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Abstract 

 The advancement of glass science has played a pivotal role in enhancing the quality and length of 

human life. However, with an ever-increasing demand for glasses in a variety of healthcare applications – 

especially with controlled degradation rates – it is becoming difficult to design new glass compositions 

using conventional approaches. For example, it is difficult, if not impossible, to design new gene-activation 

bioactive glasses, with controlled release of functional ions tailored for specific patient states, using trial-

and-error based approaches. Notwithstanding, it is possible to design new glasses with controlled release 

of functional ions by using artificial intelligence-based methods, for example, supervised machine learning 

(ML). In this paper, we present an ensemble ML model for reliable prediction of time- and composition-

dependent dissolution behavior of a wide variety of oxide glasses relevant for various biomedical 

applications. A comprehensive database, comprising of over 1300 data-records consolidated from original 

glass dissolution experiments, has been used for training and subsequent testing of prediction performance 

of the ML model. Results demonstrate that the ensemble ML model can predict chemical degradation 

behavior of glasses in aqueous solutions over a wide range of pH relevant for their usage in a human body 

where the environment can be highly acidic (for example, pH = 3), for example, due to secretion of citric 

acid by osteoclasts, or highly alkaline (pH ≈10) due to the release of alkali cations from bioactive glasses. 

Outcomes of this study can be leveraged to design glasses with controlled dissolution behavior in various 

biological environments.    

 

Keywords: biomedical; glass dissolution; ensemble machine learning; random forest; and additive 

regression 
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1. Introduction 

 Biomaterials are typically divided into the following three categories – (i) first-generation; (ii) 

second-generation; and (iii) third-generation biomaterials – principally based on their dissolution behavior 

in aqueous biological media (e.g., human blood plasma and saliva). Such interaction critically dictates a 

given biomaterial’s overall behavior, and thus its function, in the human body [1]. The first-generation 

biomaterials were supposed to be bio-inert; as such, these materials were designed to exhibit high chemical 

durability (i.e., “practically insoluble,” with little-to-no dissolution) when in contact with biological or non-

biological fluids (e.g., when used in dental applications). The most common examples of first-generation 

biomaterials are metallic or ceramic (e.g., Al2O3 and ZrO2) implants, Y2O3-Al2O3-SiO2 based radioactive 

glass microspheres used for the treatment of hepatocarcinoma [2], and lithium disilicate based glass-

ceramics, generally designed in the Li2O-K2O-Al2O3-SiO2 glass-forming system, for application in dentistry 

[3]. The second-generation biomaterials were designed with moderate chemical durability with respect to 

their first-generation analogues. These materials were designed to interact – in a gradual manner – with the 

biological fluids and progressively degrade, thus resulting in mineralization (e.g., formation of 

hydroxyapatite layer on the glass surface) and bonding with tissue or bone. The first bioactive material ever 

produced was a glass designed in the Na2O-CaO-SiO2 ternary system, known as 45S5 Bioglass® [4]. Since 

its invention, several bioactive glass compositions with varying dissolution kinetics (when in contact with 

biological fluids) have been designed and reported in the scientific literature [5–13]. In the case of third-

generation biomaterials, the synthetic material is expected to be bioactive and resorbable, such that, once 

implanted in the human body, the material would aid in the healing process. When in contact with 

physiological fluids, the bioactive glass is expected to deliver chemical conditions (i.e., ionic species and 

complexes) that commence a synchronized sequence of cellular level responses, ultimately resulting in 

expression of genes required for living tissue regeneration [14]. The most common examples of third-

generation biomaterials are borate and borosilicate based glasses that are designed to undergo controlled 

chemical degradation (followed by resorption), resulting in a controlled release of functional ions [7,15,16]. 
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 It is evident from the abovementioned description that although the three generations of 

biomaterials may differ in their chemical make-ups and final applications, one common property that is 

crucial for their design is their dissolution behavior (chemical durability) upon contact with biological or 

non-biological fluids. Therefore, accurate prediction of aqueous dissolution of glasses – in relation to their 

pristine compositions – can facilitate the design of glasses for application in a broad spectrum of healthcare. 

