

“THEME ARTICLE”, “FEATURE ARTICLE”, or “COLUMN” goes here: The theme topic or
column/department name goes after the colon.

Metamorphic Testing: A
Simple yet Effective
Approach for Testing
Scientific Software

Testing scientific software is a difficult task due to

their inherent complexity and the lack of test oracles.

In addition, these software systems are usually

developed by end user developers who are neither

normally trained as professional software developers

nor testers. These factors often lead to inadequate

testing. Metamorphic testing is a simple yet effective

testing technique for testing such applications. Even

though MT is a well-known technique in the software testing community, it is not very

well utilized by the scientific software developers. The objective of this article is to

present MT as an effective technique for testing scientific software. To this end, we

discuss why MT is an appropriate testing technique for scientists and engineers who

are not primarily trained as software developers. Especially, how it can be used to

conduct systematic and effective testing on programs that do not have test oracles

without requiring additional testing tools.

Index Terms—Metamorphic testing, Scientific software, Quality assurance, Software

testing

Upulee Kanewala
Gianforte School of
Computing, Montana State
University.

Tsong Yueh Chen
Department of Computer
Science and Software
Engineering, Swinburne
University of Technology.

 MAGAZINE NAME HERE

WHAT MAKES TESTING SCIENTIFIC SOFTWARE
DIFFICULT?
Scientific software is widely used for making critical decisions in various scientific and
engineering domains. For example, simulations are often used in place of physical experiments
due to the time and cost constraints associated with conducting physical experiments. Further,
decisions made by these software systems can affect day-to-day human life such as predictions
made by climate models. Thus, it is important to make sure that these software systems are
producing the correct results. Previous studies have reported many instances where scientific
software systems were affected by faults such as seismic programs loosing precision due to one-
off errors,1 compromised performance in coordinate measuring machine (CMM) due to software
faults2 and geoscience software systems producing seemingly correct yet different results that are
hard to categorize as incorrect.3 Previous work also report situations where software faults cause
retractions of published work.4 Testing is the most widely used approach for quality assurance of
software. But some inherent characteristics in scientific software make it difficult to conduct
systematic testing in these programs: 5

• Correct answers are often unknown. Typically, scientific software is exploratory in
nature and due to this the correct results are often unknown. If the result is known there
would be no need to develop the software. In such situations only bounds or ranges of
solutions might be available. Typically, in testing an expected output is used to decide
test case passing or failing. This would make it challenging to conduct systematic
testing in these programs.

• Practically difficult to validate the computed output. Scientific software often
implements mathematical models that involves complex calculations. Further, they tend
to produce complex outputs. Both these characteristics make it hard to determine the
correctness of the produced output of the software. This makes it challenging to use
automated test case generation approaches such as random test generation since the
output of such test cases are difficult to validate.

• Inherent uncertainties. Often scientific software is written to simulate models with
inherent uncertainties. For some of these scientific programs, there may be more than
one possible output. This makes it challenging to conduct testing on these programs.

• Choosing suitable tolerances. Scientific software systems often involve complex
floating-point computations. Thus, specifying the acceptable tolerance for the expected
output in test cases is difficult.

• Incompatible testing tools. Programing languages such as FORTRAN are widely used
in the scientific community for developing scientific software. But usually testing tools
are developed for languages such as JAVA and C++ that are commonly used by the
software engineering community. Thus, these testing tools are not effective for testing
scientific programs.

WHAT IS METAMORPHIC TESTING (MT)?
Consider a program that will accept a list of real numbers and compute their average. Suppose
that the input list has 2 million real numbers. How can we know the returned average is correct
or not? Though we are not able to validate the computed average in this case, we do know some
relationships between the outputs of some related inputs. For example, consider a new list of real
numbers, which is a permuted list of the original list of real numbers, or which consists of 4
million real numbers by duplicating the original list of real numbers. For either of the new lists
of real numbers, the new average is expected to be the same as the old average (subject to some
round off error tolerance). If the new and old averages are not the same, then we know that the
program of computing average has bugs. This is the intuition of metamorphic testing.

