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Metamorphic Testing: A 
Simple yet Effective 
Approach for Testing 
Scientific Software 

Testing scientific software is a difficult task due to 

their inherent complexity and the lack of test oracles. 

In addition, these software systems are usually 

developed by end user developers who are neither 

normally trained as professional software developers 

nor testers. These factors often lead to inadequate 

testing. Metamorphic testing is a simple yet effective 

testing technique for testing such applications. Even 

though MT is a well-known technique in the software testing community, it is not very 

well utilized by the scientific software developers. The objective of this article is to 

present MT as an effective technique for testing scientific software. To this end, we 

discuss why MT is an appropriate testing technique for scientists and engineers who 

are not primarily trained as software developers. Especially, how it can be used to 

conduct systematic and effective testing on programs that do not have test oracles 

without requiring additional testing tools. 
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WHAT MAKES TESTING SCIENTIFIC SOFTWARE 
DIFFICULT? 
Scientific software is widely used for making critical decisions in various scientific and 
engineering domains. For example, simulations are often used in place of physical experiments 
due to the time and cost constraints associated with conducting physical experiments. Further, 
decisions made by these software systems can affect day-to-day human life such as predictions 
made by climate models. Thus, it is important to make sure that these software systems are 
producing the correct results. Previous studies have reported many instances where scientific 
software systems were affected by faults such as seismic programs loosing precision due to one-
off errors,1 compromised performance in coordinate measuring machine (CMM) due to software 
faults2 and geoscience software systems producing seemingly correct yet different results that are 
hard to categorize as incorrect.3 Previous work also report situations where software faults cause 
retractions of published work.4 Testing is the most widely used approach for quality assurance of 
software. But some inherent characteristics in scientific software make it difficult to conduct 
systematic testing in these programs: 5 

• Correct answers are often unknown. Typically, scientific software is exploratory in 
nature and due to this the correct results are often unknown. If the result is known there 
would be no need to develop the software. In such situations only bounds or ranges of 
solutions might be available. Typically, in testing an expected output is used to decide 
test case passing or failing. This would make it challenging to conduct systematic 
testing in these programs. 

• Practically difficult to validate the computed output. Scientific software often 
implements mathematical models that involves complex calculations. Further, they tend 
to produce complex outputs. Both these characteristics make it hard to determine the 
correctness of the produced output of the software. This makes it challenging to use 
automated test case generation approaches such as random test generation since the 
output of such test cases are difficult to validate. 

• Inherent uncertainties. Often scientific software is written to simulate models with 
inherent uncertainties. For some of these scientific programs, there may be more than 
one possible output. This makes it challenging to conduct testing on these programs. 

• Choosing suitable tolerances. Scientific software systems often involve complex 
floating-point computations. Thus, specifying the acceptable tolerance for the expected 
output in test cases is difficult. 

• Incompatible testing tools. Programing languages such as FORTRAN are widely used 
in the scientific community for developing scientific software. But usually testing tools 
are developed for languages such as JAVA and C++ that are commonly used by the 
software engineering community. Thus, these testing tools are not effective for testing 
scientific programs. 

WHAT IS METAMORPHIC TESTING (MT)? 
Consider a program that will accept a list of real numbers and compute their average. Suppose 
that the input list has 2 million real numbers. How can we know the returned average is correct 
or not? Though we are not able to validate the computed average in this case, we do know some 
relationships between the outputs of some related inputs. For example, consider a new list of real 
numbers, which is a permuted list of the original list of real numbers, or which consists of 4 
million real numbers by duplicating the original list of real numbers. For either of the new lists 
of real numbers, the new average is expected to be the same as the old average (subject to some 
round off error tolerance). If the new and old averages are not the same, then we know that the 
program of computing average has bugs. This is the intuition of metamorphic testing. 

