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Deep RC: Enabling Remote Control through Deep Learning

Jaron Ellingson', Gary Ellingson?, and Tim McLain>

Abstract— Human remote-control (RC) pilots have the ability
to perceive the position and orientation of an aircraft using
only third-person-perspective visual sensing. While novice pilots
often struggle when learning to control RC aircraft, they can
sense the orientation of the aircraft with relative ease. In this
paper, we hypothesize and demonstrate that deep learning
methods can be used to mimic the human ability to perceive
the orientation of an aircraft from monocular imagery.

This work uses a neural network to directly sense the aircraft
attitude. The network is combined with more conventional
image processing methods for visual tracking of the aircraft.
The aircraft track and attitude measurements from the convolu-
tional neural network (CNN) are combined in a particle filter
that provides a complete state estimate of the aircraft. The
network topology, training, and testing results are presented as
well as filter development and results. The proposed method
was tested in simulation and hardware flight demonstrations.

I. INTRODUCTION

Small unmanned aircraft systems (SUAS) have the poten-
tial to be revolutionary in multiple industries including: cine-
matography, agriculture, infrastructure monitoring, and even
automatic package delivery. While significant advances have
been made, our research aims to enhance SUAS capabilities
by introducing a novel aircraft attitude estimation system.

This work focuses on the problem of remote or third-
person sensing and estimation of a SUAS and is similar to
an RC pilot standing far from a aircraft while maintaining
the ability to fly it. While novice RC pilots may have limited
ability to properly control the aircraft, they can instinctively
detect the state of the aircraft using only remote, visual
sensing. In particular, sensing the orientation of the aircraft
is not difficult for RC pilots but is nearly impossible for
traditional computer-vision algorithms, without additional
aids such as fiducial markers.

In recent years, a new vision processing method has been
developed using deep learning for additional sensing. Deep
networks for visual sensing or convolutional neural networks
(CNNs) have been demonstrated to have near or better than
human performance in autonomous navigation and control
tasks. An innovative example shown in [1] shows that CNNs
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Fig. 1. This paper will demonstrate a feasible method for estimating the
state of an RC aircraft, such as these, using deep learning and only third-
person-perspective visual sensing. This UMX Cessna 182 and UMX Timber
by Horizon Hobby where selected for testing the proposed method because
they are visually representative of the high-wing airplanes used to train the
CNN.

can learn a controller strategy that performs at an expert first-
person pilot level.

Our research is similar, but instead of using CNN for end-
to-end control of the aircraft, we approach the problem by
focusing on only the vehicle state estimation that utilizes the
CNN for orientation sensing from third-person-perspective
monocular imagery. Using the CNN as a sensor to enable
classical state estimation will also allow the filter to rely
on the Markov assumption to incorporate previous measure-
ments and aircraft states.

In this paper, we first present several pertinent and re-
lated works followed by the creation of an attitude sensing
CNN, including our method for creating and augmenting the
training data, training the network, and validation testing. We
then describe how CNN measurements can be combined with
more classical image processing and estimation techniques
to observe the full state (position and orientation) of an RC
aircraft. Finally, we present the results of simulation and
hardware flight demonstrations.

II. RELATED WORKS

Deep learning techniques have recently shown exciting
promise in a large variety of academic fields. CNNs have
been demonstrated to have near or better than human perfor-
mance in tasks ranging from machine vision [2]-[5] to play-
ing the game of Go [6]. Other examples include face recog-



nition [7], speech recognition [8]-[11], cancer cell recogni-
tion [12], vehicle classification [13], and robotics [14].

The dataset for training a CNN to identify the orientation
of objects was produced by researchers at Stanford and
Princeton Universities [15]. Called ShapeNet, the work cre-
ated a renderer for producing images from three dimensional
graphic models. The models can be quickly reproduced in
a specified orientations with random variations including
lighting, skewing, and backgrounds.

Using a CNN classifier, the work in [16] demonstrated
a method for localization and landing zone detection for
a parafoil aircraft. The work in [17] used a CNN to help
estimate the attitude of an aircraft using an on-board camera.
These works both show a CNN being used as a sensor in
Bayesian filters for state estimation.

