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Abstract

Coherent structures in the form of streamwise elongated streaks and vortices play a key role in

energy growth, momentum transfer and the self-sustaining processes underlying wall-bounded tur-

bulent flow. A wide range of conceptual and physics based models have been employed to analyze

the role of these structures. This article focuses on the restricted nonlinear (RNL) modeling frame-

work, a physics based approach that simplifies the flow representation, based on the dominance

of streamwise coherent structures. This model is formed by decomposing the Navier-Stokes (NS)

equations into a streamwise constant (averaged) mean flow and perturbations about that mean.

Order reduction is then obtained through a dynamical restriction of the nonlinear interactions

between the perturbations. We review the success of this model in reproducing statistical and

spectral properties of wall-bounded turbulent flows at moderate Reynolds numbers and within a

large-eddy simulation (LES) framework in the limit of infinite Reynolds number. An analysis of

energy transfer in half-channel RNL flow highlights the critical non-linearity and scale interactions

necessary to sustain turbulence at moderate Reynolds numbers. Our results also indicate that the

fundamental properties of wall-bounded turbulence such as skin friction drag are robust to dynam-

ical restrictions of streamwise-varying interactions, which may lend to the difficulty in controlling

these flows. The article concludes with a discussion of ongoing challenges for the RNL model

and the need to unify existing approaches to meet the challenges of characterizing and controlling

high-Reynolds number wall-turbulence.
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INTRODUCTION

Characterizations of wall-bounded turbulent flows in terms of coherent motions (struc-

tures) has propelled fundamental advances in our understanding of these flows. The iden-

tification of velocity streaks and vortical structures through visualization techniques [1, 2]

and statistical correlations [3, 4] led to our early understanding of the structure of turbulent

boundary layers [1, 5]. The associated descriptions of the flow interactions in the near-wall

region laid the foundation for the well-accepted conceptual model of the near-wall cycle [6]

that drives a self-sustaining process (SSP) in the near-wall region [7–13]. This work has also

informed our understanding of the energy transfer (production and dissipation) near the

wall, e.g. [14, 15], which is fundamental to the friction drag that has long been the target

of flow control efforts.

Streamwise coherent structures, referred to as large [16–18] and very large-scale coherent

motions (streaks) [19, 20], have also been observed in the core region of a wide range of wall-

bounded turbulent flows. The significance of these types of structures away from the wall

has been demonstrated through a number of studies detailing their significant contributions

to the Reynolds stresses and turbulent transport processes throughout the flow [19, 21–24],

particularly at high Reynolds numbers. The wall normal extent of these large-scale structures

leads to an influence near the wall that includes the provision of a significant contribution

to the local kinetic energy [19, 22] as well as modulation of the near-wall structures [23, 25].

The influence of the large-scale structures near the wall is consistent with the attached

eddy hypothesis [5]. This hypothesis and subsequent refinements to the attached eddy model

[26–29] form, perhaps, the most widely used conceptual model of wall-bounded turbulence.

It is built upon the notion of organized hierarchies of self-similar eddies (i.e., coherent struc-

tures) that grow with distance from the wall. Although the model relies on coherent struc-

tures, only aspect ratios of these eddies are prescribed. The predictive capabilities of the

attached eddy hypothesis with respect to the turbulence statistics have made it a powerful

tool in evaluating candidate structures observed in experiments such as the low momentum

zones forming inside vortex packets [23]. The existence of self-similar structures that scale

with distance from the wall arising from this theory has also formed the basis of recent works

that have identified and characterized a family of self-sustaining processes at a range of flow

scales [30–32].
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The eddies in the attached eddy hypothesis have recently been related to invariant so-

lutions of the Navier-Stokes (NS) equations [33]. These invariant solutions, first identified

by Nagata [34], take the form of three-dimensional equilibria (fixed points), traveling wave

solutions, or periodic orbits of the NS equations, see e.g. [35–41]. Their resemblance to

the coherent structures (streaks and vortices) observed in canonical flows has led to their

being called exact coherent structures [38] and their description in terms of vortex-wave

interactions in the asymptotic high Reynolds number limit [13, 42, 43]. Kawahara et al.

[44] provides a full discussion of these solutions and the dynamical systems viewpoint that

seeks to build a skeleton of turbulence through the continuations of the unstable manifolds

providing pathways between them. A complete characterization of the relationship between

these structures and fully developed turbulence is a topic of ongoing work, see e.g. [43–49].

The discussion above highlights a subset of the approaches that have exploited the notion

of coherent motions to advance our understanding of wall-turbulence; a more comprehensive

discussion of coherent structure based analysis of wall-turbulence can be found in the recent

reviews [50–52] and references therein. These approaches have informed recent develop-

ments in linear and nonlinear representations of wall-turbulence based on simplifications of

the NS equations. This article focuses on one such representation, the restricted nonlinear

(RNL) model [53–56]. Its underlying assumption that the large-scales of the flow field are

dominated by streamwise coherent motion is based on the importance of these structures

in the dynamics of near-wall [10–12] and large-scale motions [19, 21, 24]. The RNL model

is derived through a dynamical restriction of the NS equations, which is obtained by first

partitioning the dynamics of the flow field into a streamwise constant (averaged) mean flow

and a streamwise-varying perturbation field (where perturbations are defined about that

mean) and then neglecting or parametrizing the nonlinear interactions between the pertur-

bations [53, 57][58]. The RNL system thus maintains the nonlinear flow physics that lead to

momentum transfer [59, 60] and the associated increased shear stress at the wall that is char-

acteristic of wall-turbulence, but the dynamical restriction makes it more computationally

and analytically tractable than the NS equations.

