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Abstract—With recent technological advances in sensor nodes,
IoT enabled applications have great potential in many domains.
However, sensing data may be inaccurate due to not only faults or
failures in the sensor and network but also the limited resources
and transmission capability available in sensor nodes. In this
paper, we first model streams of IoT data as a handful of sampled
data in the transformed domain while assuming the information
attained by those sampled data reveal different sparsity profiles
between normal and abnormal. We then present a novel approach
called AD2 (Anomaly Detection using Approximated Data) that
applies a transformation on the original data, samples top k-
dominant components, and detects data anomalies based on the
disparity in k values. To demonstrate the effectiveness of AD2, we
use IoT datasets (temperature, humidity, and CO) collected from
real-world wireless sensor nodes. Our experimental evaluation
demonstrates that AD2 can approximate and successfully detect
64%–94% of anomalies using only 1.9% of the original data and
minimize false positive rates, which would otherwise require the
entire dataset to achieve the same level of accuracy.

Index Terms—Transform Coding, Compressive Sensing,
Anomaly Detection, IoT

I. INTRODUCTION

Rapid advances in wireless sensor nodes have been key
enablers to discover actionable knowledge from raw data and
ultimately make smart decisions [1]. This discovery paradigm
where knowledge is extracted from a steady stream of data
collected from IoT sensor nodes is increasingly adopted by
various domains [2], [3]. For instance, IoT-enabled agriculture
has transformed traditional farms, which have been relying on
human expertise, thereby enabling more precise and productive
operations such as the reduction of non-essential pesticides
use [4], [5]. A similar IoT platform called Waggle [6] collects
real-time urban environmental data, which can be used for
enabling a smart city.

There are several major challenges to exploit collected
IoT datasets effectively, and more importantly reliably. First,
like existing IoT environments, sensor nodes have limited
resources and capabilities in terms of processing power, band-
width, energy, and storage [7], [8]. The scarcity of resources
could be a significant bottleneck as sensor nodes continuously
collect data. The sensor nodes should be capable of managing
data efficiently so that storage and transmission costs are
reduced [6], [9]. Since sensor nodes send collected data to the
gateways or cloud periodically, data volume during transmis-
sion need to be minimized, but, paradoxically, the transmitted
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Fig. 1. Original datasets (collected at farms) showing anomalous periods.
Red circles indicate apparent anomalous periods.

data should be represented in the highest possible precision.
Otherwise, analytic decisions derived from the collected data
will have limited significance.

Second, data collected at sensor nodes are frequently inac-
curate, which could potentially generate incorrect or unwanted
control operations in actuator nodes or gateways. Figure 1
shows the collected data samples containing several instances
of actual anomaly data, which are considerably dissimilar
from the remainder of the data and expected patterns. The
presence of anomalies in the collected datasets must be de-
tected and notified before control operations are performed
on potentially inaccurate data [10], [11]. Detecting anomalies
in wind velocity measurements from the San Francisco wind
monitoring datasets [11] exemplifies such a scenario. The
effective anomaly detection empowers the decision maker to
adequately react and take actions to correct anomaly situations
timely [12].

Lastly, the boundary between normal and outlier is often



imprecise and there is no single rule that can be applied to
any datasets generically. To elaborate on this, let us consider
the temperature in Waggle datasets [13]. We find a number
of temperature data points to be illegitimate because the
range varies from -303.28 to 326.87 and there is a surge in
temperature to 326 degrees. Similarly, in IoT farm datasets, the
continuous change due to interaction among crop growth and
operations of actuators (such as heater, CO2 generator, fan,
etc.) make it almost impossible to distinguish between normal
states and abnormal states. Therefore, labeling time-series data
as normal or abnormal is of the utmost importance.

Motivated by the aforementioned issues, we propose a novel
approach, called AD2 (Anomaly Detection using Approxi-
mated Data), to detect the anomaly of sensor data using
sparse data representation. AD2 collects, transforms, obtains
approximated data and detects anomaly data state. In this
paper, we argue that the data transformation is useful to reveal
the correlation of data and detect anomalies since it makes data
in a concise format. More specifically, in AD2, we apply a
transformation on the original datasets and approximate them.
Sensor nodes maintain an approximated data points out of
transformed datasets. Finally, we model the collected data
using a simple statistical criterion and characterize normal and
anomaly states in a specific sampling period. Our evaluation
using several real-world datasets show that AD2 can detect
the majority of anomalies with a wide range of error thresh-
olds. Specifically, AD2 can achieve competitive approximation
ratios, 98.1% on average, and the accuracy of detection data
anomalies up to 95% using only 1.9% of the original data.

