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* Background Siring success plays a key role in plant evolution and reproductive ecology, and variation among
individuals creates an opportunity for selection to act. Differences in male reproductive success can be caused
by processes that occur during two stages, the pollination and post-pollination phases of reproduction. In the
pollination phase, heritable variation in floral traits and floral display affect pollinator visitation patterns, which
in turn affect variation among plants in the amount of pollen exported and deposited on recipient stigmas. In the
post-pollination phase, differences among individuals in pollen grain germination success and pollen tube growth
may cause realized paternity to differ from patterns of pollen receipt. The maternal plant can also preferentially
provision some developing seeds or fruits to further alter variation in siring success.

* Scope In this review, we describe studies that advance our understanding of the dynamics of the pollination
and post-pollination phases, focusing on how variation in male fitness changes in response to pollen limitation.
We then explore the interplay between pollination and post-pollination success, and how these processes respond
to ecological factors such as pollination intensity. We also identify pressing questions at the intersection of pollin-
ation and paternity and describe novel experimental approaches to elucidate the relative importance of pollination
and post-pollination factors in determining male reproductive success.

* Conclusions The relative contribution of pollination and post-pollination processes to variation in male re-
productive success may not be constant, but rather may vary with pollination intensity. Studies that quantify the
effects of pollination and post-pollination phases in concert will be especially valuable as they will enable re-
searchers to more fully understand the ecological conditions influencing male reproductive success.

Key words: Floral traits, male reproductive success, paternity, pollen competition, pollen limitation, pollen

sorting, pollination, pollination intensity, pollinator, post-pollination, sexual selection, siring success.

INTRODUCTION

‘Meeting the challenge of measuring male reproductive
success will permit major advances in our understanding
of plant reproductive ecology. ... From a male point of
view, it is important to father as many viable embryos
as possible. This may entail producing and delivering
copious sperm, preventing other males from successfully
fecundating, and preventing abortion of zygotes by the
receiving female. Once sperm has arrived at a receptive
site, selection should favor an all-out effort to secure eggs,
because at that point the sperm has no other options —
it cannot get up and move over to another female, to try
again ...” (Willson, 1983)

Willson (1979, 1983) was among the first to emphasize the
key role of siring success for plant evolution and reproductive
ecology. Variation among individuals in success through male
function is expected to be larger than through female function,
enhancing the opportunity for selection to act (Bateman, 1948;
Janzen, 1977; Stephenson and Bertin, 1983; Wilson et al., 1994

Briscoe-Runquist et al., 2017). This increased opportunity for
selection provides a potential explanation for the elaboration
of floral traits and a connection to sexual selection as an evo-
lutionary process (Willson and Burley, 1983; Thomson 2014).
But what are the causes of variation in siring success for
flowering plants? It has long been recognized that the behav-
iour of animal pollinators can play a critical role in floral trait
evolution (Grant and Grant, 1965; Harder and Johnson, 2009;
Muchhala and Thomson, 2010; Van der Niet et al., 2014), and
therefore may contribute to variation in siring success (Minnaar
et al., 2019). Because plants cannot directly control pollen ex-
port and pollen receipt, most species have evolved floral traits
that increase pollinator attraction and promote pollen trans-
port (Simpson and Neff, 1983; Harder and Barrett, 1996;
Parachnowitsch et al., 2019; Minnaar et al., 2019). Pollinator-
mediated selection on traits that influence female function
(seeds mothered) can be strong, and often varies with ecological
context (Caruso et al., 2019). For example, selection may be
more intense when pollinators are scarce or when there is a
strong preference for particular floral morphologies (Sletvold
and Agren, 2016; Trunschke et al., 2017; Caruso et al., 2019).
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2 Christopher et al. — Pollination intensity and paternity

However, in hermaphroditic plants, the opportunity for selec-
tion on floral traits depends equally on reproductive success
through male function (seeds sired). Unfortunately, this has
seldom been measured, let alone compared across ecological
contexts, including environments that differ in pollinator abun-
dance, edaphic conditions and the presence of co-flowering
species (Broyles and Wyatt, 1990; Meagher, 1991; Devlin and
Ellstrand, 1990; Conner et al., 1996; Kulbaba and Worley,
2012, 2013; Briscoe-Runquist et al., 2017).