In software testing, passing or failing of a test case is decided using a test oracle and it is an 
essential component for conducting systematic testing. Metamorphic testing (MT) uses 
metamorphic relations (MRs) to determine whether a test case has passed or failed. A MR 
specifies how the output of the program is expected to change when a specified change is made 
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to the input. The following is the typical process for applying MT to a given program and Figure 
1 depicts this process:6 

1. MR identification: identifying MRs for the program under test can be done based on 
the specification. 

2. Source test case creation and execution: commonly used test generation techniques 
such as random, structural coverage or fault-based test input generation can be used. 
Then the generated source test cases are executed on the program under test. 

3. Follow-up test case creation: use the MRs identified in Step 1 to transform the source 
test case to obtain the follow-up test case. 

4. Follow-up test case execution: Execute the follow-up test case and compare the 
outputs of the source and follow-up test cases to verify whether the corresponding 
MRs are satisfied. Violation of a MR indicates that the program under test is faulty. 

 
Figure 1. Metamorphic testing process. ts: source test case, tf : follow-up test case, os: output of the 
source test case and of : of: output of the follow-up test case. 

Thus, MT checks whether relationships between inputs and outputs of multiple executions were 
preserved during the program execution and can be used without knowing the correctness of the 
output for individual executions. 

@Test 

public void testMatrixMultiply() { 

   

 //inputs for the source test case.  

     //A and B can be provided by the user or can be randomly generated 

 Float64Matrix A = Float64Matrix.valueOf(...);  

 Float64Matrix B = Float64Matrix.valueOf(...); 

  

 //Executing the source test case on the matrix multiplication function 

 Float64Matrix Os=A.times(B); 

   

 //creating inputs for the follow-up test case 

     Random r=new Random(); 

 Float64Matrix B1 = Float64Matrix.valueOf(new double[][]{ 

       {r.nextDouble(), r.nextDouble(), r.nextDouble()},  

       {r.nextDouble(), r.nextDouble(), r.nextDouble()}, 

       {r.nextDouble(), r.nextDouble(), r.nextDouble()}}); 

 Float64Matrix B2=B.minus(B1); 

   

 //Executing the follow-up test cases 

     Float64Matrix Of1=A.times(B1) 

       Float64Matrix Of2=A.times(B2) 

  

 //Checking whether the metamorphic relation holds  

     //between the source and follow-up outputs. 

 assertTrue(Os.equals(Of1.plus(Of2)));  

} 

Figure 2. A JUnit test script that uses MT approach to test a matrix multiplication function in the JScience library 

Consider a program P that multiplies two matrices A and B. Assume that the result of 
multiplying A with B is C. Matrix multiplication has the following property: A  B = A  B1 + 
A  B2 where B = B1 + B2. We can use this property as a MR to conduct MT on P. For example, 
Figure 2 shows a test script written using JUnit to conduct automated testing on the matrix 
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multiplication function in the JScience Matrix class 
(http://jscience.org/api/org/jscience/mathematics/vector/Matrix.html). 

The source test case (which consists of A and B) can be provided by the user or can be generated 
randomly. For example, assume that the user provided the following simple two matrices: 

𝐴 = [
1 2
3 4

]  and 𝐵 = [
2 1
3 4

] 

This source test case is executed on the matrix multiplication function under test first. Next, 
based on the input relationship specified by the above MR, two follow-up test cases are created, 
namely the test case consisting of A and B1 and the test case consisting of A and B2. Here B1 is 
randomly generated and B2 is defined as B - B1. Suppose that 

𝐵1 = [
1 6
3 5

] 

Then, 

𝐵2 = 𝐵 − 𝐵1 =  [
1 −5
0 −1

] 

As shown in Figure 3, these two follow-up test cases are also executed on the matrix 
multiplication function under test. Finally, the outputs of the source test and the follow-up test 
cases are validated against the above MR. As shown with this test script, this MR based testing 
approach allows to generate follow-up test cases automatically and verify relationships between 
multiple outputs without any manual intervention. Readers who are interested to know more 
about MT, may consult the article by Chen et. al.7 

 

Figure 3. Metamorphic testing of a matrix multiplication program. 

WHY USE MT FOR TESTING SCIENTIFIC 
SOFTWARE? 