In software testing, passing or failing of a test case is decided using a test oracle and it is an
essential component for conducting systematic testing. Metamorphic testing (MT) uses
metamorphic relations (MRs) to determine whether a test case has passed or failed. A MR
specifies how the output of the program is expected to change when a specified change is made

 SECTION TITLE HERE

to the input. The following is the typical process for applying MT to a given program and Figure
1 depicts this process:6

1. MR identification: identifying MRs for the program under test can be done based on
the specification.

2. Source test case creation and execution: commonly used test generation techniques
such as random, structural coverage or fault-based test input generation can be used.
Then the generated source test cases are executed on the program under test.

3. Follow-up test case creation: use the MRs identified in Step 1 to transform the source
test case to obtain the follow-up test case.

4. Follow-up test case execution: Execute the follow-up test case and compare the
outputs of the source and follow-up test cases to verify whether the corresponding
MRs are satisfied. Violation of a MR indicates that the program under test is faulty.

Figure 1. Metamorphic testing process. ts: source test case, tf : follow-up test case, os: output of the
source test case and of : of: output of the follow-up test case.

Thus, MT checks whether relationships between inputs and outputs of multiple executions were
preserved during the program execution and can be used without knowing the correctness of the
output for individual executions.

@Test

public void testMatrixMultiply() {

 //inputs for the source test case.

 //A and B can be provided by the user or can be randomly generated

 Float64Matrix A = Float64Matrix.valueOf(...);

 Float64Matrix B = Float64Matrix.valueOf(...);

 //Executing the source test case on the matrix multiplication function

 Float64Matrix Os=A.times(B);

 //creating inputs for the follow-up test case

 Random r=new Random();

 Float64Matrix B1 = Float64Matrix.valueOf(new double[][]{

 {r.nextDouble(), r.nextDouble(), r.nextDouble()},

 {r.nextDouble(), r.nextDouble(), r.nextDouble()},

 {r.nextDouble(), r.nextDouble(), r.nextDouble()}});

 Float64Matrix B2=B.minus(B1);

 //Executing the follow-up test cases

 Float64Matrix Of1=A.times(B1)

 Float64Matrix Of2=A.times(B2)

 //Checking whether the metamorphic relation holds

 //between the source and follow-up outputs.

 assertTrue(Os.equals(Of1.plus(Of2)));

}

Figure 2. A JUnit test script that uses MT approach to test a matrix multiplication function in the JScience library

Consider a program P that multiplies two matrices A and B. Assume that the result of
multiplying A with B is C. Matrix multiplication has the following property: A B = A B1 +
A B2 where B = B1 + B2. We can use this property as a MR to conduct MT on P. For example,
Figure 2 shows a test script written using JUnit to conduct automated testing on the matrix

 MAGAZINE NAME HERE

multiplication function in the JScience Matrix class
(http://jscience.org/api/org/jscience/mathematics/vector/Matrix.html).

The source test case (which consists of A and B) can be provided by the user or can be generated
randomly. For example, assume that the user provided the following simple two matrices:

𝐴 = [
1 2
3 4

] and 𝐵 = [
2 1
3 4

]

This source test case is executed on the matrix multiplication function under test first. Next,
based on the input relationship specified by the above MR, two follow-up test cases are created,
namely the test case consisting of A and B1 and the test case consisting of A and B2. Here B1 is
randomly generated and B2 is defined as B - B1. Suppose that

𝐵1 = [
1 6
3 5

]

Then,

𝐵2 = 𝐵 − 𝐵1 = [
1 −5
0 −1

]

As shown in Figure 3, these two follow-up test cases are also executed on the matrix
multiplication function under test. Finally, the outputs of the source test and the follow-up test
cases are validated against the above MR. As shown with this test script, this MR based testing
approach allows to generate follow-up test cases automatically and verify relationships between
multiple outputs without any manual intervention. Readers who are interested to know more
about MT, may consult the article by Chen et. al.7

Figure 3. Metamorphic testing of a matrix multiplication program.

WHY USE MT FOR TESTING SCIENTIFIC
SOFTWARE?

