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Abstract— Electrocardiogram (ECG) monitoring of the fetus 

during pregnancy, before and during labor, can provide crucial 
information for the assessment of fetal well-being and 
development, as well as labor progress. An out-of-clinics fetal 

ECG monitoring system may pave the way for instant diagnosis, 
suggesting immediate intervention, which could help reduce the 
fetal mortality rate. In this paper, we present an unobtrusive fetal 

maternal ECG monitoring system which can operate in the home 
setting. The acquisition of the mother’s abdominal ECG is done 
using the non-contact electrode approach. The extraction of the 

fetal ECG from the combined fetal/maternal ECG signal is 
investigated using both Fast Independent Component Analysis 
(FastICA) and RobustICA algorithms. An accelerometer is 

integrated for motion artifact detection which would help reduce  
interferences due to movement. The device also is connected to a 
cloud server, allowing doctors to access the data in real time.  

Index Terms— Fetal/maternal Electrocardiogram, Fetal 
Mortality, Blind Source Separation, Independent Component 
Analysis. 

I. INTRODUCTION 

Despite high healthcare expenditures, prenatal care for 

women is often inadequate, with the maternal-fetal care system 

being overburdened. A recent report by the CDC showed that 

the U.S. fetal mortality rate remained unchanged from 2006 

through 2012 at 6.05 per 1,000 births [1]. In the 1970s, 

continuous monitoring of fetal heartrate (fHR) using Doppler 

ultrasound (known as cardiotocograph – CTG) was introduced 

into clinical practice, holding promise that the technology 

would help reduce incidences of intra-partum fetal injury and 

death. Unfortunately, a study has revealed that the technique 

increased the use of cesarean surgery, forceps, and vacuum 

delivery, but actually did not reduce perinatal morbidity or 

mortality [2]. Nevertheless, CTG is still a common practice and 

utilized in over 85% of labor episodes in the U.S [3]. Home-

based fHR monitoring systems were introduced lately but it is 

extremely difficult to operate by non-professional personnel.   

Further, the side effects of prolonged ultrasound exposure to 

fetus is a subject of controversy, as warned by the FDA 

especially with home devices (FDA 2014) [4]. 

There are existing ECG-based fHR monitoring systems, such 

as MERIDIAN M110 by MindChild Medical and the GE 

Monica Novii wireless patch system. However, M110 is wire-

connected, bulky, non-mobile and costly whilst the Monica 

Novii is limited to the labor and delivery areas in the hospital. 

The Pregsense belt for mobile fHR monitoring is bulky, and it 

is sold at $250/unit. Further, it would be a break-through if full-

feature fetal ECG (fECG) can be achieved. It has been reported 

that the changes in morphological parameters of fECG are 

associated with the level of fetal oxygenation, which greatly 

affects the development of the fetus [5]. Thus, numerous 

researchers have aimed to develop optimal signal processing 

algorithms to extract fECG for the high-noise fetal/maternal 

ECG (f/mECG). Adaptive filter and deep learning are among 

promising methods [6].  

Our team has been developing patch-based f/mECG 

monitoring systems [7, 8]. We extensively investigated the use 

of the non-contact electrode (NCE) approach for signal 

acquisition [9]. We have demonstrated that the NCE patch can 

record abdominal ECG signal through the shirt, yielding 

favorable signal to noise ratio (SNR). In this paper, we present 

the use of the blind source separation (BSS) method under 

independent analysis component (ICA) framework to extract 

fECG from the combined f/mECG signal. Both FastICA and 

RobustICA were implemented and the extraction of fECG 

using simulated data and online data was achieved and 

compared. 

II. DESIGN AND IMPLEMENTATION 

Fig. 1 describes the conceptual view of the f/mECG 

monitoring system. It comprises of f/mECG acquisition with 

three ECG channels and an integrated MPU 6050 accelerometer 

sensor (InvenSense, CA). A system-on-chip Bluetooth Low 

Energy (BLE) is used to digitize the data and transmit them to 

a smartphone where an application (App) was developed for 

further display, logging and analysis. The f/mECG system was 

designed for expectant mothers to wear as an elastic band to 

minimize the effects of motion artifacts (MA), thus improving 



the signal quality. The accelerometer is used to measure MA. 