• Scientific software is often written by scientists who have the domain knowledge 
required to develop them. However, scientists might lack the knowledge to apply 
different forms of conventional testing methods. But, as evident from the example in 
Figure 2, MT is simple in concept, and hence could be easily learned and applied 
without any prior knowledge of software testing or without any software testing 
experience.8  

• As shown in the example given in Figure 2, MT is easy to implement: test scripts 
could be easily prepared by the scientific software developers to automate the 
testing process or to incorporate MT into existing testing infrastructures such as 
JUnit. Thus, MT does not require the developers to buy or maintain additional 
expensive testing tools. 

• As we discussed in Section 2, many scientific and engineering applications face the 
test oracle problem. This makes it challenging to conduct automated systematic 
testing on these programs. MT supports automated systematic testing on such 
programs. 

http://jscience.org/api/org/jscience/mathematics/vector/Matrix.html
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• MT uses MRs to determine whether test cases pass or fail. Often scientific software 
is developed by domain experts who know the properties of these algorithms the 
best. Thus, it would be easy for them to derive MRs for testing these programs. 

• Scientific software developers will be able to identify the most effective MRs and 
prioritize them to test their programs using their domain knowledge. For example, 
consider a program that computes the sine value of a given angle x. We can derive 
the following two MRs for testing the sine function based on its properties: MR1: 
sin(x’) = sin(x) where x’ = x + 360. MR2: sin(x’) = -sin(x) where x’ = -x. Due to the 
constraints on the testing budget, suppose that we can conduct testing with only one 
MR. In such a situation, an electrical engineer will most likely choose MR1 to test 
her program due to the periodicity of current. But, on the other hand a land 
surveyor may choose MR2 since she usually works with positive and negative 
angles to represent clockwise and anticlockwise measurements of angles. 

• MT provides an effective way to conduct unit testing for scientific software. One of 
the reasons for the lack of unit testing in scientific software is the difficulty in 
validating the expected output of the unit for a randomly generated test input. In 
such situations MT can be used to conduct automated unit testing by means of 
MRs. 

• Scientists often conduct testing using a limited number of test cases with known 
outputs that they obtain from experiments or analytical solutions. MT can be used 
to effectively extend these limited number of test cases by deriving MRs and 
creating follow-up test cases according to the MRs. These follow-up test cases are 
most likely to execute parts of the program that might not have been executed with 
the original set of test cases. Thus, MT provides a way to extend existing test cases. 

• Many scientific software involves elements of randomness which makes testing 
difficult. MT can still be applicable in such situations. 

SOME EXAMPLES 

Testing epidemiological model implementations using MT 
Pullum et. al used MT to verify and validate an epidemiological model implementation.9 Such 
implementations are used to model how diseases are spread in populations. Thus, it is important 
to verify and validate these models since they will be used to make critical decisions during a 
disease spread. Epidemiological model implementations face the oracle problem because these 
programs are written to find the answer in the first place. Therefore, developing an oracle for 
testing these programs is practically difficult. One of the approaches used to test these models is 
to compare the output of the model with data obtained from real phenomena. Obviously, such 
data is limited. Other approaches used to test this type of programs include comparing the output 
with results obtained from mathematical models and comparing the results with other simulation 
models. These techniques are not sufficient for conducting systematic and comprehensive testing 
on these programs. 

The authors tested an ordinary differential equation based epidemiological model and an agent 
based epidemiological model using MT. They used the data from the 1918 Influenza outbreak to 
calibrate the models. The authors defined 11 MRs based on making changes to various model 
parameters and the expected effects that those changes would have on the model output. These 
MRs were defined using the authors’ domain knowledge about these models. Through MT, 
authors identified an error in the output method of the agent based epidemiological model. 

Using MT to conduct automated unit testing on a Small 
Angle X-ray Scattering (SAXS) program 
We used MT to conduct automated unit testing on an open source program written to analyze 
small angle x-ray scattering data called SAXS.10 This program reconstructs macromolecular 
structures using scattering patterns obtained from experiments. This program was initially tested 
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by running the program on a selected set of inputs where the correctness of the produced outputs 
was determined by domain experts. However, when we showed the domain experts the outputs 
generated by versions of the program injected with faults, they were unable to identify that the 
outputs were produced by a faulty version of the program. 