• Scientific software is often written by scientists who have the domain knowledge
required to develop them. However, scientists might lack the knowledge to apply
different forms of conventional testing methods. But, as evident from the example in
Figure 2, MT is simple in concept, and hence could be easily learned and applied
without any prior knowledge of software testing or without any software testing
experience.8

• As shown in the example given in Figure 2, MT is easy to implement: test scripts
could be easily prepared by the scientific software developers to automate the
testing process or to incorporate MT into existing testing infrastructures such as
JUnit. Thus, MT does not require the developers to buy or maintain additional
expensive testing tools.

• As we discussed in Section 2, many scientific and engineering applications face the
test oracle problem. This makes it challenging to conduct automated systematic
testing on these programs. MT supports automated systematic testing on such
programs.

http://jscience.org/api/org/jscience/mathematics/vector/Matrix.html

 SECTION TITLE HERE

• MT uses MRs to determine whether test cases pass or fail. Often scientific software
is developed by domain experts who know the properties of these algorithms the
best. Thus, it would be easy for them to derive MRs for testing these programs.

• Scientific software developers will be able to identify the most effective MRs and
prioritize them to test their programs using their domain knowledge. For example,
consider a program that computes the sine value of a given angle x. We can derive
the following two MRs for testing the sine function based on its properties: MR1:
sin(x’) = sin(x) where x’ = x + 360. MR2: sin(x’) = -sin(x) where x’ = -x. Due to the
constraints on the testing budget, suppose that we can conduct testing with only one
MR. In such a situation, an electrical engineer will most likely choose MR1 to test
her program due to the periodicity of current. But, on the other hand a land
surveyor may choose MR2 since she usually works with positive and negative
angles to represent clockwise and anticlockwise measurements of angles.

• MT provides an effective way to conduct unit testing for scientific software. One of
the reasons for the lack of unit testing in scientific software is the difficulty in
validating the expected output of the unit for a randomly generated test input. In
such situations MT can be used to conduct automated unit testing by means of
MRs.

• Scientists often conduct testing using a limited number of test cases with known
outputs that they obtain from experiments or analytical solutions. MT can be used
to effectively extend these limited number of test cases by deriving MRs and
creating follow-up test cases according to the MRs. These follow-up test cases are
most likely to execute parts of the program that might not have been executed with
the original set of test cases. Thus, MT provides a way to extend existing test cases.

• Many scientific software involves elements of randomness which makes testing
difficult. MT can still be applicable in such situations.

SOME EXAMPLES

Testing epidemiological model implementations using MT
Pullum et. al used MT to verify and validate an epidemiological model implementation.9 Such
implementations are used to model how diseases are spread in populations. Thus, it is important
to verify and validate these models since they will be used to make critical decisions during a
disease spread. Epidemiological model implementations face the oracle problem because these
programs are written to find the answer in the first place. Therefore, developing an oracle for
testing these programs is practically difficult. One of the approaches used to test these models is
to compare the output of the model with data obtained from real phenomena. Obviously, such
data is limited. Other approaches used to test this type of programs include comparing the output
with results obtained from mathematical models and comparing the results with other simulation
models. These techniques are not sufficient for conducting systematic and comprehensive testing
on these programs.

The authors tested an ordinary differential equation based epidemiological model and an agent
based epidemiological model using MT. They used the data from the 1918 Influenza outbreak to
calibrate the models. The authors defined 11 MRs based on making changes to various model
parameters and the expected effects that those changes would have on the model output. These
MRs were defined using the authors’ domain knowledge about these models. Through MT,
authors identified an error in the output method of the agent based epidemiological model.

Using MT to conduct automated unit testing on a Small
Angle X-ray Scattering (SAXS) program
We used MT to conduct automated unit testing on an open source program written to analyze
small angle x-ray scattering data called SAXS.10 This program reconstructs macromolecular
structures using scattering patterns obtained from experiments. This program was initially tested

 MAGAZINE NAME HERE

by running the program on a selected set of inputs where the correctness of the produced outputs
was determined by domain experts. However, when we showed the domain experts the outputs
generated by versions of the program injected with faults, they were unable to identify that the
outputs were produced by a faulty version of the program.

Here we report the results of conducting automated unit testing on the following functions that
perform several main calculations in the SAXS program:

• calculateDistance (f1): computes distance between atoms
• findGyrationRadius (f2): computes gyration radius of groups of atoms
• scatterSample (f3): main function responsible for scattering

We used the machine learning based MR prediction approach proposed by Kanewala et. al11 to
predict the likely MRs for these functions. The test inputs were generated randomly. There were
no violations of these predicted MRs when applied to these three functions.

