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ABSTRACT

Itis always very difficult to efficiently and accurately solve a system of differ-
ential equations coupled with moving free boundaries, while such a system
has been widely applied to describe many physical/biological phenomena
such as the dynamics of spreading population. The main purpose of this
paper is to introduce efficient numerical methods within a general frame-
work for solving such systems with moving free boundaries. The major
numerical challenge is to track the moving free boundaries, especially for
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high spatial dimensions. To overcome this, a front tracking framework cou-
pled with implicit solver is first introduced for the 2D model with radial
symmetry. For the general 2D model, a level set approach is employed to
more efficiently treat complicated topological changes. The accuracy and
order of convergence for the proposed methods are discussed, and the
numerical simulations agree well with theoretical results.
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1. Introduction
In this paper, we consider reaction-diffusion equations over a changing domain of the form

oU
— —DAU=f(U) forxe Q(t),t> 0

I U=0 forxe dQ(t),t>D0. (1)

The nonlinear function f(U) is assumed to be a C! function satisfying f(0) = 0, and in the literature,
it is often taken to be the logistic function f(U) = U(a — bU) with positive constants a and b. In
the rest of this paper, we will take this logistic function as an example to demonstrate the numerical
methods.

The evolution of the moving domain Q(¢) C RY or rather its boundary 32 (t) is determined by
the one phase Stefan condition which, in the case dQ (¢) is a C! manifold in RY, can be described as
follows:

Any point x € 92 (t) moves with velocity | VxU(t, x)|n(x), where n(x) is the unit outward normal
of Q(¢) at x, and p is a given positive constant.

The moving boundary 92 (¢) is generally called the ‘free boundary’, and it is well known that, in
general, its smoothness is not guaranteed, even if the initial function ©(0, x) and initial domain €2 (0)
are both smooth; see, for example [10], where a weak solution setting is introduced for the general
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situation of this free boundary problem. Such a free boundary problem was first introduced in [11]
in one space dimension, as a model for the spreading of an invading or new species with population
density U(t,x) whose spreading front is represented by the free boundary.

In [12], the regularity and long-time behaviour of d€2(¢) and u(t,x) are studied, and it is shown
that a spreading-vanishing dichotomy holds: either 2 (t) stays bounded (i.e. is contained in some
fixed ball in RYN) for all > 0, and in such a case U(t,x) — 0 as t — 00 uniformly in x € Q(t), or
Q(t) converges to RN, with dQ (¢) approximating a moving sphere enlarging to infinity as t — oo.
Moreover, in the latter case, for all large f, the free boundary 92 () is a smooth closed manifold
without boundary.

If f(U) = 0, then this problem reduces to the classical Stefan problem, which has been extensively
studied theoretically (see, e.g. [3] and the references therein). Other theoretical studies of related free
boundary problems can be found in [2] and the references therein.

In contrast, very few numerical methods have been developed to solve such free boundary prob-
lems. In general, it is always difficult to efficiently and accurately handle the moving boundaries. To
efficiently handle the moving boundaries, level set methods [13,25,29,30,34,35] and front tracking
methods [19,27,33,36] are two popular numerical approaches. One distinct feature of front track-
ing [8,15-17,20,32] is using a pure Lagrangian approach to explicitly track locations of interfaces, but
it is difficult to handle topological bifurcations in high dimensions, while the level set method can
efficiently overcome such difficulties. The level set method has been successfully applied to solve the
classical Stefan problem [4,6,7,13,14,24,26] and the references therein. In this paper, we will introduce
a front-tracking framework and a front-fixing framework to solve system (3)-(6) for a 2D model with
radial symmetry, and a level set approach is employed for the general 2D model.

It is not easy to check the accuracy of the level set method. In this paper, we do it by applying the
level set method to a 2D problem with radial symmetry, for which it is also possible to use the front-
tracking method. Our numerical test shows that the numerical results obtained by the two methods
agree well. The accuracy of the front-tracking method is checked and compared with the front-fixing
method for 2D radially symmetric models, which indicates that they are reliably accurate numerical
schemes. In addition, our numerical simulations correlate nicely with theoretical results.

The rest of the paper is organized in the following way. In Section 2, the front-tracking approach
and front-fixing approach are introduced separately for a two-dimensional case with radial symme-
try (3)-(6), and the two methods are also compared with each other. In Section 3, a level set method
is discussed for a more general two-dimensional case. In Section 4, numerical examples are per-
formed to show the efficiency, accuracy and consistency for these different approaches. Finally, a brief
conclusion is drawn in Section 5.

2. Numerical methods for a 2D model with radial symmetry

To solve the 2D diftusive logistic model in polar coordinates, the system can be written as

U U 19U  109°U
——D|—4+-—+—=—)=U@->bU), t>0, 0<60<2m, r>0, (2)
ot or2  r ar  r? 9%0
where (r cos 0, rsinf) € Q(t).

