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Abstract— Electrocardiogram (ECG) monitoring of the fetus
during pregnancy, before and during labor, can provide crucial
information for the assessment of fetal well-being and
development, as well as labor progress. An out-of-clinics fetal
ECG monitoring system may pave the way for instant diagnosis,
suggesting immediate intervention, which could help reduce the
fetal mortality rate. In this paper, we present an unobtrusive fetal
maternal ECG monitoring system which can operate in the home
setting. The acquisition of the mother’s abdominal ECG is done
using the non-contact electrode approach. The extraction of the
fetal ECG from the combined fetal/maternal ECG signal is
investigated using both Fast Independent Component Analysis
(FastICA) and RobustICA algorithms. An accelerometer is
integrated for motion artifact detection which would help reduce
interferences due to movement. The device also is connected to a
cloud server, allowing doctors to access the data in real time.

Index Terms— Fetal/maternal Electrocardiogram, Fetal
Mortality, Blind Source Separation, Independent Component
Analysis.

I. INTRODUCTION

Despite high healthcare expenditures, prenatal care for
women is often inadequate, with the maternal-fetal care system
being overburdened. A recent report by the CDC showed that
the U.S. fetal mortality rate remained unchanged from 2006
through 2012 at 6.05 per 1,000 births [1]. In the 1970s,
continuous monitoring of fetal heartrate (fHR) using Doppler
ultrasound (known as cardiotocograph — CTG) was introduced
into clinical practice, holding promise that the technology
would help reduce incidences of intra-partum fetal injury and
death. Unfortunately, a study has revealed that the technique
increased the use of cesarean surgery, forceps, and vacuum
delivery, but actually did not reduce perinatal morbidity or
mortality [2]. Nevertheless, CTG is still a common practice and
utilized in over 85% of labor episodes in the U.S [3]. Home-
based fHR monitoring systems were introduced lately but it is
extremely difficult to operate by non-professional personnel.
Further, the side effects of prolonged ultrasound exposure to
fetus is a subject of controversy, as warned by the FDA
especially with home devices (FDA 2014) [4].

There are existing ECG-based fHR monitoring systems, such
as MERIDIAN M110 by MindChild Medical and the GE
Monica Novii wireless patch system. However, M110 is wire-
connected, bulky, non-mobile and costly whilst the Monica
Novii is limited to the labor and delivery areas in the hospital.
The Pregsense belt for mobile fHR monitoring is bulky, and it
is sold at $250/unit. Further, it would be a break-through if full-
feature fetal ECG (fECG) can be achieved. It has been reported
that the changes in morphological parameters of fECG are
associated with the level of fetal oxygenation, which greatly
affects the development of the fetus [5]. Thus, numerous
researchers have aimed to develop optimal signal processing
algorithms to extract fECG for the high-noise fetal/maternal
ECG (f/mECG). Adaptive filter and deep learning are among
promising methods [6].

Our team has been developing patch-based {/mECG
monitoring systems [7, 8]. We extensively investigated the use
of the non-contact electrode (NCE) approach for signal
acquisition [9]. We have demonstrated that the NCE patch can
record abdominal ECG signal through the shirt, yielding
favorable signal to noise ratio (SNR). In this paper, we present
the use of the blind source separation (BSS) method under
independent analysis component (ICA) framework to extract
fECG from the combined f/mECG signal. Both FastICA and
RobustICA were implemented and the extraction of fECG
using simulated data and online data was achieved and
compared.

II. DESIGN AND IMPLEMENTATION

Fig. 1 describes the conceptual view of the f/mECG
monitoring system. It comprises of f/mECG acquisition with
three ECG channels and an integrated MPU 6050 accelerometer
sensor (InvenSense, CA). A system-on-chip Bluetooth Low
Energy (BLE) is used to digitize the data and transmit them to
a smartphone where an application (App) was developed for
further display, logging and analysis. The f/mECG system was
designed for expectant mothers to wear as an elastic band to
minimize the effects of motion artifacts (MA), thus improving
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Fig. 1. The conceptual overview of the fetal/maternal ECG monitoring system. The s1, s2 and s3 are mixed abdominal ECG signals (aECG)
including fetal ECG (fECG), maternal ECG (mECG) and motion artifacts (MA).

the signal quality. The accelerometer is used to measure MA.
We speculate that the signal collected by each ECG channel
contains a mixture of independent signals including MA, fetal
ECG and maternal ECG. Under this assumption, we leveraged
independent component analysis algorithms (FastiICA and
RobustICA) to extract the fetal ECG.

