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Abstract—When a narrowband coherent wavefront passes
through or reflects off of a scattering medium, the input and
output relationship of the incident field is linear and so can be
described by a transmission matrix (TM). If the TM for a given
scattering medium is known, one can computationally “invert”
the scattering process and image through the medium. In this
work, we investigate the effect of broadband illumination, i.e.,
what happens when the wavefront is only partially coherent?
Can one still measure a TM and “invert” the scattering?

To accomplish this task, we measure TMs using the double
phase retrieval technique, a method which uses phase retrieval
algorithms to avoid difficult-to-capture interferometric measure-
ments. Generally, using the double phase retrieval method re-
quires performing massive amounts of computation. We alleviate
this burden by developing a fast, GPU-accelerated algorithm,
prVAMP, which lets us reconstruct 2562×642 TMs in under five
hours.

After reconstructing several TMs using this method, we find
that, as expected, reducing the coherence of the illumination
significantly restricts our ability to invert the scattering process.
Moreover, we find that past a certain bandwidth an incoherent,
intensity-based scattering model better describes the scattering
process and is easier to invert.

Index Terms—Transmission Matrix, Phase Retrieval, Scatter-
ing.

I. INTRODUCTION

At first glance, imaging through multiple-scattering media
seems like an impossible task. Any light incident on the
media will undergo multiple reflections. Thus, if we illuminate
an object with coherent light, the resulting wavefront will
constructively and destructively interfere with itself, and a
speckle pattern will be produced on the far side of the scatterer.
This speckle pattern generally bears no resemblance to the
original image.

A. Inverse Scattering is the Holy Grail of Imaging

Despite the challenge inherent to imaging through scattering
media, it is a crucial problem within the optics community.
Imaging through scattering media is fundamental to numer-
ous applications including imaging through biological tis-
sues, long-distance imaging through smog, fog, etc., imaging
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through the atmosphere, and more. Accordingly, numerous
attempts have been made to solve the inverse scattering
problem. We list some of them next.

B. Imaging Through Scattering Media Today

Confocal microscopy [1], [2] mitigates the scattering effect
by using a pinhole to ignore scattered, out-of-focus light.
The performance of this method is limited to few attenuation
lengths of scatterings and requires very slow, scanned image
acquisitions.

Time and/or coherence-gating techniques [3], [4], [5], [6],
[7], [8] rely upon the fact that a scattered photon is unlikely
to arrive at the same time as a ballistic photon; a photon that
went to the target and back without scattering. As a result, one
can use pulsed illumination and temporal/coherence gating to
separate the ballistic photons from a region of interest. Gating
is well-suited to rapidly changing scatterers, like fog, and
as it offers rapid acquisition times and does not require the
scattering process to be stable over time. However, because
these systems only measure ballistic photons, they require
powerful and expensive pulsed lasers to image through thick
scatterers.

Multi-slice light propagation [9], [10], [11] is another
method to image through scattering media. As the name
suggests, the multi-slice light-propagation method models a
scattering material as a series of 2D scattering slices between
which light propagates. Rather than blindly mapping inputs to
outputs, the multi-slice propagation method learns a composi-
tion of linear transformations. This method is uniquely suited
to perform 3D reconstructions; moreover, it provides infor-
mation about the actual structure of the scattering material.
However, the multi-slice approach does not model reflections
within the scatterer, and it is unclear how well this method
works with thick scattering materials.

Recently phase retrieval techniques are used for wavefront
sensing through thin scattring media[[12]] and to image rough
distant objects [13], [14], however, when dealing with thin
scattering media, single-shot imaging through scattering media
is possible using memory-effect based techniques [15], [16].
These methods assume that the scattering medium preserves
the strong angular correlation of the speckle patterns; which
implies that, with temporally coherent and spatially incoherent
illumination, the scattering process follows a convolution
model with a speckle-like point spread function. From there
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Fig. 1. A sketch of our experimental setup. An illumination source is modulated by an SLM to form a smiley face, the light field scatters and produces a
speckle pattern, the intensity of the speckle pattern is measured by a camera, and we use phase retrieval algorithms to reconstruct the smiley face from the
speckle pattern.

one can invert the scattering process by estimating the target’s
auto-correlation function and then performing phase retrieval.
This method fails when the scattering medium becomes too
thick for the strong memory effect to hold.

C. Transmission Matrices

The gold standard to image through very thick and stable
scattering media is inverse scattering with optical transmission
matrices (TMs). Unlike many of the aforementioned methods,
inverse scattering with TMs does not require any ballistic
photons and the scattering media does not need to exhibit
the memory effect. However, TM methods need the scattering
media’s behavior to be invariant over time; TM techniques
are not well-suited to dynamic media like fog. Moreover, TM
methods generally assume that you have access to the far side
of the scattering media for calibration, which allows you to
characterize the relation between the input field, on a spatial
light modulator (SLM), and the output field, on a camera.

TM methods are based upon the principle that when dealing
with coherent light, the forward scattering process is linear
with respect to fields, and so the output field is related to
the input field by a matrix A. This matrix is called the
TM. If one first measures the TM, one can then “invert” the
scattering process and image through [17] or even inside [18]
the scattering medium, potentially through the use of phase
retrieval algorithms [19]. The imaging process is illustrated in
Figure 1.