The remainder of this article is organized as follows. The next section reviews studies of

the linearized NS (LNS) equations and highlights their role in motivating the RNL modeling

paradigm. We then describe the RNL system within the context of the wider class of

quasi-linear (QL) models that it falls within. This is followed by a review of results that
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highlight the ability of RNL simulations to predict statistical quantities, structural features

and the transport of energy within a turbulent channel flow. An restricted nonlinear large

eddy simulation (RNL-LES) model is used to demonstrate that the RNL dynamics in the

infinite Reynolds number limit reproduce log-law behavior across a range of grid sizes. We

conclude with a discussion of next steps and continuing challenges for models of wall-bounded

turbulence.

THE LINEARIZED NAVIER STOKES EQUATIONS

Linearizations of the NS equations are perhaps the most widely used mathematical ap-

proximation of the dynamics of wall-bounded shear flows. Studies of this dynamical system

have been influential in characterizing the importance of coherent structures, and in par-

ticular identifying the types of structures that contribute to energy growth. For example,

analysis of these equations in transitioning flows demonstrated that initial conditions show-

ing the largest energy growth were coherent structures in the form of streamwise vortices

and streamwise coherent streaks [61–64]. Similar structures arise from investigations based

on the pseudo-spectrum of the generator of the LNS equations [65]. Linear analysis in the

fully turbulent regime employing linearizations about a turbulent mean profile also identified

near-wall and outer-layer streamwise streaks as the two types of perturbations sustaining

the maximum energy growth [66–69]. The spanwise extents of the identified structures were

consistent with structures observed in channel and boundary layer flows. These results are

consistent with related studies showing that streamwise vortices and streaks maintain the

largest steady-state variance due to spatio-temporal delta-correlated (Gaussian) forcing of

the NS equations linearized about both laminar and turbulent mean velocity profiles [69, 70].

Jovanović and Bamieh [71] adopted a systems theoretic view to further analyze the struc-

ture arising from the LNS equations. They considered an input-output response wherein

the input to the system of equations (in this case, stochastic delta-correlated body forcing)

results in a forced response (output), typically the velocity field. Such a viewpoint empha-

sizes energy amplification i.e. “the ratio of output energy (e.g. steady state variance of the

velocity perturbations) to that of the input” [72], rather than the growth of an initial pertur-

bation. This amplification can quantified through the spatio-temporal frequency response

(transfer function) of the LNS equations with an external excitation, H(kx, kz, ω), where
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(kx, kz) are the streamwise, spanwise wave-numbers and ω is the temporal frequency [73].

Explicitly, given an external forcing d(x, y, z, t), with Fourier transform d̂(y; kx, kz, ω) the

associated spatio-temporal Fourier transform of the velocity field in the streamwise (x),

spanwise (z) directions and time can be obtained through the transfer function relationship

û(y; , kx, kz, ω) = H(kx, kz, ω)d̂(y; kx, kz, ω). (1)

The transfer function, H(kx, kz, ω), can be used to characterize a number of the flow

properties in terms of different norms of this three dimensional operator [71]. One important

example is the squared H2 norm

‖H‖22(kx, kz) =
1

2π

∫ ∞
−∞

trace{H(kx, kz, ω)H∗(kx, kz, ω)} dω, (2)

where we have omitted the dependence on y for notational convenience. With the ap-

propriate output operator this squared norm can be used to compute the scale-dependent

steady-state variance (turbulent kinetic energy) due to delta-correlated (to the size of the

spatial filter) stochastic excitation. Jovanović and Bamieh [74] used this interpretation to

characterize the dominant energy pathways in channel flow, demonstrating that cross-plane

body forcing leads to far greater energy growth, scaling with the Reynolds number cubed,

Re3, versus forcing of the streamwise velocity components which leads to linear scaling with

Reynolds number. These authors further showed that streamwise constant structures show

the largest input-output amplification, exceeding that of structures related to the Tollmien-

Schlichting modes that become unstable above a critical Reynolds number [75].

Resolvent analysis is similarly based on the spatio-temporal frequency response of the

linear part of the evolution equations for fluctuations about a turbulent (time-averaged)

mean but differs in the interpretation of the nonlinear terms in the NS equations as an

intrinsic forcing rather than an external excitation, see e.g. [50, 76, 77]. In this way, the

forced system is precisely the full NS equations for the fluctuating quantities. The linear

transfer function or resolvent operator can then be analyzed in isolation, which is of interest

because linear mechanisms are believed to be responsible for energy extraction from the

mean, i.e. the nonlinearity is thought to be passive, see e.g. [78]. The framework also lends

itself to the study of the resolvent operator response due to triadically consistent nonlinear

forcing functions. This formalism has been widely used to study coherent structures in wall-

bounded turbulence, see e.g. [50, 77, 79] and references therein. The energetic dominance of
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the leading singular values of the resolvent operator (transfer function), has been exploited

to identify low order representations of turbulent wall-bounded flows in terms of the leading

(highest energy) response modes [79–81]. These modes have been shown to correspond to

important flow structures such as the streamwise streaks discussed previously. Superposition

of these modes has also been used to construct packets of hairpin vortices [77]. The singular

functions of the resolvent operator have been shown to exhibit geometric self-similarity

[80] consistent with that observed in previous studies of the LNS equations [69]. Insights

regarding observed amplitude modulation of small-scale structures [25] by the outer flow have

also been gained by looking at particular triadic interactions [79]. Nonlinear interactions

between resolvent modes constrained by the self-similar structures have been investigated

to provide analyze the scaling of turbulent fluctuations in the log-layer [82].

Linear models have the benefit of analytical tractability, and as discussed above, have

proven invaluable in the study of wall-turbulence. However, turbulence is an inherently non-

linear phenomena, and as such finding a reduced order representation of the key nonlinear

interactions is expected to produce new insights into wall-bounded turbulence. The con-

ceptual model of the nonlinearity as an intrinsic forcing in the resolvent analysis framework

can be regarded as a bridge between the LNS and nonlinear representations of turbulence.

The next section describes a more direct reduced order nonlinear model for wall-bounded

turbulence whose underlying assumptions are informed by the results of the linear analysis

highlighted in this section. In particular, the importance of the streamwise coherent struc-

tures in the growth and amplification of energy in wall-bounded shear flows along with the

ability of low order approximations to capture key features of turbulence as formalized in

studies of the stochastically forced LNS [70] and the resolvent framework [79–81].