We assume that the environment and the solution are radially symmetric, i.e. we set the initial
domain € as a disk, the initial function Up(x) as radially symmetric, the moving boundary 92 (¢)
as thus a circle whose radius we denote by H(t) and the solution U(t, r,0) = U(t, r), the 2D diftusive

logistic model with radial symmetry can be written as a 1D diffusive logistic model

U 3?U 19U
— —D|—+-—])=U@@—-0bU), t>0, 0<r<H(). (3)
ot ar? r or



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 3

together with the boundary conditions

oU
E(t, 0)=0, U(WH®)=0, t>0, (4)
the Stefan condition
H'(t) = —u%—(r](t, H(), t>0, (5)
and the initial conditions
H(0) = Ho, U(0,r) =Up(r), 0=r=H(0). (6)

2.1. Front-fixing method for the 2D diffusive logistic model with radial symmetry

Here we extend the ideas of Piqueras et al. [28] for 1D case to the 2D system with radial symmetry.
Let us transform the 1D diffusive logistic model (3)-(6) into a problem with a fixed domain [0, 1].
Under the Landau transformation [9,18]

r
z(t,r) = %, W(t,z) = U(t,r), (7)

moving front problem (3)-(6) reduces to

z 2

oW W D zG(t)\ oW
Gt)— —D— — +Z ® — =G W(@—-bW), t>0, 0<z<l, (8)
ot 022 0z

where
G(t) = H* (), t=>0. )
Boundary conditions (4) and Stefan condition (5) take the form:

AW
S, B0 =0 WD =0, t>0, (10)
z

and
, ow
0z
respectively, while initial conditions (6) become
G(0) = Hj, W(0,2) = Wo(2) = Ug(zHp), 0<z<1. (12)
Conditions (6) for the initial function Uy(r) are translated to Wy (z) as follows:
Wo(2) € C*([0,1]), Wy(0) = Wo(1) =0, Wy(z) >0, 0<z< L (13)
After the transformation, the new problem is to solve nonlinear parabolic partial differential equa-

tions (8) in the unbounded fixed domain (0, 00) x [0, 1] for the variables (t,z). Let us consider
the step size discretization k = At, h = Az = 1/M, and the mesh points ", z), with t" = kn,n >
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0,zj = jh,0 <j < M and M is the total number of the subintervals of [0, 1]. Let us denote the
approximate value of W (t", z;) at the mesh point (¢", )),

w}‘ ~ W(t", z), (14)
and let g" be the approximation of G(t"). Let us consider the forward approximation of the time
derivatives,

Wil oy n+1

i oW g
J J n
Y ~ —(t",z),
k at( ZJ)

and the central approximation of the spatial derivatives,

~ G ("), (15)

1 N 1 N N
Wipn —Wii1 m(tn 2 Wil — 2wj + Wit - 32W(tn ) (16)
2h T ez 0T h2 T a2 I
From (15) and (16), Equation (8) is approximated by
+1
g w}’ —wl ~ Dwf_l — 2w + Wi, (D N ﬁgn-s-l —g"\ Wi — Wiy
k h2 zi 2 k 2h
:g"w}’(a — bw}’), n>0, 0<j<M-—1 (17)

For the point at j =0, the value w” | is eliminated from the second-order discretization of boundary
condition (10) and (13),

n n
Wy — W

2h

Transformed Stefan condition (11) is discretized using first-order forward approximation for G'(¢)
and three points backward spatial approximation of %—VZV (t,1):

=0, wy=0 n>0. (18)

gn+1 _ gn

—£ - —%(3% — AWl W), n>0. (19)

to preserve accuracy of order O(k) + O(h?).
Finally, we have

2Dk Dk
wit! = <1 ——— +k(a— bwg)) wy +2——=wi,

g”h2 gnhz
W't = w4 bW+ n>0 0<j<M-—1 (20)
i T YT oW TG Wik 2 J= ’
wﬁl =0.
where the coefficients are given by
o Dk 3 Dk 3 zZipk(dwy_ | — wi_,)
J gnhZ 2thg" 4h2gn >
2Dk
n o__ _ _ 1
b =1 g_”h2 + k(a — bw)), (21)

n Dk . Dk Zijk(4wy_ — wi_5)
Cc. = .
] gnhZ thjgn 4h2gn
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Figure 1. Case 1.r; < H" < riy1.

2.2. Front-tracking method for the 2D model with radial symmetry

Let us consider moving front problem (3)-(6) in a fixed domain [0, T] x [0, L], i.e. we want to find
the distribution of the population in the region [0, L] up to time T. Set the step size discretization h =
Ar = L/M, k = At = 0.1(Ar)?/D, which satisfies the CFL condition, and the mesh points (¢, r;),
with " = kn,n > 0,r; = ih,0 < i < M and M is the total number of subintervals of [0,L]. Let us
denote the approximate value of U(t", r;) at the mesh point (", r;) by

up =~ U, 1), (22)

and let H" be the approximation of H(¢").
Step 1: Track the position of the moving front.