Variation in siring success can occur at two stages of the re-
productive process (Fig. 1). In the pollination phase, pollinator-
mediated interactions affect the amount of pollen removed
from anthers and transported to recipient stigmas (Stanton
et al., 1986; Cayenne Engel and Irwin, 2003; Richards et al.,
2009; Minnaar et al., 2019). In the post-pollination phase, dif-
ferential siring success of pollen from different donors may
cause realized paternity to differ from patterns of pollen re-
ceipt (Marshall and Folsom, 1991; Harder and Barrett, 1996;
Marshall and Diggle, 2001; Sorin et al., 2016). The relative im-
portance of these phases is likely to vary with ecological con-
text (Snow, 1994; Krauss, 2000), and we argue that the amount
of pollen arriving on stigmas relative to the amount necessary
for full seed set (pollination intensity) is a key aspect of eco-
logical context that affects variation in siring success. Here we
highlight the value of combining studies of both phases: pol-
lination phase studies that link floral traits, pollinator visitation
and fitness, and post-pollination studies of siring success fol-
lowing controlled pollinations. We also call attention to several
exciting questions that can be answered by combining pollin-
ation ecology and genetic approaches to the study of paternity.

INFLUENCE OF FLORAL TRAITS AND POLLINATION
ECOLOGY ON VARIANCE IN SIRING SUCCESS

Reproduction in flowering plants has been engaging researchers
since the late 18" century (Sprengel, 1793). Pioneering eco-
logical studies described interactions of plants and pollinators,
and how floral morphology influences pollen removal, pollen
deposition and seed production (female reproductive success)
(Darwin, 1862; 1877; Miiller, 1883; Robertson, 1895). More

Heritable variation in

recently, researchers have sought to characterize the effect of
floral traits and pollination ecology on plant fitness through fe-
male function. However, these early efforts did not explicitly
recognize the importance of evaluating effects on siring suc-
cess. It was not until a century later that Janzen (1977) and
Willson (1983) explicitly explored the critical role of paternity
in floral trait evolution.

Floral traits such as shape, size, petal colour, nectar produc-
tion and fragrance often vary widely within and among popula-
tions and can play a critical role in pollinator attraction and in
the frequency and quality of pollinator visits (Fig. 1; Waser and
Price, 1983; Galen and Newport, 1987; Raguso, 2008; Harder
and Johnson, 2009; Parachnowitsch et al., 2019; van der Kooi
et al., 2019). In hermaphroditic plants, rates of pollinator vis-
itation are strongly associated with both pollen receipt (female
function) and pollen export (male function) (Fig. 1; Campbell,
1989; Campbell et al., 1991, 2012; Mitchell and Waser, 1992;
Rojas-Nossa et al., 2015). Selection on traits influencing fe-
male reproductive success has been studied much more exten-
sively than selection on male reproductive success (Kulbaba
and Worley, 2013). However, floral traits are hypothesized to
be under stronger selection through male function because
siring success is mate-limited, while seed production is often
resource-limited (Bateman’s principle; Bateman, 1948). In this
section we briefly review previous studies exploring how floral
trait variation influences male reproductive success and high-
light how pollination intensity and pollinator identity can affect
this relationship.

Flower shape influences the orientation of a pollinator’s body
as it probes a flower, which may affect the location of pollen
placement on the pollinator as well as the quantity of pollen re-
moved by the pollinator (Kulbaba and Worley, 2012; Anderson
et al., 2016; Minnaar et al., 2019; de Jager and Peakall, 2019).
For example, Kulbaba and Worley (2012) found that fol-
lowing visitation by hawkmoths, male reproductive success
in Polemonium brandegeei was higher for plants with narrow
corollas, which may reflect the likelihood that floral sexual or-
gans contact the hawkmoth’s proboscis. In Ipomopsis aggre-
gate, selection through male function favours flowers with wide
corollas (Campbell et al., 1996, 1997). Hummingbirds can
probe flowers with wide corollas more deeply, and therefore
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FiG. 1. Genetic and ecological factors influencing pollination and post-pollination processes in hermaphroditic flowering plants. The relative importance of each
of these processes in determining plant fitness depends on a variety of factors and the interplay between them. These factors may include: pollinator abundance,
amount of pollen transferred, resource availability and maternal seed provisioning. These factors are discussed in detail throughout this review.
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remove more pollen. In Clarkia xantiana, larger flowers attract
more pollinator visits and have higher outcross siring success
(Briscoe Runquist et al., 2017). In these examples, the specific
traits under selection vary between systems; however, we see a
pattern indicating that floral morphology is important to siring
success.