THE RESTRICTED NONLINEAR MODELING PARADIGM

Approximating the NS equations through a dynamical restriction of the nonlinear inter-

actions provides a simplified system based on the flow physics that can preserve important

nonlinear interactions while reducing the analytical and computational burden associated

with analyzing the full NS equations. One method of forming such an approximation is to

view the flow as having a large-scale or ‘mean’ governed by a nonlinear evolution that is

dynamically coupled to a linear perturbation field that can be used to construct the covari-
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ance of the flow. The dynamical restriction takes the form of limiting nonlinear interactions

between perturbations to those that contribute directly to the predefined large-scale, with

others either parameterized or neglected.

One approach to forming such models is through statistical state dynamics or cumulant

expansions [57, 83–86] comprised of evolution equations for the mean (large-scale) and its

covariance. The higher order cumulants are typically either parameterized as stochastic

forcing or set to zero. These models offer analytical tractability that has been exploited

to understand mechanisms underlying wall-bounded turbulence, see e.g. [56, 57, 87, 88].

However, the need to directly simulate the evolution of the covariance leads to computational

challenges due to its O(N2) growth with grid size N .

QL models also form a large-scale using a spectral cut-off, typically as a horizontal av-

erage (i.e. kx = kz = 0 in Fourier space). However, in contrast to the statistical state

dynamics approach, the evolution of the perturbations about the mean (small-scales) are

approximated through linear dynamics that neglect or parameterize nonlinear interactions

between perturbations, i.e. interactions between kx 6= 0 and kz 6= 0 Fourier modes that do

not contribute to the mean (add to zero). Nonlinear interactions between the mean and the

perturbations and those contributing to the mean (large-scale) flow couple the mean and

perturbation dynamics. The QL model has been widely applied to problems in atmospheric

sciences, where it has been shown to accurately predict statistical quantities in baroclinic

turbulence and atmospheric boundary layers, see e.g., [86, 89, 90]. As the separation of

scales increases or the dynamics become more complex, the accuracy of the QL model can

be improved through a generalized quasi-linear (GQL) model that alters the spectral cut-off

for the large-scale mean to include kx, kz > 0 Fourier modes [91]. This change in spectral

cut-off corresponds to permitting nonlinear interactions between a subset of the non-zero

streamwise and spanwise modes. The GQL model thus transfers energy across a wider range

of flow scales, which improves the accuracy of the statistics. GQL models have been success-

fully applied to investigate zonal jets [91], helical magneto-rotational instability [92], and

rotating Couette flow [93].

The RNL model of wall-bounded turbulent flows can be interpreted as either a QL model

with a two-dimensional mean flow or a GQL model with streamwise wave-number cutoff of

kx = 0 and a spanwise wave-number cutoff corresponding to the size of the spatial filter.

However, it differs in the definition of the perturbation field, which is typically constrained to

7



a fixed set of streamwise varying modes. The equations are formed by first decomposing the

total velocity field, uT (x, y, z, t) = (uT , vT , wT ) into a streamwise constant mean, U(y, z, t) =

(U, V,W ) = 〈uT 〉x, and perturbations about this mean, u(x, y, z, t). Here the coordinates

(x, y, z) denote the streamwise, wall-normal, and spanwise directions respectively. The angle

brackets with subscript x denote streamwise-averaging, i.e. 〈φ〉x = 1
Lx

∫ Lx

0
φ dx for flow

variable φ; which is represented by the kx = 0 mode in a Fourier representation. Here Lx

denotes the streamwise extent of the domain; the wall-normal and spanwise domain lengths

are respectively denoted by δ and Lz. The nonlinear interactions between the perturbations,

u · ∇u− 〈u · ∇u〉x are then neglected to obtain

∂tU + U · ∇U +∇P/ρ− ν∇2U = −〈u · ∇u〉x, (3a)

∂tu + U · ∇u + u · ∇U +∇p/ρ− ν∇2u = 0, (3b)

and ∇ · uT = 0. The RNL system thus comprises the dynamics of a large-scale streamwise

constant mean flow field (represented in Fourier space as kx = 0) driven by a streamwise

varying (kx 6= 0) perturbation field, as depicted in figure 1. These perturbations, whose

nonlinear interactions are restricted to non-zero wave-numbers such that kx,m+kx,n = 0, are

treated as small-scales that are regulated by the mean flow. Conceptually the large-scale here

represents the evolution of the streamwise elongated coherent structures, (streaks, rolls and

vortices discussed above), while the perturbation field represents the small-scale turbulence

interacting with these coherent motions.

This notion that streamwise constant dynamics form an appropriate representation of the

large-scales is supported by the observed prevalence and importance of these structures [16–

24] in wall-turbulence as well as their role in the energy amplification observed in studies of

the LNS [61–70, 74, 75]. In addition, streamwise constant nonlinear interactions have been

shown to reproduce the mean momentum transfer associated with shape of the turbulent

velocity profile in canonical flows, [59, 60, 94, 95]. Simulations of stochastically forced

streamwise constant dynamics, in which the right hand side in (3a) is replaced by stochastic

excitation that is delta-correlated in space and time, of both Couette flow [94] and pipe flow

[95] led to ‘turbulent-like’ flows that reproduce the shape of the mean velocity profile along

with other important structural features of the flow. These computational studies coupled

with the analysis in [60, 94] provide evidence that this choice indeed captures key large-scale

flow phenomena.
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FIG. 1: Schematic illustrating the coupling between the streamwise constant mean (top

block) whose evolution (3a) is driven by the streamwise constant (kx = 0) part of the

〈u · ∇u〉x of the nonlinear interactions between streamwise varying perturbations (bottom

block). The dynamics of the perturbations are in turn regulated through nonlinear

interactions with the mean flow; which are captured through the term (U · ∇u + u · ∇U)

in (3b).