According to the Stefan condition (5), we use the central approximation of the spatial derivatives

. U .
to approximate %= (t, H(t)):

H"—r;

1.Whenr; < H" < riy1,i =2,3... M — lasshownin Figure 1, denotingd = , we first con-
sider the symmetric point of ;,_; with respect to the position H", which is denoted by 7;_; . Specifically
when H" = r;, 71 = ri+1. We use the Lagrange extrapolation method to construct a polynomial P¢
from the value of d, h, u! ,, u}" | and H” [14]. At 7;_;, we use the value of PL at #;_; instead of u(Fi_1),

U PL(Fioq) — ul
— (" H")Y~ ————— =l 23 .  M—1. 23
ar o HD 201+ d)h ! (23)

Remark: The most challenging part of the front tracking method is the evaluation of %—[r](t, H()),
where H(t) is the moving boundary. It is difficult to find a uniform finite difference approxima-
tion of %—Lr](t,H (t)) with high order accuracy because the distance of the moving point H” to the
set of grid points {r;} does not have a uniform positive lower bound. The numerical methods of
evaluating %(t,H (1)) in such a case need to be carefully designed to avoid singularity caused by
H" being very close to some grid point r;. Evaluating %—(r](t, H(t)) by combining the evaluation of
%—[r](t, r;) and %—[r](t, ri+1) can avoid such singularity; however, it destroys the accuracy when com-
bined with the process of updating U(%, 7). In (23), we combine the classical central approximation
of the spatial derivatives and the Lagrange extrapolation method to evaluate %—(r](t, H(t)) to ensure
second-order accuracy in space. For example, when r; < H" < ri41, we evaluate % (t, H(t)) onri_q
and 7;_ instead of r; and 7; to avoid singularity when H" is very close to r;, and when H" = r;, (23)
becomes

PL(ri—H) - u?_l

, 1=23,...,M—1
2h

oU
_(tn’ Hﬂ) ~
ar
2. When ry < H" <, the central approximation of the spatial derivatives to approximate
%(t, H(t)) involves the fictitious value 4" ; at the point (t", —h). The value 4" is eliminated from
the discretization of boundary condition (4),

which means that " ;| = u = 0, we can see that all the values of 4" on the grid points are equal to 0
except ug. The simulation should stop here indicating that a more refined mesh is needed.
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Figure 2. Case3:ry < H" < ;.

3.Whenr; < H" < r; as depicted in Figure 2, denoting d = h Z1 Let us first consider the sym-
metric point of ry with respect to the position H”, which is denoted by 7. Then we consider the value
of u" | = u! and use the Lagrange extrapolation method to construct polynomial P* from the value
of h,d, u" |, uy and H". At 7, we use the value of PL at 7 instead of u(%),

4. When H" = r), it means that the spreading of the populations goes out of the computational
domain [0, L], and the simulation should stop here indicating for a larger computational domain.

Remark: In system (3)-(6), cases 2 and 3 will not happen, since the front H(¢) is increasing in time
t. However, the front tracking method possesses preferable adaptability to track various moving front
conditions, such as those used in [1], where the front need not be increasing in time, and therefore
cases 2 and 3 indeed occur.

Step 2: Update the value of U(t" ™1, r;).

1. When r; = H™!, we know that U(t"t1, r;) = 0. Let u}’“ =0, forj=1i,i+1,... M. We con-
sider the central approximation of the spatial derivatives at x;j, for j = 0,1,2,...,i — 1, where U is
updated by the backward Euler method in time

n+1 n n+1 n+1
u —u 2u —2u
0 0 __ n+1 n+142
p = 2 +auy = b(uy" )%,
Yy u@-ll n+1 + un-i—l un+11 _ qull
J I _plZ it J +au ™ = b2, =1 i1
k hz zjhz J J

(24)
Then we use the Picard Iteration (or Newton Iteration) to solve nonlinear system (24).
n+1 .
2.Whenr; < H"*! < r;;1,denotingR = B +h_r’. Let u}’“ =0,forj =i+ 1,... M. Weconsider
the central approximation of the spatial derivatives at x;, for j = 0,1,2,...,i. For updatmg u”‘H we

use the Lagrange extrapolation to construct polynomial PL from the Value of h, R, ul't), u”+1

and

H" 1. At r;;1, we use the value of Pl at r;,; instead of ul +1 U is updated by the backward Euler
method in time

n+1 n n+1 n+1
U —u 2u — 2u,
0 0 1 n+1 n+1\2
=D +auy —b(ug" )%,
k h?
n+l _ n n+1 n+1 n+1 n+l _  n+l
uj uj _D u];l ] + M uj«l»l Ll] 1 + auﬂ—}-l _ b(u(H—l)Z ] =1 i—1
k 2 2jh? j il ’ ’

w2 4 PR ) | PR —
% 2 2ih?