Different floral trait optima may arise due to selection caused
by pollinators that vary in morphology or behaviour (Krauss
et al., 2017; Minnaar et al., 2019). For example, Polemonium
brandegeei is pollinated by both hummingbirds and hawk-
moths (Kulbaba and Worley, 2013). The authors note that these
two pollinator classes exert contrasting directional selection
on herkogamy and corolla width, resulting in an intermediate
phenotype in natural populations.

Several studies have explored how flower colour variation
influences siring success (Stanton et al., 1986, 1989; Devlin
et al., 1992). For example, insect pollinators preferentially visit
Raphanus raphanistrum plants with yellow flowers (Stanton
et al., 1989) leading to significantly higher male fitness through
increased pollen export (Stanton e al., 1986). Interestingly,
flower colour does not influence seed production.

Variation in floral display size is also thought to influence
male reproductive success because plants with larger displays
may attract more pollinator visits (Schmid-Hempel and Speiser,
1988; Klinkhamer and de Jong, 1990; Eckhart, 1991; Mitchell,
1994; Galloway et al., 2002). In Asclepias exaltata, siring suc-
cess increases linearly with floral display size (Broyles and
Wyatt, 1990). However, pollinators tend to visit more flowers
sequentially on large displays (Dudash, 1991; Harder and
Barrett, 1995; Snow et al., 1996; Mitchell et al., 2004), which
may increase geitonogamous self-pollen receipt and reduce
outcross siring success on a per-flower basis (Karron et al.,
2009; Karron and Mitchell, 2012).

Pollination intensity

The influence of floral traits on reproductive success
can vary with the pollination environment. When pollin-
ators are rare, and thus pollinators are not competing for
floral resources, trait preferences should be strong because
the pollinator will preferentially visit the most rewarding
phenotypes (Goulson, 1999). Under these circumstances
seed production (and pollen dispersal) will be greatest for
plants that receive more, or more effective, visits. Variance
among individuals in relative fitness through both male and
female pollination success may increase in pollen-limited
environments, enhancing the opportunity for selection
(Richards et al., 2009; Sletvold and Agren, 2016).

An increased opportunity for selection with severe pollen
limitation has been demonstrated for female fitness (Ashman
and Morgan, 2004). For example, Trunschke et al. (2017)
found a positive relationship between pollen limitation and net
selection across 12 species of orchids. Importantly, this rela-
tionship can occur within a single population, where variation
in pollinator composition and trait expression is minimized.
Sletvold and Agren (2016) experimentally manipulated the
degree of pollen limitation in a natural population of the or-
chid Gymnadenia conopsea and found that pollinator-mediated

selection on floral traits increased significantly in treatments
with high pollen limitation.

When pollen limitation occurs, pollinator preference for cer-
tain trait values may cause strong directional selection through
both sexual functions (Willson and Burley, 1983). By contrast,
when pollen is not limiting there will be little variation in fe-
male reproductive success (all plants are at capacity), and male
reproductive success should largely reflect pollen abundance.
In this case there may not be a consistent relationship between
floral traits and male fertility if most pollen has been removed
from each pollen donor. However, donors might still differ in
male reproductive success if they differ in post-pollination
success.