The output of the CNN is computed through a softmax (or
normalized exponential) function [18]. This function allows
for a probability P(u|x) to be computed given some input z.
This probabilistic representation of the output fits nicely into
state-of-the-art estimation and control theory, such as particle
and Kalman filters which function is based on stochastic
measurements and probabilistic state uncertainty.

Particle filters have been used in a variety of applications
from multi-target robotic tracking [19] to nonlinear state es-
timation [20] and they are particularly well suited for robot-
localization problems. The benefits of a particle filter are that
the observation models need not be to linearized as required
for the Kalman filter or extended Kalman filter, respectively,
and they do not require the formulation of Jacobian matrices,
which can be complicated or even impossible to compute in
some situations [21].

III. BUILDING THE CNN

In constructing the CNN, several factors were carefully
considered: creating realistic training data, training the net-
work to produce attitude measurements, and validating the
network on real imagery.

A. Dataset

To create a training dataset, all of the high-wing, piston-
powered airplane models, such as the Piper J-3 Cub or the
Cessna 172, were selected from the ShapeNet database. The
ShapeNet model render interface was then used to produce
a variety of specified orientations. At this stage, the output
images had a transparent background and were created with
random lighting and skewing.

In addition to the rendering, the airplane model images
were placed at a semi-random location on a realistic back-
ground. This was done to ensure that the CNN was trained
on data representative of real imagery and the CNN would
learn to ignore the background and focus on the aircraft.
Some of the training images have a blue sky background
while others have a mountain or grassy background. These
images were finally resized to a 50x50 resolution and were
then used to train the complete CNN network. An example
of the training data creation process is shown in Figure 2.

OBJ Model
from Shapenet

Example Training
Image

Shapenet
Renderer
Background and
Random
Placement

~—

Fig. 2. An example of the training images. Each image contains a rendered
model and a realistic background. The training images from ShapeNet’s
renderer were reduced in size and slightly offset from the background image
center. This provided the network with more realistic data. These images
are representative of low resolution images of an RC aircraft, but despite
the low resolution the orientation of the aircraft can still be perceived.

Overall, the data consisted of 23 different airplane models
each with a 1000 random views generated. The data was
further augmented by rotating these views around the center
of the image, similar to the image augmentation described
in [17]. The last complete set of model images and the last
50 images from each model were set aside as testing data to
monitor overfitting. At every training iteration the prepared
modeled images, with their corresponding truth angles, were
fed to the network in batches of 50.

B. Training the Network

To train the network, several depths and learning weights
were considered, but a seven-layer network was chosen to
keep the training simple. This configuration enabled the
network to be trained quickly with limited computation
resources and provides a proof-of-concept network to show
the viability of the system approach. The final architecture
includes four convolutional layers with two fully-connected
layers, followed by a final fully-connected output layer
corresponding to the attitude-angle probability distributions.
Every layer had a rectified linear unit (ReLU) for the
activation function except for the final layer, which used
three softmax probabilities (one for each attitude angle). An
adaptive learning rate was used to aid training and a 0.5
dropout probability helped prevent overfitting.

The network’s loss function is similar to what was used
in the original ShapeNet CNN [22]. The main difference is
that, instead of calculating the probability of classifying the
right class, we consider a only single model type: airplane.
Additionally, a simple angular distance d was used instead
of the geodesic distance between yaw and pitch. The loss Lg
was calculated from the function

Loy==> > e log P(u|z)

Z vev

where the first sum is over the three aircraft orientation
angles (¢, 0, and %) and the second sum is over V the
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Top row: Shown is an example of the classification results from the CNN where the red line is the true angle and the black lines are the output of

the CNN. Notice the bimodal distributions of the sensed roll, pitch, and yaw angles. This ambiguity is similar to the uncertainty that RC pilots sometimes
experience when they can only seen the profile of the aircraft. Middle row: Validation image from the motion capture room on the UMX Cessna 182 that
produced good attitude measurements. Bottom row: Validation motion capture image that resulted in relatively poor attitude measurements.

angles discretized at one degree increments. The softmax
probability P(u,|x) is the normalized probability output
from the last layer of the network, the output of which is
shown in Figure 3. This creates a softmax loss function
weighted by the angular distance and preliminary testing
showed that it provides a distribution of probability mass
around the true value better than using a cross entropy type
loss.