D. Multi-spectral Transmission Matrices

Traditionally, TMs describe the scattering process when
dealing with coherent narrowband light, which lets you ig-
nore the fact that scattering media have spectrally dependent
responses [20]. In a recent work [20], the authors demonstrated
that characterizing scattering with multi-spectral light is also
possible. The key idea is to replace the 2D TM that describes
the scattering process at a fixed wavelength, with a 3D tensor,
which describes the scattering process at multiple wavelengths.
This characterization enables temporal, as well as spatial,
focusing through the scattering media [21].

E. Contributions: Measuring the Effects of Temporal Coher-
ence and a Fast Phase Retrieval Algorithm

In this work, we study how effective a single TM is at
characterizing and inverting the scattering process associated

with a broadband (i.e., partially coherent) illumination source.
In essence, we study how well the narrow-band model can
approximate a broadband system. We show that as the band-
width of the illumination increases, the singular values of the
measured TM decay towards zero and the speckle encodes less
and less information. As the bandwidth increases, we quickly
reach a point at which an incoherent scattering model better
describes the scattering process and is easier to invert.

To carry out this task efficiently, we learn TMs using
the double phase retrieval technique [22], [19]. This method
uses phase retrieval algorithms to avoid difficult-to-capture
interferometric measurements. Unfortunately, existing double
phase retrieval methods require a massive amount of computa-
tion. In this work we have developed a fast, GPU-accelerated
algorithm which lets us reconstruct 2562 × 642 TMs in under
five hours, as opposed to the tens of thousands that would be
required with competing methods. An initial version of this
algorithm was presented in [23].

II. MODELING SCATTERING

In this section, we describe the models underlying TM-
based methods.

A. Narrow-band Illumination

When dealing with completely coherent light, the scattering
process is linear with respect to complex-valued fields. Thus,
the complex field z on the far side of the scattering media is
related to the field x incident on the scattering media via the
complex-valued monochromatic transmission matrix A.

That is,

z = Ax + εF , (1)

where εF models noise on the field.
Typical cameras capture only intensity information, in

which case the measurement process becomes

y2 = |Ax + εF |2 + εI , (2)

where the square is elementwise and εI models noise on the
intensity measurement. In this work we ignore εI , which we
minimize through long exposures and strong illumination, and
also take the square root of the intensity measurements. Our
simplified measurement model becomes

y = |Ax + ε|. (3)
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After one measures the TM, potentially using the double
phase retrieval method described in Section III-A, one can
use phase retrieval algorithms to reconstruct a signal x from
measurements y. Thus phase retrieval algorithms can be used
to see through multiple-scattering media.

B. Incoherent Illumination
At the other extreme, with completely incoherent illumina-

tion the scattering process is linear with respect to real-valued
intensities. That is,

y2 = Aintensityx
2 + ε. (4)

This makes reconstructing x2 from y2, and thus imaging
through scattering media, a simple least squares problem.
Unfortunately, the real-valued intensity transmission matrix
Aintensity tends to be very poorly conditioned.

C. Multi-spectral Illumination
If one is able to distinguish/measure the various spectral

components of the input and output fields, one can form
a multi-spectral transmission matrix/tensor, A(ωk) for k =
1, ...K, and model scattering as

z(ωk) = A(ωk)x(ωk) + ε(ωk), (5)

for frequencies ω1, ...ωK . Multi-spectral TMs can enable
spatio-temporal coherent control of broadband light [20],
[21]. However, without access to narrow-band measurements,
A(ωk) remains out of reach.

D. Broadband Illumination
For broadband illumination, where all frequency compo-

nents are measured at once, the measurement process is best
described by

y2 =

∫
|z(ωk)|2dωk =

∫
|A(ωk)x(ωk) + ε(ωk)|2dωk. (6)

The intensities measured at the camera consist of the
superposition of many different frequency components. How-
ever, without applying filters or otherwise capturing spectrally
dependent measurements, these components are indistinguish-
able on the camera.

Thus, while ideally one would learn and invert A(ωk)
across many frequencies, we are motivated to learn a single
model for the scattering process and invert this. In effect, we
approximate a broadband scattering model (6) using either
coherent (2) or incoherent (4) models and study how well one
can use said models to image through scattering media. For
small illumination bandwidths, where the spectral bandwidth
remains within the spectral memory effect [20], the coherent
TM model should be quite accurate. However, as we increase
the illumination bandwidth the measurements will have con-
tributions from a diverse and uncorrelated set of narrow-band
TMs and the model should break down. In contrast, increasing
bandwidth should make the incoherent illumination model
more accurate.

In the next section, we describe how we measure the
coherent (complex-valued field) and incoherent (real-valued
intensity) TMs, A and Aintensity.

Fig. 2. Binary calibration patterns placed on the SLM and the corresponding
measurements recorded by the camera. Random calibration patterns give rise
to random uncorrelated speckle patterns.

III. MEASURING FIELD AND INTENSITY TRANSMISSION
MATRICES

TMs are typically measured using holographic interferom-
etry [24]. To learn a TM with interferometry, one illuminates
one pixel of the SLM at a time. For each pixel, one uses
interferometry to record the complex field incident on the
detector. In this way, one is able to directly measure the TM,
one column at a time.1

While effective, interferometric methods are very sensitive
to perturbations; even minute vibrations, such as those caused
by an air conditioning unit turning on and off in a lab, can
be enough to change the interference pattern and thereby kill
this method. This problem becomes particularly pernicious
at higher resolutions where the physical stability requirement
becomes more and more demanding.

In this work, we avoid the challenge of accurately measuring
complex-valued fields by using the double phase retrieval
method [22], [19]. The key idea behind double phase retrieval
is that if one measures a sufficient number of the intensities
of responses to calibration signals, one can use phase retrieval
algorithms to learn the TM.

