

1 **Cardiac tissue engineering: State-of-the-art methods and outlook**

2 Anh H. Nguyen^{1,2†}, Paul Marsh^{2†}, Lauren Schmiess-Heine², Peter J. Burke^{2,3,4}, Abraham Lee^{3,5},
3 Juhyun Lee⁶, and Hung Cao^{2,3*}

4 [†]*Equal contribution*

5

6 ¹Electrical and Computer Engineering Department, University of Alberta, Canada

7 ²Electrical Engineering and Computer Science Department, University of California Irvine, CA, USA

8 ³Biomedical Engineering Department, University of California Irvine, CA, USA

9 ⁴Chemical Engineering and Materials Science Department, University of California Irvine, CA, USA

10 ⁵Mechanical and Aerospace Engineering Department, University of California Irvine, CA, USA

11 ⁶Bioengineering Department, University of Texas at Arlington, TX, USA

12

13 *Corresponding author:

14 Hung Cao, Ph.D.

15 Assistant Professor of Electrical Engineering and Biomedical Engineering

16 Department of Electrical Engineering and Computer Science

17 Department of Biomedical Engineering

18 Henry Samueli School of Engineering

19 University of California, Irvine, USA

20 E-mail: HungCao@uci.edu

21

1 **Abstract**

2 *The purpose of this review is to assess the state-of-the-art fabrication methods, advances in*
3 *genome editing, and the use of machine learning to shape the prospective growth in cardiac*
4 *tissue engineering. Those interdisciplinary emerging innovations would move forward basic*
5 *research in this field and their clinical applications. The long-entrenched challenges in this field*
6 *could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM)*
7 *growth and maturation. Stem cell-based therapy through genome editing techniques can repair*
8 *gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally,*
9 *machine learning and precision control for improvements of the construct fabrication process*
10 *and optimization in tissue-specific clonal selections with an outlook of cardiac tissue*
11 *engineering are also presented.*

12

13

14 **Keywords:** Cardiac tissue engineering, CRISPR/Cas9 systems, 3D scaffolds, machine
15 learning.

1 **1. Introduction**

2 The adult mammalian heart is among the least regenerative organs thus cardiomyocytes (CMs) are
3 threatened by a multitude of factors; such as necrosis, apoptosis, and oncosis (or ischemic cell
4 death), which may lead to heart failure [1, 2]. Necrosis, or premature cell death due to physical or
5 chemical injury, and apoptosis, or programmed cell death, have more recently been found to be
6 linked together during pathological states of heart disease [3]. Regarding cardiac pathogenesis,
7 myocardial infarction results in scar tissue, regions where CMs are replaced with fibrillar collagen
8 and/or fibroblast-like cells [4]. Oncosis, or ischemic cell death, is recognized as distinct from
9 necrosis in that the cell swells instead of shrinks, but necrosis and oncosis both follow cell injury
10 [5]. Heart failure, as of 2017, affected about 38 million people globally [6], and 6.5 million of
11 those are in the U.S. alone [7]. Besides heart pathogenesis, the risk of heart disease rises steadily
12 and sharply with age [8]. All of these factors compete with the low cell turnover rates of mature
13 mammalian CMs, which is somewhere around 0.3-1% annually [6]. For these reasons and more,
14 the heart is one of the most important topics for tissue engineering research. These researches not
15 only would reveal mechanism of cardiac repair and improvement of cardiac function through tissue
16 engineering that provide new scientific insights, but also propel forward the findings to new
17 therapeutic designs for clinical treatment.

18 To date, although cardiac tissue engineering has not been absolutely ready for routine clinical
19 applications, autologous and allogeneic adult stem cell transplants have been successfully in
20 cardiac therapies with randomized clinical trials (RCTs) in some reported cases [9]. Therefore,
21 engineering innovations hold promise to shape research and treatment directions in the years to
22 come. Together with tissue-engineered hearts for transplantation, current methods have been
23 focused on stem cell transplantation in which cells are seeded onto 3D polymer scaffolds followed

1 by electrical, mechanical or chemical stimulation (heparin and hyaluronic acid) in order to promote
2 stem cell differentiation. Eventually, the diseased and injured heart tissues are expected to restore
3 [10-12]. However, the concerns of histocompatibility of regenerated cardiac cells and stem cell-
4 derived pro-arrhythmic substrates [13, 14] have limited the use of stem cell-based therapies for
5 human heart failure. As a result, immune tolerance and growth of stem cells on novel biomaterials
6 have recently emerged as a promising approach for cardiac repair [12]. Interestingly, recent
7 findings in molecular mechanisms during the developmental stages of mammalian hearts have
8 suggested that new CMs may arise from existing CMs and progenitor or stem cells at early stages
9 of embryo and newborn development [15-19]. Toward this end, stem cells, including cardiac stem
10 cells (CSCs) [20], embryonic stem cells [21], bone marrow-derived mesenchymal stem cells [22],
11 and cord-derived mesenchymal stem cells [23] are essential materials for cell-based tissue
12 engineering applications; which have already entered the clinical setting with some challenges [24-
13 26]. However, the capacity and significance of adult mammalian cardiomyocytes and CSCs
14 regeneration remain controversial [27-30]. One of reasons is that specific stem cell markers that
15 are used to identified CSCs, such as c-KIT, are necessary but not sufficient for their identification
16 [31-33]. Recently, Kretzschmar *et al.*, have used single-cell mRNA sequencing and genetic lineage
17 tracing to interrogate existence of CSCs with unbiased mouse models of proliferation and they
18 found that cycling cardiomyocytes only dominantly presented in the early postnatal growth phase
19 [27, 32], while many noncardiac cell types mainly present in damaged adult myocardium [27, 34].
20 Although the gene expression profile was shown the same in both injury-activated cardiac
21 fibroblasts and neonatal cardiac fibroblasts under in an autocrine fashion, there is no evidence of
22 a latent CSC population [32]. Although the presence of CSC population in adult hearts is still

1 controversial, differentiating other stem cells into mature cardiomyocytes is attractive in cardiac
2 therapies.

3 To get a high yield of mature cardiomyocytes, scaffolding and its derivates of growth
4 factor/stimulating devices have been deployed as a support substrate for cell growth and
5 transplantation to the host tissue in regenerative medicine [35, 36]. For instance, cell alignment is
6 essential for cardiovascular tissues in order to maintain the microarchitecture and biological
7 functions; therefore, various strategies have been developed to induce cardiac cell alignment.
8 Those methods include topographical patterning (e.g., micro- and nano-grooves and aligned
9 nanofibers), chemical treatment (patterns with cell-adhesive or repellent chemistries), controlled
10 stress/strain conditions (e.g., stretching, fluid shear stress, and compression), and a combination of
11 them [13, 14]. In its early stage, tissue engineering research involving CMs revolved around
12 injection of differentiated stem cells with the hope they would grow and synchronize with the host
13 [6]. However, it was found that these cells required environmental conditions which were
14 biomimetic to early cell growth conditions, in order to differentiate and bind into a syncytium [15].
15 This could be pulsatile electrical stimulation similar to native syncytium electric fields [15],
16 simultaneous electrical stimulation and cyclic mechanical stretching [37], or any combination of
17 these with bioinspired antioxidant materials and other microenvironment cues [12, 17], which can
18 be optimized by algorithms based on experimental datasets.

19 The recent rise of artificial intelligence, especially machine learning and deep learning, has
20 paved the way for a wide range of applications, and cardiac tissue engineering is not an exception.
21 Machine learning (ML) aims to develop algorithms that discover trends and patterns in existing
22 data and use this information to make predictions on new data. ML has proven to be of great
23 potential value in a variety of application domains, including biological investigations and

1 healthcare where accurate analysis of biomedical data benefits early prediction and detection of
2 diseases [38]. ML encompasses a diverse set of schemes by which a machine extracts certain
3 features, “learns” the pattern of features associated with a certain group and then predicts the group
4 based on feature patterns of new samples. The ML methods are particularly effective in situations
5 where prediction involves large data sets, especially datasets of terabyte or petabyte size [39].
6 Specifically, ML algorithms can perform efficient data training to identify relationships of inputs
7 and outputs, although there are not typically intuitive interpretations for how hidden layers in these
8 algorithms operate [40]. However, in this field, it is still in the proof-of-concept phase where
9 structures and algorithms have been focused in order to minimize or eliminate human intervention
10 in these processes. For example, ML has been used for automated drug classification based on
11 contractility of human pluripotent stem cell-derived engineered cardiac tissue [41], protein-ligand
12 binding affinity [42], and histopathological image analysis [43]. Regarding 3D scaffold constructs,
13 the fabrication could be controlled and optimized with an adaptive neuro fuzzy inference system
14 and a Pareto-based self-learning evolutionary algorithm [44].

15 In addition to many strategies for precision control of myocardial microenvironment of smart
16 biomaterial scaffold for cellular adhesion, growth, and maturation [45, 46], ML and evolutionary
17 algorithms have been used to identify stemness features associated with oncogenic
18 dedifferentiation [47], 3D scaffold design [48], local microenvironment changes, and to drive
19 cellular differentiation pathways in CM maturation. Artificial intelligence-based approaches, such
20 as machine learning and deep learning, refer to a set computer programs that deal with data training
21 and perform intelligent analysis [49-51]. Machine learning is an integration of algorithms such as
22 naïve Bayesian [52], support vector machines (SVM) and updating deep neural networks which
23 are highly dependent on high-quality data. ML with the model of end-to-end (E2E) increases levels

1 of accuracy of the process from big datasets created from high-throughput screening data for drug
2 discovery and development [53]. Recently, deep learning as part of machine learning methods has
3 catalyzed interest for drug discovery [54]. Deep neural networks approaches [55, 56] can process
4 with all combinatorial variations using the single E2E black-box network or the deep classification
5 network [57], which were deployed for biomedical researches in cardiac contractile dysfunction
6 and arrhythmia [58, 59], facial phenotypes of genetic disorders [60], precision phenotyping and
7 clinical diagnostic support systems [53]. In tissue engineering field, it was reported that smart
8 scaffolds integrated with a wireless ML-driven sensing responded to changes of
9 electrophysiological phenotypes , local tissue microenvironment (e.g. pH, protease activity, and
10 biosignatures) [61], and CM phenotyping (e.g. β -Adrenergic receptor) [62, 63]. This may allow
11 training the data for self-repair approaches in the design of 3D scaffolds and cardiac regeneration.
12 Moreover, ML allows performing multifunction by controlling serial signals of the biomimetic
13 paracrine in custom design to identify cell shape phenotypes associated with microenvironment
14 cues [64, 65]. Thus, novel ML-based scaffold designs may provide not only a robust substrate for
15 cardiac tissue culture but also a real-time database for precision bioactive control (e.g., timed
16 release of growth factors) in the microenvironment that may be required for improvements of CM
17 regeneration and repair.

18 In the next sections of this paper, molecular and biomaterial engineering approaches will be
19 introduced and discussed followed by methods for nano-scaffold fabrication. Updates of upcoming
20 and ongoing ML applications in tissue engineering, especially as it relates to cardiac tissue
21 engineering, will be then broadly covered.

1 **2. Genome editing and stem cell differentiation**

2 **2.1. CRISPR/Cas systems for cardiac tissue engineering**

3 **2.1.1. Gene mutants in human cardiac failure**

4 According to statistics, it was revealed that gene-related factors and genetic variations are
5 responsible for complex forms of cardiovascular disease (CVD) [7]. For example, genetic variants
6 of missense mutations (T983I) in the KCNH2 (LQT2) gene frequently relate to and
7 arrhythmogenic disorders like QT syndrome [18]. Techniques using induced pluripotent stem cells
8 (iPSCs) and genome editing can intervene at molecular levels for cell adhesion, differentiation,
9 and cell alignment in cardiac tissue engineering [19, 66]. Genome editing based on programmable
10 nucleases is a molecular process that uses clustered regularly interspaced short palindromic repeats
11 systems (CRISPR) with Caspase 9 (Cas9) guiding enzymes and has been used to introduce the
12 catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) associated cardiac
13 ryanodine receptor 2(RYR2) mutation in healthy wild iPSCs [19]. In principle, CRISPR/Cas9
14 systems are nucleic acid-targeting defensive tools of prokaryotes, whose operation is exploited to
15 edit mammalian genomic materials and control transcriptional regulation of endogenous genes; in
16 turn, these genes can be used to control molecular routines in tissue regeneration [67]. By
17 introducing F2483I RYR2 mutations to wild type human iPSCs (hiPSCs), calcium signaling
18 pathology can be observed and compared between iPSC-derived CMs from CPVT1 patient cells
19 and gene-edited cells. Results show that increased diastolic Ca^{2+} and reduced sarcoplasmic
20 reticulum store size in gene-edited and patient-derived CMs are consistent with each other [19].
21 Alternatively, CRISPR/Cas9 engineered R453C- β MHC [68] and corrected PRKAG2 mutations in
22 patients [69] allow them to recover physiological mitochondrial functions, as well as

1 electrophysiological and structural abnormalities, making this a reasonable approach to recover
2 CM functionality [68, 69].

3 **2.1.2. Potential of CRISPR/Cas systems in cardiac tissue engineering**

4 The CRISPR/Cas9 system is based on two components: a synthetic, single-stranded guide
5 RNA (sgRNA) and Cas9 enzymes. The spacer part of the sgRNA can be designed to bind
6 complementary DNA targets for Cas9 cleavage at a protospacer adjacent motif (PAM) in the DNA
7 targets, in order to generate a single-strand or double-strand break. Subsequently, a new DNA is
8 formed through one of the two molecular mechanisms: non-homologous end joining (NHEJ) or
9 homology directed repair (HDR). These mechanisms serve to introduce random mutations and to
10 precisely edit DNA sequences, respectively [70]. However, several challenges exist with the use
11 of this system, such as off-target effects and the difficulty in delivery of large Cas9 sequences.
12 Off-target effects refer to nonspecific and mismatched genetic modifications that can arise using
13 engineered programmable nuclease techniques. In CRISPR/Cas9 systems, these off-target effects
14 can be resolved by reducing non-specific binding of gRNA sequences. CRISPR/Cas9 systems can
15 be introduced to cells in the form of plasmid DNA, RNA, or proteins, which can be used for
16 engineering cells in cardiac tissue regeneration [68, 71]. Recently, Doudna *et al.* explored CasX
17 enzymes risen from a TnpB-type transposase, a distinct family of RNA-guided genome editor
18 (CRISPR/CasX), that can be used as a third platform for RNA-programmed genome editing [72].
19 With the compact size, dominant RNA content, and minimal trans-cleavage activity, CasX is the
20 smaller size compared to that of the previous reported Cas9 and Cas12a. This provides an increased
21 efficiency of therapeutic delivery and overcoming the human immune systems, which may offer
22 more advantages relative to current CRISPR/Cas systems. CRISPR/Cas systems can be also
23 utilized to reactivate non-dividing cells and terminally differentiated mammalian cells, or change

1 cell structures on-demand to address tissue architecture formation, both of which having been
2 demonstrated for cardiac stem cell engineering [67-69]. Moreover, due to difficulty in *ex vivo*
3 culture of primary CMs, a potential alternative approach is using a CRISPR/Cas9 system to edit
4 iPSCs-derived CMs *in situ*. These edited iPSCs can differentiate into readily transplantable cells:
5 iPSC-cardiac progenitors or iPSC- derived CMs to deliver to the diseased heart though
6 intracoronary or intramyocardial routes. As an example, iPSC-derived CMs have been seeded on
7 micro-threads then transferred to cardiac tissue and contractile cardiac fibers [73]. Unfortunately,
8 iPSC-derived CMs are immature with regards to their structure and function, and this immaturity
9 has narrowed down their applications in drug screening and cell-based therapies [74]. One of
10 solutions is to create the geometry of the environment based on extracellular matrix (ECM) for
11 cellular behavior and maturation [75].