II. RELATED WORKS

A. Data Approximation

The theoretical underpinning for our approximation mech-
anism is compressive sensing. Compressive sensing is a sam-
pling theory where certain signals can be recovered from a
few samples [14], [15]. A signal can be sparse or compressible
after applying signal transform with a suitable basis, e.g., DCT
(Discrete Cosine Transform), Fourier, or Wavelet basis. In fact,
compressive sensing techniques exploit the fact that sparse
signal has only a few significant components and a greater
number of insignificant components [14], [16].

Our data approximation mechanism based on compressive
sensing works as follows. Let X ′ denotes the transformed
version of original datasets, X . X ′ consists of the DCT signal
components. Then the question is how many components
are required to approximate original datasets with minimal
information loss. There is a trade-off between approximation
ratios and information loss. We formulate this as the energy
(or information) contained in the highest k of the entire
sorted transform components (S = {S1, S2, ...Sn}) and find
an optimum k value, which is calculated as:

E(xk) =

∑k
i=1 S

2
i∑n

i=1 S
2
i

, N = 1, 2, ..., n, k ≤ n. (1)

Note that the sum of energy stored in the entire DCT com-
ponents is 1.0 (or 100%). We select the maximum k-dominant

components ({S1, S2, ...Sk}) from the transformed compo-
nents to approximate the original datasets where E(xk) ≤ δ.
The amount of energy, denoted as δ, has 0 ≤ δ ≤ 1.0.
For instance, δ of 0.95 requires smaller k values than δ of
0.99, thus introducing more errors with less storage space re-
quirement. After applying DCT [17], the original temperature
values are transformed into sparse DCT signal components.
Moon et al. [18] applied transformation on IoT data and
showed that by keeping only 3.16% (245 out of 77,590) of the
transformed signal components, they could represent 99.9% of
information (energy) attained by the original data. Similarly,
the temperature datasets in the Waggle require only 14%
(6,872,724 out of 46,203,212) of components for representing
99% of information of the original data [13].

B. Anomaly Detection

Anomalies are points or patterns in datasets that differ from
the expected “normal” behavior [19], [20]. Prior techniques
based on machine learning to detect anomalies generally fall
into three categories: unsupervised, supervised, and semi-
supervised [21], [22]. There are various techniques to detect
anomalies in sensor data by using fuzzy association rules [23].
Even though these techniques can work with the different
amounts of labeled data for training, it is essentially difficult
to classify into the normal state and the anomaly state because
of domain-specific problem characteristics. Statistical methods
such as exponentially weighted moving average or cumulative
sum [24] have been used for detecting anomalous behaviors in
time series data. In anomaly detection for AWS IoT data, [11]
uses PEWMA (Probabilistic Exponentially Weighted Moving
Average) proposed by Carter and Streilein [25], but they did
not consider the impact of approximated data on detecting data
anomalies. In other words, it requires all original data points
in their anomaly detection model.

Recent studies proposed several methods to detect anoma-
lies while using compression techniques. For instance, Kar-
takis and McCann [7], [26] presented that anomalies can be
identified by analyzing significant changes in the compression
rate. Kartakis et al. [26] also used compression rate fluctuation
to detect anomalies. However, these prior studies mainly used
lossless compression methods with a high sampling rate so
that the compression rate is usually lower compared to lossy
compression techniques [27]. In our approach, we detect
anomaly data periods using an approximated form with a
capability to vary approximation ratios depending on datasets.

C. Characterizing Anomaly

Prior studies learned anomaly conditions, built a prediction
model, and compared predicted values and measured values
to determine if there were anomalies or not. For instance,
Haque et al. [10] used 30 samples as a history to build a
prediction model. If the microclimate affected by surrounding
environment keeps changing, it becomes more difficult to
distinguish normal from an anomaly.