+1
) + au!™ — bt

(25)
Picard Tteration (or Newton Iteration) will be applied to solve nonlinear system (25).
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3. Level set method for the general 2D diffusive logistic model

The general 2D diftusive logistic model for the density of population of the invasive species U(t, x, y)
depending on time ¢ and spatial variables (x, y) has the form

0 (2Y 0
ot ax2  3y?
U(t,0Q2(t)) =0, t>0, (26)
vit,x,y) = u|VU(t x,p) | n(t, x,y) = —uVU(G X, ), t>0, (x,y) € 0Q2(1),

Q0) =0, UMO,x,y) = Up(x,y), (x,y) € Q.

) =U(a—-bU), t>0, (x,) € Q(),

wherev(t, x, y) and n(t, x, y) are, respectively, the velocity vector of the boundary point (x, y) € 92 (),
and the unit outward normal of Q(¢) at (x,y) € 9Q2(¢#). The initial function Up(x, y) is assumed to
have the following properties:

Uy € C*(Q), Uy >0in€y, Uy=0ond. (27)

In what follows, to simplify notations, we will use 7(¢) to denote the unknown moving boundary
9€2(t). The density of population is distributed in the domain €2(¢), D > 0 is the dispersal rate and
the positive parameters a and b are the intrinsic growth rate and the intra-specific competition rate,
respectively. The parameter u > 0 is the proportionality constant between the population gradient
at the front and the speed of the moving boundary.

Following the ideas of Chen et al. [6] and Fedkiw and Osher [13], we construct a level set function
¢, then move ¢ with the correct speed v at the front and followed by updating u(t, x, y). The new
position of the front is stored implicitly in ¢. We extend the level set approach to effectively capture
the front at each new time step and a finite difference discretization of five-point stencils coupled with
a forward Euler scheme to solve the system everywhere away from the front. The inter-extrapolation
strategy and boundary conditions will be employed for the points near fronts. With this approach,
we avoid the difficulties that arise from explicitly tracking the front and thus increase the efficiency
to deal with complex interfacial geometries.

Step 1: Construct level set equation ¢ (t,x, y) and velocity function V (¢, x, y).

We introduce a level set function ¢. Initially, ¢ is set to equal to the signed distance function from
the front as follows:

+d, xeQf,
¢0,x,y) =10, x€ 1 (28)
—d X € Qo,

where d is the distance from the front.
We want to construct a speed function V (t,x,y) over the whole computational domain, which
governs the motion of ¢ by

¢+ VIV = 0. (29)

The basic idea behind introducing the level set function ¢ (¢, x, y) is that the front is equal to the zero
level set of ¢ at any time, i.e.

T(B) = {(xy) €QD): Ptixy) =0).

As the front moves at the velocity field v, we construct the speed function V (¢, x, y) over the whole
computational domain in the following way:

The set 71 (¢) := {(x, ) : ¢(t,x,¥) = 0} coincides with 7(¢) for all t > 0, or equivalently (29) yields
the same equation for the velocity vector vy (t,x, ) at (x,y) € 71(t) whenever 7;(f) coincides with
7(t) at some ¢ > 0 (note that they coincide at time ¢ = 0 by assumption).
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Indeed, if 71(t) = 7(¢), from ¢ (¢, 71(t)) = 0 and ¢ (t,x,y) < 0 for (x,y) lying inside 7;(¢), we
deduce
¢t +Veo-vi=0, n=V¢/|Ve| for(x,y) e ri(t) =1(t), (30)
and vy has the same direction as n, the unit outward normal of 7, (t) = 7(¢), i.e.
vi = Vinforsome Vi = Vi(t,x,y) > 0, (x,y) € 11(t) = t(t).
These relations yield
¢t + V1|Vp| =0on ().
Combining this with (29) we obtain
V1= Vior (x,y) € T(¥).

Therefore
vi = Vnfor (x,y) € t(t).

By the Stefan condition, we have
v=Vnfor (x,y) € 7(t),

and thus, we have proved
vy = vfor (x,y) € T(t)

as wanted.
Therefore, we get the velocity function over the computational domain

V(t,x,y) = pIVU(t %, p)ls (31)

which of course moves ¢ with the correct speed at the front, so that 7 (¢) will always coincide with the
zero level set of ¢ at time ¢.

Step 2: Update ¢ (t,x, y).

According to (29)-(31), the equation governing the level set function turns into

¢r = puVU(t,x,y) - V. (32)

The approximation to VU at t(¢) is based upon approximations to the derivatives of U in four coor-
dinate directions to cut down on grid orientation effects; here we use the standard x,y Cartesian
coordinates and the 45°-rotated coordinates n and ¢. We extend each approximation to a derivative
of U away from the front by the following four advection equations:

u; + S(pgo)ut =0, (33)
u; + S(@¢))u; =0, (34)
u; + S(p¢y)uy =0, (35)
uf + S(pdr)u; =0, (36)

where u! = dU/dx, u> = dU/dy, u> = dU/dn and u* = dU/3¢ on t(t). Here S is equal to the sign
function.