12 Attachment of CMs or iPSC-cardiac progenitors to culture systems is highly dependent on
13 levels of fibronectin and collagen IV in the extracellular matrix (ECM), both of which feature
14 prominently in cardiac cell fate [61]. With the CRISPR/Cas9 system, the expression of those
15 matrix proteins can be increased, which improves cell homing functions in culture systems. In
16 another report, this editing tool has been used to eliminate inactivated genes in mature CMs
17 through the Adeno-associated virus 9 (AAV9)- sgRNAs system [76]; it has also been used for
18 editing the mitochondrial genome in order to control membrane potential disruption and cell
19 growth inhibition, which are related to cancer genesis in transplanted tissues [40]. Moreover, the
20 CRISPR/Cas9 system has been applied to human stem cell-derived CMs for cardiovascular disease
21 modeling and cardiotoxicity screening; enabling studies of new cardiovascular disease treatments
22 and drug-induced cardiotoxicity [77]. In addition, the CRISPR/Cas9 system can address safety
23 concerns by reducing immunogenicity and even the risk of arrhythmia by removing the mutant

1 ryanodine receptor 2 (RYP2) from the multimeric complexes [78]. To minimize the risk of
2 immunogenicity, in addition, the suicidal thymidine kinase gene can be induced into the genome
3 of stem cells for iPSCs and embryonic stem cells (ESCs) to efficiently protect hESC-derived
4 allografts from immune rejection [66, 79]. Molecular activities of ion channels and gap junctions
5 determine the functionally proficient electromechanical coupling between myocardial cells.
6 Defects in the molecular activities responsible for restoring myocardial electrical conduction can
7 be mitigated by targeted genes [80] and macrophage cell therapy [81]. Macrophages are innate
8 immune cells that reside and accumulate in the healthy and injured hearts. A complex crosstalk
9 between cardiomyocytes and macrophages regulates the fate of cardiomyocytes in the injured heart
10 and plays central roles in cardiac hypertrophy [82].

11 Given that the clear majority of heterogeneous CMs in postnatal tissue is postmitotic, a new
12 routine for homologous recombination of these cells is required. This begins by analyzing the
13 transcriptome during the differentiation process of human PCSs to mature CMs in order to identify
14 a key transcriptional roadmap for molecular intervention [35]. Interestingly, CRISPR/Cas9
15 systems can contribute to cell differentiations by controlling the gene profile expression through
16 Cas activity. Polstein *et al.* reported a light-inducible CRISPR/Cas9 system to control endogenous
17 gene activation and transcription [83, 84]. Alternatively, CRISPR/Cas9 systems provide direct
18 benefits in controlling of immune response for CM engraftment [85]. Since mature CMs are
19 postmitotic cells, they lack the HDR repairing mechanism and the CRISPR/Cas9 system doesn't
20 work in these cells. This restriction can be overcome with iPSC-CMs from patients or endothelial
21 cells (ECs), smooth muscle, and cardiac progenitor cells in which genes of interest are edited *ex*
22 *vivo*. Then these cells can differentiate to all cardiac lineages used for cardiac regeneration. In
23 addition, together with synthetic biology, bioinformatics, and deep learning CRISPR/Cas9 systems

1 are able to reduce off-target consequences and create gene regulatory networks for multicellular
2 development [61, 86]. Using CRISPR/Cas9 systems to reprogram fibroblasts into skeletal
3 myocytes with the targeted activation of the endogenous *Myod1* gene locus results in elevated
4 expression levels of myogenic markers, mainly because activation is comparable to a lentiviral
5 vector-delivered *MYOD1* transcription factor [87]. With such an activation, *in vivo* CMs and other
6 cardiac lineages at injury sites can be converted from cardiac resident fibroblasts. This process
7 relates to the complex multilayered regulatory systems that induce cell differentiation and heart
8 development as a system biology level [88].

9 Gene regulatory networks play an important role in the spatiotemporal expression of desired
10 cardiac regeneration-related proteins. Products of this expression are involved in many
11 endogenous and exogenous physio-chemical stimuli, producing growth factors and other cytokines
12 which shape cardiac tissue structure. The GRN can be regulated at molecular levels via the
13 technique of synthetic biology coupled with bioinformatics, in order to design biological circuits
14 and provide tools for more intricate control of cellular functions. With such an approach, tissue
15 regeneration can overcome long-standing challenges and introduce new methods for basic research
16 and clinical applications. In biosafety regulations, CRISPR/Cas9 system activity could be
17 eliminated to avoid risks of permanent expression of foreign targets when designing tissue
18 structures for clinical use. **Figure 1** introduces a protocol to edit mutant genes in hiPSCs and
19 monitor cardiac differentiation; which was done with molecular and phenotypic characteristic
20 measurement. Briefly, CRISPR/Cas9 system was used to introduce long-QT syndrome genes in
21 independent healthy hiPSC lines to generate disease-CM hiPSCs. This resulted in the formation
22 of isogenic sets of hiPSC-CM which were characterized with phenotyping and molecular analysis.
23 CRISPR/Cas9 systems for tissue-specific engineering of stem cells not only provide new avenues

1 for functional tissue engineering and regenerative medicine, but also control the immunological
2 balance in both the early and chronic stages after cardiac injury [89]. Proinflammatory cytokines
3 present in increased levels in diseased and injured tissues, which leads to the increase of tissue
4 degradation and can prevent differentiation of hiPSCs [90]. Recently, reports strongly suggested
5 that controlling inflammatory cytokine secretion from resident cardiomyocytes and cell interaction
6 is one potential approach for cardiac angiogenesis and cellular regeneration [91, 92].

7 **[Figure 1]**

8 Previous studies have reported that transplantation of cells genetically engineered for
9 constitutive overexpression of interleukin 1 receptor antagonist (IL-1Ra) is effective when creating
10 cells-integrated scaffolds for implantation [93]. This approach also provides great promise in
11 combating inflammatory levels of interleukin 1 (IL-1), a challenge for transplanted and/or
12 engineered tissues. To this end, RNA interference or CRISPR/Cas9 systems have been used for
13 controlling the expression of inflammatory cytokines [43]. Alternatively, regulation of gene
14 expression of growth factors and anti-inflammatory cytokines (IL-4, IL-1Ra, and IL-10) in cell-
15 based engineering platforms are also a considerable approach. Compared to RNAi technology,
16 however, the CRISPR/Cas9 systems provide permanent removal of inflammatory cytokines from
17 the cell genome, this guarantee long term control of anti-inflammation in cardiac tissue
18 regeneration.

19 Due to numerous challenges in current cardiac tissue regeneration, the CRISPR/Cas9 system
20 has become an effective alternative which can tackle those by providing complex genome editing
21 and transcription regulation, in order to control differentiation, at genomic and molecular levels
22 [67, 70]. While still in its early stages, ongoing research on the use of CRISPR/Cas9 systems for
23 more-complex implementation of the CM molecular clock [94] by controlling the transcription-

1 translation feedback loop may be a milestone in tissue engineering. In brief, CRISPR/Cas9 systems
2 hold potentials to dramatically improve comprehension of cellular processes and contribute
3 significantly to cardiac tissue engineering.

4 **2.2. Stem cell differentiation**

5 Differentiation of stem-cell-derived CMs into the desired lineages requires many aspects of
6 the scaffold constructs, cell fate, and cell's environment [36, 73, 95-98]. Using hiPSCs to
7 differentiate into mature CMs has been considered as a potential approach towards therapeutics in
8 cardiac tissue generation. With optimal protocols, fetal hiPSCs can be differentiated into almost
9 100% pure CMs. Although human ESC-derived CMs are a predominant source of adult human
10 cardiac myocyte for clinical therapeutics, they still lack many essential features such as being well-
11 organized and distributed, and functional transverse tubules (T-tubules) [99]. Chong *et al.* reported
12 that mature human ESC-derived CMs, rather than immature, may become the preferred candidate
13 to reduce the risk of arrhythmias in the transplantation therapy [100]. In addition, adult-like hiPSC-
14 derived CMs can be widely used for applications in stem cell-based disease modeling and in drug
15 toxicity screening [95, 101]. Some strategies of generating cardiac tissue from stem cell-derived
16 CMs, in which their cellular morphology is similar to human adult cardiac structure and function,
17 have been reported [74, 102, 103]. Ronaldson-Bouchard *et al.* used different stages (day 12 and
18 day 24 differentiation) of hiPSC-derived CMs and co-cultured them with fibroblasts in a fibrin-
19 based hydrogel to grow mature cardiac tissues around two flexible pillars [104]. These pillars were
20 used to induce forces in the contracting tissues, as forces are observed in native myocardium. After
21 1 week in culture, either constant electrical stimulation (2 Hz for 3 weeks) or intensity training (2
22 to 6 Hz ramp over 2 weeks, then back to 2 Hz for one week) were applied to stimulate the
23 differentiation and growth of hiPSCs to maturize CMs, which were determined through the

1 molecular, cellular, and functional level of the differentiation [104, 105]. At the molecular level,
2 genes associated with adult-like conduction, atrial isoform-related ventricular isoform of myosin,
3 ATP production, and calcium transportation were highly expressed, which indicated maturation.
4 At the cellular level, growth of CMs with ordered sarcomeres and a high density of mitochondria,
5 were observed [104]. Vital proteins such as T-tubules and folding of the sarcolemma membrane,
6 involved in calcium transportations, were found in the cell [106, 107]. Cell alignment in tissue
7 constructs, where cells were adhered to one another with mechanical strength at gap junctions,
8 promoted electrical signaling transmission between cells in the constructs. Well-aligned hiPSC-
9 derived ventricular CMs on the human ventricular cardiac anisotropic sheet, a cardiomimetic
10 biohybrid material, was reported in fully key electrophysiological features of native human
11 ventricle [108]. This was observed only when hiPSC-CMs received an intensity training at an early
12 stage [109]. After spending the intensity training, cardiac tissues were able to efficiently perform
13 action potentials through a process of excitation-contraction coupling. Electrical stimulation
14 (excitation) induces mechanical response (contraction), which allows myocardium to contract.
15 Wiegerinck *et al.* reported that increased beating frequency was the simultaneous result of
16 increased contraction force and faster relaxation [110]. Various regulatory factors involved in CM
17 maturation, hormone-driven cues [99], intensive electrical stimulation [111, 112], cell composition
18 and matrix/media [113, 114] have shown the most potential to achieve hiPSC-derived CMs in
19 scaffold environments.

20 In cardiac tissue engineering, natural polymer scaffolds play an important role in promoting
21 differentiation and growth of hiPSC-derived CMs owing to their minimal immunogenicity and
22 biodegradability. Kaiser *et al.* used a blended fibrin and collagen scaffold to differentiate hiPSC-
23 derived CMs into engineered myocardium [97]. Results showed that expression of cardiac

1 troponin T (cTnT) in CM populations were dependent on the scaffold compaction. While the
2 decreased compaction showed the lowest (24.4%) and highest (60.2%) positive expression of
3 cTnT⁺ CM purities, the highest compaction showed 40-50% cTnT⁺ population [97]. This study
4 clarifies the correlation of hiPSC-derived CMs and scaffold interactions and provides a basis for
5 integrated design of customized scaffold constructs for cardiac tissue engineering.

6 **3. Biomaterials and 3D scaffold fabrication**

7 **3.1. Characteristics of biomaterials**

8 Biomaterials in the forms of hydrogels, carriers, and scaffolds play a vital role in anchoring
9 cells and helping them generate into functional tissues [115-117]. Although those forms have
10 different specific patterns in tissue engineering, all of them serve as a framework substance for
11 proliferation and differentiation of the desired tissue. For example, carrier materials enable cells
12 or chondrons to produce the ECM that holds growth factors in skin wound healing and cardiac
13 remodeling and repair [118, 119]. Porous hydrogels entrap embedded cells and allow diffusion of
14 gas and metabolites through their pore network [120, 121]. Similarly, scaffolds are also porous
15 matrices, though they allow cell migration and attachment to the damaged tissue, as well as act as
16 a substitute for lost tissue in the body [122]. The developing highly-porous scaffold biomaterials
17 significantly depend on their types of materials, functionalization, and geometry.

18 Typically, biomaterials for tissue engineering are synthesized or modified from primary natural
19 materials, then further processes are conducted to form appropriate morphology and characteristics
20 for a desired application. They include polyglycolic acid (PGA) [123], poly(L)-lactic acid (PLA) ,
21 poly(DL)glycolate (PLGA), and polyvinyl alcohol and their derivatives [124-126]. In contrast,
22 natural biomaterials include collagens, alginate, chitosan, fibrin and hyaluronic acids. Recently,
23 advances in synthetic chemistry have contributed to novel hybrid biomaterials with outstanding

1 properties in terms of conductivity and strength [127, 128]. For use in cardiac tissue engineering,
2 it is required for biomaterials to support tissue reconstruction and regeneration via active support
3 for cell-to-tissue processes by promoting cell-cell adhesion, proliferation and differentiation.
4 These biomaterials can also culture healthy tissues by forming three-dimensional structures for gas
5 and nutrient transportation as well as formation of vascular supportive substructures for blood
6 vessels. The biomaterials used for scaffold fabrication processes can optimize constructs used in
7 clinical settings; allowing for maximizing cellular adhesion space, ECM secretion,
8 revascularization, and paracrine processes.

9 **3.2. Shaping biomaterials in 3D structures**

10 Scaffold materials play a key role in tissue engineering and have been used more and more in
11 clinical practice [129-131]. These materials form a biomimetic ECM which promotes cell adhesion
12 and differentiation, as well as 3D organotypic cultures [132]. By combining modern advances of
13 three major fabrication techniques, namely electrospinning, self-assembled monolayers, and
14 thermally induced phase separation, with peptides and DNA, biomimetic 3D scaffolds have been
15 developed for CM regeneration [133-135]. These systems support differentiation of various stem
16 cells down multiple lineages and create relevant 3D specific tissues for clinical practice.

17 Obviously, specific cell types could be seeded on the biomimetic nanofibrous scaffold to
18 regenerate desired tissues. Both primary and stem cells can be used, for different purposes [36, 98,
19 112]. Primary cells are collected directly from mature tissue and cultured to obtain the desired cell
20 number and form tissue constructs. However, quick phenotypic changes, limited proliferation
21 numbers, and aging of primary cells inhibit their use once the cells are transferred from their
22 natural living conditions to artificial ones [132, 136]. While CMs can be taken from specific tissue
23 sources for targeted applications, robust scaffolds and engineered biological tissues are needed to

1 improve to CM characteristics in new implanting environments. Most scaffolds used for cardiac
2 tissue engineering are hydrogel materials and 3D nanofiber matrices, which feature benefits such
3 as controlled release of growth factors and good electrical conductivity [137, 138]. Results from
4 confocal laser scanning microscopy, scanning probe nano-tomography, and transmission electron
5 microscopy show that cardiac cells and fibroblasts actively interact with 3D nanofibrous substrates,
6 but in different ways [139]. While fibroblasts make contact with nanofibers through focal adhesion
7 clusters, without wrapping the fiber, CMs develop a distinguished sheath structure and covering
8 fiber to increase contact area [139, 140]. These results point to a new perspective on how cultured
9 cells interact with 3D nanofibrous scaffolds. A host of previous studies reported that matrix
10 anisotropy and stiffness predominantly influence 3D structural cell phenotypes, cell migration,
11 proliferation, and differentiation of cultured CMs [141]. Cardiac cells grown in 3D matrices were
12 always in tight contact with each other through cellular junctions, which results in considerable
13 mechanical adhesion between cardiac cells and fibers. The increase in mechanical adhesion was
14 found to be linked with the increased contact area between the cells and fibrous structures [142].
15 The contact area plays a role for focal adhesion kinase in cardiac mitochondrial biogenesis induced
16 by mechanical stress, which contributes to the hypertrophic growth of cardiomyocytes via control
17 of mitochondrial transcription cascade [143].

18 Cellular parameters like the number of mitochondria and endoplasmic reticulum membranes
19 featured higher counts of cells grown in 2D constructs. Moreover, Wobma and colleagues reported
20 that upgraded “smart” scaffolds can directly control biologically active molecules like hormones
21 in the paracrine pathways directly through the cell membrane, avoiding dissipation through the
22 whole tissue solution [144]. In such a system, bioactive molecules are efficiently used for CMs
23 because they increase the diffusion of these molecules from neighboring cells through paracrine

1 hormones. It is also helpful if conducting materials are integrated into these platforms prior to
2 cardiac cell regeneration. Fibers are immersed in cardiac cells to promote high densities of
3 electrical contacts, thus forming an electrical network on the outer part of the nanofibrous
4 structures isolated from the surrounding integrin microdomains. With currently-available
5 biomimetic models [129], the physical basis for this could be explained with van der Waals forces
6 and DLVO theory. DLVO theory is the typical explanation of the stability of colloids in suspension
7 [145]. The explanation of the cell interaction stability is governed by physical and chemical
8 interactions between cellular surfaces that the balance between two opposing forces-electrostatic
9 repulsion and van der Waals attraction is under DLVO theory [146, 147]. The interaction energy
10 is calculated by the sum of van der Waal forces and electric repulsion energy; thus zeta potential,
11 hydrodynamic diameter, and cellular surface thermodynamic properties play an important role in
12 the interaction energy in the scaffold microenvironment for cell alignment and elongation [148].