Research that quantifies variation in siring success following
both natural pollination and artificial mixed pollination can po-
tentially disentangle pollination and post-pollination processes.
An elegant study by Krauss (2000) measured siring success
in a small, isolated population of Persoonia mollis. Control
flowers received open pollination, and experimental flowers
received an equal quantity of pollen from all 15 plants in the
population. Variance in siring success was much greater fol-
lowing application of pollen mixtures, and differed markedly
from variation in siring success associated with natural pollin-
ation. In the following section, we highlight the mechanisms of
post-pollination sorting, and discuss how the quantity of pollen
deposited on stigmas may influence variation in siring success.

INFLUENCE OF POST-POLLINATION PROCESSES ON
VARIANCE IN SIRING SUCCESS

When pollen arrives on a flower, its germination and growth
provide considerable opportunity for variance in siring suc-
cess (Lyons et al., 1989; Marshall and Folsom, 1991; Swanson
et al., 2016). This variation can be strongly affected by both
genetic and environmental factors (Delph ef al., 1997; Herrera,
2002, 2004).

Pollen germination is the first step of this process — hydra-
tion of pollen and success in producing a pollen tube may
differ greatly among pollen donors (Fig. 2; Snow and Spira,
1991; Sari-Gorla et al., 1992; Jolivet and Bernasconi, 2007).
Germination can also be affected by pollination events (e.g.
pollen directly contacting the stigma may have an advantage
over pollen separated from the stigma by several layers of
pollen), and maternal plants can also delay pollen germination
in some circumstances (Galen et al., 1986; Lankinen er al.,
2007; Bochenek and Eriksen, 2011; see also Lankinen et al.,
2016). Pollen germination may be influenced by the presence
of heterospecific pollen on a stigma as well (Arceo-Gémez and
Ashman, 2014; Briggs et al., 2015). Furthermore, flower age
may influence pollen germination, especially in self-incompat-
ible species (Marshall et al., 2010). In self-incompatible
Leptosiphon jepsonii, self pollen cannot sire seeds on the first
day of stigma receptivity, but can on the second day (Goodwillie
et al.,2004).

Once pollen grains have germinated, pollen tubes must enter
the stigma, and then grow down the style toward the ovary
(Figs 2 and 3). Pollen tubes are generally not able to reach the
ovules without drawing resources from the style (Stephenson
et al., 2003), and crowded pollen grains can compete for
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access to resources (Cruzan, 1986), while maternal plants may
choose to provision some pollen tubes over others (Malti and
Shivanna, 1985). For these and other reasons pollen tube growth
rates often vary greatly among donors (Jones, 1920; Mazer,
1987; Cruzan, 1990; Snow and Spira, 1991; Delph ez al., 1997;
Marshall, 1998; Lankinen et al., 2009). McCallum and Chang
(2016) found that a 10% difference in the diameter of Ipomoea
purpurea pollen strongly influenced the likelihood of fertil-
ization. There also is evidence in Viola tricolor that pollen or
pollen tubes can experience interference competition, inhibiting
the germination or growth rate of adjacent gametophytes
(Lankinen and Skogsmyr, 2002). Perhaps reflecting this, studies
of Lesquerella fendleri and Raphanus sativus have shown that
siring success in single donor pollinations is generally a poor

FiG. 2. Pollen germinating on a Mimulus ringens stigma. Note that a few grains
are not hydrated, and only some of the grains have formed pollen tubes. Pollen
grains are 15-25 pm in diameter. Image: Wendy Semski.
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predictor of siring success in mixed pollinations (Mitchell and
Marshall, 1995; Marshall and Diggle, 2001).

Navigation to the ovule is an important but often overlooked
aspect of post-pollination success (Higashiyama and Takeuchi,
2015). For example, in Raphanus sativus the tendency for donors
to target basal vs. distal ovules within the ovary is heritable,
suggesting that this and other aspects of navigation may differ
among pollen donors (Marshall and Evans, 2016). Although
guidance clearly involves attractants produced by female tissue
(Higashiyama et al., 2003), the extent to which males differ in
pollen tube navigational abilities is not yet known.