In this section, we explain double phase retrieval and in-
troduce a new, GPU-accelerated algorithm that vastly reduces
the computation times associated with this method. We also
briefly describe how we measure intensity TMs.

A. Double Phase Retrieval
The double phase retrieval method gets its name from the

fact that it requires performing phase retrieval twice; once for
calibration, i.e., measuring the TM, and once for imaging.

1) Calibration: One first sends a series of calibration
patterns xp ∈ RN with p = 1, ...P , through the scattering
media, see Figure 2. For each p, the signal will be transformed
by the TM A ∈ CM×N , to produce measurements yp ∈ RM+ ,
with

yp = |Axp + εp|,

where εp denotes noise.2 Actual calibration patterns and their
corresponding measurements are illustrated in Fig. 2.

1This is not the only, nor best, way to measure a TM using interferometry.
For instance, [25] more efficiently measures a TM by temporally modulating
the phase of an SLM and capturing a video of a dynamic speckle pattern.

2Multiple sources of noise, for instance leakage across the SLM, contribute
to the noise εp. In this work, we assume that εp follows a white circularly-
symmetric complex Gaussian distribution.
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The sets of calibration, measurement, and noise column
vectors are then concatenated with themselves to form X =[
x1,x2, ...xp

]
∈ RN×P , Y =

[
y1,y2, ...yp

]
∈ RM×P+ , and

E =
[
ε1, ε2, ...εp

]
∈ CM×P .

In this way, the entire calibration process can be described
by the equation

Y = |AX + E|.

Taking the transpose of the above equality, one obtains

YH = |XHAH + EH |.

Consider the mth column of YH (this consists of the P
measurements associated with the mth detector pixel)

yHm = |XHaHm + εHm|, (7)

where aHm and εHm denote the mth rows of A and E.
Assuming P is sufficiently large (as a rule of thumb P >

4N ), one can apply phase retrieval algorithms to (7) to recover
each row aHm; simply treat yHm as the measurement and XH

as the measurement matrix. This can be repeated for each of
the M rows of A, potentially in parallel, to learn the entire
TM.

2) Imaging: After one has an estimate Ã of the TM,
imaging through the scattering medium is straightforward.
Given a speckle pattern y, ones needs only apply phase
retrieval algorithms to the measurements with Ã as the known
measurement matrix.

B. prVAMP: A Fast and Robust Phase Retrieval Algorithm

The central challenge to using the double phase retrieval
method in practice is computation times. Experimental systems
often have low signal to noise ratios and when using an am-
plitude SLM the measurement matrix XH is nonzero mean.3

In this context, especially at low sampling rates, few phase
retrieval algorithms perform accurate reconstructions. Unfor-
tunately, the algorithm that works by far the best, prSAMP
[26], is extremely slow; reconstructing one row of a 2562×642
TM with prSAMP takes over an hour.

One way to reduce these computation times is to use
special block-diagonal measurement matrices, but this comes
at a cost in terms of recovery accuracy [27]. We propose a
complementary solution.

In this work, we develop a new algorithm, prVAMP, which
offers the same accuracy as prSAMP, while running hundreds
of times faster. Simulations comparing prVAMP with over a
dozen other phase retrieval algorithms are provided in Ap-
pendix A. In Appendix B we compare prVAMP and prSAMP
with and without the fast, block-diagonal matrices from [27].

prVAMP is a special case of the recently developed Gen-
eralized Vector Approximate Message Passing (GVAMP) [28]
algorithm. GVAMP is an algorithm for computing approxi-
mate minimum means squared error (MMSE) or maximum
a posteriori (MAP) solutions to inverse problems involving

3In our experiments, the elements of XH are i.i.d. Bernoulli distributed
with p = .5. I.e., each element of X is 0 or 1, each with probability 0.5.

Algorithm 1 prVAMP
1: Initialize: r10, p10, γ10, τ10
2: for k=0, 1, ..., K do
3: Denoise x:
4: x̂1,k = gx1(r1,k, γ1,k),
5: α1,k = 〈g′x1(r1k, γ1,k)〉
6: r2k = (x̂1,k − α1,kr1k)/(1− α1,k),
7: γ2k = γ1k(1− α1,k)/α1k

8: Denoise z:
9: ẑ1,k = gz1(p1k, τ1k),

10: β1k = 〈g′z1(p1k, τ1k)〉
11: p2k = (ẑ1k − β1kp1k)/(1− β1k),
12: τ2k = τ1k(1− β1k)/β1k
13: LMMSE estimation of x:
14: x̂2k = gx2(r2k,p2k, γ2k, τ2k),
15: α2k = 〈g′x2(r2kp2k, γ2k, τ2k)〉
16: r1,k+1 = (x̂2k − α2kr2k)/(1− α2k),
17: γ1,k+1 = γ2k(1− α2k)/α2k

18: LMMSE estimation of z:
19: ẑ2k = gz2(r2k,p2k, γ2k, τ2k),
20: β2k = 〈g′z2(r2k,p2k, γ2k, τ2k)〉
21: p1,k+1 = (ẑ2k − β2kp2k)/(1− β2k),
22: τ1,k+1 = τk2(1− β2k)/β2k
23: Return x̂1K .

generalized linear measurements (GLMs); defined to be any
measurement of the form

y = Q(z + w) with z = Φx, (8)

where Φ is our measurement matrix (which is a known pattern
XH when calibrating and an estimated TM Ã when imaging),
x is our signal of interest, w is noise, and Q(·) denotes a
simple non-linearity. prVAMP is designed for the special case
Q(·) = | · |.

