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Abstract

The purpose of this review is to assess the state-of-the-art fabrication methods, advances in
genome editing, and the use of machine learning to shape the prospective growth in cardiac
tissue engineering. Those interdisciplinary emerging innovations would move forward basic
research in this field and their clinical applications. The long-entrenched challenges in this field
could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM)
growth and maturation. Stem cell-based therapy through genome editing techniques can repair
gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally,
machine learning and precision control for improvements of the construct fabrication process
and optimization in tissue-specific clonal selections with an outlook of cardiac tissue

engineering are also presented.

Keywords: Cardiac tissue engineering, CRISPR/Cas9 systems, 3D scaffolds, machine

learning.
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1. Introduction

The adult mammalian heart is among the least regenerative organs thus cardiomyocytes (CMs) are
threatened by a multitude of factors; such as necrosis, apoptosis, and oncosis (or ischemic cell
death), which may lead to heart failure [1, 2]. Necrosis, or premature cell death due to physical or
chemical injury, and apoptosis, or programmed cell death, have more recently been found to be
linked together during pathological states of heart disease [3]. Regarding cardiac pathogenesis,
myocardial infarction results in scar tissue, regions where CMs are replaced with fibrillar collagen
and/or fibroblast-like cells [4]. Oncosis, or ischemic cell death, is recognized as distinct from
necrosis in that the cell swells instead of shrinks, but necrosis and oncosis both follow cell injury
[5]. Heart failure, as of 2017, affected about 38 million people globally [6], and 6.5 million of
those are in the U.S. alone [7]. Besides heart pathogenesis, the risk of heart disease rises steadily
and sharply with age [8]. All of these factors compete with the low cell turnover rates of mature
mammalian CMs, which is somewhere around 0.3-1% annually [6]. For these reasons and more,
the heart is one of the most important topics for tissue engineering research. These researches not
only would reveal mechanism of cardiac repair and improvement of cardiac function through tissue
engineering that provide new scientific insights, but also propel forward the findings to new

therapeutic designs for clinical treatment.

To date, although cardiac tissue engineering has not been absolutely ready for routine clinical
applications, autologous and allogeneic adult stem cell transplants have been successfully in
cardiac therapies with randomized clinical trials (RCTs) in some reported cases [9]. Therefore,
engineering innovations hold promise to shape research and treatment directions in the years to
come. Together with tissue-engineered hearts for transplantation, current methods have been

focused on stem cell transplantation in which cells are seeded onto 3D polymer scaffolds followed
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by electrical, mechanical or chemical stimulation (heparin and hyaluronic acid) in order to promote
stem cell differentiation. Eventually, the diseased and injured heart tissues are expected to restore
[10-12]. However, the concerns of histocompatibility of regenerated cardiac cells and stem cell-
derived pro-arrhythmic substrates [13, 14] have limited the use of stem cell-based therapies for
human heart failure. As a result, immune tolerance and growth of stem cells on novel biomaterials
have recently emerged as a promising approach for cardiac repair [12]. Interestingly, recent
findings in molecular mechanisms during the developmental stages of mammalian hearts have
suggested that new CMs may arise from existing CMs and progenitor or stem cells at early stages
of embryo and newborn development [15-19]. Toward this end, stem cells, including cardiac stem
cells (CSCs) [20], embryonic stem cells [21], bone marrow-derived mesenchymal stem cells [22],
and cord-derived mesenchymal stem cells [23] are essential materials for cell-based tissue
engineering applications; which have already entered the clinical setting with some challenges [24-
26]. However, the capacity and significance of adult mammalian cardiomyocytes and CSCs
regeneration remain controversial [27-30]. One of reasons is that specific stem cell markers that
are used to identified CSCs, such as c-KIT, are necessary but not sufficient for their identification
[31-33]. Recently, Kretzschmar ef al., have used single-cell mnRNA sequencing and genetic lineage
tracing to interrogate existence of CSCs with unbiased mouse models of proliferation and they
found that cycling cardiomyocytes only dominantly presented in the early postnatal growth phase
[27, 32], while many noncardiac cell types mainly present in damaged adult myocardium [27, 34].
Although the gene expression profile was shown the same in both injury-activated cardiac
fibroblasts and neonatal cardiac fibroblasts under in an autocrine fashion, there is no evidence of

a latent CSC population [32]. Although the presence of CSC population in adult hearts is still
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controversial, differentiating other stem cells into mature cardiomyocytes is attractive in cardiac

therapies.

To get a high yield of mature cardiomyocytes, scaffolding and its derivates of growth
factor/stimulating devices have been deployed as a support substrate for cell growth and
transplantation to the host tissue in regenerative medicine [35, 36]. For instance, cell alignment is
essential for cardiovascular tissues in order to maintain the microarchitecture and biological
functions; therefore, various strategies have been developed to induce cardiac cell alignment.
Those methods include topographical patterning (e.g., micro- and nano-grooves and aligned
nanofibers), chemical treatment (patterns with cell-adhesive or repellent chemistries), controlled
stress/strain conditions (e.g., stretching, fluid shear stress, and compression), and a combination of
them [13, 14]. In its early stage, tissue engineering research involving CMs revolved around
injection of differentiated stem cells with the hope they would grow and synchronize with the host
[6]. However, it was found that these cells required environmental conditions which were
biomimetic to early cell growth conditions, in order to differentiate and bind into a syncytium [15].
This could be pulsatile electrical stimulation similar to native syncytium electric fields [15],
simultaneous electrical stimulation and cyclic mechanical stretching [37], or any combination of
these with bioinspired antioxidant materials and other microenvironment cues [12, 17], which can

be optimized by algorithms based on experimental datasets.

The recent rise of artificial intelligence, especially machine learning and deep learning, has
paved the way for a wide range of applications, and cardiac tissue engineering is not an exception.
Machine learning (ML) aims to develop algorithms that discover trends and patterns in existing
data and use this information to make predictions on new data. ML has proven to be of great

potential value in a variety of application domains, including biological investigations and
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healthcare where accurate analysis of biomedical data benefits early prediction and detection of
diseases [38]. ML encompasses a diverse set of schemes by which a machine extracts certain
features, “learns” the pattern of features associated with a certain group and then predicts the group
based on feature patterns of new samples. The ML methods are particularly effective in situations
where prediction involves large data sets, especially datasets of terabyte or petabyte size [39].
Specifically, ML algorithms can perform efficient data training to identify relationships of inputs
and outputs, although there are not typically intuitive interpretations for how hidden layers in these
algorithms operate [40]. However, in this field, it is still in the proof-of-concept phase where
structures and algorithms have been focused in order to minimize or eliminate human intervention
in these processes. For example, ML has been used for automated drug classification based on
contractility of human pluripotent stem cell-derived engineered cardiac tissue [41], protein-ligand
binding affinity [42], and histopathological image analysis [43]. Regarding 3D scaffold constructs,
the fabrication could be controlled and optimized with an adaptive neuro fuzzy inference system

and a Pareto-based self-learning evolutionary algorithm [44].

In addition to many strategies for precision control of myocardial microenvironment of smart
biomaterial scaffold for cellular adhesion, growth, and maturation [45, 46], ML and evolutionary
algorithms have been used to identify stemness features associated with oncogenic
dedifferentiation [47], 3D scaffold design [48], local microenvironment changes, and to drive
cellular differentiation pathways in CM maturation. Artificial intelligence-based approaches, such
as machine learning and deep learning, refer to a set computer programs that deal with data training
and perform intelligent analysis [49-51]. Machine learning is an integration of algorithms such as
naive Bayesian [52], support vector machines (SVM) and updating deep neural networks which

are highly dependent on high-quality data. ML with the model of end-to-end (E2E) increases levels
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of accuracy of the process from big datasets created from high-throughput screening data for drug
discovery and development [53]. Recently, deep learning as part of machine learning methods has
catalyzed interest for drug discovery [54]. Deep neural networks approaches [55, 56] can process
with all combinatorial variations using the single E2E black-box network or the deep classification
network [57], which were deployed for biomedical researches in cardiac contractile dysfunction
and arrhythmia [58, 59], facial phenotypes of genetic disorders [60], precision phenotyping and
clinical diagnostic support systems [53]. In tissue engineering field, it was reported that smart
scaffolds integrated with a wireless ML-driven sensing responded to changes of
electrophysiological phenotypes , local tissue microenvironment (e.g. pH, protease activity, and
biosignatures) [61], and CM phenotyping (e.g. B-Adrenergic receptor) [62, 63]. This may allow
training the data for self-repair approaches in the design of 3D scaffolds and cardiac regeneration.
Moreover, ML allows performing multifunction by controlling serial signals of the biomimetic
paracrine in custom design to identify cell shape phenotypes associated with microenvironment
cues [64, 65]. Thus, novel ML-based scaffold designs may provide not only a robust substrate for
cardiac tissue culture but also a real-time database for precision bioactive control (e.g., timed
release of growth factors) in the microenvironment that may be required for improvements of CM

regeneration and repair.