We speculate that the signal collected by each ECG channel 

contains a mixture of independent signals including MA, fetal 

ECG and maternal ECG. Under this assumption, we leveraged 

independent component analysis algorithms (FastICA and 

RobustICA) to extract the fetal ECG. 

A) Circuit Design and Mobile Application 

As described in our previous work [7], the circuit was 

upgraded to have three ECG channels and a motion sensor, in 

order to facilitate signal processing and extraction. It includes 

three pairs of non-contact electrodes (NCEs), analog signal 

processing circuitry and the system-on-chip BLE nRF52832 

(Nordic Semiconductor) which is in charge of digitalizing the 

data and transmitting them to the Android App. Compared with 

that of the previous work [7], the new BLE module is more 

capable owing to the direct memory access (DMA) module 

which independently works with the central processing unit.  

In the mobile App, six values chronically-transmitted via 

BLE are s1, s2, s3, acc_x, acc_y, and acc_z. Where s1, s2, s3 

are three mixed ECG signals and acc_x, acc_y, acc_z are the 

values recorded by the accelerometer corresponding to x axis, 

y axis and z axis, respectively. Before reaching the App, each 

value is stored in a number of buffers with 8-bit length each. As 

the value is 12-bit (by the ADC), it is partitioned and stored in 

2 buffers with 8-bit and 4-bit segments, respectively. In the App, 

the data are received by merging the two buffers. To do so, the 

first buffer with the 8-bit segment is multiplied by 256, then the 

value of second buffer with the 4-bit segment is added. Thus, 

the 12-bit data would be fully reconstructed. The data are 

collected in real time and preprocessed with a bandpass filter 

(0.5 Hz to 40 Hz) which is a Chebyshev IIR filter with 4th order. 

B) Fetal ECG Extraction with Independent Component 

Analysis 

Blind source separation (BSS) approaches have been applied 

for fetal/maternal ECG analysis by effectively segregating  the 

unobservable set of signals [10]. Here, we define S = [s1, s2, s3] 

representing three ECG channels (three vectors) among which 

each channel is a combination of fetal ECG, maternal ECG and 

MA. We aim to find a matrix M = [m1, m2, m3] which contains 

three separated components (fECG, mECG and MA). This 

matrix could be found via some unknown mixing matrix A with 

size of 3×3 as following 

M = A.S   (1) 

Under the assumption that each component is independent in 

the mixed signal, the elements of matrix A were found through 

the process of maximizing the statistical independence of 

sources. This could be done by maximizing the non-

Gaussianity or minimizing the mutual information between 

among sources [11]. To demonstrate the efficacy of the 

independent component analysis (ICA) framework, FastICA 

and RobustICA algorithms have been implemented [11, 12]. 

The FastICA algorithm simplifies the kurtosis function which 

aims to measure the non-Gaussianity. However, there are some 

tradeoffs: 1) Pre-processing is needed (i.e. centering and 

whitening); 2) If there are sudden changes in the signals, the 

simplified equations are subject to inaccuracies; and 3) the step 

size in the kurtosis equations for updating weights is fixed, 

leading to the potential of being trapped in saddle areas and 

local extrema [12]. Compared with FastICA, the RobustICA 

algorithm is an alternative method to overcome such issues. 

Specifically, the original kurtosis equation is used thus pre-

processing is not needed and RobustICA can deal with all signal 

types. Additionally, an adaptive step size is used with 

 
Fig. 1. The conceptual overview of the fetal/maternal ECG monitoring system. The s1, s2 and s3 are mixed abdominal ECG signals (aECG) 

including fetal ECG (fECG), maternal ECG (mECG) and motion artifacts (MA). 



RobustICA, ensuring the weights converge to the actual 

convergence point, thus avoiding getting trapped as the former 

algorithm does [12]. 