However, predicting dissolution behavior of glass in an aqueous solution (solvent) is an arduous task owing 

to its dependence on a myriad of factors, thus giving rise to prodigiously large degrees of freedom. The 

aforesaid factors include, but are not limited to, bulk and surface chemistry of glass, pH and chemistry of 

the solvent, temperature, and the methodology used to study glass corrosion [17,18]. The two major 

challenges that impede the design and development of biomedical glasses with controlled dissolution 

behavior are: (i) lack of knowledge about underlying compositional and structural drivers that control the 

mechanism and kinetics of glass dissolution in aqueous solutions; and (ii) lack of reliable computational 

models to decipher the dominant compositional and structural descriptors which upon convergence with 

the experimental data on glass dissolution can be used to develop predictive Quantitative Structure-

Property Relationship (QSPR) models. These knowledge-gaps have, in effect, necessitated the prevailing 

trend to design biomedical glasses — especially those that exhibit desired dissolution behavior — using 

semi-empirical, expensive, and time-consuming Edisonian approaches involving rigorous and iterative 

synthesis-testing cycles [19]. A notable example is 13-93B3 glass, which has primarily been derived from 

a well-known silicate-based bioactive glass 13-93 through trial-and-error based iterative cycles of glass 

syntheses (through partial replacements of SiO2 with B2O3) and property-assessments, with a little rationale 

or revelation of the underlying glass-formation mechanisms [7,20].  

A promising approach towards the design of original glasses for application in the healthcare 

industry is through the analysis of a large set of experimental data using artificial intelligence-based 

methods. The idea of using data-driven methods – such as supervised machine learning (ML), a tributary 

of artificial intelligence – for prediction and optimization of materials’ properties (e.g., dissolution 

behavior) forms the premise of the United States Materials Genome Initiative [21,22]. In pursuit of the idea, 



Accepted for publication in Acta Biomaterialia  

 

5 

 

researchers from various scientific domains have compiled extensive datasets of materials and subsequently 

employed ML models to better understand and reveal the underlying Hume-Rothery-like QSPR models 

[23–26]. Knowledge of such relationships for any given material can be leveraged to promptly and reliably 

predict a material’s properties or to design a new material that meets the desired set of performance criteria 

[27–32]. Accordingly, the work presented here is an attempt to unify the powers of experimental materials 

science and artificial intelligence to design glasses with tailored dissolution behavior for their potential 

applications in healthcare.  

 

2. Approach to predict the dissolution of glasses using machine learning 

In the context of glasses, ML is highly promising owing to its unique abilities: (i) to reveal – in an 

explicit manner – the influential factors that dictate properties (e.g., dissolution behavior) of the material 

even when the underlying structure-property correlations are highly nonlinear and non-monotonic; (ii) to 

leverage the knowledge of structure-property relationships to make predictions in previously untrained 

compositional domains; and (iii) to determine optimum composition of the material that is expected to 

deliver desired properties. Indeed, past studies – albeit a few – have shown that ML models, when trained 

using a sufficiently large and diverse database, can reliably predict various properties of glasses, including 

dissolution behavior [27,33,34], mechanical properties [35], glass-forming ability [36], and crystalline-to-

amorphous phase transition temperatures [37,38]. However, when using ML as a predictive tool to design 

biomedical glasses with disparate dissolution behavior, the problem is two-fold. The first major challenge 

is the unavailability of comprehensive – yet consistent – experimental datasets of biomedical glass 

dissolution in scientific literature. This may be attributed to several reasons, majority of which originate 

from inconsistencies in synthesis and processing conditions of glasses further aggravated by variations in 

methods of characterization of their properties as has been discussed in our previous paper [15]. The second 

challenge is the choice of an appropriate ML model that is capable of handling highly nonlinear and non-

monotonic cause-effect relationships. The majority of prior studies have used artificial neural networks 

(ANN), support vector machine (SVM), and decision trees (DT) based ML models to predict glass’ 
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properties [33,34]. It is pertinent to point out that ANN and SVM – while often considered reliable – could 

falter at making accurate predictions in data-domains that feature highly nonlinear (e.g., periodic) and/or 

highly non-monotonic functional relationship between the output and inputs [39–42] – as is expected to be 

the case with structure-property relations in glasses. This is because ANN and SVM are premised on local 

optimization-and-search algorithms (e.g., the back-propagation mechanism that is used in neural network-

based ML models for optimization of activation functions’ parameters), which significantly augment the 

prospect of convergence at (or around) a local minimum as opposed to the global minimum. Because of 

this drawback, ANN and SVM models could produce disparate – even inferior – prediction performances 

as they are progressively trained with new datasets [39–42]. The other commonly-used family of ML 

models, that is, the DT models (e.g., the M5Prime model [43] and the classification-and-regression-trees 

model [44]), split the overall training database into multiple smaller ones in a manner that the input-output 

relationship within every small subset is linear (i.e., described by multivariate linear functions)  [45–47]. 