Here we report the results of conducting automated unit testing on the following functions that 
perform several main calculations in the SAXS program: 

• calculateDistance (f1): computes distance between atoms 
• findGyrationRadius (f2): computes gyration radius of groups of atoms 
• scatterSample (f3): main function responsible for scattering 

We used the machine learning based MR prediction approach proposed by Kanewala et. al11 to 
predict the likely MRs for these functions. The test inputs were generated randomly. There were 
no violations of these predicted MRs when applied to these three functions. 

To evaluate the effectiveness of MT for conducting unit testing, we created faulty versions, 
known as mutants, of these functions using the Java (https://cs.gmu.edu/_offutt/mujava/) 
mutation engine. This mutation engine creates mutants of the program by making a syntactic 
change in the source code. With MT, we say that a mutant is killed if a MR is violated when the 
corresponding source and follow-up test cases are executed on that mutant. Therefore, the fault 
detection effectiveness of MT can be measured by the number of mutants killed during the MT 
process. Obviously, the higher the percentage of mutants killed, the more effective MT is in 
revealing bugs of a program. We use this process to evaluate the fault detection effectiveness of 
MT in the functions mentioned above. 

Table 1 shows the percentage of mutants killed through MT for individual functions. Overall, 
90% of the mutants could be killed using MT. The important thing to note here is that the entire 
unit testing process was fully automated starting with MR identification, source test case 
generation, test execution and further, did not require the domain experts to evaluate the 
correctness of the test outputs. Though no violations of MRs were detected for SAXS, MT helps 
to establish our confidence on the quality of the SAXS program. 

TABLE 1. Mutants detected by predicted MRs. f1: calculateDistance, f2: findGyrationRadius, and f3: 
scatterSample 

 f1 f2 f3 Total 

No. of faulty 
versions used 

19 54 139 212 

No. of faulty 
versions 
detected by MT 

19 45 127 191 

% of detected 
faulty versions 

100 83 91 90 

Testing a Monte Carlo simulation program with MT 
Ding and Hu12 used MT for testing a Monte Carlo modeling program that simulates photon 
propagations in biological tissues for the purpose of accurate generation of reflectance images. 
The biggest challenge for testing this program is the lack of test oracles. One solution is to 
compare the results of the Monte Carlo simulation program to experimental results. But, as with 
many scientific software, building the necessary infrastructure to conduct the relevant physical 
experiments is time consuming and expensive. For example, in this specific case, conducting a 
physical experiment would require a laser beam that would produce a specific number of 
photons, an environment without interruptions from other light sources and good reactive 
imaging cameras. Thus, the authors used MT to conduct testing on this program. 
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The authors identified five MRs for the program based on domain knowledge and experimental 
results. They generated tests that cover all the branches and functions in the program. Through 
the violation of one of the MRs used for testing, the authors discovered faults in the program and 
corrected it. 

They further evaluated the effectiveness of MT using mutants. The authors created 150 mutants 
for the Monte Carlo simulation program and they were able to detect 90% (135) of these mutants 
using MT. 

SUMMARY 
Some characteristics in scientific software such as, not knowing the correct answers and inherent 
uncertainties in calculations, make testing them difficult. MT can be an effective testing 
technique to test these programs. Instead of checking the correctness of individual test outputs, 
MT checks whether the changes in the test outputs are according to what is expected by the 
program with respect to the changes in the inputs. These relationships between inputs and the 
expected changes in the outputs are referred as MRs. Scientists, who typically develop these 
scientific software, would be in a great position to identify effective MRs because of their 
domain knowledge and, thus would be able to effectively test their software using MT. MT has 
been successfully applied for testing various scientific software including epidemiological model 
implementations, small angle x-ray scattering programs and Monte Carlo simulations. We are 
strongly confident that MT is one of the most appropriate and cost-effective testing techniques 
for scientists and engineers. 
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