13 Model of generation, alignment, and stabilization of spindle shaped fibroblasts and vessel
14 under oscillatory stretch was also reported [149]. These results reveal a new mechanism for vessel
15 network formation: under oscillatory strain, 3D scaffolds can promote mural cell alignment, cell
16 proliferation, translocation of a mechanosensitive transcriptional activator (YAP) into cell nuclei,
17 and increased expression levels of β -catenin. This directs ECM alignment along the orientation of
18 the fibroblasts. Furthermore, ECs, which are tolerant to stretch stimulus, form aligned vessels
19 directed by the fibroblast and ECM alignment. However, there is loss of fibroblast alignment and
20 vessel alignment due to mechanical uncoupling of the cells after adding blebbistatin to the culture
21 medium [149]. In addition, both fibroblasts and vessels lose alignment when the cellular
22 proliferation and signaling pathways responding to mechanical stimulus are inhibited. Stretch
23 stimulus promotes the stable production of growth factors, which enhances mural cell

1 differentiation, thereby enriching stability and alignment. These findings demonstrate how
2 increased mechanical strain affects cell development, differentiation, and shape formation during
3 the vascularization process. Cellular stretching is restricted by nucleus size, which is less sensitive
4 to deformation [139]. At the adhesive site, the cell is stretched by surface tension force. Absorbing
5 fibers is not energetically beneficial in the case of the actin cytoskeleton, hence contact is
6 minimized with fibers by reduction of cell membrane surface area [150]. Thus, these cells are able
7 to generate enough forces to overcome the resistance of the actin cortex at several filament
8 assembly complex locations. In contrast to fibroblasts, CMs contain integrins in costamere
9 structures that anchor sarcomeres to the ECM, so myocytes have much higher affinity with the
10 substrate and serve to stabilize areas of cell-ECM interaction. Therefore, when CMs grow on
11 suspended fibers, the myofibrils start attaching and aligning with them to increase the area of
12 interaction with the substrate [139].

13 The 3D microenvironment increases adherence and direct reprogramming of fibroblasts into
14 CMs throughout the matrix via a metalloproteinase dependent mechanism [151]. The nanofibrous
15 poly(L-lactide) (PLLA) scaffolds adsorb serum proteins and ECM proteins like fibronectin,
16 vitronectin, and laminin at quantities four times higher than solid walled PLLA scaffolds [151,
17 152]. In nanofibrous form, the absorption of protein is influenced by many surface characteristics
18 such as protein absorption layers, surface-to-volume ratio, surface nm-scale morphology,
19 crystallinity, and orientation of the polymer in its nanofibrous form. Finally, nanofibrous scaffolds
20 promote cell adhesion in many cell types, giving them an advantage over solid walled scaffolds.

21 **3.3. 3D-gel of hybrid biomaterials**

22 Natural biomaterials can be produced from self-assembled monolayers (SAM) of different
23 polymers through hydrogen bonds, van der Waals forces, and hydrophobic and electrostatic

1 interactions [153]. SAM fabrication is very useful and robust, thus some recent studies have
2 attempted to mimic collagen structures from ECM-derived binding peptides, which increased cell
3 adhesion and cardiac repair by cardiac progenitor cells [154]. These systems can work with other
4 self-assembling materials like phage display peptides and genetic materials to improve adhesion,
5 proliferation, and controlled differentiation; rendering many applications in tissue engineering
6 [155]. Wang *et al.* reported a procedure to fabricate biomaterials for 3D scaffold formation based
7 on SAMs from bacteriophage display [156]. In this approach, a panel of desired peptides was
8 displayed on M13 phages, a bacteriophage of *Escherichia coli*, for the purpose of CM generation
9 by activating ligand-linked microenvironments in damaged cardiac tissues (**Figure 2**) [150]. As
10 seen in **Figure 2**, RGD and DLEFIFEER ligand motifs that mediate adhesion to the cell adhesive
11 receptors were displayed on major coat protein pVIII and determined through an interaction
12 between nephronectin and $\alpha 8\beta 1$ integrin receptor [157]. Using a 3D printer, assembly of the short
13 peptide-coated nanoparticles into a 3D functional structure was driven by noncovalent interactions
14 to form a scaffold [157]. The mechanisms of these self-assembled processes have led to major
15 advances in the understanding of biological and chemical 3D folding processes for biomimetic
16 supramolecular peptide assemblies in coatings, gels and electroactive materials. The specific
17 function of these materials relies on their helical peptides, β strand peptides, and surface binding
18 monolayer-forming peptides, which electrically stabilized the phage nanofiber inside the RGD-
19 phage scaffold. Subsequently, hiPSCs were seeded in the RGD-phage scaffold and induced the
20 formation of cardiomyocytes [158].

21 **[Figure 2]**

22 The geometry of the scaffold substrate is very important in cardiovascular tissue engineering
23 because the cardiac tissues need to be highly differentiated to perform high specific functionality.

1 For example, the microscopic level of heart valve needs to be at anisotropic geometry, in order to
2 have particular shape of semilunar valves at the macroscopic level [159]. Microenvironment and
3 contraction properties of cardiomyocytes can be influenced by morphology and mechanical
4 properties by increasing the modulus in the range of 1-30 kPa of 2D substrates [160]. Developing
5 these properties in synthetic 3D scaffold may provide a significant means of controlling cell fate
6 both *in vitro* and *in vivo*. An ideal polyester biomaterial elastomer for cardiac tissue engineering
7 should exhibits a relatively-low Young's modulus, with high elongation and tensile strength [161].
8 Through a one-step polycondensation reaction and ultraviolet reaction, poly(octamethylene
9 maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer) is formed the prepolymer gel and
10 a cross-linked elastomer with highly elastic and tunable properties [161], of which they are
11 dependent on the UV light exposure, monomer composition, and porosity of the cured elastomer.
12 Interestingly, the material does not only provide its elastomeric properties falling within the range
13 of those of adult heart myocardium, but also is optimized for higher elasticity for cardiac cell
14 attachment and interaction *in vitro* and *in vivo* [161]. Finally, the polymer expressed relatively-
15 stable degradation characteristics that support potential tissue implants. Recently, Shiekh *et al.*
16 developed and evaluated an elastomeric antioxidant polyurethane (PUAO) for cardiomyocyte
17 functionality [12]. A serial analysis including uniaxial and cyclic tensile testing, thermal analysis,
18 cytotoxicity, antioxidant analysis, and degradation reveals that PUAO reduces intracellular
19 oxidative stress in H9C2 cardiomyocytes and neutralized reactive oxygen species (ROS) promoted
20 cell death. Moreover, PUAO film displayed synchronous beating with mature cardiomyocytes
21 showing high expression of cardiac specific α -actinin, troponin-T, and connexin-43 proteins [12].
22 Additionally, cultured cardiomyocytes on PUAO film expressed the physiological intracellular
23 calcium functionality similar to mature cardiomyocytes [12].

1 Shin *et al.* used directed SAM to selectively trap target carbon nanotubes (CNTs) as an effort
2 to control the growth of supramolecular hydrogel fibers and improve functionality of
3 bioengineered cardiac tissues [117]. Surfaces of CNTs stimulate the formation of hydrogelators in
4 the vicinity of the fiber constructs, which results in increased fiber formation, changes in network
5 morphology, and increased mechanical properties. Subsequently, this can improve
6 electrophysiological performance of cardiac tissue in terms of increased beating rate and lower
7 excitation threshold [117, 162]. Besides CNTs, metallic nanoparticles, with their size-dependent
8 properties, have shown promise in overcoming many of the current limits of cardiac tissue
9 engineering. Li *et al.* reported a nanocomposite composed of gold nanoparticles (AuNPs) and a
10 collagen matrix, which improved tissue growth via localized strength, thus enhancing the assembly
11 of intercalated discs by β 1-integrin-mediated signals [151]. In addition, 3D structures based on
12 rigid CNTs scaffolds have been used to improve CMs viability, proliferation, and maturation, but
13 they require undesirable invasive surgeries for implantation [163]. On the platform of 3D gel-
14 based matrix, an injectable reverse thermal gel (RTG) functionalized with CNTs (RTG-CNT) that
15 switches their morphology from a solution at room temperature to a three-dimensional (3D) gel-
16 based matrix shortly after reaching body temperature was developed [163]. This extends long-term
17 CMs survival, promotes CMs alignment and proliferation, or improves CM physiological function.
18 Recently, Mason *et al.* reported a highly-ordered 3D fibrous protein scaffold derived from a self-
19 assembly processes [153]. This resulted from a balanced system of low-entropy processes in which
20 a set of interactions between different chain residues formed amorphous aggregates, thus
21 mimicking self-assembling protein systems in nature. As an alternative to self-assembly,
22 electrospinning produces nanofibers and nanofibrous structures from a broad range of

1 biomaterials-based dopes in which advantages, drawbacks and potential applications are discussed
2 in next sections.

3 **3.4. Electrospinning for 3D scaffold fabrication**

4 Electrospinning could be used to make nanofibers from a variety of polymers and it is well
5 suited to 3D nano-scaffold constructs in cardiac tissue engineering [164]. In essence, the
6 electrospinning technique is based on an electric field to create a charge on the surface of polymer
7 solutions, thus generating a force opposing its surface tension and allowing fibers to be drawn out
8 [165]. Many parameters can be used to tune this process, including electrical charges from the jet,
9 solvent characteristics, length of polymers, flow rates, voltage levels, and collector distance; all of
10 these considerations, and others, need to be taken into account to get a final polymer fiber in
11 nanofibrous architecture [166, 167]. The resulting products are collected on solid or liquid
12 substrates, or even substrate free, to form 3D micro-fibrous and nanofibrous scaffolds. Suhaeri *et*
13 *al.* reported a new platform based on a fibroblast-derived, matrix-coupled, aligned and electro-
14 spun nanofiber [45]. In their work, a hybrid scaffold structure composed of poly(l-lactide-co-
15 caprolactone) (PLLA-PCL) and fibroblast-derived ECM (PLLA-PCL/FDM) was aligned to form
16 an artificial cardiac microenvironment. The physical mechanical property of PLLA-PCL in the
17 parallel direction shows the anisotropic nature of the aligned PLLA-PCL fibers. The PLLA-
18 PCL/FDM was produced from the fibroblast culture on the PLLA-PCL fiber for 5-7 days and the
19 ECM was collected from a subsequent decellularization. On this co-culture system, cellular
20 characteristics of differentiation, phenotyping, cell viability, and maturation of H9c2 and neonatal
21 rat CMs were significantly improved compared to those in fibronectin (FN)-coated electro-spun
22 PLLA-PCL fibers (**Figure 3**) [45]. On the aligned scaffold, cells spread along the directional cues
23 instead of the random growth in every direction observed in the random scaffold. In addition, non-

1 sulfated polysaccharides [168], biopolymers [169], and both organic and inorganic frameworks
2 [170] have been integrated into PLGA to improve its biocompatibility and mechanical properties;
3 and this highly depends on polymer concentration. However, due to collector plate constructs,
4 nanofibrous scaffolds made from electrospinning are generally 2D; limiting their clinical relevance.
5 Recently, a rotating cylinder has been demonstrated as a replacement for the collector plate used
6 in electrospinning, which was utilized to produce a tubular scaffold and allow for growth factors
7 to be released in a controllable fashion [171, 172]. A scaffold platform with polycaprolactone (PCL)
8 nanofibers and vascular endothelial growth factor (VEGF)-encapsulated gelatin particles was
9 fabricated to extend half-life time and stimulations of VEGF to mesenchymal stem cells (MSCs)
10 and ECs [173]. In addition, paracrine mechanisms that are involved in MSC differentiation into
11 cardiomyocytes are only limited to cell differentiation rates, not directly impacting to cell
12 differentiation [174, 175]. Jiang *et al.* reported that this construct can drive the differentiation of
13 MSCs to ECs and keep the stability of the tubular structure [173], indicating that growth factor
14 (GF)-releasing scaffolds are potential platforms based on the electrospinning process for cardiac
15 tissue engineering.

16 **[Figure 3]**

17 Recently, it has been shown that use of a Teas chart could provide useful information in terms
18 of solubility and spin-ability for the electrospinning process [176-178]. Polymers should have
19 solubility in the target condition, as values outside of a specific range will result in electro-sprayed
20 beads and aggregates [176]. Higher fidelity nanoscale topography and bio-activity integration in
21 the 3D architecture on the ECM-inspired nanofibrous scaffolds showed outstanding advantages
22 for engineering 3D anisotropic cardiac tissues [137, 179].

23 **3.5. Thermally-induced phase separation**

1 Thermally induced phase separation (TIPS) is another robust method to make 3D scaffolds. It
2 involves five steps: polymer preparation, phase separation and gelation, solvent extraction,
3 freezing, and freeze drying [180]. Once a polymer is dissolved in a specific solvent, the solution
4 becomes thermodynamically unstable and results in two material phases: one “rich” in polymer
5 and another phase “lean” in polymer. The resultant polymer structure depends on the ratio of
6 polymer to solvent and conditions of the phase separation. Once the solvent is extracted, the phase
7 of lean polymer is removed, and the polymer rich phase is identified as being in one of three
8 categories: powder, closed cell foam, and open cell foam. Open cell foam is the type used to make
9 3D scaffolds for human chondrocyte growth and ECM formation [181]. ECM-derived porous
10 foams are biologically-relevant substrates in advanced 3D *in vitro* cell culture models through
11 controlling freezing and lyophilization procedures [182].

12 Luca *et al.* reported the formation of surface structures of TIPS-based scaffolds formed in water
13 at room temperature [183]. The TIPS method allows for tuning of surface morphology which
14 benefit tissue regeneration of preosteoblasts [183]. Peña *et al.* presented an injectable and
15 biomimetic RTG that was functionalized with poly-L-lysine or laminin to promote longevity of
16 cultured CMs, neonatal rat ventricular myocytes (NRVM), and adult rat ventricular myocytes
17 (ARVM) [130]. Their results showed that the RTG functionalized with lysine stimulated NRVM
18 grow and differentiated heart-like functional syncytia. Beating cells were recorded after 21 days
19 in both cases of RTG and Lysin-functionalized RTG [130]. In addition, TIPS can be combined
20 with porogen leaching to increase levels of architectural control. Porogen leaching (paraffin, sugar)
21 can promote the formation of micropores with morphologies such as spherical, tubular, and disk
22 shaped pores within the scaffold [184]. These micropores play important roles in enhanced cell
23 penetration, proliferation, mass transport of nutrients, and growth factors in studies of angiogenesis

1 and tissue formation. Several research groups have developed anatomically shaped molds with
2 reverse solid freeform fabrication (SFF) in a PLLA solution [185, 186]. Architectural features were
3 formed through three steps: ECM-mimicking materials, formation of pores for cell penetration and
4 mass transport, and anatomical scaffold shaping. This last step is vital for structural tissue like
5 bone and cartilage. TIPS can be used in concert with porogen leaching and 3D molds and with
6 common chemical and biological polymers to create structural tissue scaffolds with excellent
7 processing flexibility.

8 **3.6. Bioprinting for 3D scaffolds**

9 Advancements in 3D printing have now begun to see its use in tissue engineering. State-of-
10 the-art techniques in this field includes laser direct writing and multiphoton polymerization, which
11 can be used for computer-aided scaffold design [187]. The process of designing and manufacturing
12 scaffolds in this way includes several steps: design of functionally graded scaffolds, modeling of
13 selective laser sintering and fused deposition modeling (FDM) processes, development of
14 bioreactors, and 3D bioprinting [187-189]. Laser systems such as femtosecond- and ultraviolet-
15 based sources allow for precise manufacture of 3D tissue scaffolds, which are engineered entirely
16 through computer-aided design [190]. Zheng et al. reported the process of using computer-
17 controlled UV laser systems for 3D scaffolds with many kinds of polymers such as polyethylene
18 glycol diacrylate (PEG-DA), ormocomp, pentaerythritol tetra-acrylate (PETRA) [191]. More
19 recently, a class of micro-architected materials with high-ordered structural connectivity and
20 nanoscale features was printed by projection micro-stereolithography [191]. By using biopolymers,
21 the technique could be used to produce biocompatible micro-lattices for soft tissue engineering,
22 which are used as injectable scaffolds that can either induce endogenous cardiomyocyte repairing
23 [192].