GVAMP can be broadly understood as an extension to
GAMP [29], [30], which infuses the ADMM [31] concept
of variable splitting into the algorithm. This modification
allows GVAMP to handle non-zero-mean, correlated, and ill-
conditioned measurement matrices, which would destabilize
the original GAMP algorithm [32], [33].

The pseudo-code for prVAMP is presented in Algorithm 1.
prVAMP works by first splitting the vectors x and z into two
sets of identical vectors x1 and x2 and z1 and z2. Iterations
of the algorithm then broadly consist of four steps: First,
there are two “denoising” steps which impose priors on x
and z and ensure they are consistent with the measurements
y. Second, there are two linear minimum mean squared error
(LMMSE) estimation steps which ensure the estimates of x
and z are consistent with each other. Within the algorithm
x̂ and ẑ terms are estimates of x and z, r and p terms act
as noisy observations of x and z, the γ and τ terms track
precisions (reciprocals of variances), and the α and β terms
are divergence terms used to estimate these precisions.

We now give explicit forms for the various denoising and
estimation functions listed in Algorithm 1. These expres-
sions correspond to the MMSE form of the algorithm under
i.i.d. Gaussian priors on the signal and noise. In all these
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expressions we have dropped the iteration subscript k for
readability.

1) Denoising Steps: On line 5 the algorithm denoises the
noisy estimate r1 of the signal x with the function gx1(·); that
is, it treats r1 as noisy observation of x with additive white
Gaussian noise with variance 1/γ1 and computes the MMSE
estimate. When we a priori assume that x is drawn from an
i.i.d. zero-mean Gaussian distribution with variance 1/τx, this
function becomes

gx1(r1, γ1) = E[x
∣∣r1, γ1] = γ1

γx + γ1
r1. (9)

With the aforementioned assumptions on the distributions,
gx1(r1, γ1) just scales r1. An expression for the average partial
derivative 〈g′x1(·)〉 can be found in [29].

On line 10 the algorithm denoises the noisy estimate p1

of the signal z with the function gz1(·); that is, it treats p1

as noisy observation of z with additive white Gaussian noise
with variance 1/τ1 and computes the elementwise MMSE
estimate, under a prior determined by the observation y and the
distribution of the noise w. If we assume that y = |z+w| with
w ∼ CN (0, 1/τwI), where CN denotes a circular Gaussian
distribution (real and imaginary components are i.i.d. with
variance 1

21/τw), this function, written elementwise, becomes

gz1,m(p1.m, τ1) = E[z1,m
∣∣ym,p1,m, τw, τ1] =( y2

m

1 + τ1/τw
R0

( 2ym|p1,m|
1/τw + 1/τ1

)
+
|p1,m|

τw/τ1 + 1

) p1,m

|p1,m|
, (10)

for indices m = 1, ... M , where R0(·) , I1(·)
I0(·) , where

I0(·) and I1(·) denote zeroth and first order Bessel functions.
This function, which is specific to the non-linearity | · |, is
what distinguishes prVAMP from other GVAMP algorithms.
A derivation of this function and expression for its average
partial derivative 〈g′z1(·)〉 can be found in [30].

2) LMMSE Steps: On lines 14 and 19 the algorithm per-
forms MMSE estimation of x and z under the pseudo-priors
that r2 ∼ CN (x, 1/γ2) and p2 ∼ CN (z, 1/τ2), with Φx = z,
using the functions gx2(·) and gz2(·). That is,

gx2(r2,p2, γ2, τ2) = E[x
∣∣r2,p2, γ2, τ2],

and

gz2(r2,p2, γ2, τ2) = E[z
∣∣r2,p2, γ2, τ2].

Because these estimates are linear with respect to r2 and p2,
these are called the LMMSE steps of the algorithm.

The LMMSE steps can be accelerated dramatically if one
first computes a singular value decomposition (SVD) of the
measurement matrix Φ, with Φ = USVt, before running the
algorithm. With this decomposition in hand, the gx2(·) and
gz2(·) functions can be written as

gx2(r2,p2, γ2, τ2) = VDk(τ2S
tUtp2 + γ2V

tr2), (11)

where Dk denotes an n×n diagonal matrix whose ith diagonal
entry is defined as (τ2s

2
i + γ2)

−1, where si is the ith singular
value of Φ and

gz2(r2,p2, γ2, τ2) = Φgx2(r2,p2, γ2, τ2). (12)

More information about these functions and expression for
their average partial derivatives can be found in [28].

3) Tuning and Initialization: prVAMP is a Bayesian al-
gorithm that requires priors on the distribution of the signal
and noise. In this work, when reconstructing TMs, we used
the following heuristic to estimate these quantities. We first
computed an initial solution x̂GS, using the Gerchberg-Saxton
PR algorithm [34]. Then, treating this solution as the ground
truth, we estimated the precisions as τw = 1

‖y−|Φx̂GS|‖2 and
τx = 1

var(x̂GS)
. We assumed that both x and w were zero-

mean. The same procedure was used for both the calibration
and imaging steps; although we only imaged binary objects,
this fact was not used as a prior within the algorithm.