In the next sections of this paper, molecular and biomaterial engineering approaches will be
introduced and discussed followed by methods for nano-scaffold fabrication. Updates of upcoming
and ongoing ML applications in tissue engineering, especially as it relates to cardiac tissue

engineering, will be then broadly covered.
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2. Genome editing and stem cell differentiation
2.1. CRISPR/Cas systems for cardiac tissue engineering
2.1.1. Gene mutants in human cardiac failure

According to statistics, it was revealed that gene-related factors and genetic variations are
responsible for complex forms of cardiovascular disease (CVD) [7]. For example, genetic variants
of missense mutations (T983I) in the KCNH2 (LQT2) gene frequently relate to and
arrhythmogenic disorders like QT syndrome [18]. Techniques using induced pluripotent stem cells
(iPSCs) and genome editing can intervene at molecular levels for cell adhesion, differentiation,
and cell alignment in cardiac tissue engineering [19, 66]. Genome editing based on programmable
nucleases is a molecular process that uses clustered regularly interspaced short palindromic repeats
systems (CRISPR) with Caspase 9 (Cas9) guiding enzymes and has been used to introduce the
catecholaminergic polymorphic ventricular tachycardia type 1 (CPVTI1) associated cardiac
ryanodine receptor 2(RYR2) mutation in healthy wild iPSCs [19]. In principle, CRISPR/Cas9
systems are nucleic acid-targeting defensive tools of prokaryotes, whose operation is exploited to
edit mammalian genomic materials and control transcriptional regulation of endogenous genes; in
turn, these genes can be used to control molecular routines in tissue regeneration [67]. By
introducing F24831 RYR2 mutations to wild type human iPSCs (hiPSCs), calcium signaling
pathology can be observed and compared between iPSC-derived CMs from CPVT1 patient cells
and gene-edited cells. Results show that increased diastolic Ca®>" and reduced sarcoplasmic
reticulum store size in gene-edited and patient-derived CMs are consistent with each other [19].
Alternatively, CRISPR/Cas9 engineered R453C-BMHC [68] and corrected PRKAG2 mutations in

patients [69] allow them to recover physiological mitochondrial functions, as well as
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electrophysiological and structural abnormalities, making this a reasonable approach to recover

CM functionality [68, 69].
2.1.2. Potential of CRISPR/Cas systems in cardiac tissue engineering

The CRISPR/Cas9 system is based on two components: a synthetic, single-stranded guide
RNA (sgRNA) and Cas9 enzymes. The spacer part of the sgRNA can be designed to bind
complementary DNA targets for Cas9 cleavage at a protospacer adjacent motif (PAM) in the DNA
targets, in order to generate a single-strand or double-strand break. Subsequently, a new DNA is
formed through one of the two molecular mechanisms: non-homologous end joining (NHEJ) or
homology directed repair (HDR). These mechanisms serve to introduce random mutations and to
precisely edit DNA sequences, respectively [70]. However, several challenges exist with the use
of this system, such as off-target effects and the difficulty in delivery of large Cas9 sequences.
Off-target effects refer to nonspecific and mismatched genetic modifications that can arise using
engineered programmable nuclease techniques. In CRISPR/Cas9 systems, these off-target effects
can be resolved by reducing non-specific binding of gRNA sequences. CRISPR/Cas9 systems can
be introduced to cells in the form of plasmid DNA, RNA, or proteins, which can be used for
engineering cells in cardiac tissue regeneration [68, 71]. Recently, Doudna et al. explored CasX
enzymes risen from a TnpB-type transposase, a distinct family of RNA-guided genome editor
(CRISPR/CasX), that can be used as a third platform for RNA-programmed genome editing [72].
With the compact size, dominant RNA content, and minimal trans-cleavage activity, CasX is the
smaller size compared to that of the previous reported Cas9 and Cas12a. This provides an increased
efficiency of therapeutic delivery and overcoming the human immune systems, which may offer
more advantages relative to current CRISPR/Cas systems. CRISPR/Cas systems can be also

utilized to reactivate non-dividing cells and terminally differentiated mammalian cells, or change
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cell structures on-demand to address tissue architecture formation, both of which having been
demonstrated for cardiac stem cell engineering [67-69]. Moreover, due to difficulty in ex vivo
culture of primary CMs, a potential alternative approach is using a CRISPR/Cas9 system to edit
1PSCs-derived CMs in situ. These edited iPSCs can differentiate into readily transplantable cells:
iPSC-cardiac progenitors or iPSC- derived CMs to deliver to the diseased heart though
intracoronary or intramyocardial routes. As an example, iPSC-derived CMs have been seeded on
micro-threads then transferred to cardiac tissue and contractile cardiac fibers [73]. Unfortunately,
iPSC-derived CMs are immature with regards to their structure and function, and this immaturity
has narrowed down their applications in drug screening and cell-based therapies [74]. One of
solutions is to create the geometry of the environment based on extracellular matrix (ECM) for

cellular behavior and maturation [75].

Attachment of CMs or iPSC-cardiac progenitors to culture systems is highly dependent on
levels of fibronectin and collagen IV in the extracellular matrix (ECM), both of which feature
prominently in cardiac cell fate [61]. With the CRISPR/Cas9 system, the expression of those
matrix proteins can be increased, which improves cell homing functions in culture systems. In
another report, this editing tool has been used to eliminate inactivated genes in mature CMs
through the Adeno-associated virus 9 (AAV9)- sgRNAs system [76]; it has also been used for
editing the mitochondrial genome in order to control membrane potential disruption and cell
growth inhibition, which are related to cancer genesis in transplanted tissues [40]. Moreover, the
CRISPR/Cas9 system has been applied to human stem cell-derived CMs for cardiovascular disease
modeling and cardiotoxicity screening; enabling studies of new cardiovascular disease treatments
and drug-induced cardiotoxicity [77]. In addition, the CRISPR/Cas9 system can address safety

concerns by reducing immunogenicity and even the risk of arrhythmia by removing the mutant
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ryanodine receptor 2 (RYP2) from the multimeric complexes [78]. To minimize the risk of
immunogenicity, in addition, the suicidal thymidine kinase gene can be induced into the genome
of stem cells for iPSCs and embryonic stem cells (ESCs) to efficiently protect hESC-derived
allografts from immune rejection [66, 79]. Molecular activities of ion channels and gap junctions
determine the functionally proficient electromechanical coupling between myocardial cells.
Defects in the molecular activities responsible for restoring myocardial electrical conduction can
be mitigated by targeted genes [80] and macrophage cell therapy [81]. Macrophages are innate
immune cells that reside and accumulate in the healthy and injured hearts. A complex crosstalk
between cardiomyocytes and macrophages regulates the fate of cardiomyocytes in the injured heart

and plays central roles in cardiac hypertrophy [82].