Once ovules are fertilized, the maternal plant can have enor-
mous latitude for preferentially provisioning or aborting indi-
vidual ovules, or whole fruits. There is abundant evidence that
these decisions are often non-random with respect to donor
identity, and that they may or may not be strictly based on
the vigour of the resulting zygote (Stephenson, 1981; Willson
and Burley, 1983; Casper, 1984; Bertin, 1985; Cruzan, 1986;
Marshall and Folsom, 1991; Montalvo, 1992; Rigney et al.,
1993; Marshall and Evans, 2016).

Whether pollen is self or cross is another important con-
tributor to variation in donor success. Indeed, Darwin (1876)
was the first to notice that self pollen grew more slowly than
cross pollen, even in otherwise self-compatible species. Some
studies assessing paternity following application of mixed
pollen loads have found higher siring success for outcross
pollen (Rigney et al., 1993; Kruszewski and Galloway, 2006;
Figueroa-Castro and Holtsford, 2009), but other studies have
found that self and outcross pollen are equally successful at
siring seeds (Sorin et al., 2016).

Variance in male reproductive success can be affected by
all of the processes mentioned above, and those effects can be
context-dependent. Consider an environment where pollination
intensity is low, so that seed production is pollen-limited, in
that adding more pollen will increase seed production (Fig.
3, ‘Low’). Here, a large fraction of pollen grains successfully
fertilizes ovules, and attrition of pollen tubes will usually be

@&

Medium High

Fi1G. 3. Pollen sorting as a function of the intensity of pollination. The three pistils in the diagram represent low, medium or high pollen loads. The coloured dots

on each stigma represent equal numbers of pollen grains from four different pollen donors. These donors differ in speed of pollen tube growth, with red fastest,

followed by yellow, light blue and purple (slowest). Unfertilized ovules are small and white; fertilized ovules are larger and coded by the colour of the pollen
donor. Illustration: Allysa Hallett.
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density-independent (Harder et al., 2016a, b). In this circum-
stance there will be little sorting among pollen grains or pollen
tubes based on donor identity; even slow-growing pollen tubes
may eventually fertilize an ovule (Bertin, 1990; Mitchell,
1997). Thus, when there is pollen limitation, only pollen that
germinates poorly or does not produce vigorous pollen tubes,
whether because of environmental damage or genetic identity
(including self-incompatibility genotypes), will be sorted out.
This will generate relatively little variation in male fertility. In
this situation, the success of each pollen donor will probably
be most affected by proportional representation of its pollen on
the stigma.

However, when the number of pollen tubes reaching the
ovary exceeds the number of ovules, seed production is not
limited (adding more pollen will not increase seed production).
In this situation density-dependent competition can occur (Fig.
3, ‘High’; Haldane, 1932; Cruzan, 1986; Winsor et al., 1987,
Bochenek and Eriksen, 2011; Harder et al., 2016a, b), and there
will be abundant opportunity for sorting among pollen grains
based on their ability to speedily and effectively fertilize ovules
(Cruzan and Barrett, 1996; Shaner and Marshall, 2003; Ruane,
2009). Variation in male reproductive success should then in-
crease with the size of the pollen load. This is because an in-
creasingly large number of pollen grains will be unsuccessful
as the pollen load increases beyond that required to fertilize
all ovules (Fig. 3). The distinction between density-dependent
and density-independent growth of pollen tubes is one reason
that the extent of pollen limitation (and therefore the abundance
and effectiveness of pollinators) is a key ecological context for
understanding variance in male reproductive success.

It is useful to recognize two patterns of mating that con-
tribute to variation in male fertility (Waser et al., 1987). First
is a concordant mating pattern. This occurs when the rank
order of performance for different donors is shared across ma-
ternal plants — there are some males that sire more offspring
on all maternal plants. This might occur through higher pollen
vigour of particular males, or through female choice. This is
also referred to as ‘general combining ability’ (Lyons et al.,
1989). Second is a discordant mating pattern (male—female
complementarity). This occurs when the rank order is not con-
sistent across mothers, and might reflect female choice, genes
with complementary effects between the pollen and style, or
self-incompatibility (Charlesworth et al., 1987). This is often
referred to as ‘specific combining ability’ (Lyons et al., 1989).