When reconstructing TMs, we used the following heuristic
to initialize prVAMP. Using the solution provided by GS, we
set r10 = x̂GS, p10 = Φx̂GS, γ10 = 1

var(x̂GS)
, and τ10 =

1
var(Φx̂GS)

.
4) GPU Acceleration: The prVAMP algorithm consists

mostly of matrix-vector operations. By replacing these matrix-
vector operations with matrix-matrix operations, we can solve
thousands of phase retrieval problems in parallel. These
matrix-matrix operations can be computed very efficiently
using a GPU: Recovering 1000 rows of a 2562 × 642 TM
in sequence on an Intel 6800k CPU takes 300 minutes.
Recovering these rows in parallel on a Pascal Titan X GPU
takes 2 minutes.

To implement prVAMP we modified the original GVAMP
Matlab code. Code demonstrating prVAMP on synthetic data is
available within the GAMP project [35]. Code demonstrating
prVAMP on experimental TM data, using GPU computing, is
available on our website [36].

C. Measuring Intensity Transmission Matrices

To estimate the incoherent, real-valued intensity TM asso-
ciated with a series of measurements y2

p = Aintensityx
2
p + εp,

we assembled the calibration data and the associated mea-
surements into matrices X2H and Y2H (unlike the coherent
model, no elementwise square root was taken). From there
we first formed a maximum likelihood (ML) estimate of the
intensity TM as

AH
intensity, ML = (X2H)†Y2H , (13)

where † denotes pseudo-inverse.
Next, we assumed that the elements of A and ε follow an

i.i.d. Gaussian distribution with variances σ2
a, σ2

ε and estimated
these variances using our ML solution: σ2

a = var(Aintensity, ML)

and σ2
ε =

‖Y2−Aintensity, MLX2‖22
M . With these priors, the MAP

estimate of A becomes

ÂH
intensity, MAP = argmax

A

−‖Y2 −AX2‖2F
σ2
w

− ‖A‖
2
F

σ2
a

, (14)

= (XXH +
σ2
w

σ2
a

I)−1XYH . (15)

Because solving linear systems is much easier than solving
phase retrieval problems, estimating Aintensity took a few
minutes, as opposed to five hours.

We repeated an analogous process, forming an ML solution
and then using this quantity to select the priors for our MAP
solution, for imaging.
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Fig. 3. Physical setup. A collimated laser beam illuminates a calibration
pattern displayed on the spatial light modulator (SLM), the field from the SLM
is focused onto the diffuser using the focusing lens, and the camera records
the microscope objective (MO) magnified intensity pattern of the scattered
light.

IV. EXPERIMENTAL SETUP

Our physical setup is illustrated in Figure 3. As shown
in the figure, a spatially filtered and collimated laser beam
illuminates a transmissive spatial light modulator (SLM) from
Holoeye (LC 2012). This SLM operates in amplitude mode
with a 1024 × 768 resolution4 and has 36 micrometer size
square pixels. This SLM modulates the amplitude of the beam
before the lens (f = 150 mm), which then focuses the light
onto the scattering medium (a holographic 10 degree diffuser
from Thorlabs). A microscope objective (Newport, X10, NA:
0.25) is then used to image the scattered light onto the sensor
(Point Grey Grasshopper2, pixel size 6.45 micrometer).

To learn a TM under coherent illumination, we used a Z-
Laser green focusable diode laser from Edmund Optics with
wavelength λ = 540 nm, and for the partially incoherent
experiments, we used a super-continuum laser source from
NKT Photonics. With the latter laser, we were able to tune the
wavelength bandwidth from anywhere between 10 nm and 100
nm. The corresponding coherence lengths range from roughly
12 micrometers to 1 micrometer. We also used a broadband
LED light source, a Thorlabs M565L3, which is spatially as
well as temporally incoherent.

In all the experiments, we captured 12·642 distinct 256×256
speckle images, y1, ...yp, where each speckle pattern corre-
sponded to a distinct 64 × 64 calibration patterns, xi, that
was displayed on the SLM. The measurements were used to
construct 2562 × 642 TMs.

V. RESULTS AND DISCUSSION

In this section, we first demonstrate that with coherent
illumination one can accurately measure a TM and image
through a thick scatterer. We then demonstrate how reducing
the coherence of the illumination changes the scattering pro-
cesses and the properties of the associated TMs, which makes
imaging through scattering more challenging.

A. Reconstruction Results Under Coherent Illumination

We begin by measuring a TM and imaging through a scatter-
ing media using a coherent illumination source. With coherent
illumination, the double phase retrieval method combined with

4We display 64 × 64 patterns on the SLM by treating blocks of adjacent
pixels as one large pixel.
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Fig. 4. Top: 64×64 SLM images. Middle: Reconstructions using real-valued
intensity model (RI). Bottom: Reconstructions using complex-valued field
(CF) model. For coherent laser illumination, the CF model (average structural
similarity (SSIM) 0.26) produces high quality reconstructions whereas the RI
model largely fails (average SSIM 0.01) [37].

GPU-accelerated prVAMP can effectively measure a complex-
valued field TM and image through a scattering media, as
demonstrated in Figure 4. The figure also presents recon-
structions from a real-valued intensity model. With coherent
illumination, the complex-field model’s reconstructions are far
superior to the real-intensity model’s.

B. Results Under Partially Coherent Illumination

We now study the effects of coherence by replacing the
laser diode; first with a tunable supercontinuum laser source
and then with an incoherent LED. The tunable laser source
was tested at bandwidths of 10 nm, 50 nm, and 100 nm.