Given that the clear majority of heterogeneous CMs in postnatal tissue is postmitotic, a new
routine for homologous recombination of these cells is required. This begins by analyzing the
transcriptome during the differentiation process of human PCSs to mature CMs in order to identify
a key transcriptional roadmap for molecular intervention [35]. Interestingly, CRISPR/Cas9
systems can contribute to cell differentiations by controlling the gene profile expression through
Cas activity. Polstein ef al. reported a light-inducible CRISPR/Cas9 system to control endogenous
gene activation and transcription [83, 84]. Alternatively, CRISPR/Cas9 systems provide direct
benefits in controlling of immune response for CM engraftment [85]. Since mature CMs are
postmitotic cells, they lack the HDR repairing mechanism and the CRISPR/Cas9 system doesn’t
work in these cells. This restriction can be overcome with iPSC-CMs from patients or endothelial
cells (ECs), smooth muscle, and cardiac progenitor cells in which genes of interest are edited ex
vivo. Then these cells can differentiate to all cardiac lineages used for cardiac regeneration. In

addition, together with synthetic biology, bioinformatics, and deep learning CRISPR/Cas9 systems

11



10

11

12

13

14

15

16

17

18

19

20

21

22

23

are able to reduce off-target consequences and create gene regulatory networks for multicellular
development [61, 86]. Using CRISPR/Cas9 systems to reprogram fibroblasts into skeletal
myocytes with the targeted activation of the endogenous Myod1 gene locus results in elevated
expression levels of myogenic markers, mainly because activation is comparable to a lentiviral
vector-delivered MYOD1 transcription factor [87]. With such an activation, in vivo CMs and other
cardiac lineages at injury sites can be converted from cardiac resident fibroblasts. This process
relates to the complex multilayered regulatory systems that induce cell differentiation and heart

development as a system biology level [88].

Gene regulatory networks play an important role in the spatiotemporal expression of desired
cardiac regeneration-related proteins. Products of this expression are involved in many
endogenous and exogenous physio-chemical stimuli, producing growth factors and other cytokines
which shape cardiac tissue structure. The GRN can be regulated at molecular levels via the
technique of synthetic biology coupled with bioinformatics, in order to design biological circuits
and provide tools for more intricate control of cellular functions. With such an approach, tissue
regeneration can overcome long-standing challenges and introduce new methods for basic research
and clinical applications. In biosafety regulations, CRISPR/Cas9 system activity could be
eliminated to avoid risks of permanent expression of foreign targets when designing tissue
structures for clinical use. Figure 1 introduces a protocol to edit mutant genes in hiPSCs and
monitor cardiac differentiation; which was done with molecular and phenotypic characteristic
measurement. Briefly, CRISPR/Cas9 system was used to introduce long-QT syndrome genes in
independent healthy hiPSC lines to generate disease-CM hiPSCs. This resulted in the formation
of isogenic sets of hiPSC-CM which were characterized with phenotyping and molecular analysis.

CRISPR/Cas9 systems for tissue-specific engineering of stem cells not only provide new avenues

12
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for functional tissue engineering and regenerative medicine, but also control the immunological
balance in both the early and chronic stages after cardiac injury [89]. Proinflammatory cytokines
present in increased levels in diseased and injured tissues, which leads to the increase of tissue
degradation and can prevent differentiation of hiPSCs [90]. Recently, reports strongly suggested
that controlling inflammatory cytokine secretion from resident cardiomyocytes and cell interaction

is one potential approach for cardiac angiogenesis and cellular regeneration [91, 92].
[Figure 1]

Previous studies have reported that transplantation of cells genetically engineered for
constitutive overexpression of interleukin 1 receptor antagonist (IL-1Ra) is effective when creating
cells-integrated scaffolds for implantation [93]. This approach also provides great promise in
combating inflammatory levels of interleukin 1 (IL-1), a challenge for transplanted and/or
engineered tissues. To this end, RNA interference or CRISPR/Cas9 systems have been used for
controlling the expression of inflammatory cytokines [43]. Alternatively, regulation of gene
expression of growth factors and anti-inflammatory cytokines (IL-4, IL-1Ra, and IL-10) in cell-
based engineering platforms are also a considerable approach. Compared to RNAi technology,
however, the CRISPR/Cas9 systems provide permanent removal of inflammatory cytokines from
the cell genome, this guarantee long term control of anti-inflammation in cardiac tissue

regeneration.

Due to numerous challenges in current cardiac tissue regeneration, the CRISPR/Cas9 system
has become an effective alternative which can tackle those by providing complex genome editing
and transcription regulation, in order to control differentiation, at genomic and molecular levels
[67, 70]. While still in its early stages, ongoing research on the use of CRISPR/Cas9 systems for

more-complex implementation of the CM molecular clock [94] by controlling the transcription-
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translation feedback loop may be a milestone in tissue engineering. In brief, CRISPR/Cas9 systems
hold potentials to dramatically improve comprehension of cellular processes and contribute

significantly to cardiac tissue engineering.

2.2. Stem cell differentiation

Differentiation of stem-cell-derived CMs into the desired lineages requires many aspects of
the scaffold constructs, cell fate, and cell’s environment [36, 73, 95-98]. Using hiPSCs to
differentiate into mature CMs has been considered as a potential approach towards therapeutics in
cardiac tissue generation. With optimal protocols, fetal hiPSCs can be differentiated into almost
100% pure CMs. Although human ESC-derived CMs are a predominant source of adult human
cardiac myocyte for clinical therapeutics, they still lack many essential features such as being well-
organized and distributed, and functional transverse tubules (T-tubules) [99]. Chong et al. reported
that mature human ESC-derived CMs, rather than immature, may become the preferred candidate
to reduce the risk of arrhythmias in the transplantation therapy [100]. In addition, adult-like hiPSC-
derived CMs can be widely used for applications in stem cell-based disease modeling and in drug
toxicity screening [95, 101]. Some strategies of generating cardiac tissue from stem cell-derived
CMs, in which their cellular morphology is similar to human adult cardiac structure and function,
have been reported [74, 102, 103]. Ronaldson-Bouchard et al. used different stages (day 12 and
day 24 differentiation) of hiPSC-derived CMs and co-cultured them with fibroblasts in a fibrin-
based hydrogel to grow mature cardiac tissues around two flexible pillars [104]. These pillars were
used to induce forces in the contracting tissues, as forces are observed in native myocardium. After
1 week in culture, either constant electrical stimulation (2 Hz for 3 weeks) or intensity training (2
to 6 Hz ramp over 2 weeks, then back to 2 Hz for one week) were applied to stimulate the

differentiation and growth of hiPSCs to maturize CMs, which were determined through the
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molecular, cellular, and functional level of the differentiation [104, 105]. At the molecular level,
genes associated with adult-like conduction, atrial isoform-related ventricular isoform of myosin,
ATP production, and calcium transportation were highly expressed, which indicated maturation.
At the cellular level, growth of CMs with ordered sarcomeres and a high density of mitochondria,
were observed [104]. Vital proteins such as T-tubules and folding of the sarcolemma membrane,
involved in calcium transportations, were found in the cell [106, 107]. Cell alignment in tissue
constructs, where cells were adhered to one another with mechanical strength at gap junctions,
promoted electrical signaling transmission between cells in the constructs. Well-aligned hiPSC-
derived ventricular CMs on the human ventricular cardiac anisotropic sheet, a cardiomimetic
biohybrid material, was reported in fully key electrophysiological features of native human
ventricle [108]. This was observed only when hiPSC-CMs received an intensity training at an early
stage [109]. After spending the intensity training, cardiac tissues were able to efficiently perform
action potentials through a process of excitation-contraction coupling. Electrical stimulation
(excitation) induces mechanical response (contraction), which allows myocardium to contract.
Wiegerinck et al. reported that increased beating frequency was the simultaneous result of
increased contraction force and faster relaxation [110]. Various regulatory factors involved in CM
maturation, hormone-driven cues [99], intensive electrical stimulation [111, 112], cell composition
and matrix/media [113, 114] have shown the most potential to achieve hiPSC-derived CMs in

scaffold environments.