Equation (33) through Equation (36) continuously extend u!, u?, u®, u* away from the front by
advecting these fields in the proper upwind direction, and they are used to define V away from 7 ().
Since ¢ is zero on 7(t), these equations will not degrade the value of V on the front.

3
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Choosing the computational domain as a square box [—%, ]5“] X [—%, %], we discretize the
domain by setting Ax = Ay = h. The time step taken in the following sections is At, which sat-
isfy the CFL condition. Let u}; ~ U(nAt, —LrGi-vh-L+(G- D), ¢} ~ ¢ (nAt, —Lyi-
1)h, —% + (j — 1)h). We use a first-order upwind scheme to discretize (33)-(36). For example, the
discretization of (33) is as follows:

if Sij(@dx) > 0, then 11" = ul(OId) —cfl ® (uil,](-dd) — ul(OId)),

ij ij i—1,
if $ij(p) < 0, then "™ = u ™ 4 oft s (u )] — u{'P),

with ¢fl=0.5.

Here, the time step of this discretization satisfies At,gyect/h < 1. According to [31], the time step
of the advection function At,yy,,q is not necessarily related to the main time step At.

From (32), we end up solving for the right-hand side of the equation

61 = S (ki@ + (@i + () + (@), 7

where spatial first derivatives of ¢ are approximated by a second-order ENO scheme. We update ¢
by solving (37) with a third-order Runge-Kutta scheme [6].

Step 3: Reinitialize ¢ to be a signed distance function for one time step.

The level set function will cease to be an exact distance function even after one time step. In order
to keep the accuracy of n and V', we need to avoid having steep or flat gradients developed in ¢. To
avoid these numerical difficulties, a good choice is to re-initialize the level set function to be an exact
distance function from the evolving front 7 (¢) at each time step.

We use the reinitialization scheme of Sussman et al. [31] to reinitialize ¢ by

¢t = S(¢o)(1 — V), (38)

where ¢(0,x, y) = ¢o(x, y) and S again denotes the sign function. The sign function S is smoothed
by the equation

$o

Vo> + €2
to avoid numerical difficulties while implemented [31].

By iterating Equation (38) to a steady state, the original position of the front will not change, but
at points away from 7 (), ¢ will be evolved into a distance function.

Step 4: Update U(t, x, y).

After reinitializing ¢ to be very close to an exact signed distance function from 7 (¢) in Step 3, next
we update U(t, x, y) in the following three cases:

Se(¢o) = (39)

e For points away from the front, which means the nearby four grid points are all inside the domain
€2(t), we solve the Reaction-diffusion equation by combining with the forward Euler method and
five-point stencil scheme.For example, suppose we update U(t, x, y) at the grid point (i, j), where
$ij < 0,¢it1j < 0,¢i-1j < 0,¢ij41 < 0and@;j—1 < 0,weupdate U(t, x, y) at the grid point (i, )
as

l”]“ — ujj Ui+ Uiy — 4+ u

-D
At h?

e For points near the front 7(¢), some special care should be taken. We employ an interpolation
scheme to approximate the spatial double derivative of U. Since ¢ is an exact distance function
after reinitialization, we can effectively capture the front by using the level set function ¢. For

n

u i

n
1T Ui

= ufj(a - buzj). (40)
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example, we use one-sided different sign of ¢ to incorporate the distances between a point on
the front and grid points neighbouring it in either the vertical or horizontal direction.Suppose
Xp = (xf, —% + (j — 1)h) € t(t) for some integer j, we consider the two grid points (4,5) and (i +
1,j) which border Xy in x-direction, i.e. x; < xf < x;+1. Assuming ¢;; < 0, ¢;—1,; < 0, ¢;j—1 <0,
$ij+1 < 0and ¢;y1; > 0, we introduce

0ij

——h
it1,j — Pij

Xf—xi=rh=—

and use uj, ui_y i, ui_, j, r and U(nAt, xp, —% =+ (j — 1)h) = 0 to construct interpolating polyno-

mial P. When updating uZ]TH, once again we use a standard five-point stencil combining with the
forward Euler method, here we replace u7, ; ; by P(—% + ih), i.e.
uttt — u; ”?—1,1‘ + u?’j_l — 4qu + P(—% +ih) + ”Zj+1

i,j i
—-D
At h?

= uzj(a - buzj). (41)

For the case when the front interacts with y-axis, we use the same process in the y-direction. In
special case, where we cannot find enough grid points inside the domain to construct interpolating
polynomial P, we employ the nearby gird points and intersect points of the front and x- and y-axes
to construct quadratic polynomial or straight line as the interpolating polynomial P to update U.
For the extreme configuration, where there are only intersect points of the front and x- and y-axes
near the grid point, we update U =0 at the grid point.

e If a grid point lies on the front, we set the value U =0 at that point according to the boundary
condition.

Step 5: Repeat Step 2 through Step 5 to update ¢ and U for the next time step.