1 Seeded cardiomyocytes can be grown in hexagonal 3D fiber scaffolds made by melt electro-
2 writing, a form of 3D printing. The resultant hexagonal microstructures have outstanding
3 mechanical characteristics, allowing for large anisotropic reversible deformations; this deformable
4 structure mimics microstructure of myocardial tissue [137]. Moreover, the high porosity of these
5 structures aids formation of aligned tissues and are effective as cardiac patches on contracting
6 hearts. These functional human myocardial patches feature properties highly desirable for
7 clinically relevant cardiac repair [96]. As a result, iPSC-derived CMs have been successfully
8 cultured in multi-cellular 3D bioprinting substrates for vascularized heart tissue [98]. Human
9 umbilical vein endothelial cells (HUVECs) and iPSC-CMs have been encapsulated within
10 hydrogel strands, containing alginate and PEG-fibrinogen, and forced out through custom
11 microfluidic printing heads to form spatial depositions with high fidelity and resolution. Maiullari
12 and colleagues have reported a 3D cardiac tissue composed of iPSC-CMs from different tailored
13 geometries with a high orientation index [98]. Blood vessel-like shapes differentiated from
14 HUVECs can be used for *in vivo* grafting, which is a better integrated support for engineered
15 cardiac tissue [98]. These findings also bring important contributions to functional heart tissue
16 generation *in vitro* through 3D PEG-fibrinogen hydrogels to recover their pluripotency [98]. This
17 technique plays a key role in the design of printed micro-fibrous constructs used to assemble
18 complex vascular networks. For example, bio-printed ECs following this can effectively develop
19 vasculature in the transplanted tissues in the same manner of native vessels [193]. The results of
20 bio-printed 3D vessel-based therapy directed to restore blood flow can counteract cell death and
21 promote regeneration in the revascularization of ischemic or damaged organs, which highly relies
22 on microenvironment engineering for supplies of oxygen and nutrient.

1 However, due to the lack of oxygen and nutrient diffusion (in the 100–200 μm scale) in porous
2 structures, migration of iPSCs tends to be in the outer zone of hydrogels; and this produces
3 inhomogeneous cellular distribution in vascular networks *in vivo* [194, 195]. These diffusion
4 problems could be solved via an integrated system of porous structures and parallel fibers to form
5 an engineered vascular network. By addition of 1% w/w PEG-DA monomer to bioprinting
6 materials, the homogeneous culture biosystem fully supplies nutrients to all regions of the 3D
7 constructs [98]. This technique has been used for iPSC-derived CMs culture to produce
8 myocardial-like tissue [98] and generate 3D vascular structure [196]. Alternatively, circulation in
9 the 3D constructs is supplied by a microfluidic device bearing a Y-junction (2 inlets, 1 outlet) in
10 which the flows of two different bio-inks are precisely driven by external microfluidic pump [98].
11 Interestingly, this construct showed great promise for artificial skeletal muscle generation once the
12 dimensions of channel were reduced to $500 \times 500 \mu\text{m}^2$ (cross-section) to create an extremely-small
13 dead volume ($<2 \mu\text{L}$); this allowed rapid tuning between the two bio-inks during printing. This
14 system also allows building heterogeneous structures composing of iPSC-derived CM and
15 HUVEC could potentially mimic native cardiac contraction in better than those described above.

16 Functional contraction of the myocardium is orchestrated by electrical stimulation propagation
17 in the right sequence and is driven partially by CM spatial orientation; therefore, proper orientation
18 is a critical goal for organization of CMs [98, 158]. The organization of CMs embedded in 3D bio-
19 printed fiber structures is impacted by the surrounding fiber matrix direction; often, growth of
20 iPSC-derived CMs is directed along the fiber printing direction. Contraction can be further
21 enhanced with higher material conductivities. Scaffolds that couple electrical and elastic materials
22 have become valuable for cardiac cell function, but current conductive materials do not show
23 tunable physiological properties for cell behaviors [138, 197]. Electrospun conductive scaffolds

1 were reported of use in cardiac tissue engineering for enhancement of connexin 43 expression [96,
2 197]. By integration of AuNPs into hydrogel scaffolds, the polymer templated gel becomes tunable
3 with a Young's modulus similar to that of myocardium, polyaniline, and polypyrrole. Neonatal rat
4 CMs were cultured on the scaffold and expressed high level of connexin 43, with or without
5 electrical stimulation. Hosoyama *et al.* have also reported a novel nanoengineered hybrid electro-
6 conductive cardiac patch for treating the infarcted myocardium [96] of which classification and
7 localization from medical images are detected by machine learning [198-202].

8 **4. Machine learning and precision control for 3D scaffold fabrication**

9 **4.1. Machine learning in tissue platform**

10 As mentioned, currently the most obvious use of machine learning (ML) in this field is
11 identifying patterns in tissue-related data and/or classifying specific tissue constructs. One
12 example of a problem of interest is that of classifying the phenotype of differentiated, stem cell-
13 derived CMs. One group sought to classify CM phenotype by matching distinct groups of shapes
14 with distinct groups of action potential waveforms [203]. It was done by staining the cells of
15 interest, optically mapping them during contraction, converting time-varying pixel intensity to
16 discrete waveforms, and then using ML algorithms to identify groupings of AP behavior which
17 they could compare to cell cluster shape data. The employed ML is what's known as spectral
18 clustering whose algorithm attempts to minimize a "similarity" weight value between sets of inputs,
19 thereby grouping them [204]. In this case, the authors used aligned and averaged AP as the input
20 to the clustering algorithm, allowing the algorithm to minimize similarities between groups of the
21 AP waveforms, and then mapped these groupings to cell cluster spatial distributions. These
22 methods have been successfully applied in biomedicine and cell biology with various stage-of-the-
23 art machine-learning algorithms [58, 60, 205].

1 **[Figure 4]**

2 A more-recent example of ML used in this space was geared toward not only classification of
3 cardiac tissue contractile events [206] but extending this classification set into a predictive model
4 for preclinical screening effects of drugs on cardiomyocyte function [41]. The predictive models
5 are highly dependent on machine learning methods such as naïve Bayesian, support vector
6 machines (SVM), and end-to-end (E2E)-integrated ML system [53], of which they are leveraged
7 by bigger datasets generated from high-throughput screening data. Lee *et al.* reported a SVM to
8 develop a drug screening assay on hiPSCs-derived cardiac tissue (**Figure 4**) [41]. In this approach,
9 groups of linearly separable data were demarcated by planes in order to classify them [207]; and
10 the planes themselves were statistical maximizations of group separation based on feature points
11 (i.e. support vectors), rather than the more-computationally intensive nearest-neighbor piecewise
12 approach [208].

13 They first qualified models by generating force data and derived parameters from stimulated
14 cardiac cells, mixing the data with a control set, allowing a binary SVM to attempt to classify the
15 data, and then quantifying the resulting SVM accuracy [209]. This classification model accuracy
16 then becomes a proxy for cardiac activity of the drug. About 50% accuracy means that the SVM
17 could not separate control from drug but accuracy greater than 50% indicates that the statistical
18 model was able to group the drug and control outputs into different regions of the parameter space
19 and, therefore, declare a difference in behavior [41, 210]. Data of cardio active effects express in
20 a higher SVM accuracy, if they are more distinguishable from two compound groups. Based on a
21 given concentration, the degree of cardio activity for a target compound is shown in a singular
22 quantitative index with the binary SVM approach [41, 206]. Next, a library of this drug screen
23 testing data was combined and an SVM designed for multiple classes was used to define parameter

1 space regions for each. The library of compounds was built on a multiple-category prediction
2 model for mechanistic action of screened compounds and chemogenomic databases [211, 212].
3 Data from the library group allow the machine learning defines boundaries of various drug families
4 and mechanism of action [213]. Finally, the developed model can be applied for the unknown
5 compounds on tissue engineering. After doing so, a withheld data set of the same form was fed
6 into their predictive model to see if the SVM could properly classify drug interactions [214],
7 integrating multiple omics data [215], and unknown drug compounds [216]. In their demonstration,
8 they were able to classify cardiac activity of unknown compounds with an accuracy of roughly 72%
9 and generalize the results to other drug families with an accuracy above 70% [217]. Further, ML
10 and its myriad algorithms can also be used on the protein and gene side of tissue engineering, as it
11 has been demonstrated or proposed for histopathological image analysis [43], ligand affinity [42],
12 folding structure [218], gene expression and biomarker data mining [219, 220], and in evaluation
13 of pre-implantation embryos [221]. Large datasets such as the “Tissue Atlas” [222], a human
14 proteome map categorized by tissue, could easily be used as a training and testing set for ML
15 algorithms targeting identification of impaired tissue or disease onset.

16 **4.2. Precision control in fabrication of 3D scaffold**

17 The ever-widening and accelerating field of robotics both contributes to and has the possibility
18 of benefitting from tissue engineering. The contribution of robotics to tissues engineering lies
19 mostly in the manufacturing space; as automated fabrication has hastened tissue construct research.
20 Of particular popularity at the moment is the concept of robotic bio-fabrication, also known as
21 organ printing or bioprinting. Bioprinting was defined by members of the first international
22 workshop on the subject in 2004 as the “*use of material transfer processes for patterning and*
23 *assembling biologically relevant materials—molecules, cells, tissues, and biodegradable bio-*

1 *materials—with a prescribed organization to accomplish one or more biological functions”* [223].
2 In other words, it’s the use of automated fabrication to faster transfer from the scaffold design and
3 tissue culture, to clinical settings, especially in the field around regenerative cardiomyocytes.

4 As discussed earlier, 2D and 3D cardiomyocyte cultures in biomimetic conditions are crucial
5 to the improvement of knowledge surrounding cardiac tissue development [224]. Researchers have
6 presented methods for forming these tissue constructs in a variety of manners— from using
7 electrospinning to create scaffolds enabling cell attachment and growth [96] to 3D patterning of
8 tissue-similar constructs [225], or using printer deposited spheroids to induce scaffold-less self-
9 assembly of tissue [226, 227], although some of these technologies have significant hurdles to
10 overcome still. Within the last decade, researchers have begun to concern themselves with the
11 systems design of holistic industrial bio-fabrication lines, including the design stage prior to and
12 maturation stage after bio-fabrication [228]. *In-vivo* bio-fabrication is also getting attention;
13 beyond bioresorbable printed scaffolds [229], there have even been demonstrations in mice of laser
14 printing of photoactive resins above the calvaria to form bone-like caps [229], which was
15 integrated with the robotic controlling.

16 Tissue engineering is also feeding back into robotics in two important ways—inspiring bio-
17 mimetic robotic systems [230] and becoming a potential component within robots themselves
18 [231]. Most bio-similar robots up to this point have focused on the use of soft materials to grip and
19 move, as the field has acknowledged that the limited conformability of robotics prior to this trend
20 is directly counter to the variety of conformable structures seen in nature [230]. Much of the
21 interest in artificial tissue has been focused on muscle. One group demonstrated artificial muscle
22 composed of polymer-based composites which bend and flex under cation exchange [232], similar
23 to action potential propagation in cardiac tissue. Another group demonstrated this same concept

1 using a collagen gel filled with rat CMs and initiated contractile behavior strictly chemically, using
2 epinephrine and nifedipine [233]. This is somewhere between the former and latter contributions
3 of tissue engineering but there are recent examples in which robotics systems have been designed
4 from the systems level to take advantages of engineered tissues, themselves being bio-similar
5 robotic systems. As an example of engineered tissue integrated robotics, researchers have
6 demonstrated actuators which are comprised of myoblast-filled hydrogels and triggered by
7 electrical stimulation [234], antagonistically contracting against each other to create both
8 contraction and extension. It is of note here that not only are the actuators themselves engineered
9 tissues, but they have been attached to their skeletal frame by culturing methods, and even the
10 mechanical systems design mimics natural tissue. It is likely that more bio-similar, bio-integrated
11 robotic hybrids are on the horizon.

12 **5. Conclusions**

13 Cardiac tissue engineering has benefited greatly from advances in genetic engineering,
14 material engineering, electrical engineering, and biochip design. Within genetic engineering,
15 genome editing is a pioneering tool that has been used in the generation of new cellular, tissue and
16 animal models to investigate cell-cell adhesion, differentiation of hiPSCs, and generation of CMs
17 for various cardiac disease. However, the post-mitotic nature of CMs and various technical barriers
18 present hurdles for bringing engineered cardiac tissue directly to therapeutic applications. Other
19 cells such as cardiac fibroblasts, ECs, and muscle cells can potentially substitute for CMs in
20 developing tissues for cardiovascular diseases.

21 One major technical advancement in this field is the ability to design a physical framework of
22 biocompatible materials and the control of mechanical characteristics, which can be applied
23 clinically. Due to the nature of CMs, scaffolds used for CM growth should be readily tunable for

1 alignment/organization to produce efficient contractions. Further, electrical stimulation should be
2 integrated into the system to perform intensity training in the later stages of CM culture [111]. This
3 enables the connection of native and differentiated cells, at single cell levels of cellular
4 communications, between hiPSC and CMs. Communication between CMs and their micro-
5 environment within the engineered tissue should be understood in tandem with development of
6 3D biomimetic scaffolds and bioreactors in order to promote cost-effective scale-up of tissue
7 production.

8 There exists a variety of supporting technologies which could be applied in the process of
9 tissue engineering. One possibility is that machine learning be used involved in the design and
10 processing of micro-physiological systems. High-throughput fabrication could be optimized via
11 scaffold geometry, cellular paracrine factors, and cellular communication, in order to maximize
12 survival rates and completely functionalize engineered cardiac tissue. At the molecular and cellular
13 level, engineered cardiac tissue derived from the HLA-null line should be tailored towards
14 developing immune-resistant modified hiPSC-derived CM lines; this can be done using genome
15 editing tools focused on solving cryopreservation general implantation issues.

16 Confucius said, “*Our greatest glory is not in never failing, but in rising every time we fail.*”
17 We believe with focused and continued progress achieved by scientists across a range of
18 multidisciplinary fields, cardiac tissue engineering will soon be viable for clinical use.