In cardiac tissue engineering, natural polymer scaffolds play an important role in promoting
differentiation and growth of hiPSC-derived CMs owing to their minimal immunogenicity and
biodegradability. Kaiser ef al. used a blended fibrin and collagen scaffold to differentiate hiPSC-

derived CMs into engineered myocardium [97]. Results showed that expression of cardiac
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troponin T (¢TnT) in CM populations were dependent on the scaffold compaction. While the
decreased compaction showed the lowest (24.4%) and highest (60.2%) positive expression of
c¢TnT" CM purities, the highest compaction showed 40-50% c¢TnT" population [97]. This study
clarifies the correlation of hiPSC-derived CMs and scaffold interactions and provides a basis for

integrated design of customized scaffold constructs for cardiac tissue engineering.
3. Biomaterials and 3D scaffold fabrication
3.1. Characteristics of biomaterials

Biomaterials in the forms of hydrogels, carriers, and scaffolds play a vital role in anchoring
cells and helping them generate into functional tissues [115-117]. Although those forms have
different specific patterns in tissue engineering, all of them serve as a framework substance for
proliferation and differentiation of the desired tissue. For example, carrier materials enable cells
or chondrons to produce the ECM that holds growth factors in skin wound healing and cardiac
remodeling and repair [118, 119]. Porous hydrogels entrap embedded cells and allow diffusion of
gas and metabolites through their pore network [120, 121]. Similarly, scaffolds are also porous
matrices, though they allow cell migration and attachment to the damaged tissue, as well as act as
a substitute for lost tissue in the body [122]. The developing highly-porous scaffold biomaterials

significantly depend on their types of materials, functionalization, and geometry.

Typically, biomaterials for tissue engineering are synthesized or modified from primary natural
materials, then further processes are conducted to form appropriate morphology and characteristics
for a desired application. They include polyglycolic acid (PGA) [123], poly(L)-lactic acid (PLA) ,
poly(DL)glycolate (PLGA), and polyvinyl alcohol and their derivatives [124-126]. In contrast,
natural biomaterials include collagens, alginate, chitosan, fibrin and hyaluronic acids. Recently,

advances in synthetic chemistry have contributed to novel hybrid biomaterials with outstanding
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properties in terms of conductivity and strength [127, 128]. For use in cardiac tissue engineering,
it is required for biomaterials to support tissue reconstruction and regeneration via active support
for cell-to-tissue processes by promoting cell-cell adhesion, proliferation and differentiation.
These biomaterials can also culture healthy tissues by forming three-dimensional structures for gas
and nutrient transportation as well as formation of vascular supportive substructures for blood
vessels. The biomaterials used for scaffold fabrication processes can optimize constructs used in
clinical settings; allowing for maximizing cellular adhesion space, ECM secretion,

revascularization, and paracrine processes.
3.2. Shaping biomaterials in 3D structures

Scaffold materials play a key role in tissue engineering and have been used more and more in
clinical practice [129-131]. These materials form a biomimetic ECM which promotes cell adhesion
and differentiation, as well as 3D organotypic cultures [132]. By combining modern advances of
three major fabrication techniques, namely electrospinning, self-assembled monolayers, and
thermally induced phase separation, with peptides and DNA, biomimetic 3D scaffolds have been
developed for CM regeneration [133-135]. These systems support differentiation of various stem

cells down multiple lineages and create relevant 3D specific tissues for clinical practice.

Obviously, specific cell types could be seeded on the biomimetic nanofibrous scaffold to
regenerate desired tissues. Both primary and stem cells can be used, for different purposes [36, 98,
112]. Primary cells are collected directly from mature tissue and cultured to obtain the desired cell
number and form tissue constructs. However, quick phenotypic changes, limited proliferation
numbers, and aging of primary cells inhibit their use once the cells are transferred from their
natural living conditions to artificial ones [132, 136]. While CMs can be taken from specific tissue

sources for targeted applications, robust scaffolds and engineered biological tissues are needed to
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improve to CM characteristics in new implanting environments. Most scaffolds used for cardiac
tissue engineering are hydrogel materials and 3D nanofiber matrices, which feature benefits such
as controlled release of growth factors and good electrical conductivity [137, 138]. Results from
confocal laser scanning microscopy, scanning probe nano-tomography, and transmission electron
microscopy show that cardiac cells and fibroblasts actively interact with 3D nanofibrous substrates,
but in different ways [139]. While fibroblasts make contact with nanofibers through focal adhesion
clusters, without wrapping the fiber, CMs develop a distinguished sheath structure and covering
fiber to increase contact area [ 139, 140]. These results point to a new perspective on how cultured
cells interact with 3D nanofibrous scaffolds. A host of previous studies reported that matrix
anisotropy and stiffness predominantly influence 3D structural cell phenotypes, cell migration,
proliferation, and differentiation of cultured CMs [141]. Cardiac cells grown in 3D matrices were
always in tight contact with each other through cellular junctions, which results in considerable
mechanical adhesion between cardiac cells and fibers. The increase in mechanical adhesion was
found to be linked with the increased contact area between the cells and fibrous structures [142].
The contact area plays a role for focal adhesion kinase in cardiac mitochondrial biogenesis induced
by mechanical stress, which contributes to the hypertrophic growth of cardiomyocytes via control

of mitochondrial transcription cascade [143].

Cellular parameters like the number of mitochondria and endoplasmic reticulum membranes
featured higher counts of cells grown in 2D constructs. Moreover, Wobma and colleagues reported
that upgraded “smart” scaffolds can directly control biologically active molecules like hormones
in the paracrine pathways directly through the cell membrane, avoiding dissipation through the
whole tissue solution [144]. In such a system, bioactive molecules are efficiently used for CMs

because they increase the diffusion of these molecules from neighboring cells through paracrine
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hormones. It is also helpful if conducting materials are integrated into these platforms prior to
cardiac cell regeneration. Fibers are immersed in cardiac cells to promote high densities of
electrical contacts, thus forming an electrical network on the outer part of the nanofibrous
structures isolated from the surrounding integrin microdomains. With currently-available
biomimetic models [129], the physical basis for this could be explained with van der Waals forces
and DLVO theory. DLVO theory is the typical explanation of the stability of colloids in suspension
[145]. The explanation of the cell interaction stability is governed by physical and chemical
interactions between cellular surfaces that the balance between two opposing forces-electrostatic
repulsion and van der Waals attraction is under DLVO theory [146, 147]. The interaction energy
is calculated by the sum of van der Waal forces and electric repulsion energy; thus zeta potential,
hydrodynamic diameter, and cellular surface thermodynamic properties play an important role in

the interaction energy in the scaffold microenvironment for cell alignment and elongation [148].

Model of generation, alignment, and stabilization of spindle shaped fibroblasts and vessel
under oscillatory stretch was also reported [149]. These results reveal a new mechanism for vessel
network formation: under oscillatory strain, 3D scaffolds can promote mural cell alignment, cell
proliferation, translocation of a mechanosensitive transcriptional activator (YAP) into cell nuclei,
and increased expression levels of B-catenin. This directs ECM alignment along the orientation of
the fibroblasts. Furthermore, ECs, which are tolerant to stretch stimulus, form aligned vessels
directed by the fibroblast and ECM alignment. However, there is loss of fibroblast alignment and
vessel alignment due to mechanical uncoupling of the cells after adding blebbistatin to the culture
medium [149]. In addition, both fibroblasts and vessels lose alignment when the cellular
proliferation and signaling pathways responding to mechanical stimulus are inhibited. Stretch

stimulus promotes the stable production of growth factors, which enhances mural cell
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differentiation, thereby enriching stability and alignment. These findings demonstrate how
increased mechanical strain affects cell development, differentiation, and shape formation during
the vascularization process. Cellular stretching is restricted by nucleus size, which is less sensitive
to deformation [139]. At the adhesive site, the cell is stretched by surface tension force. Absorbing
fibers is not energetically beneficial in the case of the actin cytoskeleton, hence contact is
minimized with fibers by reduction of cell membrane surface area [150]. Thus, these cells are able
to generate enough forces to overcome the resistance of the actin cortex at several filament
assembly complex locations. In contrast to fibroblasts, CMs contain integrins in costamere
structures that anchor sarcomeres to the ECM, so myocytes have much higher affinity with the
substrate and serve to stabilize areas of cell-ECM interaction. Therefore, when CMs grow on
suspended fibers, the myofibrils start attaching and aligning with them to increase the area of

interaction with the substrate [139].

