite goals.
In our application, an Original Policy was induced using
the original rewards and an Inversed Policy was induced
using the inversed rewards, which is the negative value of
the original rewards. We expect these two policies to have
opposite goals, one to help student learn while the other to
hinder them learn.

3.2 Deep Q-Network (DQN)
Deep Q-Network (DQN) is a RL algorithm that uses a deep
neural network to approximate the Q-value function. The
neural network takes a state as input, which is represented
as a numerical vector, and outputs its estimation of the Q
values for all possible actions. During training, the neural
network is updated recursively following the Bellman equa-
tion shown below until converge.

Qi+1(s, a) = Es′∼ε[r + γmax
a′

Qi(s
′, a′)|s, a] (1)

where γ is a discount factor, ε is the environment and Qi

is the action-value function at the ith iteration. DQN is
a model free approach that it is focused on estimating the
action value functions from the interactions with the envi-
ronment without constructing a model of the environment.
Also, it is an off-policy approach that the new policy is in-
duced based upon the historical data generated by an alter-
native behavior policy.

3.3 Identifying Critical Decision
Once the adversarial policies are induced, critical decisions
are identified following two rules: 1) given the state, the
two policies make opposite decisions and 2) the decision is
important for both policies.

For a given state, rule one is tested first. If the two policies
make the same decisions, it is not critical. Otherwise, rule
two is tested. In order to measure the importance of the
decision for each policy, we calculate the absolute Q-value
difference between the two alternative actions: ∆Q∗(s) =
|Q∗(s, a1) − Q∗(s, a2)|. If this difference is greater than a
threshold, the decision is considered important for the cor-
responding policy. In this paper ,we set the threshold to be
the median Q-value difference for all decisions in our training
data set.

3.4 Critical Policy Induction
In tutoring, our ITS provides students with the same 12
problems in the same order. Among them, the first and the



eighth problems are fixed to be problem solving where the
students is required to solve all the steps. For the rest 10
problems, the policies decide whether to elicit the next step
from the student or to directly show the student how to solve
the next step.

Thus, we induced 10 pairs of adversarial policies, one for
each problem. Each pair of the adversarial policies con-
sist of two policies: an original policy and an inversed pol-
icy. The original policy was induced using the original re-
wards while the inversed policy was induced using inversed
rewards. Other than the rewards, all other parts of the data
were identical, such as state representation and transition
samples.

In order to find the best policy, for each problem, we im-
plemented two different types of neural network: Recur-
rent Neural Network (RNN) and Long Short Term Mem-
ory (LSTM) to induce the adversarial policies. The policies
were then evaluated using Per decision importance sampling
(PDIS)[11] and the better one was selected. Once the adver-
sarial policies were induced, whether a decision was critical
or not during tutoring was determined following the two
rules mentioned in section 3.3.

Finally, the Critical policy is carried out partially in that
if a decision is critical, it will be carried out; otherwise,
the decision will be made randomly. More specifically, for a
given state, the adversarial policies are queried to determine
whether the decision is critical. If it is, the decision made
by the original policy will be taken; otherwise, a random
decision will be taken.

4. EXPERIMENT SETUP
In order to evaluate the critical-RL induced policy, we con-
ducted a classroom study comparing the Critical policy with
the Random policy. The participants of this study were un-
dergraduate students enrolled in the Discrete Mathematics
class at the Department of Computer Science at NC State
University in 2018 Fall. In this study, all students were re-
quired to complete 4 phases: 1) pre-training, 2) pre-test, 3)
training on Pyrenees tutor, and 4) post-test. Pyrenees tutor
is a web-based ITS for probability, which covers 10 major
principles of probability such as the Complement Theorem
and Bayes’ Rule. During the experiment, all students in
both two conditions studied the same materials, received
the same questions in pre-test, trained on the same tutor,
examined the same questions in post-test. The only differ-
ence was the policies used in the tutor.

In this study, 120 students were randomly assigned to the
Critical condition and the Random condition. Due to prepa-
ration for final exams and the length of the study, 96 student
completed the study. 3 students performed perfectly in the
pre-test were excluded from our subsequent statistical anal-
ysis. The final group sizes were: N = 50 (Critical) and N
= 43 (Random). We performed a Chi-square test of the re-
lationship between students’ condition and their completion
rate and found no significant difference between the condi-
tions: χ2 (1) = 2.55, p = 0.11.