1) Speckle Contrast Decreases with Increasing Illumination
Bandwidth: Here we compare the speckle contrast of the
scattered light produced by the various illumination sources,
where speckle contrast is defined as

contrast =
1

Imean

√√√√ 1

N

N∑
i=1

(Ii − Imean)2 (16)

Imean =
1

N

N∑
i=1

Ii. (17)

The speckle patterns obtained, for the same SLM patterns,
with different widths of broadband illumination are presented
in Figure 5. The figure demonstrates that as one reduces the
coherence of the light source the contrast of the speckle is
reduced dramatically. In fact, for an incoherent LED source,
the speckle is washed out almost entirely. A speckle contrast
versus illumination bandwidth plot is shown in Figure 6. We
see that speckle contrast decreases as the bandwidth increases
and for the LED illumination it falls to only 0.8%. This result
can be understood theoretically by interpreting the broadband
illumination as the sum of many (almost) uncorrelated sources:
With M uncorrelated sources the contrast would decrease as
1/
√
M [38]. Because of the spectral correlation bandwidth

[20], the sources are not uncorrelated and the observed drop-
off in contrast is not quite so swift.
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(A) (B) (C) (D) (E)

Fig. 5. Speckle patterns for different illumination types: (A) Coherent (B) 10nm, (C) 50nm, (D) 100nm, (E) incoherent LED. With increasing bandwidth the
speckle size increases and contrast decreases. For incoherent LED illumination, speckle is washed out almost entirely.
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Fig. 6. Speckle contrast versus laser bandwidth. Increased bandwidth dramat-
ically reduces the speckle contrast. Contrast for a spatially incoherent LED
(100 nm bandwidth) drops to 0.8%.
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Fig. 7. Histograms of singular values for 10 nm, 50 nm, and 100 nm
field-TMs. The singular values of the more broadband TMs are far more
concentrated around zero.

C. Singular Values Decay with Increasing Illumination Band-
width

In this section, we compare the singular values of the
estimated complex-valued field TMs (TMs learned using the
complex-valued field model) with the estimated real-valued
intensity TMs (TMs learned using the real-valued intensity
model).

The results, presented in Figures 7 and 8, demonstrate
that as one increases the bandwidth of the illumination the
singular values for both the complex-valued field TM and the
real-valued intensity TM become concentrated around 0. The
results also show that with 10 nm light the field TM has many
large singular values, indicating that it is relatively easy to
invert and should offer better reconstructions when used for
imaging.

1) Reconstruction Accuracy Declines with Increasing Illu-
mination Bandwidth: In Figure 9, we compare the imaging-
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Fig. 8. Histograms of singular values for 10 nm, 50 nm, and 100 nm intensity-
TMs. The singular values of the more broadband TMs are more concentrated
around zero.

SLM Images RI 10nm CF 10nm RI 50nm CF 50nm RI 100nm CF 100nm

Fig. 9. Reconstruction results for 10nm, 50nm, 100nm illumination band-
widths using the complex-valued field (CF) model and the real-valued
intensity (RI) model. With increasing illumination bandwidth, the CF model
performance degrades and the RI model becomes competitive: For 10nm,
50nm, 100nm bandwidths, the average CF SSIMs are 0.22, 0.12, 0.00 and
the RI SSIMs are 0.11, 0.09, 0.01.

through-scattering-media reconstructions as one varies the
bandwidth of the illumination. The figure demonstrates that
when dealing with narrow-band illumination, the complex-
valued field (coherent) model is superior. However, as one
increases the illumination bandwidth (i.e., decreases the co-
herence of the source), the complex-valued field model breaks
down. In contrast, with increasing bandwidth the real-valued
intensity (incoherent) model becomes competitive and at 100
nm bandwidth, it performs better than the complex-valued field
model.

Returning to Figure 8, we can understand the reconstruc-
tions’ behavior in terms of the singular values of the TMs.
The singular values of the complex-field model start clustered
near one and decay towards zero, whereas the real-intensity
model’s singular values remain clustered around zero for
all bandwidths. Because linear systems are easier to invert,
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as compared to solving phase retrieval problems, the real-
intensity model is more robust to a poorly conditioned TM,
with singular values near zero, and thus offers superior recon-
structions in this regime.

VI. CONCLUSION

TMs are a powerful tool for imaging through, focusing light
through, and understanding the properties of (static) multiple-
scattering media. However, the complex-valued field model
upon which the coherent TM models are based only holds true
when dealing with completely coherent light sources. How this
model breaks down under broadband illumination is poorly
understood.

In this work, we have measured and studied TMs under
illumination with varying bandwidths. We find that reducing
the coherence of the illumination significantly reduces the in-
formation capacity of the scattering media: the TMs’ singular
values drop off quickly and the reconstructed images are less
accurate. Simultaneously, we find that a real-valued intensity
model can produce low-quality reconstructions across a host
of different bandwidths.

The conclusions of this paper should be seen in light of
the limitation that both aforementioned models are approxima-
tions under partially incoherent illumination. Generating more
fitting models for partially incoherent illumination remains a
future task.

To perform the high-resolution reconstructions presented in
this work, we have developed a new, GPU-accelerated algo-
rithm called prVAMP. Using this algorithm, high-resolution
TMs can be reconstructed in only a few hours. The datasets
described in this work have been made available on our
website [36].
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APPENDIX A
A COMPARISON OF PHASE RETRIEVAL ALGORITHMS

In this section, we compare the performance of prVAMP
with fifteen other phase retrieval algorithms. We test the al-
gorithms under three conditions: (1) with high signal-to-noise

ratio (SNR) Gaussian measurements, (2) with high SNR binary
measurements, and (3) with low SNR binary measurements.