The 3D microenvironment increases adherence and direct reprogramming of fibroblasts into
CMs throughout the matrix via a metalloproteinase dependent mechanism [151]. The nanofibrous
poly(L-lactide) (PLLA) scaffolds adsorb serum proteins and ECM proteins like fibronectin,
vitronectin, and laminin at quantities four times higher than solid walled PLLA scaffolds [151,
152]. In nanofibrous form, the absorption of protein is influenced by many surface characteristics
such as protein absorption layers, surface-to-volume ratio, surface nm-scale morphology,
crystallinity, and orientation of the polymer in its nanofibrous form. Finally, nanofibrous scaffolds

promote cell adhesion in many cell types, giving them an advantage over solid walled scaffolds.

3.3. 3D-gel of hybrid biomaterials

Natural biomaterials can be produced from self-assembled monolayers (SAM) of different

polymers through hydrogen bonds, van der Waals forces, and hydrophobic and electrostatic
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interactions [153]. SAM fabrication is very useful and robust, thus some recent studies have
attempted to mimic collagen structures from ECM-derived binding peptides, which increased cell
adhesion and cardiac repair by cardiac progenitor cells [154]. These systems can work with other
self-assembling materials like phage display peptides and genetic materials to improve adhesion,
proliferation, and controlled differentiation; rendering many applications in tissue engineering
[155]. Wang et al. reported a procedure to fabricate biomaterials for 3D scaffold formation based
on SAMs from bacteriophage display [156]. In this approach, a panel of desired peptides was
displayed on M13 phages, a bacteriophage of Escherichia coli, for the purpose of CM generation
by activating ligand-linked microenvironments in damaged cardiac tissues (Figure 2) [150]. As
seen in Figure 2, RGD and DLEFIFEER ligand motifs that mediate adhesion to the cell adhesive
receptors were displayed on major coat protein pVIII and determined through an interaction
between nephronectin and a8 1 integrin receptor [157]. Using a 3D printer, assembly of the short
peptide-coated nanoparticles into a 3D functional structure was driven by noncovalent interactions
to form a scaffold [157]. The mechanisms of these self-assembled processes have led to major
advances in the understanding of biological and chemical 3D folding processes for biomimetic
supramolecular peptide assemblies in coatings, gels and electroactive materials. The specific
function of these materials relies on their helical peptides, B strand peptides, and surface binding
monolayer-forming peptides, which electrically stabilized the phage nanofiber inside the RGD-
phage scaffold. Subsequently, hiPSCs were seeded in the RGD-phage scaffold and induced the

formation of cardiomyocytes [158].
[Figure 2]

The geometry of the scaffold substrate is very important in cardiovascular tissue engineering

because the cardiac tissues need to be highly differentiated to perform high specific functionality.
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For example, the microscopic level of heart valve needs to be at anisotropic geometry, in order to
have particular shape of semilunar valves at the macroscopic level [159]. Microenvironment and
contraction properties of cardiomyocytes can be influenced by morphology and mechanical
properties by increasing the modulus in the range of 1-30 kPa of 2D substrates [160]. Developing
these properties in synthetic 3D scaffold may provide a significant means of controlling cell fate
both in vitro and in vivo. An ideal polyester biomaterial elastomer for cardiac tissue engineering
should exhibits a relatively-low Young’s modulus, with high elongation and tensile strength [161].
Through a one-step polycondensation reaction and ultraviolet reaction, poly(octamethylene
maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer) is formed the prepolymer gel and
a cross-linked elastomer with highly elastic and tunable properties [161], of which they are
dependent on the UV light exposure, monomer composition, and porosity of the cured elastomer.
Interestingly, the material does not only provide its elastomeric properties falling within the range
of those of adult heart myocardium, but also is optimized for higher elasticity for cardiac cell
attachment and interaction in vitro and in vivo [161]. Finally, the polymer expressed relatively-
stable degradation characteristics that support potential tissue implants. Recently, Shiekh et al.
developed and evaluated an elastomeric antioxidant polyurethane (PUAO) for cardiomyocyte
functionality [12]. A serial analysis including uniaxial and cyclic tensile testing, thermal analysis,
cytotoxicity, antioxidant analysis, and degradation reveals that PUAO reduces intracellular
oxidative stress in HOC2 cardiomyocytes and neutralized reactive oxygen species (ROS) promoted
cell death. Moreover, PUAO film displayed synchronous beating with mature cardiomyocytes
showing high expression of cardiac specific a-actinin, troponin-T, and connexin-43 proteins [12].
Additionally, cultured cardiomyocytes on PUAO film expressed the physiological intracellular

calcium functionality similar to mature cardiomyocytes [12].
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Shin et al. used directed SAM to selectively trap target carbon nanotubes (CNTs) as an effort
to control the growth of supramolecular hydrogel fibers and improve functionality of
bioengineered cardiac tissues [117]. Surfaces of CNTs stimulate the formation of hydrogelators in
the vicinity of the fiber constructs, which results in increased fiber formation, changes in network
morphology, and increased mechanical properties. Subsequently, this can improve
electrophysiological performance of cardiac tissue in terms of increased beating rate and lower
excitation threshold [117, 162]. Besides CNTs, metallic nanoparticles, with their size-dependent
properties, have shown promise in overcoming many of the current limits of cardiac tissue
engineering. Li ef al. reported a nanocomposite composed of gold nanoparticles (AuNPs) and a
collagen matrix, which improved tissue growth via localized strength, thus enhancing the assembly
of intercalated discs by Pl-integrin-mediated signals [151]. In addition, 3D structures based on
rigid CNTs scaffolds have been used to improve CMs viability, proliferation, and maturation, but
they require undesirable invasive surgeries for implantation [163]. On the platform of 3D gel-
based matrix, an injectable reverse thermal gel (RTG) functionalized with CNTs (RTG-CNT) that
switches their morphology from a solution at room temperature to a three-dimensional (3D) gel-
based matrix shortly after reaching body temperature was developed [163]. This extends long-term
CMs survival, promotes CMs alignment and proliferation, or improves CM physiological function.
Recently, Mason et al. reported a highly-ordered 3D fibrous protein scaffold derived from a self-
assembly processes [153]. This resulted from a balanced system of low-entropy processes in which
a set of interactions between different chain residues formed amorphous aggregates, thus
mimicking self-assembling protein systems in nature. As an alternative to self-assembly,

electrospinning produces nanofibers and nanofibrous structures from a broad range of
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biomaterials-based dopes in which advantages, drawbacks and potential applications are discussed

1n next sections.

3.4. Electrospinning for 3D scaffold fabrication

Electrospinning could be used to make nanofibers from a variety of polymers and it is well
suited to 3D nano-scaffold constructs in cardiac tissue engineering [164]. In essence, the
electrospinning technique is based on an electric field to create a charge on the surface of polymer
solutions, thus generating a force opposing its surface tension and allowing fibers to be drawn out
[165]. Many parameters can be used to tune this process, including electrical charges from the jet,
solvent characteristics, length of polymers, flow rates, voltage levels, and collector distance; all of
these considerations, and others, need to be taken into account to get a final polymer fiber in
nanofibrous architecture [166, 167]. The resulting products are collected on solid or liquid
substrates, or even substrate free, to form 3D micro-fibrous and nanofibrous scaffolds. Suhaeri et
al. reported a new platform based on a fibroblast-derived, matrix-coupled, aligned and electro-
spun nanofiber [45]. In their work, a hybrid scaffold structure composed of poly(l-lactide-co-
caprolactone) (PLLA-PCL) and fibroblast-derived ECM (PLLA-PCL/FDM) was aligned to form
an artificial cardiac microenvironment. The physical mechanical property of PLLA-PCL in the
parallel direction shows the anisotropic nature of the aligned PLLA-PCL fibers. The PLLA-
PCL/FDM was produced from the fibroblast culture on the PLLA-PCL fiber for 5-7 days and the
ECM was collected from a subsequent decellularization. On this co-culture system, cellular
characteristics of differentiation, phenotyping, cell viability, and maturation of H9¢2 and neonatal
rat CMs were significantly improved compared to those in fibronectin (FN)-coated electro-spun
PLLA-PCL fibers (Figure 3) [45]. On the aligned scaffold, cells spread along the directional cues