As already shown in Figure 1, the real-world IoT datasets
indeed exhibit some anomalies. For example, the humidity



Fig. 2. Overview of the AD2 framework.

occasionally goes down to nearly zero, which is an anomaly.
We have learned that this situation typically occurs when there
are network failures. Also, the temperature can experience
a dramatic decrease when a sensor fails. The CO2 sensor
particularly, experiences more frequent and sudden changes
than others. However, this does not mean such changes are
all related to sensor failures. Certain external conditions can
change sensor values temporarily, which a native method
would predict as an anomaly, thus causing to increase the
number of false positives. In urban microclimate data, trans-
portation system generates CO2 in the air. In rural farm data,
the photosynthesis from crops keeps consuming CO2 [24]. In
these cases, the sudden change in CO2 should be considered
as normal to a certain degree.

III. DESIGN OF AD2

We envision an expanded the capability of the sensor node
by using a simple yet efficient approximation algorithm to rep-
resent original data points with a low sampling rate. Figure 2
gives the overall framework of AD2 where the sensor node
collects data points, transforms them into an approximated
form, and detects data anomalies using sparse sample data.
Note that AD2 detects anomaly by investigating the k value
for approximated (sampled) data points without inspecting full
original data points. This mitigates storage and computation
usage in the resource-constrained sensor nodes.
A. Notations

Before describing AD2 in detail, let us define terminologies
and notations used in the rest of the paper. We first define
the period for performing the data transform as it is also
duration for data sampling and anomaly detection. While data
can be sampled and processed in any rates, in this paper, we
assume that data has been gathered every second and they
are transformed every minute or every hour. The transformed
results (denoted as X

′
) have the same number of data points

as original datasets (denoted as X). Below is a summary of
our notations:
• X: Original datasets ({X1, ..., Xn}).

Algorithm 1 Data approximation procedure.
Input: X(t): original data points at period Pt

I: the length of X(t)
Output: k: the number of dominant coefficients.

AD(t): approximated data points at Period t
1: X′(t)← DCT-Transform (X(t))
2: S(t)← sort|X′(t)|
3: SXn ← 0
4: for i = 1, 2, . . . , I do
5: SXn ← SXn +X′2

i
6: end for
7: k ← 1
8: S(t) = Sk(t)
9: while S(t)/SXn < δ do

10: k ← k + 1
11: S(t) =

∑k
k=1 Sk(t)

12: end while
13: AD(t)← {(S1(t), index(S1(t)))..., (Sk(t), index(Sk(t)))}

• P : Data transformation (approximation) period.
• Pt: tth data transformation (sampling) period.
• X(t): Original datasets at the sampling period Pt.
• X ′(t): Transformed components form of (X(t)) at Pt.
• S(t): Sorted components form of X ′(t) at Pt.
• k: The number of dominant components in X ′(t). k ≥ 1.
• AD(t): The approximated data points comprised of k-

dominant components.
Note that AD(t) needs two additional parameters, α and ε.
The first one (α) is the error threshold used in labeling the
normal and anomaly periods according to the value difference
between two identical sensors. The second one (ε), on the
other hand, is the threshold value for predicting anomalies.

B. Data Approximation

Before discussing our approximation method in detail, we
want to mention that while DCT is used as our transform
mechanism, the AD2 framework is agnostic to the choice
of transform signals and is designed to operate with any
signal transforming such as wavelets. Also, one can use
higher amount of energy than 99% used in our experiment,
thereby reconstructing data more precisely. However, it also
means higher storage and communication overheads. We leave
finding of the optimal transform basis and the number of
components as our future work.

Algorithm 1 outlines the data approximation procedure
based on the transformed data, which is similar to compressive
sensing in a broader sense. First, we transform the original
data, X , into DCT basis components to make the data sparse.
In this way, the original data points X(t)i at tth sampling
period, where 1 ≤ i ≤ N , are converted into the transformed
data points, X

′
(t). After the transform, we acquire the full

N -sample signal X
′
(t), sort |X ′(t)| in descending order,

and determine the k largest components using Equation 1.
As k-dominant components are selected from the sorted
form S(t) of X ′(t), the approximated data points (AD(t))
include k-dominant components and their indices only. For
example, assuming X(t) = X(t)1, ..., X(t)n and k is 1, then
the AD(t) includes only one component and its index. The
index indicates the position of the selected component in the
original data points X(t) and X

′
(t), which is required to



reliably reconstruct data later. In other words, (N − k) non-
significant components are discarded and only the values of k
components and their indices are maintained. If AD2 executes
these processes per hour for data collected every second, it will
locate the k-dominant components out of 3,600 data points
(i.e., 60 times 60), resulting in a significant data reduction.