4. Numerical experiments

4.1. Numerical tests of a 2D problem with radial symmetry: front-fixing method and
front-tracking method

4.1.1. Verification of convergence rates

For the convergence rates, we compare the numerical approximation to the exact solution. Let’s
take the convergence of u in space, for example. However, the numerical approximation depends
on the choice of the grid size (h). For instance, we denote the numerical approximation by #y,. If the
numerical method is of order p, it means that there is a number C independent of & such that

|ty — u| < CHP,
at least for sufficiently small h. Often the error |ii, — u| depends smoothly on A. Then, we have
iy — u| = ChP + O(hP ).
To evaluate the convergence order p, we need to check the sequence
log [, — u| = log |C| + plog(h) + O(h),

for hy, hy, . . ., and fit it to a linear function of log(h). A standard way to calculate p is to divide h by
half every time and look at the ratios of the errors |u — &i;| and |u — iy, 5, i.e.

lip —ul Ch? + O(hP 1)

= =P
lip, —ul  C(h/2)P 4+ O((h/2)P1) 2"+ O(h).
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Table 1. Convergence analysis for the front-fixing method for the 2D model with radial symmetry.

Ny x N¢ Lyerror Order Looerror Order
Accuracy test of U of the front-fixing method

21x5e4 6.20e—03 8.70e—03

41x5e4 1.50e—03 2.01 2.20e—03 2.00
81x5e4 4.00e—04 2.07 5.00e—04 2.07
161x5e4 1.01e—04 2.32 1.00e—04 2.32
321x5e4 Reference

Accuracy test of H of the front-fixing method

21x5e4 1.10e—03 1.90e—03

41x5e4 3.00e—04 2.00 5e—05 1.98
81x5e4 1.00e—04 2.05 1e—05 2.05
161x5e4 2.01e—05 2.31 2.02e—06 2.31
321x5e4 Reference

Table 2. Convergence analysis for the front-tracking method for the 2D model with radial symmetry.

Ny x N¢ Lyerror Order Looerror Order
Accuracy test of U of the front-tracking method
71x2e04 6.50e—04 2.71e—03
141x2e04 1.42e—04 2.19 5.96e—04 2.19
281x2e04 3.24e—05 2.14 1.35e—04 2.14
561x2e04 6.27e—06 237 2.61e—05 237
1121x2e04 Reference
Accuracy test of H of the front-tracking method
71x2e04 3.02e—02 5.01e—03
141x2e04 6.75e—03 2.16 1.07e—03 2.23
281x2e04 1.54e—03 2.14 2.42e—04 214
561x2e04 3.01e—04 235 4.67e—05 237
1121x2e04 Reference
Hence
up, —u
log, ~—‘ =p+ O(h).
uh/z —Uu

4.1.2. Convergence test of front-fixing method
We test the front-fixing method for solving the 2D logistic diffusion model with radial symme-
try (2)-(6) with parameters (D, i1, a, b, Hg) = (0.4,1,1,1,1) and Up = cos(5F).

In Table 1, the error (both L, and L) and the order of accuracy in space of the front-fixing
method are examined, with final time T =0.5. The error is computed by the difference of the numer-
ical solution with the exact solution. For all the examples below when the exact solution is not given,
the solution with a fine resolution will be considered as reference or ‘exact’ solution. As expected, a
second-order convergence in space can be observed.

4.1.3. Convergence test of the front-tracking method
We consider the 2D logistic diffusion model with radial symmetry (2)-(6) with parameters
(D, u,a, b, Hy) = (0.4,10,1,1,0.5) and Up = cos(%"). The system is used to test the front-tracking
method.

In Table 2, the error (both L, and Ly,) and the order of convergence in space to the solution of
the front-tracking method is examined, with final time T'=0.1. Again second-order convergence in
space can be observed.
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0.9 T T T T T 1.4

— front-fixing for 2d radial symmetry
front—tracking for 2d radial symmetry

1.35F

1.25F

1.15F

1.05f

1.5 2 25 3 0 0.02 0.04 0.06 0.08 0.1
r t

Figure 3. Front-tracking method vs. front-fixing method for the 2D model with radial symmetry.

4.1.4. The comparison of front-tracking with front-fixing for the 2D model with radial symmetry
In this section, we use the front-tracking method and front-fixing method to simulate the 2D logis-
tic diffusion model with radial symmetry (2)-(6) with parameters (D, u,a, b, Hy) = (0.4,10,1,1, 1),
Uy = cos(%r) and spatial size h=0.00625. Figure 3 reveals that front-tracking method matches
well with the front-fixing method for the 2D logistic diffusion model with radial symmetry (2)-(6).
The numerical results here agree with the theoretical ones in [10], where it is shown that H(¢) is
an increasing function and for large t, H(t) behaves like a linear function c*t for some positive
constant c*.