Since this ‘flowchart-like’ structure of the DT model makes it efficient (in terms of computational 

complexity) and simple-to-use, its prediction accuracy is substantially relegated when the actual input-

output correlation within the training database is highly nonlinear [42]. In recent studies [33,35,42], it has 

been shown that the random forests (RF) model, based on modification of the bootstrap aggregation 

decision tree algorithm, outperforms several standalone ML models in terms of prediction of materials’ 

properties. These studies have attributed the RF model’s superior prediction performance to its unique 

ability to process variables – regardless of whether they are discrete or non-discrete (continuous) – over 

data-domains featuring various permutations and combinations of complexities [e.g., (non)monotonicity 

and (non)linearity] [48]. In spite of these merits, developing an RF model for a progressively growing 

database – for example, when new data-records are periodically amended to an existing database – can be 

challenging [49,50]. This is because the RF model comprises of two hyper-parameters (i.e., number of trees 

in the forest, and number of leaves per tree) that need to be optimized (by the user) in relation to nature as 

well as volume of the database. Typically, such optimizations are carried out using trial-and-error based 

approaches or using a multi-fold cross-validation method [51], which can be time-consuming and result in 
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issues like high bias (underfitting) or high variance (overfitting) [24,49,50]. In recent studies [42,52], it has 

been shown that this deficiency of the RF model can be overcome – and its prediction performance can be 

boosted – by hybridizing it with an optimization algorithm (e.g., the firefly algorithm). The optimized 

algorithm is able to vary-and-optimize the aforementioned hyper-parameters of the RF model 

autonomously (i.e., without any user intervention) in relation to characteristics of the training database. 

This not only improves the prediction performance of the RF model but also facilitates its adaptation 

(through adjustments in values of the RF model’s hyper-parameters) when it is re-trained using newer or 

larger training databases. The standalone RF model has previously been used to predict the dissolution 

behavior of silicate glasses [27,33,34]. However, to the best of the authors’ knowledge, the RF model – or 

any other RF-based ML model, for that matter – have never been used for biomedical glasses. Furthermore, 

in prior studies [27,33,34], ML models have been used for prediction of dissolution kinetics exclusively 

during stage I of glass corrosion.‡ This is good in the cases where the controlled release of functional ions 

is important for specific biological applications, for example, release of Ag+ from the glass to promote 

antibacterial activity, or Cu2+ to promote angiogenic behavior [16]. However, in the cases where long-term 

performance of glasses is important, characterization and understanding of stage II (residual rate regime) 

of glass dissolution along with stage I is of great practical significance. As an example, during stage II of 

dissolution of bioactive glasses, the precipitation of amorphous calcium phosphate on the silica–rich gel 

layer and its slow transformation of crystalline hydroxyapatite occurs, which further interacts with collagen 

fibrils of damaged bone to form a bond [53]. Nevertheless, experimental measurements of stage II 

dissolution of biomedical glasses are scarce in literature. Furthermore, prediction of long-term glass 

dissolution behavior is difficult because of the complexities that arise from large changes in surface area of 

glass particulates and solvent chemistry (i.e., pH, ionic strength, and under-saturation) with respect to their 

                                                      
‡ When a glass is exposed to dilute solution, the process begins by corrosion of the glass surface with no solution 

feedback at an initial rate of r0 (sometimes called the forward rate). This period, termed Stage I, produces a rate that 

is maximum for the given temperature and pH; and is controlled by the hydrolysis of network forming species. As the 

concentration of glass formers in solution increases, the driving force for dissolution decreases, and alteration layers 

begin to form. The change in mechanistic drivers leads to a nearly constant and slow residual rate (rr) during a period 

termed Stage II. 
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initial values. Given the superior prediction performance of the hybridized RF model, in terms of predicting 

physiochemical behavior of complex material systems [42,52], it is deemed important to examine if the 

same (or a similar) model would be able to produce high-fidelity predictions of composition-dependent 

dissolution behavior of biomedical glasses, not just during stage I but also through stage II.  

To overcome the aforesaid challenges, in the past five years, the authors have collected a 

comprehensive experimental dataset on the dissolution of oxide glasses over a broad compositional space 

encompassing the Na2O-B2O3-SiO2, Na2O-Al2O3-B2O3-SiO2, Na2O-B2O3-P2O5-SiO2, and Na2O-Al2O3-

B2O3 systems. The choice of glass composition systems has been made based on their chemical and 

structural diversity along with their proposed potential applications in healthcare. As examples: 

aluminosilicate, aluminoborate, and aluminoborosilicate glasses are used as glass-ionomer cements [54–

57] ; borate, aluminoborate, and borosilicate based bioactive glasses are used in fields of hard and soft tissue 

engineering [7,15,58–60]; and borate and aluminoborate glasses are used for radiation synovectomy 

treatment of rheumatoid arthritis [61,62]. Emphasis has been given to exhaustively, and in a consistent 

manner, account for the influential factors – for example, time, initial pH of solvent, and temperature – that 

affect the dissolution behavior of glasses. The aim is to use the experimental data along with an ensemble 