C. Data Anomalies Detection

The more anomalous data points there are, the larger k is
needed. In our evaluated datasets, the sampling period requires
3 or 6 dominant components whereas normal data requires 1
component to maintain the same amount of energy (informa-
tion). This is because the energy is more dispersed when data
has more unexpected patterns, which in turn requires more
number of dominant components to maintain the same amount
of energy.

Our anomaly detection approach based on the correlation
between k and the degree of anomalies consists of two
methods: binary detector and difference detector. The binary
detector only compares if the two values k and the threshold ε
which is the boundary condition to decide whether this period
is normal or abnormal. To simplify the process of finding
the value ε, it might reference k-dominant components of
normal periods. The difference detector calculates the equation
denoted as |(k − ε)|/Mean(X)

D. Characterizing Anomaly Data

To characterize normal sensor behavior precisely, we de-
ployed two identical sensors and used the result from this
step as our ground truth for training and prediction. While
one can employ more complex methods such as machine
learning or more recent neural network based techniques, we
found simple statistical methods using two identical sensors
more straightforward. More specifically, we use NRMSE (the
normalized version of root mean square error) and NDIFF
(the normalized version of difference) to characterize anoma-
lies. That is, we classify the sensor data in the case of
anomaly conditions according to the NRMSE and NDIFF
values. Let x = {x1, x2, x3, ..xn} be the first sensor data,
x̂ = {x̂1, x̂2, x̂3, ...x̂n} be the second sensor data, and N be
the number of data points.
• NRMSE for each period Pt can be calculated as:

NRMSE(t) = RMSE(t)
Mean(x) = 1

x̄

√∑N
n=1(x(n)−x̂(n))2

N .
• NDIFF for each period Pt is given by:
NDIFF (t) = |x−x̂|

Mean(x) .
Any data points whose NRMSE or NDIFF is larger than

the error threshold, α, will be considered as an anomaly.
• NRMSE(t) > α, set true to Anomaly(t) for period t.
• NDIFF (t) > α, set true to Anomaly(t) for period t.
Based on this assumption, we use the following evaluation

metrics to measure the performance of AD2 for the simple
binary detector.
• TP (True Positive): ((k > ε) ∧ (NRMSE > α)) ∨ ((k > ε)
∧ (NDIFF > α)) → (k > ε) ∧Anomaly(t).

• FP (False Positive): ((k > ε) ∧ (NRMSE ≤ α)) ∨ ((k >
ε) ∧ (NDIFF ≤ α)) → (k > ε) ∧¬Anomaly(t).

• TN (True Negative): ((k ≤ ε) ∧ (NRMSE ≤ α)) ∨ ((k
≤ ε) ∧ (NDIFF ≤ α)) → (k ≤ ε) ∧¬Anomaly(t).

• FN (False Negative): ((k ≤ ε) ∧ (NRMSE > α)) ∨ ((k
≤ ε) ∧ (NDIFF > α)) → (k ≤ ε) ∧Anomaly(t).

For instance, TP is the case where k is greater than ε and
NRMSE is greater than α. In our experiment, we set ε to 1
because most normal data points required only one dominant
components (i.e., k=1). As a result, we need to maintain only
one data point per sampling period (e.g., hourly average).

E. Data Reconstruction

So far, we mainly discussed how AD2 approximates the
original data using top-k transformed components and how the
variation in k per sampling periods can be used for anomaly
detection. In this subsection, we would like to discuss how to
reconstruct data when there is a need for fully reconstructed
data. As discussed in Section III-B, after sensor data are
transformed, the selected k-dominant components along with
the corresponding indices are maintained, which can be sent
to the server if needed. Note that both k-dominant trans-
formed components and their indices are required to define
the approximated data points in AD2. After receiving AD′, it
generates X ′(t) by replacing the indices of data points except
the indices of k-dominant with zeros. It then reconstructs data
points X ′′(t), which are generated from X ′(t) by applying
inverse transformation methods, IDCT (Inverse Discrete Co-
sine Transform) in our case. We use the reconstructed data to
compare it against the original data and measure the quality
of data approximation.