1 **6. List of abbreviations**

- 2 Cardiomyocyte – CM
- 3 Cardiac stem cells (CSCs)
- 4 Machine learning – ML
- 5 Induced pluripotent stem cells – iPSCs
- 6 Clustered regularly interspaced short palindromic repeats systems – CRISPR
- 7 Caspase 9 – Cas9
- 8 Human iPSCs – hiPSCs
- 9 Single-stranded guide RNA – sgRNA
- 10 Protospacer adjacent motif – PAM
- 11 Non-homologous end joining – NHEJ
- 12 Homology directed repair – HDR
- 13 iPSCs-derived cardiomyocytes – iPSC-CMs
- 14 Human induced pluripotent stem cells-derived CMs – hiPSC-CMs
- 15 Extracellular matrix – ECM
- 16 Self-assembled monolayers – SAM
- 17 Fibronectin – FN
- 18 Carbon nanotubes – CNTs
- 19 Artificial heart muscle – AHM
- 20 Magnetic nanoparticles – MNPs
- 21 Vascular endothelial growth factor – VEGF
- 22 Mesenchymal stem cells – MSCs
- 23 Human mesenchymal stem cells – hMSCs
- 24 Endothelial cells – ECs

- 1 Thermally induced phase separation – TIPS
- 2 Neonatal rat ventricular myocytes – NRVMs
- 3 Adult rat ventricular myocytes – ARVMs
- 4 Solid freeform fabrication – SFF
- 5 Human umbilical vein endothelial cells – HUVECs
- 6 Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1)
- 7 Ryanodine receptor 2(RYR2)
- 8 Interleukin 1 receptor antagonist (IL-1Ra)
- 9 Interleukin 1 (IL-1)
- 10 Polyglycolic acid (PGA)
- 11 Poly(L)-lactic acid (PLA)
- 12 Mechanosensitive transcriptional activator (YAP)
- 13 Poly(L-lactide) (PLLA)
- 14 Poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer)
- 15 Elastomeric antioxidant polyurethane (PUAO)
- 16 Reactive oxygen species (ROS)
- 17 Carbon nanotubes (CNTs)
- 18 Gold nanoparticles (AuNPs)
- 19 Reverse thermal gel (RTG)
- 20 Polycaprolactone (PCL)
- 21 Growth factor (GF)
- 22 Fused deposition modeling (FDM)
- 23 Polyethylene glycol diacrylate (PEG-DA)
- 24 Pentaerythritol tetra-acrylate (PETRA)
- 25

1 **7. Declarations**

2 a. Ethics approval and consent to participate: N/A

3 b. Consent for publication: N/A

4 c. Availability of data and material: N/A

5 d. Competing interests:

6 The authors declare that they have no competing interests

7 e. Funding:

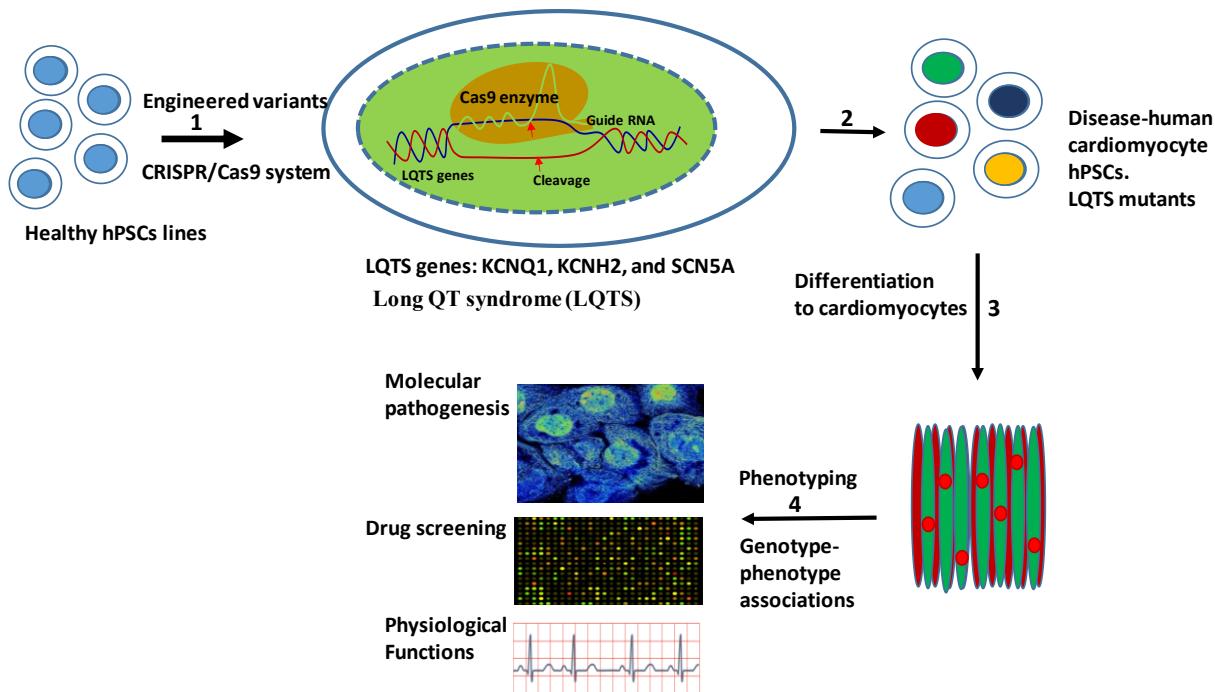
8 P.M. was funded by the National Science Foundation Award #1652818 to H.C.

9 f. Authors' contributions:

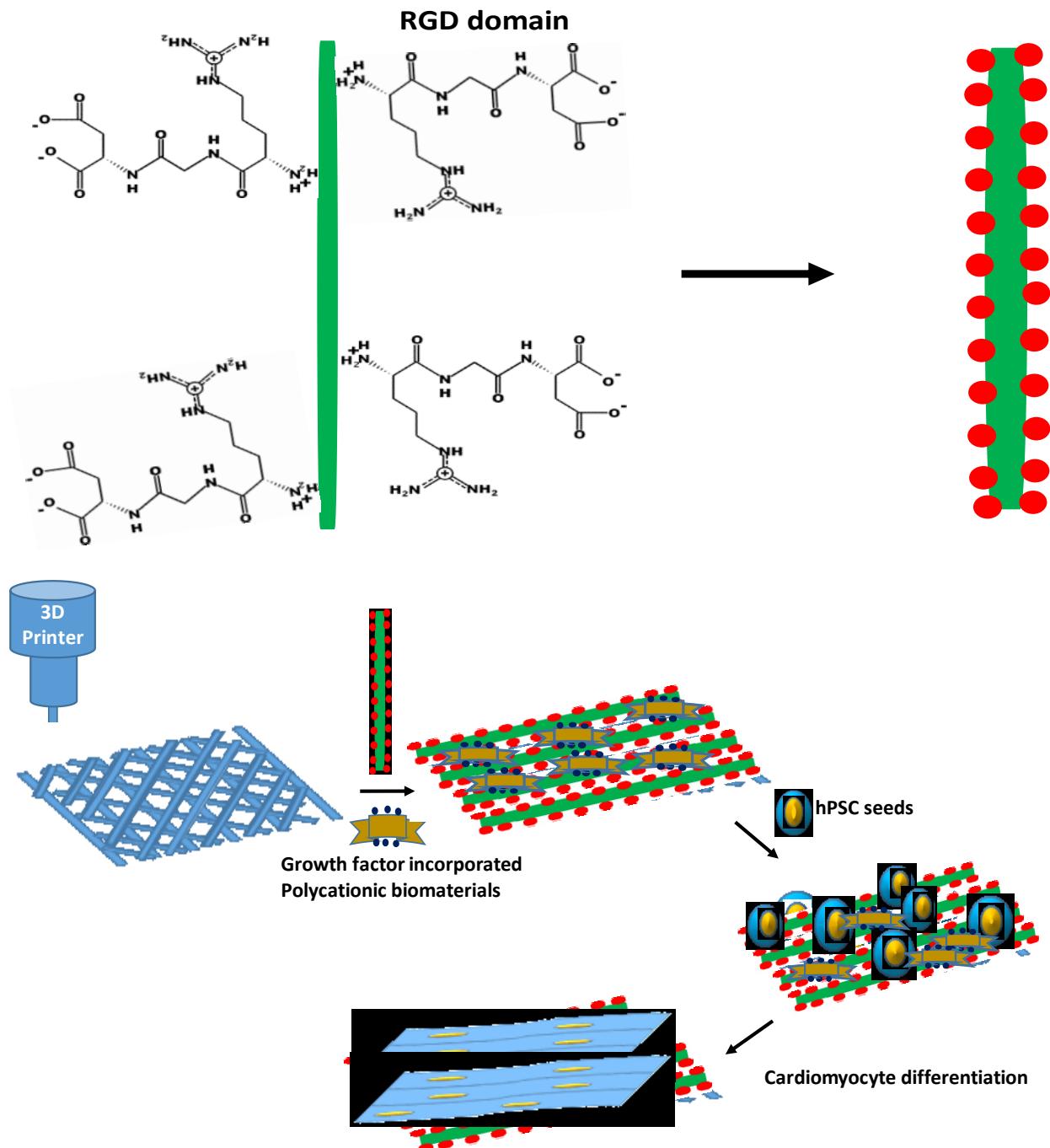
10 A.H.N. initiated the manuscript. A.H.N, P.M, L.S.H and H.C. wrote and revised. P.J.B,

11 J.H.L, A.L. and H.C. gave advice and discussion. All authors read through the

12 manuscript.


13 g. Acknowledgements:

14 We are thankful for being invited by the Editors to contribute this important review


15 paper.

16

Figures and captions

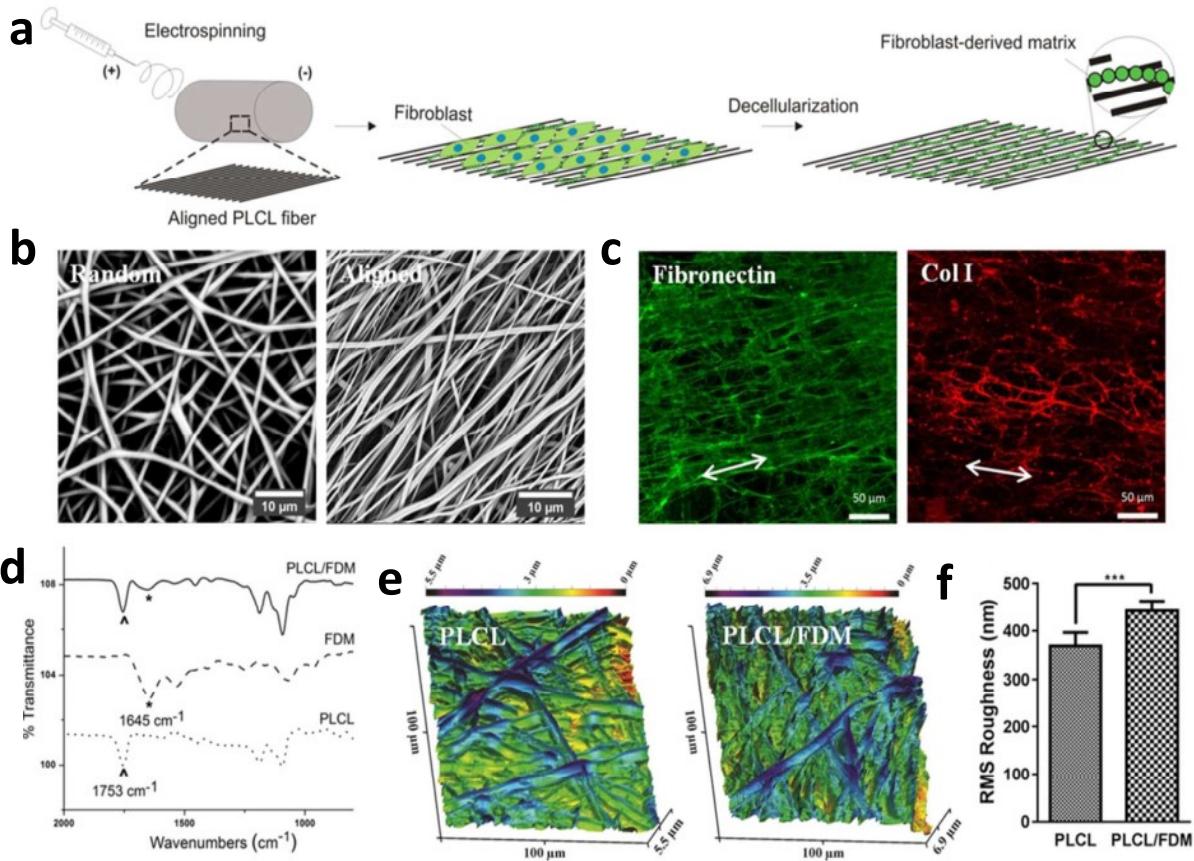


Figure 1. (1) Introduction of LQTS genes in independent healthy hPSC lines using CRISPR/Cas9. (2) Generation of disease-cardiomyocyte hiPSCs. (3) Isogenic sets of hPSC-CMs were differentiated from the edited hiPSCs lines. (4) Molecular analysis and phenotyping of hPSC-CMs (upper) molecular pathogenesis, (middle) drug screening, and (bottom) physiological functions.

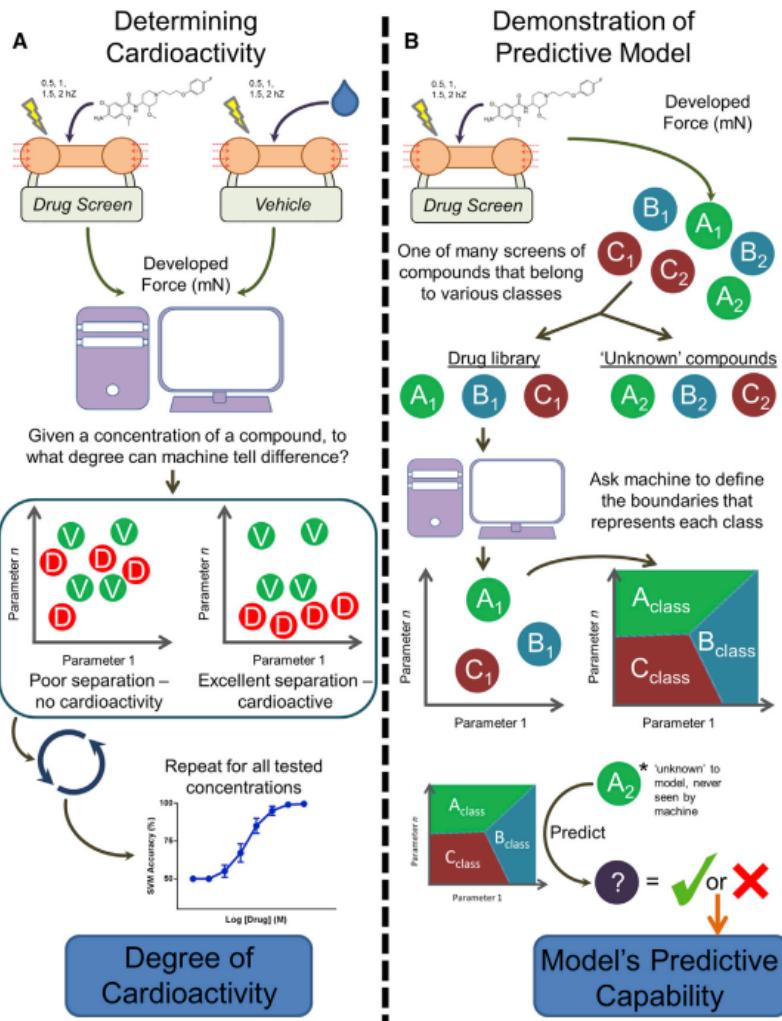


Figure 2. Biomaterials are based on self-assembled monolayers from bacteriophage display for 3D scaffolds formation. (Top), RGD peptide is displayed and fused to the solvent-exposed terminal of each copy of major coat protein (pVIII) through genetic engineering. The side wall of filamentous phage by RGD-coding gene into gene VIII to generate RGD-phage. (Bottom) The 3D scaffold of RGD-phage nanofibers (negatively charged) self-assemblies with polycationic

biomaterials and integrated into a 3D printed bio-ceramic scaffold [156], which electrically stabilizes the phage nanofiber inside the scaffold. The resulted scaffold is seeded with hiPSCs and the implanted into cardiac defect. The presence of RGD-phage in the scaffold induced the formation of cardiomyocytes [235].

Figure 3. Fabrication and characterization of PLCL/FDM. (a) Illustration represents the fabrication process of PLCL/FDM. (b) Random and aligned orientations of PLCL fibers. Scale bar of SEM images is 10 μm . (c) Fibrillary ECM components in FDM were stained against FN and collagen type I. The direction of PLCL fiber alignment is shown by double headed arrows. Scale bar is 50 μm . (d) ATR-FTIR spectra of FDM with C=O at 1753 cm^{-1} from PLCL and amide group at 1645 cm^{-1} from FDM. (e) AFM images for surface topographical features of PLCL and PLCL/FDM; color scale shows their surface roughness and difference in height. (f) Quantitative comparison of root mean square (RMS) roughness calculated from AFM images. Statistical significance (***) $p < 0.001$. The reproduced image is permitted from [45].

Figure 4. Machine learning for drug screening on human iPSCs-derived engineered cardiac tissue.

(A) Waveform pattern parameters are determined based on concentration of cardioactive compounds compared to the binary support vector machine (SVM). The collected data points would be in line with those of vehicle as if the compound does not modulate the contractile behavior of human ventricular cardiac tissue strips (hvCTSs). If data of cardio active effects are more distinguishable, it shows in a higher SVM accuracy which is possible to separate two compound groups. The degree of cardio activity of a given concentration for target compound is shown in a singular quantitative index with the binary SVM approach. **(B)** Library of compounds is built on a model for prediction of mechanistic action of screened compounds. Data from the library group allow the machine learning defines boundaries of various drug families. Finally, the developed model can be applied for the unknown compounds on tissue engineering. The image is reproduced with permission from [41].