Complementarity can be detected as a statistical interaction be-
tween donor identity and recipient identity (Lyons et al., 1989).
Self-incompatibility is a common example of complementarity
(Vekemans et al., 1998). Higher mating success of unrelated
individuals is also a form of complementarity as this can lower
the incidence of biparental inbreeding (Waser and Price, 1989;
Ayre et al., 2019). Non-random mating that is concordant en-
courages selection for whatever male attributes provide an
advantage, while complementarity may generate frequency-
dependent selection for specific combinations. Both of these
patterns of non-random mating can increase variance in male
fertility, and tend to be more common in contexts where pollen
is not limiting.

Beyond variation in the amount of pollen present, there may
be variation in the timing of pollen arrival (Mulcahy, 1983;
Spira et al., 1996; Karron et al., 2006). If pollen all arrives in
one visit, proportional representation in the pollen load is prob-
ably a key factor determining paternity. However, if pollen ar-
rives in several separate and widely spaced visits, the timing
of arrival may become more important. In between are situ-
ations in which separate pollen deliveries arrive in short enough
succession that slow-growing pollen from an early visit can be
overtaken by fast-growing pollen from a later visit, decoupling
pollen performance from timing of arrival (Sorin et al. 2016).

INTEGRATING RESEARCH ON POLLINATOR
BEHAVIOUR, FLORAL TRAITS, SIRING SUCCESS AND
POST-POLLINATION PROCESSES

Realized male fertility in the wild depends on both pollen de-
livery and success in post-pollination growth and fertilization.
These processes may potentially interact to magnify or lessen
the variance in siring success. Here we explore the interplay
between pollination and post-pollination events, and how these
processes may respond to ecological factors such as pollination
intensity (Fig. 4). We also highlight some of the most pressing
questions about variance in male reproductive success and
identify critical data needed to address these questions.

When pollination intensity is low, pollinator discrimin-
ation amongst pollen donors may lead to high variance in
donor pollination success (see Pollination intensity; Fig. 4A).
However, an increase in the rate of pollinator visitation may
lessen the variance amongst donors, especially when nearly

c

S < |A < |B C

w2 o 2 5

£90 < . < ©  Z

=T [« o

S 5 oL 5 [ORery

Q = © = = 0

o P £« © O

i) £ ET

S £ = c 2

S E o S T

cw 2B 8o

= a o c Qo

o © < =

o Q = 2 S E

8 3 = &

23 =z % = Z

g 2 : -
low high low high low high

Pollen grain receipt per ovule

Pollen grain receipt per ovule

Pollen grain receipt per ovule

FI1G. 4. Predicted relationships between pollination intensity and (A) variance in pollination success, (B) variance in male reproductive success (RS) during the
post-pollination phase, and (C) overall variance in male siring success including both pollination and post-pollination influences.
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all pollen has been dispersed from flowers. Quantification
of the relationship between pollination intensity and the
success of individual donors in exporting pollen to recep-
tive stigmas is difficult to achieve, as it requires the ability
to distinguish the donor composition of pollen grains on
stigmas throughout the population. The most promising ap-
proach for distinguishing pollen grains of different donors in-
volves microsatellite genotyping of individual pollen grains
(Hasegawa et al. 2015). Although this technique is costly, it
can potentially distinguish pollen grains of each donor in a
study population. For example, Hasegawa et al. (2015) suc-
cessfully determined the pollen parent for 824 pollen grains
from 60 Castanea crenata donors. Another promising tech-
nique involves labelling pollen grains of each donor with
quantum dots, semiconductor nanocrystals that glow under
UV excitation (Minnaar and Anderson, 2019). Currently
only four colours can be used, limiting the number of pollen
donors that can be compared in a study population. However,
in the future it may become possible to distinguish additional
quantum dot colours, or perhaps they could be combined to
allow a larger sample of pollen donors to be distinguished
(Minnaar and Anderson, 2019).

In contrast to the decelerating relationship between pollen
donation success and pollination intensity (Fig. 4A), the vari-
ance in post-pollination reproductive success among donors is
likely to increase with pollination intensity (Fig. 4B). When
seed production is pollen-limited there is little sorting based on
pollen donor identity. However, as the number of pollen grains
per ovule increases, there is likely to be more sorting, leading to
greater variance in siring success (Figs 3 and 4B).