IV. EVALUATIONS

A. Datasets

In our evaluation, we used two sets of real-world IoT
data. The first one is from the IoT farm system deployed in
Gangwon Province, South Korea, from October 1st to Decem-
ber 31st, 2017 (90 days). We collected the following three
microclimate datasets in the deployed system: temperature,
humidity, and CO. The data collection period is set to every
minute. As a result, we have 127,667 data points per each data
during 90 days of sampling. The second dataset we evaluated
is from the Waggle project, which is also targeting climate
applications but in an urban environment setting [6], [13].
The Waggle dataset is time-series data collected at several
urban locations in the US that includes air temperature, relative
humidity, barometric pressure, UV light, IR light, and so on
[6], [8]. We evaluated temperature, humidity, and CO extracted
from the big Chicago datasets measured between February 3rd,
2017 and July 4th, 2019.

We choose the following performance metrics to assess the
quality of the approximated data and the overall anomaly
detection rates.
• Approximation Ratio (AR), where |D| is the size of D,
|D′| is the approximated data size, is given by:
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Fig. 3. Variation of k-dominant components. (a), (b), and (c) are from two identical sensors whereas (d), (e), and (f) are from a single sensor.

AR = |D|−|D′|
|D| × 100%,

• Error rate is assessed using PSNR (Peak Signal-to-Noise
Ratio), which measures the overall distortion between the
original data and the reconstructed data.
PSNR = 20 · log10(value range) − 10 · log10(MSE),
where value range and MSE refer to data value range and
the mean squared compression error, respectively.

• FPR (False Positive Rate) and ACC (Accuracy) can be
calculated as:
FPR = FP

FP+TN ,
ACC = TP+TN

TP+TN+FP+FN ,
where TP, FP, TN, and TF refer to true positive, false
positive, true negative and true positive respectively.

The objective of AD2 in terms of the above performance
metrics is to achieve higher AR, PSNR, and ACC and lower
FPR. In our evaluation, we did not compare AD2 with ex-
isting anomaly detection methods as our method is based on
approximated data. Instead, we evaluate AD2 using a range of
error threshold values (α).

B. Results

a) Data Characteristics and Approximation Ratios:
Table I shows statistical properties of the original datasets in
terms of STD (standard deviation), NSTD (normalized stan-
dard deviation), skewness, and kurtosis. NSTD is calculated
as STD(x)

Mean(x) . Skewness is a measure of data asymmetry around
the mean value. Negative skewness means that more data are
scattered to the left of the mean whereas positive skewness

TABLE I
THE CHARACTERISTICS OF DATASET AND APPROXIMATION RATIOS.

No. of STD NSTD Skewness Kurtosis ARData points
F-Temp. 127,668 5.1532 0.2871 -0.2983 5.3136 99.86

F-Humidity 127,668 15.5245 0.2700 -1.0632 5.4268 99.89
F-CO 127,668 87.4290 0.2188 -1.4900 17.8790 99.42

U-Temp. 46,203,212 11.0143 0.8309 0.5782 2.2491 85.13
U-Humidity 8,762,131 18.81023 0.3036 -0.2474 3.0318 99.25

U-CO 19,401,868 10097 1.2764 62.8617 10397 34.56

means opposite. Normal distribution, where data is symmetric
about its mean, gives zero skewness. Measures of kurtosis in
Table I indicate how outlier-prone a distribution is. As the
kurtosis of any normal distribution is 3, distributions with
kurtosis higher than 3 are more outlier prone.

In our datasets, U and F denote Urban datasets (i.e., Waggle)
and Farm datasets, respectively. U-CO shows higher STD than
other datasets and has the highest kurtosis value among all
datasets. In the case of skewness, U-Temperature and U-CO
have positive values only. In terms of compressibility, the
farm datasets show higher approximation ratios than the urban
datasets. U-CO particularly shows the lowest approximation
ratios. As shown in Table I, the urban datasets show some
variances in the approximation ratio depending on the char-
acteristics of data. The approximation ratio of U-CO is about
29% lower than W-Humidity.

b) Variation in k-dominant Components: Figure 3 shows
the variation in k values. Recall that we use the fixed informa-
tion compaction rate of 99% for all sampling periods during



TABLE II
COMPARISON OF ERROR RATES (IN TERMS OF PSNR) BETWEEN AD2

COMPRESSION AND HOURLY AVERAGES.