The coupled dynamics of the RNL model (see figure 1) overcomes the requirement of

persistent forcing to maintain the turbulent state that is inherent in streamwise constant

models, whose laminar states in plane Couette and pipe flow are known to be globally

asymptotically stable [96, 97]. The accuracy of the self-sustaining RNL turbulence attained

through simulations of the coupled model was shown to reproduce accurate low-order statis-

tics and roll/streak structures in low Reynolds number plane Couette flow at vastly reduced

computational expense [53, 98]. In fact, one of the major advantages of the RNL model is

that it can accurately reproduce these critical flow features in plane Couette and channel

flows when the perturbation field is restricted to as few as one streamwise varying modes

interacting with the mean flow [98, 99]. However, the choice of these modes, which we refer

to as the streamwise wave-number support, greatly affects the accuracy of the RNL flow

field [55, 56, 99].

There is strong evidence that the streamwise wave-number support that leads to RNL

dynamics that correctly reproduce the momentum transfer, low order statistics and energy

transport at low to moderate Reynolds numbers corresponds to the peak of the pre-multiplied

surrogate dissipation spectra in the outer-layer [100]. This quantity is computed as

νkx(Eωxωx(kx, y) + Eωyωy(kx, y) + Eωzωz(kx, y)), (4)
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where the streamwise vorticity spectra is given by, Eωxωx(kx, y) = 〈ω̂′Txω̂
′∗
Tx
〉z [101]. The

symbol φ̂ signifies the streamwise Fourier transform of the flow variable φ, the angle brackets

with subscript z indicates spanwise-averaging, i.e. 〈φ〉z = 1
Lz

∫ Lz

0
φ dz and the over-bar

denotes time-averaging. The prime (′) indicates the fluctuation from this average, i.e.,

φ′T = φT − φT . The respective wall-normal and spanwise vorticity spectra, Eωyωy(kx, y) and

Eωzωz(kx, y), are computed similarly using the respective components of the total vorticity

vector ωT := [ωTx , ωTy , ωTz ]
T , where the superscript ()T denotes the transpose. The surrogate

dissipation differs from the true dissipation in that it neglects the cross velocity gradients,

i.e., it represents the approximation ε = νω′T · ω′T +2ν[(∇uT )′ : (∇uT )′T] ≈ νω′T · ω′T , where

(:) indicates an inner product of two second-order tensors. These neglected terms provide a

small contribution to the overall dissipation in channel flow, particularly in the region away

from that wall that is of interest here [102]. In this work, we follow the convention of [101]

and normalize this surrogate dissipation spectra by its maximum value at each y+.

Figure 2 shows the kx pre-multiplied surrogate dissipation spectra (4) normalized by its

maximum value at each y+ for the Reynolds numbers considered by Bretheim et al. [99]. In

that work, the single wave-number support with the best fit to the skin-friction coefficient

of DNS data at the corresponding Reynolds number was empirically computed based on a

number of RNL simulations with different streamwise wave-number support. Figure 3 shows

the resulting ‘optimal’ wavelengths as a function of Reτ , plotted alongside the resulting

mean velocity profiles for all of the Reynolds numbers that they considered. The ‘optimal’

wavelengths found in Bretheim et al. [99], shown in figure 3, are superimposed onto the plots

in figure 2 as vertical dashed lines. These plots demonstrate a clear correspondence between

the ‘optimal’ wave-number support of the RNL dynamics at each Reynolds number and the

outer-layer peak of the surrogate dissipation spectra. This agreement suggests that these

most dissipative streamwise structures in the outer-layer provide the parametrization of the

RNL dynamics necessary to capture the correct momentum transfer in this low to moderate

Reynolds number range.

The results in figure 3(b) indicate that the ‘optimal’ wavelength of RNL turbulence tends

to a constant value as the Reynolds number is increased [99]. This behavior is consistent

with that of the peak range for the outer-layer surrogate dissipation spectra, whose peak

of λ+x ≈ 150 illustrated for Reτ = 340 in figure 2 is the same as that seen for data at

Reτ = 2000 in Jiménez [101]. In general, the extent of the streamwise structures responsible
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FIG. 2: The peak region of the outer-layer surrogate dissipation spectra from DNS data is

shown to coincide with wave-numbers empirically found in Bretheim et al. 2015 [99] for

Reτ : (a) 110, (b) 180, (c) 260, and(d) 340. The spectra is locally normalized by its

maximum value at each y+, with color scale from 0 (blue) to 1 (red). The vertical white

dashed lines correspond to the ‘optimal’ streamwise wavelengths shown in figure 3(b).

for the majority of the dissipation in wall-bounded turbulence varies with distance from the

wall, with large streaks dissipating most of the energy near the wall. The fact that a single

wavelength structure appears to correctly parameterize RNL dynamics in this Reynolds

number range is likely due to the fact that the streamwise extent of dissipative structures

in the outer-layer does not vary significantly, see figure 2 and figure 1 in [101]. In fact, as

shown in [99], including some additional non-zero streamwise wave-numbers to better cover

the peak range improves the accuracy of the statistics. Thus, linking the most dissipative

outer-layer structures to the correct parametrization of the dynamics, makes the RNL model

a predictive reduced order model for wall-bounded turbulent flows across a range of Reynolds

numbers.
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FIG. 3: (a) Mean velocity profiles from simulations of parameterized RNL turbulence at

moderate Reynolds numbers predicts log-law behavior. (b) The streamwise wavelengths

used in these simulations asymptote to λ+x ≈ 150 as Reτ →∞. Figures adapted from

Bretheim et al. [99].