The results show that most algorithms work reasonably well
with Gaussian measurements. However, when dealing with
binary measurements many algorithms fail to reconstruct the
signal. In the binary regime, prVAMP and prSAMP offer by
far the best performance.

In all three tests, we use the following signal model

y = |Ax + w|,

where A ∈ Cm×n or A ∈ {0, 1}m×n and w ∼ CN (0, σ2I).
Note that we have added noise before the nonlinearity.

For all three tests x ∼ CN (0, I) and we define SNR as

SNR =
‖Ax‖
‖w‖

.

Except for the recovery time results in Section A-D, where
we sweep across a host of signal dimensions, we fix n = 128.
That is x ∈ C128.

We report recovery accuracy in terms of median, disam-
biguated, normalized mean squared error (NMSE) over 11
trials. By disambiguated, we mean that we have corrected for
the global phase ambiguity and, in the case of real-valued
measurement matrices, the conjugation ambiguity as well.

We used our own implementations of prVAMP and
prGAMP [30], which were derived from code in the Gamp-
Matlab toolbox [35]. We used the original authors’ implemen-
tations of prSAMP [26] and prVBEM [39]. The implementa-
tions of Gerchberg-Saxton (GS) [34], Fienup’s HIO algorithm
[43], Amplitude Flow (AF) [46], [47], Reweighted Amplitude
Flow (RAF) [44], Truncated Amplitude Flow (TAF) [47],
Wirtinger Flow (WF) [40], Reweighted Wirtinger Flow (RAF)
[45], Truncated Wirtinger Flow (TAF) [50], Kaczmarz [48],
PhaseLamp [49], PhaseLift [41], and PhaseMax [42], as well
as much of the support code that we used to generate these
results, comes from PhasePack [46]. We modified the original
PhasePack implementation of GS so as to use the pseudo-
inverse of the measurement matrix, rather than a least-squares
solver at each iteration. Except for the number of iterations,
which were fixed at 200 for all algorithms, implementation
details were left unchanged.

Initial versions of these results were first presented in [23].

A. High SNR Gaussian Measurements

As a point of reference, we first compare the various
algorithms with i.i.d. circular-Gaussian distributed measure-
ment matrices with an SNR of 50. Presented in Figure 10,
these results show that almost all phase retrieval algorithms
operate well in this regime.5 The results also demonstrate that
prGAMP and prSAMP can reconstruct the signal using fewer
measurements than competing methods; they succeed around
m = 2.2n. These algorithms are closely followed by prVAMP
and prVBEM which reconstruct the signal for m ≥ 2.5n. AF,
TAF, WF, and TWF are also close behind.

5If run for more iterations (> 1000) Kaczmarz also works with Gaussian
measurements.
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These findings are consistent with theoretical results from
[52], which proves that with Gaussian measurements a related
version of AMP [53] will solve the phase retrieval with
high probability for m ' 2.48n and will solve the problem
depending on the initialization for 2n ≤ m / 2.48n.

B. High SNR Binary Measurements

To illustrate the difficulty posed by binary measurement
matrices, we conduct the same test as before but with binary,
Bernoulli p = .5 distributed measurements, again with an SNR
of 50. Presented in Figure 11, these results show that, even
with high SNR measurements, many phase retrieval algorithms
struggle in this regime; prGAMP, Kaczmarz, PhaseLamp, and
PhaseMax performs especially poorly. In this regime, prVAMP
offers a sharp phase transition at m = 3n.6 prSAMP also
works for m ≥ 3n, but it also sometimes succeeds for
m ≤ 3n. No other phase retrieval algorithms are competitive.

C. Low SNR Binary Measurements

Finally, we test the algorithms with noisy (SNR = 10)
binary measurements, which model the phase retrieval prob-
lems associated with learning a TM. Presented in Figure 12,
these results show that this problem is especially challenging.
prVAMP and prSAMP again offer the best performance. Note
however that with enough measurements prVBEM, Fienup,
GS, and RWF start to work reasonably well.

D. Computation Times

Here we report the computation times of the algorithms on
problems of varying dimension. All results were recorded on
an Intel 6800K CPU.

Table I compares the reconstruction times of the various
phase retrieval algorithms when solving m = 12n over-
sampled, high SNR phase retrieval problems with complex
Gaussian measurement matrices. The results show that with
high dimensional problems, prVAMP runs hundreds of times
faster than prSAMP.

Table I does not include computation times associated
with preprocessing operations. prVAMP and GS perform an
economical SVD and a pseudoinverse, respectively, of the
measurement matrix. The computations times associated with
these operations are presented in Table II. In the context of
double phase retrieval, these operations have a negligible effect
on the overall runtime because they can be done once and then
reused tens of thousands of times for different problems.

E. Parameter Settings

The prVAMP, prSAMP, prVBEM, and prGAMP algorithms
are all Bayesian and as such use information about the
distribution of the signal and noise. In this work we set these
parameters by hand, but techniques exist to estimate these
parameters automatically [51], [30], [39]. Table III presents the
parameters used with the various algorithms during simulation.

6The phase transition is the minimum amount of oversampling required
such that the algorithms succeed with high probability.