AD2 Hourly Average
Error Rate ARM Error Rate ARM

Temperature 33.72 98.15% 31.77 98.3%38.23 98.15% 35.28

Humidity 33.31 98.13% 31.08 98.3%33.65 98.09% 30.46

CO 35.74 95.5% 33.54 98.3%44.63 94.89% 38.37

approximation. Farm datasets are from two identical sensors
and the data transformation period P is set to an hour. Because
the collection period of urban datasets are not clearly defined,
transforms are applied for every 60 data points, which are
eqivalent to 770,053 periods. As shown in Figure 3, the x-
axis represents the transformation period of data points, which
corresponds to 2,127 periods, and the y-axis represents the k-
dominant components required to approximate every sampling
period (one hour). We can observe that k is notably different
between two identical sensors in case there are anomalies. For
example, in the case of temperature data (shown in Figure 3a),
anomalies occurred around the 1,400th periods where k is
larger than 5. Typically, periods with higher anomalies require
more components to approximate data maintained by the same
amount of energy, hence resulted in a lower approximation
ratio.

c) Approximation Ratios and Error Rates: As previ-
ously described, the original farm datasets are collected every
minute. Table II shows the error rate between the reconstructed
data using AD2 and the conventional hourly average value
of data. Note that the approximation ratios for AD2 vary
depending on periods, whereas the hourly average has fixed
1/60 ratios (or 98.3%). We compare our algorithms with hourly
average data because it is one of the most commonly used
techniques in sensor nodes. In the case of the AD2 approxi-
mation, the error rate is slightly lower than the hourly average,
which achieves 98.1% of approximation ratios. Therefore, our
approach based on compressive sensing can be more accurate
than conventional hourly averages because AD2 shows higher
PSNR than hourly averages. Higher PSNR represents less error
that affects the data quality.

We also observed that AD2 can achieve 98.3% of approx-
imation ratios for the time periods with the normal state
only. This ratio is same as the hourly average. As shown
in Table II, when all sampling periods including normal and
abnormal cases were considered, AD2 can achieve 98.1% of
approximation ratios. On the other hand, when periods with
only abnormal cases were considered, AD2 can achieve 90.4%
of approximation ratios. Anomaly periods require more k-
dominant components to maintain the same amount of infor-
mation or approximation, so approximation ratios for periods
with anomalies are lower than those with normal periods.
Overall, AD2 achieves quite competitive approximation ratios
while maintaining a relatively low error rate.

d) Anomaly Detection Rate: Figure 4 shows that the
accuracy converges to 1 with increasing α values. More

specifically, in the case of temperature, AD2 can achieve
the accuracy of 33.8% when α is 0.1, but 92% when α is
0.2. 86 periods are labeled as anomalous periods when α
is 2.0 in the case of temperature. Beyond that, accuracy is
as high as 95%. Similarly, the accuracy ranges from 64%
to 94% for the humidity data. However, for the CO data,
since it has more anomalous periods than others, the detection
accuracy is inferior to the other two datasets. We can observe
that, as α increases, it converges quickly. On the other hand,
FPR for the three datasets is close to zero. Specifically,
temperature, humidity, and CO, the error converges to 3.5%,
4%, and 3.3%, respectively. Lastly, in the case of NRMSE and
NDIFF, we observed that they both converges faster with an
increasing threshold of α. However, NRMSE converges faster
than NDIFF. Consequently, NRMSE could be more suitable
for detecting anomalies than NDIFF. Overall, it is necessary to
select a proper threshold of α within a tolerable range, which
is tightly coupled with applications.

V. CONCLUSIONS

In this paper, we proposed an approach, called AD2, to
detect data anomalies at sensor nodes using highly approxi-
mated data with minimal information loss. We approximate
the original datasets into the k-dominant components, thereby
significantly relieving the limitation of sensor node resource.
The relationship between k-dominant components and data
anomalies provides a dependable method to detect data anoma-
lies using sparse sampling data. We first characterize normal
and abnormal data collected at two identical sensors using
two statistical metrics, NRMSE and NDIFF. Our experimental
results using the farm datasets showed a higher approxima-
tion ratio than the urban datasets. Our proposed approach
successfully detected anomalies while obtaining 98.1% of
approximation ratios. We also observed that the accuracy of
anomaly detection can be close to 1 and the false positive rate
can be close to zero when less tight anomaly boundary (i.e.,
higher α) is used.

Although using two identical sensors can mitigate the false
decision of data anomalies due to the effect of the operation of
actuators around IoT sensor nodes collecting microclimate to
some degree, a more generic solution to characterize normal
and abnormal will be considered in our future work. We also
plan to develop estimation and imputing methods for missing
time-series data generated continuously from IoT sensors.
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