instead of the random growth in every direction observed in the random scaffold. In addition, non-
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sulfated polysaccharides [168], biopolymers [169], and both organic and inorganic frameworks
[170] have been integrated into PLGA to improve its biocompatibility and mechanical properties;
and this highly depends on polymer concentration. However, due to collector plate constructs,
nanofibrous scaffolds made from electrospinning are generally 2D; limiting their clinical relevance.
Recently, a rotating cylinder has been demonstrated as a replacement for the collector plate used
in electrospinning, which was utilized to produce a tubular scaffold and allow for growth factors
to be released in a controllable fashion [171, 172]. A scaffold platform with polycaprolactone (PCL)
nanofibers and vascular endothelial growth factor (VEGF)-encapsulated gelatin particles was
fabricated to extend half-life time and stimulations of VEGF to mesenchymal stem cells (MSCs)
and ECs [173]. In addition, paracrine mechanisms that are involved in MSC differentiation into
cardiomyocytes are only limited to cell differentiation rates, not directly impacting to cell
differentiation [174, 175]. Jiang et al. reported that this construct can drive the differentiation of
MSCs to ECs and keep the stability of the tubular structure [173], indicating that growth factor
(GF)-releasing scaffolds are potential platforms based on the electrospinning process for cardiac

tissue engineering.
[Figure 3]

Recently, it has been shown that use of a Teas chart could provide useful information in terms
of solubility and spin-ability for the electrospinning process [176-178]. Polymers should have
solubility in the target condition, as values outside of a specific range will result in electro-sprayed
beads and aggregates [176]. Higher fidelity nanoscale topography and bio-activity integration in
the 3D architecture on the ECM-inspired nanofibrous scaffolds showed outstanding advantages

for engineering 3D anisotropic cardiac tissues [137, 179].

3.5. Thermally-induced phase separation
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Thermally induced phase separation (TIPS) is another robust method to make 3D scaffolds. It
involves five steps: polymer preparation, phase separation and gelation, solvent extraction,
freezing, and freeze drying [180]. Once a polymer is dissolved in a specific solvent, the solution
becomes thermodynamically unstable and results in two material phases: one “rich” in polymer
and another phase “lean” in polymer. The resultant polymer structure depends on the ratio of
polymer to solvent and conditions of the phase separation. Once the solvent is extracted, the phase
of lean polymer is removed, and the polymer rich phase is identified as being in one of three
categories: powder, closed cell foam, and open cell foam. Open cell foam is the type used to make
3D scaffolds for human chondrocyte growth and ECM formation [181]. ECM-derived porous
foams are biologically-relevant substrates in advanced 3D in vitro cell culture models through

controlling freezing and lyophilization procedures [182].

Luca et al. reported the formation of surface structures of TIPS-based scaffolds formed in water
at room temperature [183]. The TIPS method allows for tuning of surface morphology which
benefit tissue regeneration of preosteoblasts [183]. Pefia et al. presented an injectable and
biomimetic RTG that was functionalized with poly-L-lysine or laminin to promote longevity of
cultured CMs, neonatal rat ventricular myocytes (NRVM), and adult rat ventricular myocytes
(ARVM) [130]. Their results showed that the RTG functionalized with lysine stimulated NRVM
grow and differentiated heart-like functional syncytia. Beating cells were recorded after 21 days
in both cases of RTG and Lysin-functionalized RTG [130]. In addition, TIPS can be combined
with porogen leaching to increase levels of architectural control. Porogen leaching (paraffin, sugar)
can promote the formation of micropores with morphologies such as spherical, tubular, and disk
shaped pores within the scaffold [184]. These micropores play important roles in enhanced cell

penetration, proliferation, mass transport of nutrients, and growth factors in studies of angiogenesis
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and tissue formation. Several research groups have developed anatomically shaped molds with
reverse solid freeform fabrication (SFF) in a PLLA solution [185, 186]. Architectural features were
formed through three steps: ECM-mimicking materials, formation of pores for cell penetration and
mass transport, and anatomical scaffold shaping. This last step is vital for structural tissue like
bone and cartilage. TIPS can be used in concert with porogen leaching and 3D molds and with
common chemical and biological polymers to create structural tissue scaffolds with excellent

processing flexibility.

3.6. Bioprinting for 3D scaffolds

Advancements in 3D printing have now begun to see its use in tissue engineering. State-of-
the-art techniques in this field includes laser direct writing and multiphoton polymerization, which
can be used for computer-aided scaffold design [187]. The process of designing and manufacturing
scaffolds in this way includes several steps: design of functionally graded scaffolds, modeling of
selective laser sintering and fused deposition modeling (FDM) processes, development of
bioreactors, and 3D bioprinting [187-189]. Laser systems such as femtosecond- and ultraviolet-
based sources allow for precise manufacture of 3D tissue scaffolds, which are engineered entirely
through computer-aided design [190]. Zheng et al. reported the process of using computer-
controlled UV laser systems for 3D scaffolds with many kinds of polymers such as polyethylene
glycol diacrylate (PEG-DA), ormocomp, pentaerythritol tetra-acrylate (PETRA) [191]. More
recently, a class of micro-architected materials with high-ordered structural connectivity and
nanoscale features was printed by projection micro-stereolithography [191]. By using biopolymers,
the technique could be used to produce biocompatible micro-lattices for soft tissue engineering,
which are used as injectable scaffolds that can either induce endogenous cardiomyocyte repairing

[192].
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Seeded cardiomyocytes can be grown in hexagonal 3D fiber scaffolds made by melt electro-
writing, a form of 3D printing. The resultant hexagonal microstructures have outstanding
mechanical characteristics, allowing for large anisotropic reversible deformations; this deformable
structure mimics microstructure of myocardial tissue [137]. Moreover, the high porosity of these
structures aids formation of aligned tissues and are effective as cardiac patches on contracting
hearts. These functional human myocardial patches feature properties highly desirable for
clinically relevant cardiac repair [96]. As a result, iPSC-derived CMs have been successfully
cultured in multi-cellular 3D bioprinting substrates for vascularized heart tissue [98]. Human
umbilical vein endothelial cells (HUVECs) and iPSC-CMs have been encapsulated within
hydrogel strands, containing alginate and PEG-fibrinogen, and forced out through custom
microfluidic printing heads to form spatial depositions with high fidelity and resolution. Maiullari
and colleagues have reported a 3D cardiac tissue composed of iPSC-CMs from different tailored
geometries with a high orientation index [98]. Blood vessel-like shapes differentiated from
HUVECs can be used for in vivo grafting, which is a better integrated support for engineered
cardiac tissue [98]. These findings also bring important contributions to functional heart tissue
generation in vitro through 3D PEG-fibrinogen hydrogels to recover their pluripotency [98]. This
technique plays a key role in the design of printed micro-fibrous constructs used to assemble
complex vascular networks. For example, bio-printed ECs following this can effectively develop
vasculature in the transplanted tissues in the same manner of native vessels [193]. The results of
bio-printed 3D vessel-based therapy directed to restore blood flow can counteract cell death and
promote regeneration in the revascularization of ischemic or damaged organs, which highly relies

on microenvironment engineering for supplies of oxygen and nutrient.
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However, due to the lack of oxygen and nutrient diffusion (in the 100-200 pum scale) in porous
structures, migration of iPSCs tends to be in the outer zone of hydrogels; and this produces
inhomogeneous cellular distribution in vascular networks in vivo [194, 195]. These diffusion
problems could be solved via an integrated system of porous structures and parallel fibers to form
an engineered vascular network. By addition of 1% w/w PEG-DA monomer to bioprinting
materials, the homogeneous culture biosystem fully supplies nutrients to all regions of the 3D
constructs [98] . This technique has been used for iPSC-derived CMs culture to produce
myocardial-like tissue [98] and generate 3D vascular structure [196]. Alternatively, circulation in
the 3D constructs is supplied by a microfluidic device bearing a Y-junction (2 inlets, 1 outlet) in
which the flows of two different bio-inks are precisely driven by external microfluidic pump [98].
Interestingly, this construct showed great promise for artificial skeletal muscle generation once the
dimensions of channel were reduced to 500x500 um? (cross-section) to create an extremely-small
dead volume (<2 pL); this allowed rapid tuning between the two bio-inks during printing. This
system also allows building heterogeneous structures composing of iPSC-derived CM and

HUVEC could potentially mimic native cardiac contraction in better than those described above.