Algorithm n = 64 n = 256 n = 1024
prVAMP 0.12 0.38 5.46
prSAMP 4.26 67.57 1044.07
prVBEM 0.16 0.89 26.91
prGAMP 0.04 0.19 4.38
WF 0.02 0.11 3.11
RWF 0.05 0.24 7.45
TWF 0.05 0.15 5.32
Kaczmarz 0.02 0.05 1.20
AF 0.02 0.09 3.61
RWF 0.03 0.15 4.48
TAF 0.03 0.11 5.35
PhaseLamp 0.18 1.02 47.58
Fienup 0.05 0.40 10.05
GS 0.04 0.32 7.81
PhaseLift 1.38 27.67 792.98
PhaseMax 0.07 0.27 6.10

TABLE I
RUNNING TIMES (IN SECONDS) OF VARIOUS PHASE RETRIEVAL

ALGORITHMS WITH 12 ·N ×N OVERSAMPLED MEASUREMENTS AT
VARIOUS RESOLUTIONS. ALL ALGORITHMS ARE RUN FOR 200

ITERATIONS.

Preprocessing Step n = 64 n = 256 n = 1024
Economical SVD 0.008 0.12 2.4
Pseudoinverse 0.59 0.62 2.9

TABLE II
THE COMPUTATION TIMES (IN SECONDS) OF ONE-TIME PREPROCESSING

OPERATIONS ASSOCIATED WITH m = 12n MEASUREMENT MATRICES.
PRVAMP REQUIRES AN ECONOMICAL SVD OF THE MEASUREMENT

MATRIX AND GS REQUIRES A PSEUDOINVERSE OF THE MEASUREMENT
MATRIX. THESE VALUES CAN THEN BE REUSED FOR ALL PHASE

RETRIEVAL PROBLEMS USING THE SAME MEASUREMENT MATRIX.

The other algorithms, which are not Bayesian, did not use
signal priors. Their parameters were kept at the default values
from [46].

For simulations with Gaussian measurement matrices, all
algorithms used the optimal spectral initializer from [54]. For
simulations with Binary measurement matrices, all algorithms
were provided a random initialization, xo ∼ CN (0, I). With
binary measurement matrices, the spectral initializer did not
work, and in fact produced worse results than random initial-
izations.

When reconstructing TMs from experimental measure-
ments, GS was provided a random initialization and its solu-
tion was used to initialize and set the parameters for prVAMP.

APPENDIX B
PHASE RETRIEVAL WITH FAST, BLOCK-DIAGONAL

MEASUREMENT MATRICES

The fast phase retrieval method proposed in [26] works as
follows. First, a series of measurements are captured with a
block-diagonal measurement matrix. Next one solves an inde-
pendent phase retrieval subproblem for each of these k blocks;
each resulting solution, x̂1, x̂2, ... x̂k will have an unknown
and unique global phase ambiguity, ejθ1 , ejθ2 , ... ejθk .7 Finally,
by capturing a small number of additional measurements, one
can setup an additional, k-dimensional phase retrieval problem

7When the measurement matrix is real-valued, a conjugation ambiguity
appears as well.
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Algorithm Signal Priors Other Parameters
prVAMP Signal mean and variance and noise variance Signal damping = .8, Vari-

ance damping = .5
prSAMP Signal mean and variance and noise variance Damping = .8
prVBEM Noise variance, otherwise defaults Defaults
prGAMP Signal mean and variance and noise variance Damping = .8

TABLE III
THE PARAMETERS USED FOR TESTING THE AMP-BASED PHASE RETRIEVAL ALGORITHMS IN SIMULATION. THE OTHER ALGORITHMS DID NOT USE

SIGNAL PRIORS AND USED THEIR DEFAULT PARAMETERS FROM [46].
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Fig. 10. High SNR Gaussian measurement matrices recovery accuracies. With enough samples, most phase retrieval algorithms are effective in this regime.

to estimate these global phase shifts and remove them to com-
pute the overall solution; x̂ = [x̂t1e

−jθ1 , x̂t2e
−jθ2 , ...x̂tke

−jθk ]t.

We tested prVAMP and prSAMP at a number of different
resolutions using both dense and block-diagonal measurement
matrices. For all tests, the SNR was 10 and the oversampling
rate (mn ) was 6. For input dimensions of 26, 27, 28, 29, 210,
211, and 212, we split the measurement matrix into 4, 4, 8,
16, or 32 blocks, respectively, as suggested in [27]. The non-
zero elements of our measurement matrices were drawn from
a circularly symmetric complex Gaussian distribution.

The associated reconstruction times and NMSE’s are pre-
sented in Figure 13. They show that at these (not extremely
high) resolutions, prVAMP with dense matrices is still faster
than prSAMP with the block matrices. prVAMP with block
matrices is faster still. Using block matrices with either
algorithm produces a small increase in NMSE. Note that
at higher resolutions, especially when a dense measurement
matrix could no longer be stored in memory, using block
matrices would be more beneficial. All these results were on
a CPU, but prVAMP can easily be mapped onto a GPU for

further acceleration.

APPENDIX C
IMAGING PERFORMANCE AS A FUNCTION OF SAMPLING

RATE

All the previous reconstruction results used 256 × 256
camera pixels to reconstruct 64 × 64 SLM pixels, for an
effective sampling rate of m

n = 16. As one reduces the
sampling rate, one expects the reconstruction accuracy to
deteriorate. In Figure 14 we provide intensity-based and field-
based reconstructions at sampling rates of m

n = 12, m
n = 2,

and m
n = 1 when the illumination bandwith is 10 nm. Some-

what surprisingly, both the field-based reconstructions and
the intensity-based reconstructions suffer about equally from
low sampling rates (though the field-based reconstructions do
suffer marginally more).
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Fig. 12. Low SNR binary measurement matrices recovery accuracies. This problem is especially challenging. At sampling rates of 5, only prSAMP and
prVAMP offer even reasonable recovery accuracies.
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