RESTRICTED NONLINEAR DYNAMICS

We now characterize the features of the properly parameterized RNL dynamics across a

range of Reynolds numbers. We first illustrate the model’s ability to reproduce the key struc-

tures associated with the SSP in low Reynolds number plane Couette flow. We then focus

on a moderate Reynolds number half-channel flow; first discussing the low-order statistics

and pre-multiplied energy spectra. We then examine the extent to which this model, whose

parametrization is based on the outer-layer pre-multiplied dissipation spectra, reproduces

the transfer of energy near the wall by examining Reynolds stress budgets in the viscous

and buffer layers. We end this section with a brief discussion about RNL dynamics at

high Reynolds number based on the results from a RNL-LES at effectively infinite Reynolds

number, where variations in scale separation are imposed through grid refinement.

Self-sustaining RNL turbulence

RNL dynamics were first studied in low Reynolds number plane Couette flow [53, 103].

Thomas et al. [53, 98] demonstrated that RNL dynamics at Reτ ≈ 65 supported self-

sustaining turbulence with accurate low-order statistics. At the Reynolds numbers consid-

ered in that work the parametrization based on outer-layer structures is less relevant given
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the lack of scale separation in such a flow. Therefore the analysis in this section is based on

an unparameterized model, which shows similar statistics to an ‘optimally’ parameterized

model [98].

The RNL turbulence sustained in this low Reynolds number Couette flow was shown

to reproduce structural features consistent with the self-sustaining process (SSP), which is

fundamental to the maintenance of wall-bounded turbulence. Although the characterization

of the mechanisms differ, see e.g. [7, 8, 10, 12, 13, 57, 87, 104], it is well accepted that

the SSP comprises an interaction of roll and streak structures. As such, the ability of the

RNL model to properly capture this process can be evaluated through an examination of

these key structures, which we quantify through the root-mean square (RMS) roll and streak

velocities, respectively defined as,

RMS Roll Velocity =

√∫ Lz

0

∫ δ

−δ
v2T + w2

T dy dz (5a)

RMS Streak Velocity =

√∫ Lz

0

∫ δ

−δ
(uT − 〈uT 〉z)2 dy dz, (5b)

where as before 〈·〉z denotes the spanwise-averaging operation.

These velocities for an RNL simulation at Reτ = 64.9 and DNS data at Reτ = 66.2 are

shown in figure 4. Here it is clear that the magnitude and qualitative behavior of both the

RMS rolls and streaks are similar in both the DNS and RNL simulations, although the rolls

generated by the RNL are somewhat stronger. The results in figure 4 are obtained by forcing

both the NS and the RNL dynamics with delta-correlated forcing to initiate the turbulence.

This forcing is removed at 500 convective time units, which demonstrates that the rolls and

streaks generated through the RNL dynamics are self-sustaining. Further details of the RNL

and the associated Stochastic Structural Stability Theory (S3T) SSP can be found in e.g.

[53, 56, 57, 87, 98].

Parameterized RNL turbulence

We next explore the characteristics of RNL turbulence at the moderate Reynolds number

of Reτ = 180, where scale separation has begun to emerge. We simulate the RNL dynamics

using a wave-number support consisting of three non-zero modes, kxδ = 6, 6.5, 7, that span

the peak surrogate dissipation spectra as shown in figure 2(b). This was also the set of
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FIG. 4: Root-mean square (a) roll and (b) streak velocities as predicted by DNS (red) and

RNL (black dashed). The vertical black dotted line indicates the time when forcing was

removed illustrating that RNL self-sustains turbulence similar to DNS. Figures adapted

from Thomas et al. [53].

modes shown to produce the most accurate mean profile in [99]. The resulting mean velocity,

Reynolds stresses, and RMS vorticity fluctuations are plotted in figure 5. Consistent with

the results in [99], this parameterized RNL model captures the correct log-law behavior. The

Reynolds stresses show good qualitative agreement with DNS and all peak at the correct

wall-normal location. The magnitudes of these peaks is however, higher than DNS for the

streamwise component of the normal Reynolds stress and lower for both the wall-normal

and spanwise components. The agreement of the mean profile and small differences in the

Reynolds stresses is remarkable given that the dynamics comprises a two-dimensional mean

flow interacting with only three streamwise varying wave-numbers.

The RMS vorticity fluctuations predicted by the parameterized RNL model similarly

show good qualitative agreement with the DNS data. More specifically, the parameterized

model accurately captures each component of the RMS vorticity beyond y+ ≈ 60, but there

are small differences in in both the inner- and buffer-layer regions. The spanwise vorticity

component (ωTz), which is dominant, shows higher RMS fluctuations than the DNS data

near the wall. This trend reverses in the buffer-layer with the ωTz obtained by the RNL

simultion taking on lower values than the DNS data. The wall-normal component is more

accurate near the wall, but takes on higher values than the DNS data in the buffer-layer.

As expected the shape of the streamwise component most closely matches the DNS data,
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FIG. 5: (a) Mean streamwise velocity from RNL (red circles) and uT/uτ = y+ (thin dashed

black), uT/uτ = (1/0.41) ln(y+) + 5.0 (thin solid black). (b) Streamwise, (d) wall-normal,

(f) spanwise, and (c) cross Reynolds stresses shown with DNS (thick black). (e)

Root-mean square (RMS) fluctuations of the streamwise (—), wall-normal (– –), and

spanwise (· · · ) vorticity.

since the modeling framework emphasizes the cross-plane behavior. This component does

however, have the largest quantitative error with the RNL simulation consistently under-

predicting its magnitude throughout the near-wall and buffer layers. Although this may

seem surprising it is in fact expected as the magnitude of the wall-normal and spanwise

velocity fluctuations that comprise this component of vorticity are also under-predicted by
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the model, as shown in the wall-normal and spanwise Reynolds stress plots in panels (d)

and (f).

The differences in the behavior of the vorticity near the wall are not unexpected as

the small scales that dominate the near-wall and buffer-layer vorticity (particularly for the

cross-plane components) are under-resolved in the RNL by construction. These results also

suggest that parametrization of the model based on the outer-layer surrogate dissipation

spectra alters the inner- and buffer-layer dynamics of the parameterized RNL model in

order to maintain the correct turbulent mean velocity profile and Reynolds stresses. This

idea is further explored in the next subsection.