Functional contraction of the myocardium is orchestrated by electrical stimulation propagation
in the right sequence and is driven partially by CM spatial orientation; therefore, proper orientation
is a critical goal for organization of CMs [98, 158]. The organization of CMs embedded in 3D bio-
printed fiber structures is impacted by the surrounding fiber matrix direction; often, growth of
iPSC-derived CMs is directed along the fiber printing direction. Contraction can be further
enhanced with higher material conductivities. Scaffolds that couple electrical and elastic materials
have become valuable for cardiac cell function, but current conductive materials do not show

tunable physiological properties for cell behaviors [138, 197]. Electrospun conductive scaffolds
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were reported of use in cardiac tissue engineering for enhancement of connexin 43 expression [96,
197]. By integration of AuNPs into hydrogel scaffolds, the polymer templated gel becomes tunable
with a Young’s modulus similar to that of myocardium, polyaniline, and polypyrrole. Neonatal rat
CMs were cultured on the scaffold and expressed high level of connexin 43, with or without
electrical stimulation. Hosoyama et al. have also reported a novel nanoengineered hybrid electro-
conductive cardiac patch for treating the infarcted myocardium [96] of which classification and

localization from medical images are detected by machine learning [198-202].

4. Machine learning and precision control for 3D scaffold fabrication

4.1. Machine learning in tissue platform

As mentioned, currently the most obvious use of machine learning (ML) in this field is
identifying patterns in tissue-related data and/or classifying specific tissue constructs. One
example of a problem of interest is that of classifying the phenotype of differentiated, stem cell-
derived CMs. One group sought to classify CM phenotype by matching distinct groups of shapes
with distinct groups of action potential waveforms [203]. It was done by staining the cells of
interest, optically mapping them during contraction, converting time-varying pixel intensity to
discrete waveforms, and then using ML algorithms to identify groupings of AP behavior which
they could compare to cell cluster shape data. The employed ML is what’s known as spectral
clustering whose algorithm attempts to minimize a “similarity” weight value between sets of inputs,
thereby grouping them [204]. In this case, the authors used aligned and averaged AP as the input
to the clustering algorithm, allowing the algorithm to minimize similarities between groups of the
AP waveforms, and then mapped these groupings to cell cluster spatial distributions. These
methods have been successfully applied in biomedicine and cell biology with various stage-of-the-

art machine-learning algorithms [58, 60, 205].
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[Figure 4]

A more-recent example of ML used in this space was geared toward not only classification of
cardiac tissue contractile events [206] but extending this classification set into a predictive model
for preclinical screening effects of drugs on cardiomyocyte function [41]. The predictive models
are highly dependent on machine learning methods such as naive Bayesian, support vector
machines (SVM), and end-to-end (E2E)-integrated ML system [53], of which they are leveraged
by bigger datasets generated from high-throughput screening data. Lee ef al. reported a SVM to
develop a drug screening assay on hiPSCs-derived cardiac tissue (Figure 4) [41]. In this approach,
groups of linearly separable data were demarcated by planes in order to classify them [207]; and
the planes themselves were statistical maximizations of group separation based on feature points
(i.e. support vectors), rather than the more-computationally intensive nearest-neighbor piecewise

approach [208].

They first qualified models by generating force data and derived parameters from stimulated
cardiac cells, mixing the data with a control set, allowing a binary SVM to attempt to classify the
data, and then quantifying the resulting SVM accuracy [209]. This classification model accuracy
then becomes a proxy for cardiac activity of the drug. About 50% accuracy means that the SVM
could not separate control from drug but accuracy greater than 50% indicates that the statistical
model was able to group the drug and control outputs into different regions of the parameter space
and, therefore, declare a difference in behavior [41, 210]. Data of cardio active effects express in
a higher SVM accuracy, if they are more distinguishable from two compound groups. Based on a
given concentration, the degree of cardio activity for a target compound is shown in a singular
quantitative index with the binary SVM approach [41, 206]. Next, a library of this drug screen

testing data was combined and an SVM designed for multiple classes was used to define parameter
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space regions for each. The library of compounds was built on a multiple-category prediction
model for mechanistic action of screened compounds and chemogenomic databases [211, 212].
Data from the library group allow the machine learning defines boundaries of various drug families
and mechanism of action [213]. Finally, the developed model can be applied for the unknown
compounds on tissue engineering. After doing so, a withheld data set of the same form was fed
into their predictive model to see if the SVM could properly classify drug interactions [214],
integrating multiple omics data [215], and unknown drug compounds [216]. In their demonstration,
they were able to classify cardiac activity of unknown compounds with an accuracy of roughly 72%
and generalize the results to other drug families with an accuracy above 70% [217]. Further, ML
and its myriad algorithms can also be used on the protein and gene side of tissue engineering, as it
has been demonstrated or proposed for histopathological image analysis [43], ligand affinity [42],
folding structure [218], gene expression and biomarker data mining [219, 220], and in evaluation
of pre-implantation embryos [221]. Large datasets such as the “Tissue Atlas” [222], a human
proteome map categorized by tissue, could easily be used as a training and testing set for ML

algorithms targeting identification of impaired tissue or disease onset.
4.2. Precision control in fabrication of 3D scaffold

The ever-widening and accelerating field of robotics both contributes to and has the possibility
of benefitting from tissue engineering. The contribution of robotics to tissues engineering lies
mostly in the manufacturing space; as automated fabrication has hastened tissue construct research.
Of particular popularity at the moment is the concept of robotic bio-fabrication, also known as
organ printing or bioprinting. Bioprinting was defined by members of the first international
workshop on the subject in 2004 as the “use of material transfer processes for patterning and

assembling biologically relevant materials—molecules, cells, tissues, and biodegradable bio-
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materials—with a prescribed organization to accomplish one or more biological functions™ [223].
In other words, it’s the use of automated fabrication to faster transfer from the scaffold design and

tissue culture, to clinical settings, especially in the field around regenerative cardiomyocytes.

As discussed earlier, 2D and 3D cardiomyocyte cultures in biomimetic conditions are crucial
to the improvement of knowledge surrounding cardiac tissue development [224]. Researchers have
presented methods for forming these tissue constructs in a variety of manners— from using
electrospinning to create scaffolds enabling cell attachment and growth [96] to 3D patterning of
tissue-similar constructs [225], or using printer deposited spheroids to induce scaffold-less self-
assembly of tissue [226, 227], although some of these technologies have significant hurdles to
overcome still. Within the last decade, researchers have begun to concern themselves with the
systems design of holistic industrial bio-fabrication lines, including the design stage prior to and
maturation stage after bio-fabrication [228]. In-vivo bio-fabrication is also getting attention;
beyond bioresorbable printed scaffolds [229], there have even been demonstrations in mice of laser
printing of photoactive resins above the calvaria to form bone-like caps [229], which was

integrated with the robotic controlling.