4.2. Numerical tests of the 2D model with the level set method

4.2.1. Convergence of the level set method for the 2D model with radial symmetry
Here we study 2D logistic diffusion model (26) by using the level set approach with parameter

(D, u,a,b) =(0.4,10, 1, 1); 79 is a circle with radius 1 and Uy = 4 cos(r _vxzz_,_),z).

For the boundaries of the species, we use the dotted curve to show the simulated boundary of the
species, the solid circle is introduced to describe to what degree the boundary evolves like a circle.
The radius of the solid circle is the average distance between the intersect points of 7 (¢) with x-axis
and y-axis on the boundary and the origin, i.e.

LAy

#of (x, )

where (x, y) € () are all the intersect points of 7 (t) with x-axis and y-axis.

According to [11], the solution of Equation (2)-(6) is unique and radially symmetric. Figure 4
shows the evolution of U(t,x,y) and t(t), where we can see that the solid circle matches exactly
with the dotted curve, which means that the boundary 7 () keeps the geometry. And it can be easily
observed that U(t, x, y) has radial symmetry as Up.

We focus on the radius of the boundary 7 (t), which we denote by H(t). U(t,r) = U(t, x, y) is used
to learn about the order of accuracy in space of the level set method.
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Figure 5. The convergence of the level set method for the 2D model with radial symmetry.

The convergence test for the solution of u(r) at T=0.1 and the front H(t) can be observed
from Figure 5 with different space sizes h =0.025, h=0.0125, h=0.00625, h =0.003125, and the
results are compared to the results of front tracking method with the same initial setup and step size
h=0.003125. Figure 5 shows that the results of the level set method agree very nicely with the results
of the front tracking method, which means the three methods are consistent with each other.

In Table 3, the error (both L, and L) and the order of convergence to the solution of the level
set method are examined, with final time T =0.1. It reveals that the convergence orders for both the
solution u and the front H(¢) are between 1 and 2.

4.3. Numerical tests of level set methods for the 2D model with different initial configuration

Example 4.1: In the 2D logistic diffusion model (26) with parameters (D, u,a, b) = (4,10, 1, 1), the
initial boundary 7y is set to be an equilateral triangle which centres at the origin point (0, 0) with
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Table 3. Convergence analysis for the level set method.

Ny x Ny x Ny Lyerror Order Looerror Order
Accuracy test of U of the level set method

29%x29x160 5.58e—03 9.29e—03

57 %57 x 640 3.06e—03 0.86 5.01e—03 0.89
113x113 %2560 1.40e—03 1.13 2.26e—03 1.15
225x225x%10240 4.84e—04 1.54 7.79e—04 1.54
449x449x 40960 Reference

Accuracy test of H of the level set method

29x%29x160 4.19e—02 5.84e—02

57x57x640 2.01e—02 1.06 2.76e—02 1.08
113x113%x2560 8.70e—03 1.20 1.19e—02 1.22
225x225x 10240 2.91e—03 1.57 3.92e—03 1.60
449x 449 x 40960 Reference

side-length 1. The initial value uo(x, y) and the initial level set function ¢ (x, y) are set as follows:

o) = 400(‘/75 - fg + ) (V3x—y+ %)(—ﬁx —y+ %[3), (x,9) € Qo, @)
0 () € 2.
For (x,y) € Qg, we set
fo(y) = — min(*2 — J% +9, (V3x—y+ %)/2, (—/3x—y+ %)/2), (x,y) € Qo, )
0 (x,y) € 1.

For (x,y) € 56, the magnitude of the signed distance ¢ (x, y) is the smallest distance of (x, y) to sides
of the triangle, and the sign of ¢ (x, y) is positive.

For the boundaries of the species, we use the dotted curve to show the simulated boundary of
the species and the triangle represents the initial boundary. Figure 6 shows the simulation of the
evolvement of the species and moving boundaries along time with an equilateral triangle as the initial
boundary.

From Figure 6, we can see that the dotted curve evolves into a circle, and then propagate as a circle,
which also agrees with the theoretical results [12], where it is proved in Theorems 1.1 -1.3 that the
moving boundary for large time is a smooth closed manifold close to an enlarging sphere as time
increases.

Example 4.2: In the 2D logistic diffusion model (26) with parameters (D, i1, a, b) = (5,10, 1, 1), the
initial boundary of the species 1y is a rectangle with length= 1.2 and width= 1, centred at (0,0). And
the initial function u(x, y) and the initial level set function ¢ (x, y) are set as follows:

wo(xy) = {200(0.5 — )05 +2)(0.6 — (0.6 +y), (1)) € Q(C) )
0 (x,y) € 2.
For (x,y) € Qo, we set
_ —min(0.5 — [x],0.6 — |y]), (x,¥) € Qo,
do(x,y) = {0 (69) € 70, (45)

For (x,y) € 58, we have

V(x| = 0.5)2 + (Jy| — 0.6)2, |x| > 0.5and [y| > 0.6,
¢o(x,y) = { min(|y — 0.6, [y + 0.6]), |x] < 0.5, (46)
min(|x — 0.5, |x + 0.5]), ly| < 0.6.
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Figure 6. The simulated evolution of u(x, y, t) and z(t) with initial domain Q¢ of an equilateral triangle in 2D. The snapshots are
taken at the times t = 0,0.003,0.0425,0.1275,0.15,0.17, respectively.
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Figure 7. The simulated evolution of u(x, y, t) and 7 (t) for the initial domain of a rectangle in 2D. The snapshots are taken at the
times t = 0,0.002,0.008,0.0375,0.0625,0.08, respectively.
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Figure 8. Annulus.
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Figure 9. Annulus with a cut.