C) Cloud System 

We have been developing a cloud system to work with all 

human wearable devices as well as data collection systems with 

animal models.  The system utilized an IoT architecture, opting 

for direct connection to the cloud via a Wi-Fi module. This 

provides each peripheral device with enough throughput to 

easily stream recorded signals in real time. Each peripheral 

device (smartphone in this case) could be connected to the 

cloud via a standard home or enterprise internet access point 

(router). Utilizing a direct connection to the systems servers by 

each device sidesteps possible data bottlenecking issues present 

with a hub-and-spoke approach. Most commercial and 

residential wireless access points (routers) have a theoretical 

limit of approximately 250 devices which may be connected at 

any one time. This architecture allows for scaling of the device 

pool up to the limit of the router and the bandwidth of the 

internet connection. Each streaming connection utilized a 

relatively small amount of data, so even with a large number of 

connections, the system consumes a relatively small amount of 

bandwidth. Each peripheral monitoring device utilizes a 32-bit 

microcontroller (MCU) running FreeRTOS. These peripherals 

can be coupled directly to additional monitoring equipment or 

sensors via cable or BLE which allows for flexible deployment 

in a laboratory setting. Users can utilize cloud-based multi-

channel signal recording and processing.  

III. EXPERIMENT AND RESULTS 

The efficacy of ICA methods was examined using both 

simulated data and the online database from PhysioNet [13]. 

Fetal ECG and maternal ECG with a sampling rate of 1000 Hz 

were generated by using a subVI from LabView software 

(National Instruments, Austin, TX) within one minute and MAs 

were collected by the MPU sensor (MPU6050).  A matrix A 

with the size of 3×3 for mixing all signals was also created by 

randn() function (Matlab 2018, MatlabWorks). The simulated 

data, then were formed by multiplying matrix A and a matrix of 

fECG, fECG and MAs. For the online database from PhysioNet, 

Abdominal and Direct Fetal Electrocardiogram Database 

(ADFECGDB) was utilized [13]. It has data packets with 5 min 

of recordings (4 abdominal channels and the scalp ECG) from 

5 women in labor (38 to 41 weeks of gestation) and with 

reference FQRS annotation derived from the scalp 

electrocardiogram (sECG). 

For the simulated data, spectrogram was used to assess the 

power per frequency of fECG after extraction. Several 

statistical values were used to evaluate the two ICA algorithms. 

A set of binary classification, including the sensitivity (Se), 

positive predictive value (PPV) and the accuracy measure (F1), 

was used to evaluate fECG peak detection in ADFECGDB 

database as the following: 

𝑆𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)   (2) 

𝑃𝑃𝑉 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)   (3) 

 𝐹1 = 2 ∗ 𝑇𝑃/(2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)  (4) 

where TP, FP and FN are true positive, false positive and false 

negative in fECG peak detection, respectively. 

Fig. 2 illustrates the spectrum of frequencies of the original 

fECG signal, followed by the extracted one by FastICA and 

RobustICA, respectively. Compared with the original fECG, 

the one extracted by FastICA algorithm (Fig. 2b) has the most 

identical spectrum with the major frequencies within 0 to 100 

Hz. In contrast, the spectrum of the signal acquired by 

RobustICA (Fig. 2c) shows additional components. It may stem 

from other signals as RobustICA did not completely suppressed 

them. 

Signals from the ADFECGDB database first underwent 

preprocessing process by applying a bandpass filter of 10 Hz - 

150 Hz, and then fHR values were extracted by both algorithms. 

Table I summarizes the performance of each algorithm. 

FastICA showed the best results on r01 and r08 with the F1 

score of ~0.92 and ~0.9, respectively. Compared with this 

algorithm on the same sets, the RobustICA outperformed with 

the F1 score of ~0.96 for r01 and ~0.99 for r08. However, both 

algorithms got low F1 scores (<0.51) on r01 and r04. This may 

be explained by the inconsistency of the signal in the dataset. 

Fig. 3 depicts the validation of the fetal heartrate (fHR) values 

of the database record r01 detected by RobustICA (Fig. 3a) and 

FastICA (Fig. 3b) algorithms with the reference fHR collected 

by using scalp electrodes. Two algorithms yielded fHR with 

great correlation compared with the reference fHR. Regarding 

the algorithm run time (with 1-minute-long data), it took 0.087 

second for FastICA and 0.1 second for RobustICA. This did not 

show a significant difference, though RobustICA slightly 

outperformed FastICA. 

TABLE I 

THE PERFORMANCE OF FASTICA AND ROBUSTICA ON THE ADFECGDB 

DATABASE 

 

Record 

FastICA RobustICA 

Se PVV F1 Se PVV F1 

r01 0.923 0.9115 0.9172 0.9654 0.9624 0.9639 

r04 0.1458 0.2121 0.1728 0.1442 0.2098 0.1709 

r07 0.664 0.6246 0.6437 0.2036 0.2258 0.2141 

r08 0.9033 0.8853 0.8942 0.9922 0.9876 0.9899 

r10 0.5717 0.4705 0.5162 0.5621 0.4777 0.5165 

 

  
Fig. 2. The spectrogram of original fECG (a), the extracted 

fECG by FastICA (b), and RobustICA (c), respectively. 