To evaluate the effectiveness of MT for conducting unit testing, we created faulty versions,
known as mutants, of these functions using the Java (https://cs.gmu.edu/_offutt/mujava/)
mutation engine. This mutation engine creates mutants of the program by making a syntactic
change in the source code. With MT, we say that a mutant is killed if a MR is violated when the
corresponding source and follow-up test cases are executed on that mutant. Therefore, the fault
detection effectiveness of MT can be measured by the number of mutants killed during the MT
process. Obviously, the higher the percentage of mutants killed, the more effective MT is in
revealing bugs of a program. We use this process to evaluate the fault detection effectiveness of
MT in the functions mentioned above.

Table 1 shows the percentage of mutants killed through MT for individual functions. Overall,
90% of the mutants could be killed using MT. The important thing to note here is that the entire
unit testing process was fully automated starting with MR identification, source test case
generation, test execution and further, did not require the domain experts to evaluate the
correctness of the test outputs. Though no violations of MRs were detected for SAXS, MT helps
to establish our confidence on the quality of the SAXS program.

TABLE 1. Mutants detected by predicted MRs. f1: calculateDistance, f2: findGyrationRadius, and f3:
scatterSample

 f1 f2 f3 Total

No. of faulty
versions used

19 54 139 212

No. of faulty
versions
detected by MT

19 45 127 191

% of detected
faulty versions

100 83 91 90

Testing a Monte Carlo simulation program with MT
Ding and Hu12 used MT for testing a Monte Carlo modeling program that simulates photon
propagations in biological tissues for the purpose of accurate generation of reflectance images.
The biggest challenge for testing this program is the lack of test oracles. One solution is to
compare the results of the Monte Carlo simulation program to experimental results. But, as with
many scientific software, building the necessary infrastructure to conduct the relevant physical
experiments is time consuming and expensive. For example, in this specific case, conducting a
physical experiment would require a laser beam that would produce a specific number of
photons, an environment without interruptions from other light sources and good reactive
imaging cameras. Thus, the authors used MT to conduct testing on this program.

 SECTION TITLE HERE

The authors identified five MRs for the program based on domain knowledge and experimental
results. They generated tests that cover all the branches and functions in the program. Through
the violation of one of the MRs used for testing, the authors discovered faults in the program and
corrected it.

They further evaluated the effectiveness of MT using mutants. The authors created 150 mutants
for the Monte Carlo simulation program and they were able to detect 90% (135) of these mutants
using MT.

SUMMARY
Some characteristics in scientific software such as, not knowing the correct answers and inherent
uncertainties in calculations, make testing them difficult. MT can be an effective testing
technique to test these programs. Instead of checking the correctness of individual test outputs,
MT checks whether the changes in the test outputs are according to what is expected by the
program with respect to the changes in the inputs. These relationships between inputs and the
expected changes in the outputs are referred as MRs. Scientists, who typically develop these
scientific software, would be in a great position to identify effective MRs because of their
domain knowledge and, thus would be able to effectively test their software using MT. MT has
been successfully applied for testing various scientific software including epidemiological model
implementations, small angle x-ray scattering programs and Monte Carlo simulations. We are
strongly confident that MT is one of the most appropriate and cost-effective testing techniques
for scientists and engineers.

REFERENCES
1. L. Hatton, “The T experiments: errors in scientific software,” IEEE

Computational Science Engineering, vol. 4, no. 2, pp. 27 –38, Apr.– Jun. 1997.
2. A. J. Abackerli, P. H. Pereira, and N. Calônego Jr., “A case study on testing

CMM uncertainty simulation software (VCMM),” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, vol. 32, pp. 8 – 14, Mar. 2010.

3. L. Hatton and A. Roberts, “How accurate is scientific software?” IEEE
Transactions on Software Engineering, vol. 20, no. 10, pp. 785 –797, Oct. 1994.