The useful output from the network is the normalized
probability for each roll, pitch, and yaw (¢, 6, and
respectively) and is shown in Figure 3. These distributions
often are bimodal, which can be expected from a monocular
image of an aircraft profile. This bimodal uncertainty is
similar to how novice RC pilots often momentarily confuse
the orientation of an aircraft. For example, if a pilot can only
see the profile of a banking aircraft, it is difficult without
prior information to tell if the aircraft is turning toward or
away from the pilot. These non-Gaussian uncertainties from
the visual sensing were the primary motivation for using a
particle filter for state estimation.

C. Motion Capture Validation

The training was validated by creating an entire new
validation data-set from a motion-capture room and the
realistic looking airplanes shown in Figure 1. In the motion-
capture room, the set-up included having motion-capture
cameras measure the orientation of the aircraft while a front
facing camera captured an image of the aircraft. It was then
pivoted to a variety orientations as the images were captured.
Finally, the motion-capture room background was replaced in

Fig. 4. The motion-capture room set-up allows for rotating the airplane
to different orientations. This data provided ground truth of the airplane’s
orientation for comparison to the CNN’s output. Dotted cameras represent
motion-capture cameras while the solid-lined camera shows the camera
which captures the aircraft image.

the same manner as in the training and testing data. Figure 4
depicts the motion-capture room set-up and Figure 3 includes
two examples of the validation results.

These results validate the ability of the CNN to classify the
orientation of the aircraft with respect to the camera frame
and provide a solid foundation for the complete estimation
and control of an aircraft from the third-person perspective.
Figure 3 shows two validation images and their respective
classifications, one accurate and one inaccurate.
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Fig. 5. This final topology of the complete proposed system. Tracking of the aircraft is performed on images of a stationary camera. A 5050 pixel crop of
the aircraft is sent to the CNN for obtaining an attitude measurement. The cropped image is processed through five convolutions and three fully-connected
layers. The attitude measurement, in the form of histograms, together with the pixel coordinate of the tracked aircraft are sent to a particle filter. The

particle filter uses these measurements to estimate the state of the aircraft.

IV. PARTICLE FILTER ESTIMATION

The filter will provide a complete state estimate of the
aircraft’s position and orientation and utilize the Markov
property to summarize the time history of measurements and
states into a current state estimate. We chose to utilize a
particle filter because it can accommodate a measurement
with an arbitrarily complex uncertainty distribution, where
as other estimation techniques (such as the Kalman filter)
use a approximately Gaussian distribution [23]. The filter
estimates the aircraft’s orientation (¢, ¢, and ) and global
position in north-east-down coordinates (x, y and z). The
full state vector is

x=[ryzo¢ly.

A. Propagation Model

To utilize a simple propagation model, a number of
assumptions were made about how the aircraft was flying.
While these assumptions are optimistic, they do capture the
general flight characteristics of a non-acrobatic aircraft that
is cruising and making banking turns. The first assumption
is that the aircraft is flying at a known, constant, forward
velocity with small random perturbations. Next, the aircraft
was assumed to be flying level, at an altitude with a slow
random walk.

If the aircraft is flying level and coordinated, then a
simplified coordinated-turn equation, as outlined in [24], can
be used to approximate the yaw rate (@) of the aircraft. The
equation is

w &~ = tan(¢) (1)
where g is gravitational constant, v is the forward velocity,
and ¢ is the roll (or bank) angle.

A propagation model for a planar robot is presented
in [23]. Since the aircraft is flying level and the yaw rate
can be calculated in (1), we elected to use the model to
update the north and east position of the aircraft.

The complete propagation model is

—Zsin(¢y) + £ sin(y + 0AL)
2 cos(1)) — = cos(v + wAt)

Nz

Mg

0

AYAN;

where 7, and 74 are sampled from a Gaussian distribution.
Note that, in this simplified model, the pitch angle does
not evolve. The pitch angle will, however, be important for
the measurement model perspective transformation described
below.

This model, while simple, allows the filter to capture the
correlation of the lateral/directional dynamics. Roll angle is
correlated with both the north/east position and yaw angle
of the aircraft. This coupling allows the measurement of
attitude from the CNN to also help observe the position of
the aircraft, and conversely, the image coordinate measure-
ments from the tracker to help observe the attitude that was
necessary to get the aircraft to its current position.