References

1. Heallen TR, Martin JF: **Heart repair via cardiomyocyte-secreted vesicles.** *Nature Biomedical Engineering* 2018, **2**(5):271.
2. Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D: **Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration.** *Cell* 2018, **173**(1):104-+.
3. Zimmer A, Bagchi AK, Vinayak K, Bello-Klein A, Singal PK: **Innate immune response in the pathogenesis of heart failure in survivors of myocardial infarction.** *American Journal of Physiology-Heart and Circulatory Physiology* 2019, **316**(3):H435-H445.
4. Frangogiannis NG: **The Functional Pluralism of Fibroblasts in the Infarcted Myocardium.** *Circulation research* 2016, **119**(10):1049-1051.
5. Weerasinghe P, Buja LM: **Oncosis: an important non-apoptotic mode of cell death.** *Experimental and molecular pathology* 2012, **93**(3):302-308.
6. Tzahor E, Poss KD: **Cardiac regeneration strategies: staying young at heart.** *Science* 2017, **356**(6342):1035-1039.
7. MEMBERS WG, Benjamin EJ, Blaha MJ, Chiue SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M: **Heart disease and stroke statistics—2017 update: a report from the American Heart Association.** *Circulation* 2017, **135**(10):e146.
8. Dhingra R, Vasan RS: **Age as a risk factor.** *The Medical clinics of North America* 2012, **96**(1):87-91.
9. !!! INVALID CITATION !!!
10. Hirt MN, Hansen A, Eschenhagen T: **Cardiac tissue engineering: state of the art.** *Circulation research* 2014, **114**(2):354-367.
11. Bejoy J, Wang Z, Bijnowski B, Yang M, Ma T, Sang Q-X, Li Y: **Differential effects of heparin and hyaluronic acid on neural patterning of human induced pluripotent stem cells.** *ACS Biomaterials Science & Engineering* 2018, **4**(12):4354-4366.
12. Shiekh PA, Singh A, Kumar A: **Engineering Bioinspired Antioxidant Materials Promoting Cardiomyocyte Functionality and Maturation for Tissue Engineering Application.** *ACS Applied Materials & Interfaces* 2018, **10**(4):3260-3273.
13. Zhu C, Rodda AE, Truong VX, Shi Y, Zhou K, Haynes JM, Wang B, Cook WD, Forsythe JS: **Increased cardiomyocyte alignment and intracellular calcium transients using micropatterned and drug-releasing poly (glycerol sebacate) elastomers.** *ACS Biomaterials Science & Engineering* 2018.
14. Chen K, Vigliotti A, Bacca M, McMeeking RM, Deshpande VS, Holmes JW: **Role of boundary conditions in determining cell alignment in response to stretch.** *Proceedings of the National Academy of Sciences* 2018:201715059.
15. Tandon N, Cannizzaro C, Chao P-HG, Maidhof R, Marsano A, Au HTH, Radisic M, Vunjak-Novakovic G: **Electrical stimulation systems for cardiac tissue engineering.** *Nature protocols* 2009, **4**(2):155.
16. Stoppel WL, Kaplan DL, Black III LD: **Electrical and mechanical stimulation of cardiac cells and tissue constructs.** *Advanced drug delivery reviews* 2016, **96**:135-155.
17. Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y, Dennis R, Langer R, Freed LE, Vunjak-Novakovic G: **Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds.** *Tissue engineering* 2006, **12**(8):2077-2091.
18. Allegue C, Gil R, Blanco-Verea A, Santori M, Rodríguez-Calvo M, Concheiro L, Carracedo Á, Brion M: **Prevalence of HCM and long QT syndrome mutations in young sudden cardiac death-related cases.** *International journal of legal medicine* 2011, **125**(4):565-572.

19. Yamaguchi N, Zhang X-H, Wei H, Morad M: **Generation and Characterization of CPVT1 Cardiomyocytes using Human Induced Pluripotent Stem Cells and CRISPR/Cas9 Gene Editing.** *Biophysical Journal* 2018, **114**(3):116a.
20. Tang J, Cui X, Caranasos TG, Hensley MT, Vandergriff AC, Hartanto Y, Shen D, Zhang H, Zhang J, Cheng K: **Heart Repair Using Nanogel-Encapsulated Human Cardiac Stem Cells in Mice and Pigs with Myocardial Infarction.** *ACS Nano* 2017, **11**(10):9738-9749.
21. Wang H, Hao J, Hong CC: **Cardiac Induction of Embryonic Stem Cells by a Small Molecule Inhibitor of Wnt/β-Catenin Signaling.** *ACS Chemical Biology* 2011, **6**(2):192-197.
22. Chen H, Zhang Y, Ding P, Zhang T, Zan Y, Ni T, Lin R, Liu M, Pei R: **Bone Marrow-Derived Mesenchymal Stem Cells Encapsulated in Functionalized Gellan Gum/Collagen Hydrogel for Effective Vascularization.** *ACS Applied Bio Materials* 2018, **1**(5):1408-1415.
23. Chetty SS, Praneetha S, Govarthanan K, Verma RS, Vadivel Murugan A: **Noninvasive Tracking and Regenerative Capabilities of Transplanted Human Umbilical Cord-Derived Mesenchymal Stem Cells Labeled with I-III-IV Semiconducting Nanocrystals in Liver-Injured Living Mice.** *ACS Applied Materials & Interfaces* 2019, **11**(9):8763-8778.
24. Barker RA, Carpenter MK, Forbes S, Goldman SA, Jamieson C, Murry CE, Takahashi J, Weir G: **The Challenges of First-in-Human Stem Cell Clinical Trials: What Does This Mean for Ethics and Institutional Review Boards?** *Stem cell reports* 2018, **10**(5):1429-1431.
25. Poulos J: **The limited application of stem cells in medicine: a review.** *Stem cell research & therapy* 2018, **9**(1):1-1.
26. Martin I, Galipeau J, Kessler C, Le Blanc K, Dazzi F: **Challenges for mesenchymal stromal cell therapies.** *Science Translational Medicine* 2019, **11**(480):eaat2189.
27. Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O, Li VSW, van den Born M, Gunst QD, Versteeg D *et al*: **Profiling proliferative cells and their progeny in damaged murine hearts.** *Proceedings of the National Academy of Sciences* 2018, **115**(52):E12245-E12254.
28. van Berlo JH, Molkentin JD: **An emerging consensus on cardiac regeneration.** *Nature Medicine* 2014, **20**:1386.
29. Vicinanza C, Aquila I, Cianflone E, Scalise M, Marino F, Mancuso T, Fumagalli F, Giovannone ED, Cristiano F, Iaccino E *et al*: **Kitcre knock-in mice fail to fate-map cardiac stem cells.** *Nature* 2018, **555**:E1.
30. Lee RT: **Adult Cardiac Stem Cell Concept and the Process of Science.** *Circulation* 2018, **138**(25):2940-2942.
31. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfo M *et al*: **Adult c-kit(pos) Cardiac Stem Cells Are Necessary and Sufficient for Functional Cardiac Regeneration and Repair.** *Cell* 2013, **154**(4):827-842.
32. Li Y, He LJ, Huang XZ, Bhaloo SI, Zhao H, Zhang SH, Pu WJ, Tian XY, Li Y, Liu QZ *et al*: **Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases.** *Circulation* 2018, **138**(8):793-805.
33. Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E, Mancuso T, Marotta P, Sacco W, Lewis FC *et al*: **Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification.** *Cell Death And Differentiation* 2017, **24**:2101.
34. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA *et al*: **Revisiting Cardiac Cellular Composition.** *Circulation research* 2016, **118**(3):400-409.
35. Song H-HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS: **Vascular tissue engineering: progress, challenges, and clinical promise.** *Cell stem cell* 2018, **22**(3):340-354.
36. Richards DJ, Tan Y, Coyle R, Li Y, Xu R, Yeung N, Parker A, Menick DR, Tian B, Mei Y: **Nanowires and electrical stimulation synergistically improve functions of hiPSC cardiac spheroids.** *Nano letters* 2016, **16**(7):4670-4678.

37. Au - Llucià-Valldéperas A, Au - Bragós R, Au - Bayés-Genís A: **Simultaneous Electrical and Mechanical Stimulation to Enhance Cells' Cardiomyogenic Potential.** *JoVE* 2019(143):e58934.

38. Miotto R, Wang F, Wang S, Jiang X, Dudley JT: **Deep learning for healthcare: review, opportunities and challenges.** *Briefings in Bioinformatics* 2017:bbx044.

39. Soni J, Ansari U, Sharma D, Soni S: **Predictive data mining for medical diagnosis: An overview of heart disease prediction.** *International Journal of Computer Applications* 2011, 17(8):43-48.

40. Jo A, Ham S, Lee GH, Lee Y-I, Kim S, Lee Y-S, Shin J-H, Lee Y: **Efficient mitochondrial genome editing by CRISPR/Cas9.** *BioMed research international* 2015, 2015.

41. Lee EK, Tran DD, Keung W, Chan P, Wong G, Chan CW, Costa KD, Li RA, Khine M: **Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification.** *Stem cell reports* 2017, 9(5):1560-1572.

42. Ballester PJ, Mitchell JB: **A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking.** *Bioinformatics* 2010, 26(9):1169-1175.

43. Komura D, Ishikawa S: **Machine learning methods for histopathological image analysis.** *Computational and Structural Biotechnology Journal* 2018, 16:34-42.

44. Rahmani-Monfared K, Fathi A, Mozaffari A, Rabiee SM: **Application of self-learning evolutionary algorithm for optimal design of a porous polymethylmethacrylate scaffold fabricated by laser drilling process.** *Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering* 2013, 227(3):211-224.

45. Suhaeri M, Subbiah R, Kim S-H, Kim C-H, Oh SJ, Kim S-H, Park K: **Novel platform of cardiomyocyte culture and coculture via fibroblast-derived matrix-coupled aligned electrospun nanofiber.** *ACS applied materials & interfaces* 2016, 9(1):224-235.

46. Cui X, Tang J, Hartanto Y, Zhang J, Bi J, Dai S, Qiao SZ, Cheng K, Zhang H: **NIPAM-based Microgel Microenvironment Regulates the Therapeutic Function of Cardiac Stromal Cells.** *ACS Applied Materials & Interfaces* 2018, 10(44):37783-37796.

47. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kaminska B, Huelsken J, Omberg L, Gevaert O *et al*: **Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.** *Cell* 2018, 173(2):338-+.

48. Asadi-Eydivand M, Solati-Hashjin M, Fathi A, Padashi M, Abu Osman NA: **Optimal design of a 3D-printed scaffold using intelligent evolutionary algorithms.** *Applied Soft Computing* 2016, 39:36-47.

49. Lee CS, Tyring AJ, Wu Y, Xiao S, Rokem AS, DeRuyter NP, Zhang Q, Tufail A, Wang RK, Lee AY: **Generating retinal flow maps from structural optical coherence tomography with artificial intelligence.** *Scientific Reports* 2019, 9(1):5694.

50. Berry C: **Artificial intelligence and the dental practitioner.** *BDJ In Practice* 2019, 32(4):18-19.

51. Thomas PBM, Chan T, Nixon T, Muthusamy B, White A: **Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics.** *Eye* 2019.

52. Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, Urban L, Whitebread S, Jenkins JL: **Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure.** *Chemmedchem* 2007, 2(6):861-873.

53. Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM: **Exploiting machine learning for end-to-end drug discovery and development.** *Nature Materials* 2019, 18(5):435-441.

54. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A: **Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.** *Molecular Pharmaceutics* 2016, 13(7):2524-2530.

55. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J *et al*: **Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.** *Jama-Journal of the American Medical Association* 2016, 316(22):2402-2410.

56. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S: **Dermatologist-level classification of skin cancer with deep neural networks.** *Nature* 2017, **542**:115.

57. Janowczyk A, Madabhushi A: **Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.** *Journal of pathology informatics* 2016, **7**:29-29.

58. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM *et al*: **Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram.** *Nature Medicine* 2019, **25**(1):70-74.

59. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY: **Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.** *Nature Medicine* 2019, **25**(1):65-69.

60. Gurovich Y, Hanani Y, Bar O, Nadav G, Fleischer N, Gelbman D, Basel-Salmon L, Krawitz PM, Kamphausen SB, Zenker M *et al*: **Identifying facial phenotypes of genetic disorders using deep learning.** *Nature Medicine* 2019, **25**(1):60-64.

61. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J: **Deep learning based tissue analysis predicts outcome in colorectal cancer.** *Scientific Reports* 2018, **8**.

62. Rybin VO, Xu XH, Lisanti MP, Steinberg SF: **Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae - A mechanism to functionally regulate the cAMP signaling pathway.** *Journal of Biological Chemistry* 2000, **275**(52):41447-41457.

63. Pasqualini FS, Sheehy SP, Agarwal A, Aratyn-Schaus Y, Parker KK: **Structural Phenotyping of Stem Cell-Derived Cardiomyocytes.** *Stem Cell Reports* 2015, **4**(3):340-347.

64. Chen D, Sarkar S, Candia J, Florczyk SJ, Bodhak S, Driscoll MK, Simon CG, Dunkers JP, Losert W: **Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues.** *Biomaterials* 2016, **104**:104-118.

65. Sommer C, Gerlich DW: **Machine learning in cell biology - teaching computers to recognize phenotypes.** *Journal of Cell Science* 2013, **126**(24):5529-5539.

66. Yagyu S, Hoyos V, Del Bufalo F, Brenner MK: **An inducible caspase-9 suicide gene to improve the safety of therapy using human induced pluripotent stem cells.** *Molecular Therapy* 2015, **23**(9):1475-1485.

67. Sander JD, Joung JK: **CRISPR-Cas systems for editing, regulating and targeting genomes.** *Nature biotechnology* 2014, **32**(4):347.

68. Mosqueira D, Mannhardt I, Bhagwan JR, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer SC, Tinker A: **CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy.** *European heart journal* 2018.

69. Jehuda RB, Eisen B, Shemer Y, Mekies LN, Szantai A, Reiter I, Cui H, Guan K, Haron-Khun S, Freimark D: **CRISPR correction of the PRKAG2 gene mutation in the patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities.** *Heart rhythm* 2018, **15**(2):267-276.

70. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L: **Multiplex genome engineering using CRISPR/Cas systems.** *Science* 2013;1231143.

71. Motta BM, Pramstaller PP, Hicks AA, Rossini A: **The impact of CRISPR/Cas9 technology on cardiac research: from disease modelling to therapeutic approaches.** *Stem cells international* 2017, **2017**.

72. Liu J-J, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB *et al*: **CasX enzymes comprise a distinct family of RNA-guided genome editors.** *Nature* 2019, **566**(7743):218-223.

73. Hansen KJ, Laflamme MA, Gaudette GR: **Development of a contractile cardiac Fiber From Pluripotent stem cell Derived cardiomyocytes.** *Frontiers in Cardiovascular Medicine* 2018, **5**.

74. Fong AH, Romero-López M, Heylman CM, Keating M, Tran D, Sobrino A, Tran AQ, Pham HH, Fimbres C, Gershon PD *et al*: **Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes**. *Tissue engineering Part A* 2016, **22**(15-16):1016-1025.

75. Fong AH, Romero-López M, Heylman CM, Keating M, Tran D, Sobrino A, Tran AQ, Pham HH, Fimbres C, Gershon PD *et al*: **Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes**. *Tissue Engineering Part A* 2016, **22**(15-16):1016-1025.

76. Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN: **A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9**. *Proceedings of the National Academy of Sciences* 2016, **113**(2):338-343.

77. Christidi E, Huang HM, Brunham LR: **CRISPR/Cas9-mediated genome editing in human stem cell-derived cardiomyocytes: Applications for cardiovascular disease modelling and cardiotoxicity screening**. *Drug Discovery Today: Technologies* 2018.

78. Monteiro LM, Vasques-Novoa F, Ferreira L, Nascimento DS: **Restoring heart function and electrical integrity: closing the circuit**. *NPJ Regenerative medicine* 2017, **2**(1):9.

79. He JJ, Rong ZL, Fu XM, Xu Y: **A Safety Checkpoint to Eliminate Cancer Risk of the Immune Evasive Cells Derived from Human Embryonic Stem Cells**. *Stem Cells* 2017, **35**(5):1154-1161.

80. Motloch LJ, Akar FG: **Gene therapy to restore electrophysiological function in heart failure**. *Expert opinion on biological therapy* 2015, **15**(6):803-817.

81. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, Hucker WJ, Wülfers EM, Seemann G, Courties G: **Macrophages facilitate electrical conduction in the heart**. *Cell* 2017, **169**(3):510-522. e520.

82. Gomez I, Duval V, Silvestre J-S: **Cardiomyocytes and Macrophages Discourse on the Method to Govern Cardiac Repair**. *Frontiers in cardiovascular medicine* 2018, **5**:134-134.