IV. CONCLUSION 

A home-based and cloud-enabled fetal/maternal ECG 

monitoring system has been developed. The extraction 

algorithms of FastICA and RobustICA were validated and 

compared with both simulated data and online data. We are 

applying for Institutional Review Board (IRB) protocols to 

conduct validations with pregnant women in our participating 

clinics in both UC Irvine, CA and the Institute of Population, 

Health and Development, Hanoi, Vietnam. This will further 

help us characterize and improve our next-generation systems. 

ACKNOWLEDGMENT 

This work is supported by the National Science Foundation 

CAREER Award under #1652818 (H. Cao) and the National 

Institute of Health Award #OD 024874 – 01A1 (H. Cao and 

M.P.H. Lau).  

REFERENCES 

[1] E. Gregory, M. F. MacDorman, and J. A. Martin, 

"Trends in fetal and perinatal mortality in the United 

States, 2006-2012," NCHS data brief, pp. 1-8, 2014. 

[2] A. M. Vintzileos, D. J. Nochimson, E. R. Guzman, R. 

A. Knuppel, M. Lake, and B. S. Schifrin, "Intrapartum 

electronic fetal heart rate monitoring versus 

intermittent auscultation: a meta-analysis," Obstetrics 

& Gynecology, vol. 85, pp. 149-155, 1995. 

[3] G. Macones, "Intrapartum fetal heart rate monitoring: 

nomenclature, interpretation, and general 

management principles," Obstetrics and Gynecology, 

vol. 114, pp. 192-202, 2009. 

[4] FDA. (2014). Avoid Fetal "Keepsake" Images, 

Heartbeat Monitors. Available: 

https://www.fda.gov/ForConsumers/ConsumerUpdat

es/ucm095508.htm 

[5] S. M. Martens, C. Rabotti, M. Mischi, and R. J. 

Sluijter, "A robust fetal ECG detection method for 

abdominal recordings," Physiological measurement, 

vol. 28, p. 373, 2007. 

[6] Z. Wei, L. Lijuan, G. Xuemei, and W. Guoli, "A deep 

learning approach for fetal QRS complex detection," 

Physiological Measurement, vol. 39, p. 045004, 2018. 

[7] T. Le, A. Moravec, M. Huerta, M. P. H. Lau, and H. 

Cao, "Unobtrusive Continuous Monitoring of Fetal 

Cardiac Electrophysiology in the Home Setting," 

presented at the IEEE Sensors, New Delhi, India, 2018. 

[8] M. Sharma, P. Ritchie, T. Ghirmai, H. Cao, and M. P. 

Lau, "Unobtrusive acquisition and extraction of fetal 

and maternal ECG in the home setting," in SENSORS, 

2017 IEEE, 2017, pp. 1-3. 

[9] D. Griggs, M. Sharma, A. Naghibi, C. Wallin, V. Ho, 

K. Barbosa, et al., "Design and development of 

continuous cuff-less blood pressure monitoring 

devices," in SENSORS, 2016 IEEE, 2016, pp. 1-3. 

[10] J. Behar, "Extraction of Clinical Information From the 

Non-Invasive Fetal Electrocardiogram," PhD, 

University of Oxford, Oxford, UK, 2014. 

[11] A. Hyvärinen and E. Oja, "Independent component 

analysis: algorithms and applications," Neural 

Networks, vol. 13, pp. 411-430, 2000/06/01/ 2000. 

[12] V. Zarzoso and P. Comon, "Robust Independent 

Component Analysis by Iterative Maximization of the 

Kurtosis Contrast With Algebraic Optimal Step Size," 

IEEE Transactions on Neural Networks, vol. 21, pp. 

248-261, 2010. 

[13] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. 

Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, 

and PhysioNet : Components of a New Research 

Resource for Complex Physiologic Signals vol. 101, 

2000. 
 

 
Fig. 3. The correlation of reference fHR and the fHR detected by 

RobustICA (a) and FastICA (b) algorithm (Unit: BPM). 
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