B. Measurement Models

In this work, the camera is assumed to be at the origin of
the global, north-east-down coordinate frame. The camera is
also oriented with the optical axis pointing along the global
z-axis and the camera x-axis aligned with the global y-axis.
The aircraft states are computed with respect to the global
reference frame.

Camera images are processed using a mixture-of-Gaussian
background subtracter to distinguish the aircraft from the
background clutter. Blob detection is then performed on
the foreground to inform a simple tracker of the location
of the track in the image frame. These image processing
algorithms were implemented using the functions provided
in the OpenCV vision processing libraries [25]. A image crop
of the tracked aircraft is then used as the input to the CNN.
Both the CNN output and the image coordinates of the track
are used as measurements.



The CNN was trained to perceive the orientation of an
aircraft that is close to the optical axis of the camera. The
apparent orientation of the aircraft, however, may be very
different then the actual global orientation when the aircraft
is far from the optical axis.

As an illustrative example, imagine an aircraft moved
clockwise in a circle around an observer without changing
its global orientation. A camera continuously fixed on the
aircraft would observe it yawing to the left, although no
yaw motion took place. Similarly a level aircraft pointing
away from the observer would appear to pitch down as
it moved upward. This apparent orientation of the aircraft
must be accounted for when incorporating the orientation
measurements from the CNN.

We define an observation axis as a line from the camera
center (and global origin) to the position of a given particle.
The apparent roll, pitch, and yaw angles can be calculated
by applying a transformation consisting of azimuth and
elevation rotations that would move the camera optical
axis to the observation axis. For each particle in the filter,
apparent roll, pitch, and yaw angles are calculated and their
weight assigned from the probability density produced by
the CNN’s softmax output of the orientation angles. This
use of the softmax probability makes no assumption about
the distribution of the measurement and therefore is able to
handle the bimodal distributions, shown in Figure 3, that are
produced by the CNN.

Using the camera matrix and distortion parameters the
normalized global positions (i’—z and ;—:) can be calculated
from the pixel coordinates (u,v) provided by the tracker.
This can also be used as a measurement to assign a weight
to each particle by assuming a Gaussian distribution of the
tracker measurement noise.

C. Rao-Blackwellization

After weights are assigned to the particles from both the
CNN attitude and image coordinate measurements, the par-
ticles are then resampled before they are further propagated.
The filter utilizes a low-variance resampler that is described
in [23].

We found that the filter works best with between 300-
500 particles and that inserting a few particles at random
positions and orientations helped prevent particle depriva-
tion problems. Particle deprivation seemed to be especially
problematic when the aircraft enters the camera’s field of
view and the track is first acquired. Particle insertion also
improved the robustness of the filter and helped the estimates
remain representative of the aircraft true states. To produce
the state estimate, the weighted average of the particle states
is computed. The true state is then recorded for comparison
with true aircraft states.

V. RESULTS

A. Simulation Testing

Initial testing of the complete system, shown in Fig-
ure 5, was performed in simulation. The simulation used the
ROS/Gazebo simulation tools that were developed as part

Fig. 6. Simulated model of a Cessna C-172 (scaled to have a .63 m
wingspan) used in the Gazebo simulation flight testing.

Flight Path

60}
a0}
a0}
E |
£ 30}
2
20
10}

of . . . . . :

-30 ~20 10 0 10 20 30

East (m)

2

_of : ; : : : ; |

E -2t : : i ; : N

_al ; i : : ; H ]

g -6+ . ) : - : : 4

% 5 10 15 20 % 30
time (sec)
Fig. 7. The trajectory of 32 seconds of simulation flight testing. The true

flight path (blue) is plotted against the estimates (red). Particles from the
filter are also shown as black dots. The simulated aircraft flew in small
continuous/coordinated clockwise turns at a nearly constant altitude.

of ROSplane [26]. The aircraft model was replaced with a
Cessna C-172 flying on a blank background. The model can
be seen in Figure 6.

To improve the fidelity of the simulation testing, a simu-
lated camera was placed in the simulation environment at the
global origin. The camera had a resolution of 1280x960 and
had a horizontal field of view of 57 deg. The same image
processing was used on the simulated camera image and the
imagery from hardware flight testing.