A) Circuit Design and Mobile Application

As described in our previous work [7], the circuit was
upgraded to have three ECG channels and a motion sensor, in
order to facilitate signal processing and extraction. It includes
three pairs of non-contact electrodes (NCEs), analog signal
processing circuitry and the system-on-chip BLE nRF52832
(Nordic Semiconductor) which is in charge of digitalizing the
data and transmitting them to the Android App. Compared with
that of the previous work [7], the new BLE module is more
capable owing to the direct memory access (DMA) module
which independently works with the central processing unit.

In the mobile App, six values chronically-transmitted via
BLE are s/, s2, 53, acc_x, acc_y, and acc_z. Where si, s2, s3
are three mixed ECG signals and acc_x, acc_y, acc_z are the
values recorded by the accelerometer corresponding to x axis,
y axis and z axis, respectively. Before reaching the App, each
value is stored in a number of buffers with 8-bit length each. As
the value is 12-bit (by the ADC), it is partitioned and stored in
2 buffers with 8-bit and 4-bit segments, respectively. In the App,
the data are received by merging the two buffers. To do so, the
first buffer with the 8-bit segment is multiplied by 256, then the
value of second buffer with the 4-bit segment is added. Thus,
the 12-bit data would be fully reconstructed. The data are
collected in real time and preprocessed with a bandpass filter
(0.5 Hz to 40 Hz) which is a Chebyshev IIR filter with 4™ order.

B) Fetal ECG Extraction with Independent Component
Analysis

Blind source separation (BSS) approaches have been applied
for fetal/maternal ECG analysis by effectively segregating the
unobservable set of signals [10]. Here, we define S =[s1, s2, s3]
representing three ECG channels (three vectors) among which
each channel is a combination of fetal ECG, maternal ECG and
MA. We aim to find a matrix M =[m1, m2, m3] which contains
three separated components (fECG, mECG and MA). This
matrix could be found via some unknown mixing matrix A with
size of 3x3 as following

M=A.S (1)

Under the assumption that each component is independent in
the mixed signal, the elements of matrix A were found through
the process of maximizing the statistical independence of
sources. This could be done by maximizing the non-
Gaussianity or minimizing the mutual information between
among sources [11]. To demonstrate the efficacy of the
independent component analysis (ICA) framework, FastICA
and RobustICA algorithms have been implemented [11, 12].
The FastICA algorithm simplifies the kurtosis function which
aims to measure the non-Gaussianity. However, there are some
tradeoffs: 1) Pre-processing is needed (i.e. centering and
whitening); 2) If there are sudden changes in the signals, the
simplified equations are subject to inaccuracies; and 3) the step
size in the kurtosis equations for updating weights is fixed,
leading to the potential of being trapped in saddle areas and
local extrema [12]. Compared with FastICA, the RobustICA
algorithm is an alternative method to overcome such issues.
Specifically, the original kurtosis equation is used thus pre-
processing is not needed and RobustICA can deal with all signal
types. Additionally, an adaptive step size is used with



RobustICA, ensuring the weights converge to the actual
convergence point, thus avoiding getting trapped as the former
algorithm does [12].
C) Cloud System

We have been developing a cloud system to work with all
human wearable devices as well as data collection systems with
animal models. The system utilized an IoT architecture, opting
for direct connection to the cloud via a Wi-Fi module. This
provides each peripheral device with enough throughput to
easily stream recorded signals in real time. Each peripheral
device (smartphone in this case) could be connected to the
cloud via a standard home or enterprise internet access point
(router). Utilizing a direct connection to the systems servers by
each device sidesteps possible data bottlenecking issues present
with a hub-and-spoke approach. Most commercial and
residential wireless access points (routers) have a theoretical
limit of approximately 250 devices which may be connected at
any one time. This architecture allows for scaling of the device
pool up to the limit of the router and the bandwidth of the
internet connection. Each streaming connection utilized a
relatively small amount of data, so even with a large number of
connections, the system consumes a relatively small amount of
bandwidth. Each peripheral monitoring device utilizes a 32-bit
microcontroller (MCU) running FreeRTOS. These peripherals
can be coupled directly to additional monitoring equipment or
sensors via cable or BLE which allows for flexible deployment
in a laboratory setting. Users can utilize cloud-based multi-
channel signal recording and processing.