Tissue engineering is also feeding back into robotics in two important ways—inspiring bio-
mimetic robotic systems [230] and becoming a potential component within robots themselves
[231]. Most bio-similar robots up to this point have focused on the use of soft materials to grip and
move, as the field has acknowledged that the limited conformability of robotics prior to this trend
is directly counter to the variety of conformable structures seen in nature [230]. Much of the
interest in artificial tissue has been focused on muscle. One group demonstrated artificial muscle
composed of polymer-based composites which bend and flex under cation exchange [232], similar

to action potential propagation in cardiac tissue. Another group demonstrated this same concept
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using a collagen gel filled with rat CMs and initiated contractile behavior strictly chemically, using
epinephrine and nifedipine [233]. This is somewhere between the former and latter contributions
of tissue engineering but there are recent examples in which robotics systems have been designed
from the systems level to take advantages of engineered tissues, themselves being bio-similar
robotic systems. As an example of engineered tissue integrated robotics, researchers have
demonstrated actuators which are comprised of myoblast-filled hydrogels and triggered by
electrical stimulation [234], antagonistically contracting against each other to create both
contraction and extension. It is of note here that not only are the actuators themselves engineered
tissues, but they have been attached to their skeletal frame by culturing methods, and even the
mechanical systems design mimics natural tissue. It is likely that more bio-similar, bio-integrated

robotic hybrids are on the horizon.

5. Conclusions

Cardiac tissue engineering has benefited greatly from advances in genetic engineering,
material engineering, electrical engineering, and biochip design. Within genetic engineering,
genome editing is a pioneering tool that has been used in the generation of new cellular, tissue and
animal models to investigate cell-cell adhesion, differentiation of hiPSCs, and generation of CMs
for various cardiac disease. However, the post-mitotic nature of CMs and various technical barriers
present hurdles for bringing engineered cardiac tissue directly to therapeutic applications. Other
cells such as cardiac fibroblasts, ECs, and muscle cells can potentially substitute for CMs in

developing tissues for cardiovascular diseases.

One major technical advancement in this field is the ability to design a physical framework of
biocompatible materials and the control of mechanical characteristics, which can be applied

clinically. Due to the nature of CMs, scaffolds used for CM growth should be readily tunable for
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alignment/organization to produce efficient contractions. Further, electrical stimulation should be
integrated into the system to perform intensity training in the later stages of CM culture [111]. This
enables the connection of native and differentiated cells, at single cell levels of cellular
communications, between hiPSC and CMs. Communication between CMs and their micro-
environment within the engineered tissue should be understood in tandem with development of
3D biomimetic scaffolds and bioreactors in order to promote cost-effective scale-up of tissue

production.

There exists a variety of supporting technologies which could be applied in the process of
tissue engineering. One possibility is that machine learning be used involved in the design and
processing of micro-physiological systems. High-throughput fabrication could be optimized via
scaffold geometry, cellular paracrine factors, and cellular communication, in order to maximize
survival rates and completely functionalize engineered cardiac tissue. At the molecular and cellular
level, engineered cardiac tissue derived from the HLA-null line should be tailored towards
developing immune-resistant modified hiPSC-derived CM lines; this can be done using genome

editing tools focused on solving cryopreservation general implantation issues.

Confucius said, “Our greatest glory is not in never failing, but in rising every time we fail.”
We believe with focused and continued progress achieved by scientists across a range of

multidisciplinary fields, cardiac tissue engineering will soon be viable for clinical use.
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6. List of abbreviations

Cardiomyocyte — CM

Cardiac stem cells (CSCs)

Machine learning — ML

Induced pluripotent stem cells — iPSCs

Clustered regularly interspaced short palindromic repeats systems — CRISPR
Caspase 9 — Cas9

Human iPSCs — hiPSCs

Single-stranded guide RNA — sgRNA

Protospacer adjacent motif — PAM

Non-homologous end joining — NHEJ

Homology directed repair — HDR

iPSCs-derived cardiomyocytes — iPSC-CMs

Human induced pluripotent stem cells-derived CMs — hiPSC-CMs
Extracellular matrix — ECM

Self-assembled monolayers — SAM

Fibronectin — FN

Carbon nanotubes — CNTs

Artificial heart muscle - AHM

Magnetic nanoparticles — MNPs

Vascular endothelial growth factor — VEGF

Mesenchymal stem cells — MSCs

Human mesenchymal stem cells — hMSCs

Endothelial cells — ECs
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Thermally induced phase separation — TIPS
Neonatal rat ventricular myocytes — NRVMs

Adult rat ventricular myocytes — ARVMs

Solid freeform fabrication — SFF

Human umbilical vein endothelial cells - HUVECs

Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1)
Ryanodine receptor 2(RYR?2)

Interleukin 1 receptor antagonist (IL-1Ra)

Interleukin 1 (IL-1)

Polyglycolic acid (PGA)

Poly(L)-lactic acid (PLA)

Mechanosensitive transcriptional activator (YAP)

Poly(L-lactide) (PLLA)

Poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer)

Elastomeric antioxidant polyurethane (PUAO)
Reactive oxygen species (ROS)

Carbon nanotubes (CNTs)

Gold nanoparticles (AuNPs)

Reverse thermal gel (RTG)

Polycaprolactone (PCL)

Growth factor (GF)

Fused deposition modeling (FDM)
Polyethylene glycol diacrylate (PEG-DA)
Pentaerythritol tetra-acrylate (PETRA)
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Figure 1. (1) Introduction of LQTS genes in independent healthy hPSC lines using CRISPR/Cas9.
(2) Generation of disease-cardiomyocyte hiPSCs. (3) Isogenic sets of hPSC-CMs were
differentiated from the edited hiPSCs lines. (4) Molecular analysis and phenotyping of hPSC-CMs

(upper) molecular pathogenesis, (middle) drug screening, and (bottom) physiological functions.
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RGD domain

Growth factor incorporated
Polycationic biomaterials

Cardiomyocyte differentiation

Figure 2. Biomaterials are based on self-assembled monolayers from bacteriophage display for
3D scaffolds formation. (Top), RGD peptide is displayed and fused to the solvent-exposed terminal
of each copy of major coat protein (pVIII) through genetic engineering. The side wall of
filamentous phage by RGD-coding gene into gene VIII to generate RGD-phage. (Bottom) The 3D
scaffold of RGD-phage nanofibers (negatively charged) self-assemblies with polycationic
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biomaterials and integrated into a 3D printed bio-ceramic scaffold [156], which electrically
stabilizes the phage nanofiber inside the scaffold. The resulted scaffold is seeded with hiPSCs and
the implanted into cardiac defect. The presence of RGD-phage in the scaffold induced the

formation of cardiomyocytes [235].
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Figure 3. Fabrication and characterization of PLCL/FDM. (a) Illustration represents the
fabrication process of PLCL/FDM. (b) Random and aligned orientations of PLCL fibers. Scale bar
of SEM images is 10 um. (¢) Fibrillary ECM components in FDM were stained against FN and
collagen type 1. The direction of PLCL fiber alignment is shown by double headed arrows. Scale
bar is 50 um. (d) ATR-FTIR spectra of FDM with C=0 at 1753 cm™' from PLCL and amide group
at 1645 cm™ from FDM. (e) AFM images for surface topographical features of PLCL and
PLCL/FDM,; color scale shows their surface roughness and difference in height. (f) Quantitative
comparison of root mean square (RMS) roughness calculated from AFM images. Statistical

significance (***p < 0.001). The reproduced image is permitted from [45].
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Figure 4. Machine learning for drug screening on human iPSCs-derived engineered cardiac tissue.
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(A) Waveform pattern parameters are determined based on concentration of cardioactive
compounds compared to the binary support vector machine (SVM). The collected data points
would be in line with those of vehicle as if the compound does not modulate the contractile
behavior of human ventricular cardiac tissue strips (hvCTSs). If data of cardio active effects are
more distinguishable, it shows in a higher SVM accuracy which is possible to separate two
compound groups. The degree of cardio activity of a given concentration for target compound is
shown in a singular quantitative index with the binary SVM approach. (B) Library of compounds
is built on a model for prediction of mechanistic action of screened compounds. Data from the
library group allow the machine learning defines boundaries of various drug families. Finally, the
developed model can be applied for the unknown compounds on tissue engineering. The image is

reproduced with permission from [41].
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