The differences in the three-dimensional characteristics between RNL turbulence and a

turbulent channel flow are illustrated in figures 6(a) and (b), which show a three-dimensional

rendering of the total streamwise velocity field. The horizontal planes, taken at y+ = 15,

highlight the RNL model’s simplified representation of high and low speed streaks elongated

in the streamwise direction as a streamwise mean flow interaction with a low dimensional (3

Fourier mode) streamwise varying perturbation field. This figure reflects the inability of the

RNL framework to capture streamwise velocity correlations and highlights the limitations

of such a quasi-streamwise constant modeling framework. Other quantities that strongly

depend on the streamwise variation of the flow field are expected to be similarly poorly

resolved. However, figures 6(c) and (d) demonstrate that even with this simplified streak

structure, the RNL model captures the cross-plane vortical structures observed in wall-

bounded turbulence. This observation is consistent with the accuracy of the RMS streak

velocities observed in the low Reynolds number plane Couette flow results in figure 4 and

reflects the promise of the RNL model in predicting structures that are important in the

SSP as well as in the primary momentum transfer of the flow.

The results in figure 6 point to an important benefit of the RNL framework. The dynam-

ical restriction in the streamwise varying dynamics leads to large computational advantages

because only the active streamwise wave-numbers need to be simulated. This is done by

computing the nonlinear term as a convolution in (kx, y, z, t) space instead of as a product

in physical space, as is done in DNS. This implementation, which is detailed in [105], elimi-

nates the need to perform transforms back and forth between Fourier and physical space in

the streamwise direction to compute the nonlinearity that is typical in pseudo-spectral DNS

codes. The reduction in the number of required transforms saves substantial computational
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FIG. 6: Snapshots of the instantaneous total streamwise velocity field, uT/uτ from DNS (a

and c) and RNL (b and d). The horizontal plane in figures (a) and (b) is at a wall distance

of y+ = 15. DNS and RNL simulations show similar spanwise structures in the cross-plane

view (c and d)

time and resources over a DNS. For the results presented in this section, the equivalent phys-

ical grid for the three non-zero streamwise wave-numbers simulated consists of 8 streamwise

grid points. The streamwise grid of the corresponding DNS requires 32× more points for the

horizontal resolution considered. This led to the RNL simulations having a measured wall-

time speedup of 19.1× given the same hardware. As more streamwise points are needed at

higher Reynolds number, we expect this speedup to increase accordingly. A larger speedup

could also be achieved with additional optimization of the code. A full characterization of

the computational benefits of the RNL framework over a range of Reynolds numbers and

streamwise wave-number support sets is a topic of ongoing study.

Energy spectra and transport in the RNL system

The parametrization of the RNL model is based on the outer-layer surrogate dissipation

spectra. We now explore how constraining the streamwise scales in the RNL dynamics

affects the energy spectra and transport of energy in the resulting RNL turbulence.
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FIG. 7: Pre-multiplied spanwise energy spectra, kzEuu (a) and (b), and kzEvv (c) and (d)

from DNS (a) and (c) and from RNL (b) and (d). The white dashed lines indicate the

wall-normal distance and spanwise wavelengths where the spectra from DNS peaks. These

lines are repeated on the spectra predicted from RNL.

Figure 7 shows streamwise and wall normal components of the kz pre-multiplied one-

dimensional energy spectra (respectively kzEuu and kzEvv) as a function of wall-normal

location and spanwise wavelength for DNS data and the Reτ = 180 RNL simulation de-

scribed in the previous section. Although these spectra are qualitatively similar, there are

some notable differences. The streamwise component of this spectra peaks over a larger

range of scales, whereas the wall-normal component of the spectra is more focused. The

spanwise wavelength associated with the peak is lower, suggesting that the RNL dynamics

introduce additional energy into the small spanwise structures to compensate for the lack

of streamwise scales. This small shifting of the energy may account for the ability of the

reduced dynamics to so faithfully reproduce the statistical features and energy transfer.

Gaining a full understanding this behavior is the focus of ongoing work.

We further analyze the production, dissipation, pressure-strain, and transport rates of
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the Reynolds stresses considered in figure 5. The energy budget equation is given by [106]

∂tRij + uk∂kRij + ∂k(u′iu
′
ju
′
k)︸ ︷︷ ︸

turbulent transport

+ ∂k(p′(u′jδik + u′iδjk))︸ ︷︷ ︸
pressure transport

− ν∂k∂kRij︸ ︷︷ ︸
viscous transport

=

2p′s′ij︸ ︷︷ ︸
pressure-strain

−[Rij∂kuj +Rjk∂kui]︸ ︷︷ ︸
production

− 2ν(∂ku′i)(∂ku
′
j)︸ ︷︷ ︸

pseudo-dissipation

, (6)

where we have removed the subscript T for clarity and have adopted index notation with 1,

2, 3 respectively representing the streamwise, wall-normal, spanwise directions. Individual

Reynolds stress components are abbreviated as Rij = u′iu
′
j, the Kronecker-delta symbol

is represented as δij, and s′ij denotes the time-fluctuating strain-rate tensor. The budgets

associated with the streamwise, wall-normal and the cross R12 Reynolds stresses are provided

in figure 8.

The streamwise component of the normal Reynolds stress, which was higher than that

obtained by DNS in figure 5(b), is found to have good agreement throughout the buffer-layer.

Here, the RNL production data peaks at the same maximum value and wall-normal location

as the DNS data. However the dissipation predicted from the RNL model is slightly lower

than DNS, with a higher total transport compensating to obtain the correct energy balance.

Increased viscous and turbulent transport rates in the RNL dynamics are responsible for

the small differences observed in the streamwise normal Reynolds stress budget. Very near

the wall a higher magnitude pseudo-dissipation appears to be balanced by a higher total

transport (+ pressure strain). Figure 8(b) indicates that this increase in total transport is

due to higher viscous transport in the RNL dynamics.