To facilitate comparisons with natural populations, post-
pollination experiments should be as realistic as possible. For
example, the number of pollen donors in a mixture should
closely match mate diversity within fruits in the focal popula-
tion. Because fruits of many flowering plants are multiply sired
by three to six donors (Mitchell ef al., 2005, 2013; Pannell and
Labouche, 2013; Krauss et al., 2017; Christopher et al., 2019)
this will often mean preparing realistic mixtures of pollen.
Likewise, the intensity of pollination should match that in the
field [e.g. if a population is pollen-limited because pollen de-
livery is typically low, hand pollinations to investigate post-
pollination events should also use small pollen loads (compare
Fig. 4A with 4B)].

The contrasting effects of pollination intensity on donor suc-
cess in the field (Fig. 4A) vs. post-pollination siring success
(Fig. 4B) yield two interesting implications. First, the relative
contribution of pollination and post-pollination processes to
variation in male reproductive success may not be constant, but
rather may vary with pollination intensity. Second, variation
in male reproductive success in the wild may in some circum-
stances exhibit a U-shape, with higher variance when pollin-
ation intensity is very low or very high (Fig. 4C).

The relative magnitude of variance caused by pollination
and post-pollination processes depends on the pollination en-
vironment (Fig. 4A, B). Several studies have shown high vari-
ance in male success in low pollination environments (Kulbaba
and Worley, 2013; Briscoe Runquist et al., 2017). This may
correspond to the left-hand side of Fig. 4C. Although these
studies did not measure post-pollination processes, it is pos-
sible that pollination events are most important in affecting

variance (Fig. 4A). However, if pollen delivery increases, vari-
ance may decrease because most donors would successfully
export pollen. If pollen were even more abundant, the magni-
tude of post-pollination processes might increase because of
pollen competition, subsequently increasing variance in male
success.

There is little empirical evidence concerning the relation-
ship between post-pollination success and pollen receipt. Some
researchers have suggested that the effects of post-pollination
events on siring success (and, by inference, variance) should be
smaller than those for pollination events (Charlesworth et al.,
1987; Wilson et al., 1994). If that were the case, one would
expect that post-pollination events would not offset pollination
events in affecting variation in overall siring.

CONCLUSION

There are no studies that have varied the intensity of pollen
delivery and have measured the variance in male success in
both the pollination and post-pollination phases. Such studies
would provide insight concerning the ecological conditions
that favour selection on floral traits such as nectar produc-
tion and flower size, and on physiological traits such as pollen
tube growth rate. It is important that both phases are studied
in concert; this will allow researchers to infer the strength of
and opportunity for selection on floral traits and physiological
traits (pollen tube growth rate) at the same time. These studies
would also allow researchers to understand how pollination
intensity can affect selection at any stage of the reproductive
process.

GLOSSARY

Female reproductive success: the seed production of an indi-
vidual plant, summed across all fruits on that individual.

Male reproductive success/siring success: the success of a
plant’s pollen at fertilizing ovules across all seed-producing in-
dividuals in the populations.

Pollen competition: a situation in which gametophytes from
more than one male are present in excess of the number re-
quired to fertilize the available ovules. These competitive
interactions can occur at any point in the siring process,
including on the stigma during pollen grain germination,
growth of pollen tubes down the style, or fertilizing ovules
in the ovary.

Pollen limitation: a reduction in seed or fruit production be-
cause there is not sufficient pollen to fertilize all ovules.
Pollen sorting: the process that occurs when pollen compe-
tition occurs, and results in only a subset of the pollen on the
stigma successfully fertilizing ovules.

Pollination intensity: the amount of pollen arriving on stigmas
relative to the amount necessary for full seed set.

Pollination phase: the interactions and processes that occur
from pollen production on the sire, to pollen removal, transport
and arrival on recipient stigmas.

Post-pollination phase: the interactions and processes that
occur once pollen has reached the stigma, including pollen ger-
mination, pollen tube growth and fertilization.
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