For the boundaries of the species, we use the dotted curve to show the simulated boundary of
the species and the rectangle represents the initial boundary. Figure 7 shows the spreading of u and
moving boundary along time with a rectangle as the initial boundary. It indicates that the boundary
evolves into a circle, and then propagates like a circle, as predicted by the theoretical result in [12].

Example4.3: Here we test the level set method for solving (26) with two other different initial domain
setup: annulus (Figure 8) and Annulus with a cut (Figure 9). For the boundaries of the species, we
use the outer dotted curve to show the simulated boundary of the species and the inner dotted curve
represents the initial boundary. For all two different cases, the front will asymptotically evolve into
circles that correlates exactly with theoretical results in [12], which predicts that as time increases, the
bounded piece of the moving boundary will eventually disappear, and the outer moving boundary
will evolve into a smooth closed manifold getting closer and closer to an enlarging sphere as time
increases.
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Figure 10. The simulated evolution of u(x, y, t) and 7 (t) for initial boundary a circle in 2D with an advection term. The snapshots
are taken at the times t = 0, 0.006, 0.025, 0.05, 0.075, 0.1, respectively.
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4.4. Numerical test of level set methods for 2D advection-reaction-diffusion model

We consider a 2D advection-reaction-diffusion (ARD) model with a free boundary of the form

U 92U 98U U  aU

E —D (W + 3_)/2) + B <§ + 8_)/) =U(a—-blU), t=>0, (x,p) € Q(1), (47)

together with the boundary conditions
Ut,9Q(@) =0, t>0, (48)
the Stefan condition
Vit x5y) = VUG x)InGxY) = —pVUGLXY), £ 0, (xy) € 92D,  (49)

where v(t, x, y) and n(t, x, y) are, respectively, the velocity vector of the boundary point (x, y) € 9€2(t)
and the unit outward normal of 2 () at (x, y) € 9€2(¢). The initial conditions are

Q) =R, U0,x,y) = Us(x,y), (x,y) € Q. (50)

The initial function Up(x, y) is assumed to satisfy (27).

In (47), the advection term B (%—g + %—}L,]) is in the north-east direction. We may think of (47)
as describing the spreading of a flying insect species U affected by wind blowing to the north-east
direction during the spreading process.

In the 2D ARD model (47)-(50) with parameters (D, u,a,b, 8) = (10,10, 1, 1,50), the initial
boundary of the species 79 is a circle with radius equals 1.5, centred at (0,0). And the initial value
up(x, y) and the initial level set function ¢ (x, y) are set as follows:

o(%,y) = {6cos(\/m7r), (x,y) € QS, -
0, (x,y) € Q,
Bo(x,y) = —(0.5 — \/x2 + y?). (52)

Figure 10 shows the spreading of U and the moving boundary of this ARD model as time increases,
where the dotted curve represents the simulated boundary of the species. In order to clearly reveal the
effect of the advection in the model, the initial boundary is indicated in the graph by the solid circle;
the free boundary clearly expands faster in the north-east direction and slower in the south-west
direction, due to the advection in the north-east direction.

5. Conclusion

In this paper, we have introduced a general numerical framework to efficiently solve a class of reac-
tion-diffusion equations with moving free boundaries. A front tracking algorithm is first introduced
for the 2D model with radial symmetry, which has been compared to a front-fixing method. The
consistency for these two methods has been checked by several numerical examples. A level set frame-
work is later applied for more general 2D models to overcome the difficulty of handling complicated
topologically changes. All the proposed methods agree with each other through examination of an
example of the 2D model with radial symmetry. The level set approach is also shown to be very robust
to handle different complicated geometries.

Since the level set method is very robust to handle topological changes, in a separate work [21],
we have extended level set approach to the systems of two competing species in which each species
has its own moving boundary. The front will become more complicated and more challenging once
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two moving fronts are tangled together. Moreover, extremely small time steps are usually required
when the system is very stiff. To overcome this difficulty, currently we are incorporating the implicit
integration factor (IIF) method [22] and its compact form (cIIF) [23] for such stiff systems. The major
computation for IIF or cIIF arises from the computation of the exponential of discretized matrices.
Due to the moving fronts, evaluation of the exponential of the discretized matrices is necessary for
each time step. We also plan to combine Krylov subspace [5] to further improve the efficiency.
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