The wall-normal Reynolds stress, found to be smaller in the RNL dynamics than predicted

by DNS in figure 5(d), shows smaller dissipation, transport, and pressure-strain throughout

the channel in figure 8. Pressure transport is balanced by pressure-strain near the wall,

however smaller maximum values are reached in the RNL dynamics. Further from the wall

these terms, and turbulent transport, remain smaller than DNS and reach less pronounced

maximum values.

The RNL dynamics predict smaller production and pressure-strain of the cross Reynolds

stress away from the wall. Turbulent and pressure transport reach similar values to DNS in

this region, however peak further from the wall. Near the wall, pressure-strain and pressure

transport balance but maintain higher values in the RNL dynamics than in DNS.

The good agreement of the streamwise component of the normal Reynolds stresses, which
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FIG. 8: The streamwise R11 = u′Tu
′
T (a and b), wall-normal R22 = v′Tv

′
T (c and d), and

cross R12 = u′Tv
′
T (e and f) Reynolds stress budgets from DNS (black) and RNL (red

circles). Figures (a), (c), and (e) include the production (—), dissipation (– –), and total

transport + pressure-strain (− -). Figures (b), (d), and (f) show Turbulent transport (—),

pressure transport (– –), pressure strain (− -), and viscous transport (· · · ). Markers are

sub-sampled for clarity and do not represent grid resolution.

are responsible for the majority of the energy transport is likely responsible for the close

agreement between the RNL simulation and DNS data discussed in the previous section.
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The relatively smaller in magnitude R22 and R12 budgets and transport terms show larger

differences than the streamwise components R11. These trends are consistent with the

observations in the second order statistics shown in figure 5, where the lower wall-normal

and spanwise Reynolds stresses appear to compensate for the higher streamwise Reynolds

stress leading to close agreement in the cross-terms needed to obtain the correct mean

velocity profile. A deeper understanding of how the shifts in energy transfer in these terms

compensates for the interactions neglected in the RNL to maintain the energy balance of

the streamwise components is a topic of continuing work.

Restricted nonlinear dynamics in the infinite Re limit

The benefits of a computationally tractable simplified representation of wall-bounded

turbulence become increasingly valuable at Reynolds numbers that cannot currently be ex-

amined through DNS. In this section, we discuss the potential of the RNL model in predicting

the salient characteristics of wall-bounded turbulence at high Reynolds numbers by studying

a RNL-LES model. This model, which was introduced in [105] describes filtered velocity

and pressure fields, respectively denoted ũT (x, y, z, t) and p̃T (x, y, z, t). As in the derivation

of the traditional RNL model, we perform a decomposition into streamwise averaged mean

fields, respectively Ũ(y, z, t) = 〈ũT 〉x and P̃(y, z, t) = 〈p̃T 〉x, along with perturbations about

this mean, respectively ũ(x, y, z, t) and p̃(x, y, z, t). The resulting governing equations are

given by

∂tŨ + Ũ · ∇Ũ +∇P̃ /ρ− ν∇2Ũ−∇ · 〈τ T 〉 = −〈ũ · ∇ũ〉x , (7a)

∂tũ + Ũ · ∇ũ + ũ · ∇Ũ +∇p̃/ρ− ν∇2ũ−∇ · τ = 0 (7b)

and continuity of the filtered velocity field, ∇ · ũT = 0. The RNL-LES equations only differ

from equations (3a) and (3b) by the addition of the streamwise mean and fluctuating parts

of the total sub-grid scale stress tensor, τ T .

The sub-grid scale stress tensor used to model the unresolved scales is approximated by

the Smagorinsky model,

τ T = 2νeS̃ where νe = (CS∆)2
√

2〈S̃ : S̃〉xz. (8)

Here, ∆ is the filter width, S̃ is the filtered strain-rate tensor, and CS is the Smagorinsky

coefficient damped by the Mason wall damping model [105]. The quasi two-dimensional na-
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Label Nx = Nz Ny

L-1 64 32

L-2 128 64

L-3 192 96

L-4 256 128

L-5 384 192

L-6 512 256

TABLE I: Grid sizes used in the LES cases in Bretheim et al. [105]

ture of the RNL model motivates the use of the horizontally averaged strain-rate magnitude

for the eddy viscosity in equation (8). The spanwise and streamwise averaging leads to a

one dimensional eddy viscosity νe that provides a similar computational framework to that

discussed earlier, i.e. we can simulate in (kx, y, z, t) space and there is no need for streamwise

direction inverse Fourier transformations to the physical space to compute the nonlinear-

ity. We assume an effectively infinite Reynolds number limit (ν → 0) with a wall-model

assuming a roughness height of y0/δ = 1.25× 10−5.

In the RNL-LES paradigm the grid resolution is a proxy for the scale separation induced

as Reynolds number increases. This is clear in figure 9, which plots the kz pre-multiplied

spanwise energy spectra, kzEuu, from large eddy simulation (LES) data at a range of grid

resolutions (see table I). All cases show a peak that scales with inner units, the spanwise

wave-number of which is indicated with a white vertical dashed line. As the grid resolution

increases, particularly in cases L-4 to L-6, a second peak scaling with outer units is observed

indicating the scale separation expected to be observed as Reynolds number increases.

Bretheim et al. [105] demonstrated that the correct parametrization for the RNL-LES

dynamics at grid resolutions corresponding to the first four or five grid resolutions (cases

L-1–L-5) is based on the kx pre-multiplied vorticity spectra, which is the appropriate LES

analog of the surrogate dissipation spectra. For the rough-wall LES data considered the

inner-layer is not resolved, and the streamwise scales associated with the peak show little

variation with wall-normal distance, see figure 4 in [105].