4. G. Miller, “A scientist’s nightmare: Software problem leads to five retractions,”
Science, vol. 314, no. 5807, pp. 1856–1857, 2006. [Online]. Available:
http://www. sciencemag.org/content/314/5807/1856.short

5. U. Kanewala and J. M. Bieman, “Testing scientific software: A systematic
literature review,” Information and Software Technology, vol. 56, no. 10, pp.
1219 – 1232, 2014.

6. S. Segura, G. Fraser, A. B. Sánchez, and A. R. Cortés, “A survey on metamorphic
testing,” IEEE Trans. Software Eng., vol. 42, no. 9, pp. 805–824, 2016. [Online].
Available: https://doi.org/10.1109/TSE.2016.2532875

7. T. Y. Chen, F.-C. Kuo, H. Liu, P. L. Poon, D. Towey, T. H. Tse, and Z. Q. Zhou,
“Metamorphic testing: A review of challenges and opportunities,” ACM
Computing Surveys (in press), 2017.

8. T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, “An effective testing method for end-user
programmers,” in Proceedings of the First Workshop on End-user Software
Engineering (WEUSE 2005), 2005, pp. 21–25. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083236

9. L. L. Pullum and O. Ozmen, “Early results from metamorphic testing of
epidemiological models,” in 2012 ASE/IEEE International Conference on
BioMedical Computing (BioMed-Com), Dec 2012, pp. 62–67.

10. http://cgi.cs.arizona.edu/~mstrout/Projects/SAXS/software.php, 2011 (accessed
September 11, 2017).

11. U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting metamorphic relations
for testing scientific software: a machine learning approach using graph kernels,”
Software Testing, Verification and Reliability, vol. 26, no. 3, pp. 245–269, 2016,
stvr.1594. [Online]. Available: http://dx.doi.org/10.1002/stvr.1594

https://doi.org/10.1109/TSE.2016.2532875
http://doi.acm.org/10.1145/1082983.1083236
http://dx.doi.org/10.1002/stvr.1594

 MAGAZINE NAME HERE

12. J. Ding and X. Hu, “Application of metamorphic testing monitored by test
adequacy in a monte carlo simulation program,” Software Quality Journal, vol.
25, no. 3, pp. 841–869, 2017. [Online]. Available:
https://doi.org/10.1007/s11219-016-9337-3

ABOUT THE AUTHORS
Upulee Kanewala is an Assistant Professor at Montana State University, USA. Her
research interests include software testing, metamorphic testing and quality assurance of
scientific software. Upulee received her Ph.D. in Computer Science from Colorado State
University in 2015, a Master of Science in Computer Engineering from Purdue University
in 2010, and a Bachelor of Science in Computer Engineering from University of
Peradeniya, Sri Lanka in 2007. She has published multiple peer-reviewed articles and book
chapters on Metamorphic Testing including the first paper on automatic detection of
Metamorphic Relations. Her address is Gianforte School of Computing, 357 Barnard Hall,
Montana State University, Bozeman, MT 59717. Her email is
upulee.kanewala@montana.edu

Tsong Yueh Chen is a Professor at Swinburne University of Technology, Australia. His
main research interest is software testing. He got his BSc and MPhil from The University of
Hong Kong, MSc from University of London, DIC from the Imperial College, and PhD
from The University of Melbourne. Prior to joining Swinburne, he taught at The University
of Hong Kong and The University of Melbourne. He is the inventor of Metamorphic
Testing and Adaptive Random Testing. His contact address is: Department of Computer
Science and Software Engineering, Swinburne University of Technology, Vic 3122,
Australia. Email is tychen@swin.edu.au

https://doi.org/10.1007/s11219-016-9337-3
mailto:upulee.kanewala@montana.edu

	WHAT MAKES TESTING SCIENTIFIC SOFTWARE DIFFICULT?
	WHAT IS METAMORPHIC TESTING (MT)?
	WHY USE MT FOR TESTING SCIENTIFIC SOFTWARE?
	SOME EXAMPLES
	Testing epidemiological model implementations using MT
	Using MT to conduct automated unit testing on a Small Angle X-ray Scattering (SAXS) program
	TABLE 1. Mutants detected by predicted MRs. f1: calculateDistance, f2: findGyrationRadius, and f3: scatterSample
	Testing a Monte Carlo simulation program with MT

	Summary
	References
	About the authors