5. RESULTS
Table 1 shows the mean and standard deviation (SD) of the
post-test score, learning gain (LG) and total training time
for the Crucial and Random condition. Contrast comparison
analysis showed no significant difference between the two
conditions on all three measures. Please note that although
the Critical condition appeared to outperform the Random
condition on learning gain (0.05 vs. 0.03), such difference
was not significant (p = 0.50). One of the possible reasons
is that the group size was not large enough to demonstrate
significance. A post hoc power analysis revealed that a total
sample of 1544 students was required to detect significance
at .05 on small effects (d=.14), with 80% power using a
contrast.

Table 1: Critical vs. Random
Measure Critical Random P value

Post 0.71 (0.19) 0.71 (0.20) 0.91
LG 0.05 (0.18) 0.03 (0.14) 0.50
Time 121.6 (37.7) 116.3 (30.47) 0.46

Since the Critical policy was partially carry-out where only
critical decisions were made following the optimal policy, we
conducted an inspection into the relation between the num-
ber of critical decisions made and student learning. Through
analyzing the student-system interactive logs, we found that
critical decisions were always appeared in groups and each
group of consecutive critical decisions had the same action.
This is aligned with existing learning theory that the learn-
ing process is a continuous process. Student can stay in the
same learning state during several steps but this continuous
learning state is hard to be represented by current features.
In other words, in the same learning state, the agent will con-
tinuous giving same actions to the student until he moves
to next learning state. So, we defined Critical Phase as a
period of consecutive critical decisions executions with the
same action according to the Critical policy.

In order to analyze the impact of critical phase, we divided
students into High vs. Low groups by a median split on the
number of critical phases they experienced. For the Random
condition, as the execution of decisions were partially agreed
with the Critical policy, we ignored the actual decision and
only focused on the Critical policy’s decision. Thus, we
had four groups based upon their critical phase number and
policies: High-Random (n=20), Low-Random (n=23), High-
Critical (n=27), Low-Critical (n=23). A two-way ANOVA
analysis using policies {Critical, Random} and critical phase
{High, Low} as two factors and the student’s learning gain
as the dependent measure showed a significant interaction ef-
fect F (1, 89) = 7.163, p = 0.009. Subsequent contrast analy-
sis revealed that the High-Crucial group (M = 0.098, SD =
0.2) significantly outperformed High-Random group (M =
−0.011, SD = 0.16): t(89) = 2.360, p = 0.02. However,
such difference was not significant between the Low-Crucial
group (M = 0.001, SD = 0.13) and Low-Random group
(M = 0.067, SD = 0.12) : t(89) = 1.42, p = 0.16.

In terms of time on task, a two-way ANOVA analysis on
condition and critical phase number showed a main effect
on critical phase number: F (1, 89) = 5.579, p = 0.020 in



Figure 1: Comparison of Learning Performance

that the High group (M = 127.51, SD = 36.34) spent sig-
nificantly more time on task than the Low group (M =
110.56, SD = 30.51). The results suggest that students ex-
perienced more critical phases are more likely to spend more
time on task.

6. CONCLUSION
In this study, we proposed Critical-RL to identify critical
pedagogical decisions in an ITS. Based on the ADRL frame-
work, we induced a Critical policy which gives optimal ac-
tion on critical decision points but randomly select actions
on others. We empirically compared the Critical policy with
a baseline Random policy in a classroom study for real stu-
dents. Although there’s no significant difference between the
two conditions, we found the existence of Critical phase, a
consecutive sequence of critical decisions with the same ac-
tion. We then divided students into High vs. Low groups
based on the number of Critical phases they experienced.
Results showed that while the two Low groups were not
sensitive to pedagogical policies, the High-Critical group
significantly outperformed the High-Random group. This
suggested that for certain students, the Critical policy is
significantly more effective than the Random policy.

In the future, we plan to analyze the difference between
states in critical and non-critical phase. Through analyzing
the critical state, we hope to align critical decision with ex-
isting learning theory and further generalize our method to
other domain.
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