The wave-numbers that span the peak range of the vorticity for cases L-1–L-5 are provided

in the fourth column of table II. This table also provides the simulation details of the

RNL-LES runs in [105]. Figure 10(a) shows that the corresponding mean velocity profiles

properly predict log-law behavior for these LES cases. Bretheim et al. [105] also demonstrates
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FIG. 9: Pre-multiplied spanwise energy spectra, kzEuu, from LES. The color-bars are the

same for each panel, ranging from 0 (blue) to 1 (red). The white vertical dashed lines

indicate the spanwise wave-number where the peak is reached. Figure adapted from

Bretheim et al. [105].

reasonable agreement for the streamwise Reynolds stresses.

FIG. 10: Mean streamwise velocity from (a) low and (b) high grid-resolution RNL-LES

cases. RNL-LES profiles in (b) include the large-scale mode kxδ = 7. Figure adapted from

Bretheim et al. [105].
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Label Nz Ny kxδ (Regime I) kxδ (Regime II)

R-1 64 32 4 -

R-2 128 64 7-9 -

R-3 192 96 10-14 -

R-4(i) 256 128 13-18 -

R-4(ii) 256 128 - 7,14

R-5(i) 384 192 17-25 -

R-5(ii) 384 192 - 7, 21

R-6 512 256 - 7, 28

R-7 768 384 - 7,42

TABLE II: Cross-plane grid sizes and streamwise wave-numbers for the RNL-LES cases

used in Bretheim et al. [105]

However, as the grid is refined, the scale separation indicated in figure 9 needs to be

captured in the RNL-LES dynamics. This phenomena is accounted for through the addition

of a large-scale streamwise wave-number supporting the RNL-LES perturbation field (7b).

In particular, Bretheim et al. [105] selected kxδ = 7 which corresponds to λx ≈ δ. Both

this large-scale streamwise wave-number and small-scale wave-number corresponding to the

peak of the surrogate dissipation spectra from LES are listed under the regime II column

of table II. The influence of the large-scale mode was limited near the wall by zeroing out

the mode near the wall. This two-band RNL-LES is shown to correctly predict the log-law

profile throughout the domain in figure 10(b).

The results in this subsection indicate that a streamwise varying wave-number support for

RNL turbulence consisting of a small band (or single) wavelength corresponding to the peak

of the surrogate dissipation spectra is unlikely to be sufficient at high Reynolds numbers

where scale separation becomes important. The approach in [105] was a preliminary ad-

hoc proof of concept. The additional analysis needed to understand how to best introduce

additional scales into the RNL perturbation field is an active direction of ongoing research.

OUTLOOK: ONGOING CHALLENGES FOR WALL-TURBULENCE MODELS

This paper has presented a review of the RNL modeling framework. This modeling

paradigm provides a nonlinear but simplified dynamical system that can be used to both

analyze and simulate wall-bounded turbulence. Both the fidelity of the results obtained using
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an RNL model and the discrepancies provide insight into the dynamics of wall-turbulence.

The accuracy of the mean velocity profile obtained in RNL simulations across the range of

Reynolds numbers reported indicates that the momentum transfer is indeed dominated by

nonlinear interactions between streamwise elongated structures, confirming previous obser-

vations in the literature. The ability of the low Reynolds number RNL dynamics with a

small-scale perturbation field to self-sustain dynamics that closely resemble wall-bounded

turbulence indicates that direct energy transfer from small to large streamwise scales can

reproduce the energy transfer necessary to balance production and dissipation across the

flow field. This behavior is consistent with the energy cascade being dominated by cross-

stream interactions; a notion supported by the shift in the energy spectra to smaller spanwise

scales seen in figure 7. The shifting of energy transport to balance dissipation in the en-

ergy budgets also provides evidence that the dynamics shift energy as needed to maintain a

turbulent state. This ability of the RNL turbulence to compensate for the neglected nonlin-

ear interactions suggests that the SSP underlying wall-turbulence is incredibly robust. The

robustness of the turbulent dynamics may explain why control to suppress it presents an

ongoing challenge.

The low order representation of the SSP and other key processes offered by the RNL

model provide both a computationally and analytically tractable means to not only study the

phenomena but to characterize approaches to disrupt the dynamics. This simplified setting

has, for example, been exploited to examine the role of the nonlinearity in the maintenance

of turbulence and the self-sustaining process, see e.g. [87, 107] in plane Couette flow. RNL

models have also been used to study the dynamics of high and low-drag events in turbulent

channels [108]. The order reduction obtained through the RNL modeling paradigm has

also proven useful in performing parametric studies of flow properties in vertically staggered

wind farms [109]. In particular, the RNL-LES model was shown to predict similar power

output to a full three-dimensional LES of a wind-farm for some standard vertically staggered

configurations. It was then used to evaluate the efficacy of such an approach over a much

broader range of parameters that would be accessible with LES [109].

The goal of the RNL paradigm, and in fact, most wall-turbulence models, is a reduction

in complexity that facilitates analysis or computational tractability without compromising

the ability to reproduce key phenomena. Evaluating the relative benefit of a model, thus

requires assessing the extent to which this balance is achieved. Ongoing work further char-
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acterizing the RNL model and subsequent extensions of this framework to high Reynolds

number regimes is needed to evaluate its inherent trade-offs. This ongoing work will de-

termine the extent of its potential as an analysis and/or predictive tool for closed loop

control design in engineering applications. Ultimately, it is unlikely that a single approach

will suffice in developing a full understanding of the decades old problem of wall-bounded

turbulent flows. Instead the greatest progress is likely to be found by reconciling and com-

bining the different approaches. As previously discussed the attached eddy hypothesis has

already been leveraged in resolvent analysis, dynamical systems approaches based on ex-

act coherent structures and a host of other wall-turbulence models. Other work unifying

different approaches includes the construction of low dimensional representations of exact

coherent structures using resolvent modes [110, 111]. RNL and QL models have also been

studied in the context of these invariant solutions to the NS equations [112, 113] with the

results of these studies pointing to new directions for modeling efforts. Advancing this al-

ready rich set of analysis tools and developing new approaches that draw inspiration from

different modeling paradigms may hold the key to characterizing high Reynolds number and

non-equilibrium flows.
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