Figure 7 shows the results of testing the proposed CNN
and particle filter in the simulation. In the simulation, a
controller was used to fly the aircraft in small clockwise
circles. The controller was tuned so that the simulation
represented the flight ability of a novice pilot. It was also
tested to demonstrate that, without the CNN, the propagation
model and pixel coordinate measurement would not work.
In other words, without the CNN attitude measurements to
inform the filter, the estimates would either fail to converge
or eventually diverge from the true states.



Fig. 8. Fight testing image (left) and cropped image (right). The crop is sent
to the CNN to create a measurement. The original image was 1920x 1080
and the crop is 50x50 pixels.

B. Flight Demonstrations

The proposed method was also tested on hardware. The
hardware included a stationary camera sitting on a small
hill so the aircraft could fly in front (and slightly above or
below) of it. The aircraft tested were the aircraft shown in
Figure 1. They were also fitted with a small uBlox Global
Positioning System (GPS) sensor to record the true position
of the aircraft. Images and GPS measurements were recorded
and processed with the proposed method in post-process.

Figure 8 shows an example of a recorded image and the
aircraft flying in the frame. Also shown is one of the cropped
images provided by the tracker and image processing. We
note that the aircraft at this distance provides a very poor
resolution for the CNN to obverse the attitude. This was the
primary problem that we encountered in flight testing.

The aircraft were selected because they are light, small,
and fly slowly compared to other RC aircraft. This allows the
aircraft to remain relatively close to the camera throughout
the flight. A Nikon D750 camera with a 18-55mm lens was
selected because it had a wide capability and high pixel
resolution (full HD). The aircraft was flown by a RC pilot in
small tight circles. Even with these efforts, it proved difficult
to get enough resolution of the aircraft for the CNN to
provide good attitude measurements. In the results shown in
Figure 9 the aircraft was flown so close to the camera that
it temporarily flew out of the frame, as seen by the dashed
lines representing the camera field-of-view. This caused the
estimates to temporarily suffer before the track of the aircraft
was reacquired and estimates then reconverge.

To produce these results, the filter’s airspeed and propa-
gation noise had to be hand tuned to produce the optimal
estimation accuracy. Other than this tuning, the same filter
produced both the simulation and flight-test results.

VI. CONCLUSION

We draw two conclusions from the above results. First, a
CNN can be used to provide attitude measurements (and
measurement uncertainties in the form of histograms) of
a small fixed-wing aircraft and, second, the measurements
can be utilized in a particle filter together with a simple
propagation model to estimate the aircraft position.

This work is in contrast to other deep learning methods
that focus on end-to-end approaches, where the whole ar-
chitecture is trained to directly produce a control policy.

North (m)

0 5 10 15 20 25
time (sec)

Fig. 9. The trajectory of 26 seconds of flight testing with the aircraft flying
counter clockwise circles. The true flight path from recorded GPS (blue) is
plotted against the estimate position (red). Particles from the filter are also
shown as black dots. Dashed lines show the approximate field-of-view of
the camera. The aircraft briefly flew out of frame on both sides which also
caused poor position estimates for brief periods before new measurements
are allow the estimates to reconverge.

It confines the deep learning to sensing only and allows
more classical computer vision and estimation approaches to
propagate a aircraft model, compute an aircraft state state,
combine measurements, and account for uncertainty.

We consider this work a proof-of-concept that deep learn-
ing methods for perception of an aircraft’s orientation can
be roughly comparable to the ability of a novice RC pi-
lot. The main limitation of this work is demonstrated by
the less accurate results from the flight demonstration. We
hypothesize that a higher resolution image of the aircraft
would lead to a better orientation measurements from the
CNN. This could be accomplished with a higher resolution
camera, though this would increase the computational burden
of image processing for the tracker. Alternatively, a gimbaled
camera with a telephoto lens would accomplish the same
objective, and would be perhaps more similar to the head
and eye movement of an actual RC pilot.

In addition to improving resolution, future work could
include a simple controller around the estimator. A less sim-
plistic propagation model would also allow the aircraft to fly
dynamically in three dimensions. Furthermore, knowledge of
the RC stick inputs or controller commands would inform
the propagation model and allow the filter to learn to “trust
the sticks,” which is similar to a the skills developed by
intermediate or advanced RC pilots.

Overall, we believe that using a CNN as a sensor is viable
and provides a compelling solution for aiding SUAS esti-
mation. This third-person-perspective approach establishes
a way for a CNN to estimate an aircraft’s orientation,
comparable to a novice RC pilot.
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