83. Polstein LR, Gersbach CA: **A light-inducible CRISPR-Cas9 system for control of endogenous gene activation**. *Nature chemical biology* 2015, **11**(3):198.

84. Zhou XX, Zou X, Chung HK, Gao Y, Liu Y, Qi LS, Lin MZ: **A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription**. *ACS chemical biology* 2017, **13**(2):443-448.

85. Dzilic E, Lahm H, Dreßen M, Deutsch M-A, Lange R, Wu SM, Krane M, Doppler SA: **Genome Editing Redefines Precision Medicine in the Cardiovascular Field**. *Stem cells international* 2018, **2018**.

86. Lin J, Wong K-C: **Off-target predictions in CRISPR-Cas9 gene editing using deep learning**. *Bioinformatics* 2018, **34**(17):i656-i663.

87. Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW: **A CRISPR/Cas9-based system for reprogramming cell lineage specification**. *Stem cell reports* 2014, **3**(6):940-947.

88. Waardenberg AJ, Ramialison M, Bouveret R, Harvey RP: **Genetic networks governing heart development**. *Cold Spring Harbor perspectives in medicine*, **4**(11):a013839-a013839.

89. Bertero A, Murry CE: **Hallmarks of cardiac regeneration**. *Nature Reviews Cardiology* 2018:1.

90. Brunger JM, Zutshi A, Willard VP, Gersbach CA, Guilak F: **CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues**. *Arthritis & rheumatology (Hoboken, NJ)* 2017, **69**(5):1111-1121.

91. Aoyagi T, Matsui T: **The Cardiomyocyte as a Source of Cytokines in Cardiac Injury**. *Journal of cell science & therapy* 2011, **2012**(S5):003.

92. Nian M, Lee P, Khaper N, Liu P: **Inflammatory cytokines and postmyocardial infarction remodeling**. *Circulation Research* 2004, **94**(12):1543-1553.

93. Glass KA, Link JM, Brunger JM, Moutos FT, Gersbach CA, Guilak F: **Tissue-engineered cartilage with inducible and tunable immunomodulatory properties**. *Biomaterials* 2014, **35**(22):5921-5931.

94. Schroder EA, Lefta M, Zhang XP, Bartos D, Feng HZ, Zhao YH, Patwardhan A, Jin JP, Esser KA, Delisle BP: **The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility.** *American Journal of Physiology-Cell Physiology* 2013, **304**(10):C954-C965.

95. Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V, Dambrot C, Devalla HD, Davis RP, Mastroberardino PG: **Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function.** *Cell reports* 2015, **13**(4):733-745.

96. Hosoyama K, Ahumada M, McTiernan CD, Davis DR, Variola F, Ruel M, Liang W, Suuronen EJ, Alarcon EI: **Nanoengineered electroconductive collagen-based cardiac patch for infarcted myocardium repair.** *ACS applied materials & interfaces* 2018.

97. Kaiser NJ, Kant RJ, Minor AJ, Coulombe KL: **Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes.** *ACS Biomaterials Science & Engineering* 2018.

98. Maiullari F, Costantini M, Milan M, Pace V, Chirivi M, Maiullari S, Rainer A, Baci D, Marei HE-S, Seliktar D: **A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.** *Scientific reports* 2018, **8**(1):13532.

99. Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, Dahl CP, Fiane A, Tønnessen T, Kryshtal DO: **Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Novelty and Significance.** *Circulation research* 2017, **121**(12):1323-1330.

100. Chong JJ, Yang X, Don CW, Minami E, Liu Y-W, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ: **Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts.** *Nature* 2014, **510**(7504):273.

101. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC: **Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs.** *Nature* 2013, **494**(7435):105.

102. Yang XL, Pabon L, Murry CE: **Engineering Adolescence Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes.** *Circulation Research* 2014, **114**(3):511-523.

103. Karakikes I, Ameen M, Termglinchan V, Wu JC: **Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Insights Into Molecular, Cellular, and Functional Phenotypes.** *Circulation Research* 2015, **117**(1):80-88.

104. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G: **Advanced maturation of human cardiac tissue grown from pluripotent stem cells.** *Nature* 2018, **556**(7700):239.

105. Maxwell JT, Xu C: **Stem-Cell-Derived Cardiomyocytes Grow Up: Start Young and Train Harder.** *Cell stem cell* 2018, **22**(6):790-791.

106. Jayasinghe ID, Crossman DJ, Soeller C, Cannell MB: **Comparison of the organization of t-tubules, sarcoplasmic reticulum and ryanodine receptors in rat and human ventricular myocardium.** *Clinical and Experimental Pharmacology and Physiology* 2012, **39**(5):469-476.

107. Shannon TR, Bers DM: **Integrated Ca²⁺ management in cardiac myocytes.** In: *Cardiac Engineering: From Genes and Cells to Structure and Function*. Edited by Sideman S, Beyar R, vol. 1015; 2004: 28-38.

108. Shum AMY, Che H, Wong AOT, Zhang CZ, Wu HK, Chan CWY, Costa K, Khine M, Kong CW, Li RA: **A Micropatterned Human Pluripotent Stem Cell-Based Ventricular Cardiac Anisotropic Sheet for Visualizing Drug-Induced Arrhythmogenicity.** *Advanced Materials* 2017, **29**(1).

109. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G: **Advanced maturation of human cardiac tissue grown from pluripotent stem cells.** *Nature* 2018, **556**(7700):239-243.

110. Wiegerinck RF, Cojoc A, Zeidenweber CM, Ding G, Shen M, Joyner RW, Fernandez JD, Kanter KR, Kirshbom PM, Kogon BE: **Force frequency relationship of the human ventricle increases during early postnatal development.** *Pediatric research* 2009, **65**(4):414.

111. Cao H, Kang BJ, Lee C-A, Shung KK, Hsiai TK: **Electrical and mechanical strategies to enable cardiac repair and regeneration.** *IEEE Rev Biomed Eng* 2015, **8**:114-124.

112. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A: **Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes.** *Nature methods* 2013, **10**(8):781.

113. Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG, Quaife-Ryan GA, Voges HK, Hodson MP, Ferguson C, Drowley L: **Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest.** *Proceedings of the National Academy of Sciences* 2017, **114**(40):E8372-E8381.

114. Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao M-L, Levent E, Raad F, Zeidler S, Wingender E: **Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair.** *Circulation* 2017, **135**(19):1832-1847.

115. Bhutani S, Nachlas ALY, Brown ME, Pete T, Johnson CT, García AJ, Davis ME: **Evaluation of Hydrogels Presenting Extracellular Matrix-Derived Adhesion Peptides and Encapsulating Cardiac Progenitor Cells for Cardiac Repair.** *ACS Biomaterials Science & Engineering* 2018, **4**(1):200-210.

116. Shevach M, Fleischer S, Shapira A, Dvir T: **Gold Nanoparticle-Decellularized Matrix Hybrids for Cardiac Tissue Engineering.** *Nano Letters* 2014, **14**(10):5792-5796.

117. Martinelli V, Bosi S, Peña B, Baj G, Long CS, Sbaizer O, Giacca M, Prato M, Mestroni L: **3D Carbon-Nanotube-Based Composites for Cardiac Tissue Engineering.** *ACS Applied Bio Materials* 2018, **1**(5):1530-1537.

118. Briquez PS, Hubbell JA, Martino MM: **Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing.** *Advances in wound care* 2015, **4**(8):479-489.

119. Mewhort HEM, Svystonyuk DA, Turnbull JD, Teng G, Belke DD, Guzzardi DG, Park DS, Kang S, Hollenberg MD, Fedak PWM: **Bioactive Extracellular Matrix Scaffold Promotes Adaptive Cardiac Remodeling and Repair.** *JACC Basic to translational science* 2017, **2**(4):450-464.

120. Reis LA, Chiu LL, Feric N, Fu L, Radisic M: **Biomaterials in myocardial tissue engineering.** *Journal of tissue engineering and regenerative medicine* 2016, **10**(1):11-28.

121. El-Sherbiny IM, Yacoub MH: **Hydrogel scaffolds for tissue engineering: Progress and challenges.** *Global Cardiology Science and Practice* 2013:38.

122. Wade RJ, Bassin EJ, Gramlich WM, Burdick JA: **Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior.** *Advanced Materials* 2015, **27**(8):1356-1362.

123. Giuliani A, Moroncini F, Mazzoni S, Belicchi MLC, Villa C, Erratico S, Colombo E, Calcaterra F, Brambilla L, Torrente Y *et al*: **Polyglycolic acid-polylactic acid scaffold response to different progenitor cell in vitro cultures: a demonstrative and comparative X-ray synchrotron radiation phase-contrast microtomography study.** *Tissue engineering Part C, Methods* 2014, **20**(4):308-316.

124. Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, Blahnová V, Lukášová V, Bartoš M, Nečas A: **Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.** *Journal of biological engineering* 2017, **11**(1):31.

125. Singh A, Peppas NA: **Hydrogels and scaffolds for immunomodulation.** *Advanced Materials* 2014, **26**(38):6530-6541.

126. Bertuoli PT, Ordoño J, Armelin E, Pérez-Amodio S, Baldissera AF, Ferreira CA, Puiggallí J, Engel E, del Valle LJ, Alemán C: **Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering.** *ACS Omega* 2019, **4**(2):3660-3672.

127. Wang L, Song D, Zhang X, Ding Z, Kong X, Lu Q, Kaplan DL: **Silk–Graphene Hybrid Hydrogels with Multiple Cues to Induce Nerve Cell Behavior**. *ACS Biomaterials Science & Engineering* 2019, **5**(2):613-622.

128. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G: **Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering**. *Biomacromolecules* 2014, **15**(2):635-643.

129. Patterson J, Martino MM, Hubbell JA: **Biomimetic materials in tissue engineering**. *Materials today* 2010, **13**(1-2):14-22.

130. Peña B, Martinelli V, Jeong M, Bosi S, Lapasin R, Taylor MR, Long CS, Shandas R, Park D, Mestroni L: **Biomimetic polymers for cardiac tissue engineering**. *Biomacromolecules* 2016, **17**(5):1593-1601.

131. Silvestri A, Boffito M, Sartori S, Ciardelli G: **Biomimetic materials and scaffolds for myocardial tissue regeneration**. *Macromolecular bioscience* 2013, **13**(8):984-1019.

132. You J, Raghunathan VK, Son KJ, Patel D, Haque A, Murphy CJ, Revzin A: **Impact of nanotopography, heparin hydrogel microstructures, and encapsulated fibroblasts on phenotype of primary hepatocytes**. *ACS applied materials & interfaces* 2014, **7**(23):12299-12308.

133. Madl CM, Mehta M, Duda GN, Heilshorn SC, Mooney DJ: **Presentation of BMP-2 Mimicking Peptides in 3D Hydrogels Directs Cell Fate Commitment in Osteoblasts and Mesenchymal Stem Cells**. *Biomacromolecules* 2014, **15**(2):445-455.

134. Rexeisen EL, Fan W, Pangburn TO, Taribagil RR, Bates FS, Lodge TP, Tsapatsis M, Kokkoli E: **Self-Assembly of Fibronectin Mimetic Peptide-Amphiphile Nanofibers**. *Langmuir* 2010, **26**(3):1953-1959.

135. Ban K, Park H-J, Kim S, Andukuri A, Cho K-W, Hwang JW, Cha HJ, Kim SY, Kim W-S, Jun H-W *et al*: **Cell Therapy with Embryonic Stem Cell-Derived Cardiomyocytes Encapsulated in Injectable Nanomatrix Gel Enhances Cell Engraftment and Promotes Cardiac Repair**. *ACS Nano* 2014, **8**(10):10815-10825.

136. Le Bihan M-C, Barrio-Hernandez I, Mortensen TP, Henningsen J, Jensen SS, Bigot A, Blagoev B, Butler-Browne G, Kratchmarova I: **Cellular proteome dynamics during differentiation of human primary myoblasts**. *Journal of proteome research* 2015, **14**(8):3348-3361.

137. Wu Y, Wang L, Guo B, Ma PX: **Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy**. *ACS Nano* 2017, **11**(6):5646-5659.

138. Martins AM, Eng G, Caridade SG, Mano JoF, Reis RL, Vunjak-Novakovic G: **Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering**. *Biomacromolecules* 2014, **15**(2):635-643.

139. Balashov V, Efimov A, Agapova O, Pogorelov A, Agapov I, Agladze K: **High resolution 3D microscopy study of cardiomyocytes on polymer scaffold nanofibers reveals formation of unusual sheathed structure**. *Acta biomaterialia* 2018, **68**:214-222.

140. Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH: **Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro**. *Biomaterials* 2004, **25**(7-8):1289-1297.

141. Soares CP, Midlej V, de Oliveira MEW, Benchimol M, Costa ML, Mermelstein C: **2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression**. *PloS one* 2012, **7**(5):e38147.

142. Wang L, Wu Y, Hu T, Guo B, Ma PX: **Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators**. *Acta biomaterialia* 2017, **59**:68-81.

143. Tornatore TF, Costa AP, Clemente C, Judice C, Rocco SA, Calegari VC, Cardoso L, Cardoso AC, Goncalves A, Franchini KG: **A role for focal adhesion kinase in cardiac mitochondrial biogenesis induced by mechanical stress**. *American Journal of Physiology-Heart and Circulatory Physiology* 2011, **300**(3):H902-H912.

144. Wobma HM, Liu D, Vunjak-Novakovic G: **Paracrine effects of mesenchymal stromal cells cultured in three-dimensional settings on tissue repair.** *ACS Biomaterials Science & Engineering* 2017, **4**(4):1162-1175.

145. Dukhin AS, Goetz PJ: **Chapter 2 - Fundamentals of Interface and Colloid Science.** In: *Characterization of Liquids, Dispersions, Emulsions, and Porous Materials Using Ultrasound (Third Edition)*. Edited by Dukhin AS, Goetz PJ: Elsevier; 2017: 19-83.

146. Verwey EJW: **Theory of the Stability of Lyophobic Colloids.** *The Journal of Physical and Colloid Chemistry* 1947, **51**(3):631-636.

147. Tashiro Y, Hasegawa Y, Shintani M, Takaki K, Ohkuma M, Kimbara K, Futamata H: **Interaction of Bacterial Membrane Vesicles with Specific Species and Their Potential for Delivery to Target Cells.** *Frontiers in Microbiology* 2017, **8**(571).

148. Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM, Akhyari P, Khademhosseini A: **Directed 3D cell alignment and elongation in microengineered hydrogels.** *Biomaterials* 2010, **31**(27):6941-6951.

149. Landau S, Ben-Shaul S, Levenberg S: **Oscillatory Strain Promotes Vessel Stabilization and Alignment through Fibroblast YAP-Mediated Mechanosensitivity.** *Advanced Science* 2018, **5**(9):1800506.

150. Martins IM, Reis RL, Azevedo HS: **Phage display technology in biomaterials engineering: progress and opportunities for applications in regenerative medicine.** *ACS chemical biology* 2016, **11**(11):2962-2980.

151. Li Y, Shi X, Tian L, Sun H, Wu Y, Li X, Li J, Wei Y, Han X, Zhang J: **AuNP–Collagen Matrix with Localized Stiffness for Cardiac-Tissue Engineering: Enhancing the Assembly of Intercalated Discs by β 1-Integrin-Mediated Signaling.** *Advanced Materials* 2016, **28**(46):10230-10235.

152. Mohan T, Niegelhell K, Nagaraj C, Reishofer D, Spirk S, Olschewski A, Stana Kleinschek K, Kargl R: **Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cells.** *Biomacromolecules* 2017, **18**(2):413-421.

153. Mason TO, Shimanovich U: **Fibrous Protein Self-Assembly in Biomimetic Materials.** *Advanced Materials* 2018:1706462.

154. Bhutani S, Nachlas AL, Brown ME, Pete T, Johnson CT, García AJ, Davis ME: **Evaluation of hydrogels presenting extracellular matrix-derived adhesion peptides and encapsulating cardiac progenitor cells for cardiac repair.** *ACS biomaterials science & engineering* 2017, **4**(1):200-210.

155. Andrieu J, Re F, Russo L, Nicotra F: **Phage-displayed peptides targeting specific tissues and organs.** *Journal of drug targeting* 2018:1-11.

156. Wang J, Yang M, Zhu Y, Wang L, Tomsia AP, Mao C: **Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.** *Advanced Materials* 2014, **26**(29):4961-4966.