III. EXPERIMENT AND RESULTS

The efficacy of ICA methods was examined using both
simulated data and the online database from PhysioNet [13].
Fetal ECG and maternal ECG with a sampling rate of 1000 Hz
were generated by using a subVI from LabView software
(National Instruments, Austin, TX) within one minute and MAs
were collected by the MPU sensor (MPU6050). A matrix A
with the size of 3x3 for mixing all signals was also created by
randn() function (Matlab 2018, MatlabWorks). The simulated
data, then were formed by multiplying matrix A and a matrix of
fECG, fECG and MAs. For the online database from PhysioNet,
Abdominal and Direct Fetal Electrocardiogram Database
(ADFECGDB) was utilized [13]. It has data packets with 5 min
of recordings (4 abdominal channels and the scalp ECG) from
5 women in labor (38 to 41 weeks of gestation) and with
reference  FQRS annotation derived from the scalp
electrocardiogram (sECQG).

For the simulated data, spectrogram was used to assess the
power per frequency of fECG after extraction. Several
statistical values were used to evaluate the two ICA algorithms.
A set of binary classification, including the sensitivity (Se),
positive predictive value (PPV) and the accuracy measure (£1),
was used to evaluate fECG peak detection in ADFECGDB
database as the following:

Se = TP/(TP + FN) )
PPV = TP/(TP + FP) 3)
F1=2xTP/(2+TP +FN + FP) (4)
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Fig. 2. The spectrogram of original fECG (a), the extracted
fECG by FastICA (b), and RobustICA (c), respectively.

TABLE 1
THE PERFORMANCE OF FASTICA AND ROBUSTICA ON THE ADFECGDB
DATABASE
FastICA RobustICA
Record Se PVV F1 Se PVV F1

01 0.923 | 09115 | 09172 | 0.9654 | 0.9624 | 0.9639
04 0.1458 | 0.2121 | 0.1728 | 0.1442 | 0.2098 | 0.1709
07 0.664 | 0.6246 | 0.6437 | 0.2036 | 0.2258 | 0.2141
r08 0.9033 | 0.8853 | 0.8942 | 0.9922 | 0.9876 | 0.9899
rl0 0.5717 | 0.4705 | 0.5162 | 0.5621 | 0.4777 | 0.5165

where TP, FP and FN are true positive, false positive and false
negative in fECG peak detection, respectively.

Fig. 2 illustrates the spectrum of frequencies of the original
fECG signal, followed by the extracted one by FastICA and
RobustICA, respectively. Compared with the original fECG,
the one extracted by FastICA algorithm (Fig. 2b) has the most
identical spectrum with the major frequencies within 0 to 100
Hz. In contrast, the spectrum of the signal acquired by
RobustICA (Fig. 2¢) shows additional components. It may stem
from other signals as RobustICA did not completely suppressed
them.

Signals from the ADFECGDB database first underwent
preprocessing process by applying a bandpass filter of 10 Hz -
150 Hz, and then fHR values were extracted by both algorithms.
Table I summarizes the performance of each algorithm.
FastICA showed the best results on 101 and r08 with the F1
score of ~0.92 and ~0.9, respectively. Compared with this
algorithm on the same sets, the RobustICA outperformed with
the F1 score of ~0.96 for r01 and ~0.99 for r08. However, both
algorithms got low F1 scores (<0.51) on r01 and r04. This may
be explained by the inconsistency of the signal in the dataset.
Fig. 3 depicts the validation of the fetal heartrate (fHR) values
of the database record 101 detected by RobustICA (Fig. 3a) and
FastICA (Fig. 3b) algorithms with the reference fHR collected
by using scalp electrodes. Two algorithms yielded fHR with
great correlation compared with the reference fHR. Regarding
the algorithm run time (with 1-minute-long data), it took 0.087
second for FastICA and 0.1 second for RobustICA. This did not
show a significant difference, though RobustICA slightly
outperformed FastICA.
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IV. CONCLUSION

A home-based and cloud-enabled fetal/maternal ECG
monitoring system has been developed. The extraction
algorithms of FastlCA and RobustICA were validated and
compared with both simulated data and online data. We are
applying for Institutional Review Board (IRB) protocols to
conduct validations with pregnant women in our participating
clinics in both UC Irvine, CA and the Institute of Population,
Health and Development, Hanoi, Vietnam. This will further
help us characterize and improve our next-generation systems.
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