157. Sánchez-Cortés J, Mrksich M: **Using self-assembled monolayers to understand α 8 β 1-mediated cell adhesion to RGD and FEI motifs in nephronectin.** *ACS chemical biology* 2011, **6**(10):1078-1086.

158. Wang B, Wang G, To F, Butler JR, Claude A, McLaughlin RM, Williams LN, de Jongh Curry AL, Liao J: **Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.** *Langmuir* 2013, **29**(35):11109-11117.

159. D'Amore A, Luketich SK, Raffa GM, Olia S, Menallo G, Mazzola A, D'Accardi F, Grunberg T, Gu XZ, Pilato M *et al*: **Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure.** *Biomaterials* 2018, **150**:25-37.

160. Tallawi M, Rai R, Boccaccini AR, Aifantis KE: **Effect of substrate mechanics on cardiomyocyte maturation and growth.** *Tissue engineering Part B, Reviews* 2015, **21**(1):157-165.

161. Davenport Huyer L, Zhang B, Korolj A, Montgomery M, Drecun S, Conant G, Zhao Y, Reis L, Radisic M: **Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications.** *ACS Biomaterials Science & Engineering* 2016, **2**(5):780-788.

162. Chan V, Raman R, Cvetkovic C, Bashir R: **Enabling microscale and nanoscale approaches for bioengineered cardiac tissue.** *ACS nano* 2013, **7**(3):1830-1837.

163. Peña B, Bosi S, Aguado BA, Borin D, Farnsworth NL, Dobrinskikh E, Rowland TJ, Martinelli V, Jeong M, Taylor MRG *et al*: **Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel Promotes Cardiomyocytes Survival and Maturation.** *ACS Applied Materials & Interfaces* 2017, **9**(37):31645-31656.

164. Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasche P: **Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering.** *Acta Biomaterialia* 2017, **48**:20-40.

165. Yang Y, Jia ZD, Liu JA, Li Q, Hou L, Wang LM, Guan ZC: **Effect of electric field distribution uniformity on electrospinning.** *Journal of Applied Physics* 2008, **103**(10).

166. Xue J, Xie J, Liu W, Xia Y: **Electrospun nanofibers: new concepts, materials, and applications.** *Accounts of chemical research* 2017, **50**(8):1976-1987.

167. Teo W-E, Inai R, Ramakrishna S: **Technological advances in electrospinning of nanofibers.** *Science and technology of advanced materials* 2011, **12**(1):013002.

168. Azeem A, Marani L, Fuller K, Spanoudes K, Pandit A, Zeugolis D: **Influence of nonsulfated polysaccharides on the properties of electrospun poly (lactic-co-glycolic acid) fibers.** *ACS Biomaterials Science & Engineering* 2016, **3**(7):1304-1312.

169. Han J, Lazarovici P, Pomerantz C, Chen X, Wei Y, Lelkes PI: **Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering.** *Biomacromolecules* 2010, **12**(2):399-408.

170. Zhou P, Cheng X, Xia Y, Wang P, Zou K, Xu S, Du J: **Organic/inorganic composite membranes based on poly (L-lactic-co-glycolic acid) and mesoporous silica for effective bone tissue engineering.** *ACS applied materials & interfaces* 2014, **6**(23):20895-20903.

171. Badrossamay MR, McIlwee HA, Goss JA, Parker KK: **Nanofiber assembly by rotary jet-spinning.** *Nano letters* 2010, **10**(6):2257-2261.

172. Jiang Y-C, Wang X-F, Xu Y-Y, Qiao Y-H, Guo X, Wang D-F, Li Q, Turng L-S: **Polycaprolactone Nanofibers Containing Vascular Endothelial Growth Factor-Encapsulated Gelatin Particles Enhance Mesenchymal Stem Cell Differentiation and Angiogenesis of Endothelial Cells.** *Biomacromolecules* 2018, **19**(9):3747-3753.

173. Jiang YC, Wang XF, Xu YY, Qiao YH, Guo X, Wang DF, Li Q, Turng LS: **Polycaprolactone Nanofibers Containing Vascular Endothelial Growth Factor-Encapsulated Gelatin Particles Enhance Mesenchymal Stem Cell Differentiation and Angiogenesis of Endothelial Cells.** *Biomacromolecules* 2018, **19**(9):3747-3753.

174. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE: **Paracrine Mechanisms Involved in Mesenchymal Stem Cell Differentiation into Cardiomyocytes.** *Current Stem Cell Research & Therapy* 2019, **14**(1):9-13.

175. Yao Y, Huang J, Geng Y, Qian H, Wang F, Liu X, Shang M, Nie S, Liu N, Du X *et al*: **Paracrine action of mesenchymal stem cells revealed by single cell gene profiling in infarcted murine hearts.** *PloS one* 2015, **10**(6):e0129164-e0129164.

176. Mahalingam S, Raimi-Abraham BT, Craig DQ, Edirisinghe M: **Solubility-spinnability map and model for the preparation of fibres of polyethylene (terephthalate) using gyration and pressure.** *Chemical Engineering Journal* 2015, **280**:344-353.

177. Luo CJ, Nangrejo M, Edirisinghe M: **A novel method of selecting solvents for polymer electrospinning.** *Polymer* 2010, **51**(7):1654-1662.

178. Luo CJ, Stride E, Edirisinghe M: **Mapping the Influence of Solubility and Dielectric Constant on Electrospinning Polycaprolactone Solutions.** *Macromolecules* 2012, **45**(11):4669-4680.

179. Shang Y, Chen Z, Fu F, Sun L, Shao C, Jin W, Liu H, Zhao Y: **Cardiomyocyte-Driven Structural Color Actuation in Anisotropic Inverse Opals.** *ACS Nano* 2019, **13**(1):796-802.

180. Nam YS, Park TG: **Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.** *Journal of Biomedical Materials Research: An Official Journal of The Society*

for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 1999, **47**(1):8-17.

181. Conoscenti G, Schneider T, Stoelzel K, Pavia FC, Brucato V, Goegele C, La Carrubba V, Schulze-Tanzil G: **PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size.** *Materials Science and Engineering: C* 2017, **80**:449-459.
182. Au - Kornmuller A, Au - Brown CFC, Au - Yu C, Au - Flynn LE: **Fabrication of Extracellular Matrix-derived Foams and Microcarriers as Tissue-specific Cell Culture and Delivery Platforms.** *JoVE* 2017(122):e55436.
183. Di Luca A, de Wijn JR, van Blitterswijk CA, Camarero-Espinosa S, Moroni L: **Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.** *Macromolecular rapid communications* 2017, **38**(16):1700186.
184. Lin-Gibson S, Cooper JA, Landis FA, Cicerone MT: **Systematic investigation of porogen size and content on scaffold morphometric parameters and properties.** *Biomacromolecules* 2007, **8**(5):1511-1518.
185. Hinton TJ, Hudson A, Pusch K, Lee A, Feinberg AW: **3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.** *ACS Biomaterials Science & Engineering* 2016, **2**(10):1781-1786.
186. Kim JY, Jin G-Z, Park IS, Kim J-N, Chun SY, Park EK, Kim S-Y, Yoo J, Kim S-H, Rhie J-W: **Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis.** *Tissue Engineering Part A* 2010, **16**(7):2229-2236.
187. Zhang B, Song J: **3D-Printed Biomaterials for Guided Tissue Regeneration.** *Small Methods* 2018:1700306.
188. Jammalamadaka U, Tappa K: **Recent advances in biomaterials for 3D printing and tissue engineering.** *Journal of functional biomaterials* 2018, **9**(1):22.
189. Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA: **3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.** *ACS Biomaterials Science & Engineering* 2016, **2**(10):1743-1751.
190. Ho CMB, Mishra A, Hu K, An J, Kim Y-J, Yoon Y-J: **Femtosecond-laser-based 3D printing for tissue engineering and cell biology applications.** *ACS Biomaterials Science & Engineering* 2017, **3**(10):2198-2214.
191. Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA: **Ultralight, ultrastiff mechanical metamaterials.** *Science* 2014, **344**(6190):1373-1377.
192. Radisic M, Christman KL: **Materials science and tissue engineering: repairing the heart.** *Mayo Clinic proceedings* 2013, **88**(8):884-898.
193. Sarker M, Naghieh S, Sharma N, Chen X: **3D biofabrication of vascular networks for tissue regeneration: A report on recent advances.** *Journal of pharmaceutical analysis* 2018.
194. Shiekh PA, Singh A, Kumar A: **Oxygen-Releasing Antioxidant Cryogel Scaffolds with Sustained Oxygen Delivery for Tissue Engineering Applications.** *ACS Applied Materials & Interfaces* 2018, **10**(22):18458-18469.
195. Grimes DR, Kannan P, Warren DR, Markelc B, Bates R, Muschel R, Partridge M: **Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.** *Journal of the Royal Society, Interface* 2016, **13**(116):20160070.
196. Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S, Dokmeci MR, Khademhosseini A: **Microfluidic techniques for development of 3D vascularized tissue.** *Biomaterials* 2014, **35**(26):7308-7325.
197. You JO, Rafat M, Ye GJC, Auguste DT: **Nanoengineering the Heart: Conductive Scaffolds Enhance Connexin 43 Expression.** *Nano Letters* 2011, **11**(9):3643-3648.

198. Chen MQ, Fang L, Zhuang Q, Liu HF: **Deep Learning Assessment of Myocardial Infarction From MR Image Sequences.** *Ieee Access* 2019, **7**:5438-5446.

199. Dilsizian ME, Siegel EL: **Machine Meets Biology: a Primer on Artificial Intelligence in Cardiology and Cardiac Imaging.** *Current Cardiology Reports* 2018, **20**(12).

200. Ibrahim KS, Sorayya M, Aziida N, Sazzli SK: **Preliminary Study on Application of Machine Learning Method in Predicting Survival Versus Non-Survival after Myocardial Infarction in Malaysian Population.** *International Journal of Cardiology* 2018, **273**:8-8.

201. Margulis K, Zhou ZP, Fang QZ, Sievers RE, Lee RJ, Zare RN: **Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Machine Learning for Molecular Recognition of Myocardial Infarction.** *Analytical Chemistry* 2018, **90**(20):12198-12206.

202. Yang F, Yang XL, Kng TS, Lee G, Liang Z, San TR, Yi S: **Multi-dimensional proprio-proximus machine learning for assessment of myocardial infarction.** *Computerized Medical Imaging and Graphics* 2018, **70**:63-72.

203. Gorospe G, Zhu R, Millrod MA, Zambidis ET, Tung L, Vidal R: **Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.** *IEEE Transactions on Biomedical Engineering* 2014, **61**(9):2389-2395.

204. Von Luxburg U: **A tutorial on spectral clustering.** *Statistics and computing* 2007, **17**(4):395-416.

205. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA: **The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.** *Nature Medicine* 2018, **24**(11):1716-1720.

206. Lee EK, Kurokawa YK, Tu R, George SC, Khine M: **Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs.** *Scientific reports* 2015, **5**:11817.

207. Wang L: **Support vector machines: theory and applications**, vol. 177: Springer Science & Business Media; 2005; vol. 177; p. 348.

208. Davies ER: **Computer and machine vision: theory, algorithms, practicalities**: Academic Press; 2012; p. 700

209. Mathur A, Foody GM: **Multiclass and Binary SVM Classification: Implications for Training and Classification Users.** *IEEE Geoscience and Remote Sensing Letters* 2008, **5**(2):241-245.

210. Sundermann B, Bode J, Lueken U, Westphal D, Gerlach AL, Straube B, Wittchen H-U, Ströhle A, Wittmann A, Konrad C *et al*: **Support Vector Machine Analysis of Functional Magnetic Resonance Imaging of Interoception Does Not Reliably Predict Individual Outcomes of Cognitive Behavioral Therapy in Panic Disorder with Agoraphobia.** *Frontiers in Psychiatry* 2017, **8**(99).

211. Nidhi, Glick M, Davies JW, Jenkins JL: **Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases.** *Journal of Chemical Information and Modeling* 2006, **46**(3):1124-1133.

212. Schenone M, Dančík V, Wagner BK, Clemons PA: **Target identification and mechanism of action in chemical biology and drug discovery.** *Nature chemical biology* 2013, **9**(4):232-240.

213. Young DW, Bender A, Hoyt J, McWhinnie E, Chirn G-W, Tao CY, Tallarico JA, Labow M, Jenkins JL, Mitchison TJ *et al*: **Integrating high-content screening and ligand-target prediction to identify mechanism of action.** *Nature Chemical Biology* 2007, **4**:59.

214. Keum J, Nam H: **SELF-BLM: Prediction of drug-target interactions via self-training SVM.** *Plos One* 2017, **12**(2).

215. Kim S, Jhong J-H, Lee J, Koo J-Y: **Meta-analytic support vector machine for integrating multiple omics data.** *BioData mining* 2017, **10**:2-2.

216. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W: **Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.** *Cancer genomics & proteomics* 2017, **15**(1):41-51.

217. Madhukar NS, Gayvert K, Gilvary C, Elemento O: **A Machine Learning Approach Predicts Tissue-Specific Drug Adverse Events.** *bioRxiv* 2018:288332.

218. Cheng J, Baldi P: **A machine learning information retrieval approach to protein fold recognition.** *Bioinformatics* 2006, **22**(12):1456-1463.

219. Al-Thanoon NA, Qasim OS, Algamal ZY: **Tuning parameter estimation in SCAD-support vector machine using firefly algorithm with application in gene selection and cancer classification.** *Computers in biology and medicine* 2018, **103**:262-268.

220. Moteghaei NY, Maghooli K, Garshasbi M: **Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine.** *Journal of medical signals and sensors* 2018, **8**(1):1.

221. Tan TC, Ritter LJ, Whitty A, Fernandez RC, Moran LJ, Robertson SA, Thompson JG, Brown HM: **Gray level Co-occurrence Matrices (GLCM) to assess microstructural and textural changes in pre-implantation embryos.** *Molecular reproduction and development* 2016, **83**(8):701-713.

222. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A: **Tissue-based map of the human proteome.** *Science* 2015, **347**(6220):1260419.

223. Mironov V, Reis N, Derby B: **Bioprinting: A beginning.** *Tissue engineering* 2006, **12**(4):631-634.

224. Lam S, Simon M, Tran D, Alonzo L, Flohn N, Lee A, George S: **Electrical Stimulation of iPSC-Derived Cardiomyocytes in a 3D Tissue Matrix Inside a Microfluidic Device.** In: *TISSUE ENGINEERING PART A: 2014*. MARY ANN LIEBERT, INC 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA: S99-S99.

225. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA: **3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs.** *Advanced materials* 2014, **26**(19):3124-3130.

226. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR: **Organ printing: tissue spheroids as building blocks.** *Biomaterials* 2009, **30**(12):2164-2174.

227. Jia Z, Zhou W, Yan J, Xiong P, Guo H, Cheng Y, Zheng Y: **Constructing Multilayer Silk Protein/Nanosilver Biofunctionalized Hierarchically Structured 3D Printed Ti6Al4 V Scaffold for Repair of Infective Bone Defects.** *ACS Biomaterials Science & Engineering* 2019, **5**(1):244-261.

228. Mironov V, Kasyanov V, Markwald RR: **Organ printing: from bioprinter to organ biofabrication line.** *Current opinion in biotechnology* 2011, **22**(5):667-673.

229. Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amédée J, Fricain J-C, Catros S: **In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice.** *Biofabrication* 2010, **2**(1):014101.

230. Kim S, Laschi C, Trimmer B: **Soft robotics: a bioinspired evolution in robotics.** *Trends in biotechnology* 2013, **31**(5):287-294.

231. Carlsen RW, Sitti M: **Bio-hybrid cell-based actuators for microsystems.** *Small* 2014, **10**(19):3831-3851.

232. Brochu P, Pei Q: **Advances in dielectric elastomers for actuators and artificial muscles.** *Macromolecular rapid communications* 2010, **31**(1):10-36.

233. Takemura R, Akiyama Y, Hoshino T, Morishima K: **Chemical switching of jellyfish-shaped micro robot consisting only of cardiomyocyte gel.** In: *Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International: 2011*. IEEE: 2442-2445.

234. Morimoto Y, Onoe H, Takeuchi S: **Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues.** *Science Robotics* 2018, **3**(18):eaat4440.

235. Kim Y, Kwon C, Jeon H: **Genetically Engineered Phage Induced Selective H9c2 Cardiomyocytes Patterning in PDMS Microgrooves.** *Materials* 2017, **10**(8).