ML model – developed by combining the random forests (RF) model with an optimization technique, that 

is, additive regression (AR) – to predict the time-dependent dissolution (measured in terms of surface area 

normalized critical ion mass loss) of the glasses in relation to their compositions and influential 

physiochemical properties (e.g., temperature) of the system. The performance of the ensemble ML model 

is benchmarked – on the basis of five statistical parameters as well as a singular composite performance 

index (CPI) – against six commonly-used standalone ML models [i.e., linear regression (LR); elastic net 

regression (ENR); Gaussian Process Regression (GPR); multilayer perceptron ANN (MLP-ANN); SVM; 

and RF]. On the basis of such comparisons, it is shown that the hybrid ML model is able to produce high-

fidelity predictions of glass dissolution while outperforming all standalone ML models in terms of 

prediction performance.  
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3. Machine learning  

Section 3.1, below, presents a concise overview of six standalone models (MLP-ANN; SVM; LR; 

ENR; GPR; and RF) that have been used in this study. Section 3.2 briefly describes the ensemble ML model 

(AR-RF), developed by hybridizing the RF model with an optimization scheme (i.e., AR: additive 

regression). Further details (e.g., underlying algorithms) pertaining to the ML models are provided in 

Supplementary Information.  

 

3.1. Overview of standalone machine learning models 

Artificial neural network – abbreviated as ANN – consists of multiple neurons arranged in hierarchical 

layers. Each of the neurons serves as a computational element and is responsible for processing information 

relayed from the previous layer of neurons (using sigmoidal or logistic-transfer activation functions) and 

transmitting the processed information to the next layer of neurons [63]. The structure of ANN resembles 

the network of interconnected neurons within the human brain – wherein information is processed (and 

simplified) and transmitted from one layer to another in a hierarchical manner. Multilayer perceptron 

artificial neural network (MLP-ANN) is a subclass of ANN with multiple layers of neurons, and, therefore, 

strong self-learning capabilities [64]. Support vector machine (SVM), a commonly used ML model for both 

classification and regression purposes, approximates the correlation – either in the form of multivariate 

linear or nonlinear functions – between inputs and output of a dataset. This is accomplished by employing 

an optimization scheme – as opposed to a regression approach – geared towards minimizing an objective 

cost function (i.e., ε-insensitive loss function), or simply put, to transform input data into a higher-

dimensional structure such that data with similar characteristics are sequestered from dissimilar ones [65]. 

Linear regression (LR) is a simple ML technique that uses piecewise linear functions – driven by 

independent predictors – to predict a numerical target based on a set of independent inputs [66]. Elastic net 

regression (ENR) is a modified form of linear regression. The ENR model was originally developed [67] 

to improve the prediction performance of the LR model, especially when applied to datasets pertaining to 

heterogeneous systems with large number of variables. The improvement involves identifying significant 
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variables and then assigning larger coefficients to them as compared to less significant variables. If a given 

variable is deemed inconsequential, its coefficient is reduced to 0. Gaussian process regression (GPR) is a 

regression algorithm based on the Bayes’ theorem, which identifies the most probable outcome (or 

hypothesis) on the basis of prior knowledge acquired from the training database [68]. The GPR model 

employs a stochastic process to collect random variables, any finite number of which have a joint Gaussian 

distribution [69]. The variables – which represent prior knowledge – are used to estimate the probability of 

a given outcome, and compare it against the probabilities of all possible outcomes. Through such 

comparisons, the prior knowledge is updated iteratively throughout the training process; ultimately, the 

outcome with the highest probability is selected as the final prediction. Random forests (RF) is a 

modification of [decision tree algorithm + bootstrap aggregation], premised on amalgamation of bagging 

and adaptive nearest neighbors to achieve logic-based inference of input-output correlations in a dataset. 

RF employs two-stage randomization to grow a large number of uncorrelated “deep” trees, all without any 

pruning or smoothening (unlike conventional decision trees-based models, which do require pruning during 

the training process) [70,71].  

The authors would like to point out that all standalone ML models described above comprise of 

hyper-parameters that needs to be adjusted by the user to improve their prediction performance. In some 

models, user intervention is also required to select optimal functions (e.g., type of kernel function used for 

transformation of dimensionality of data in SVM; and type of activation function used for activation of 

neurons in MLP-ANN). In this study, for the selection of optimal functions and hyper-parameters for each 

ML model, 10-fold cross-validation (CV) method [47,51,72] was used as the primary performance-

assessment method. In short, the 10-fold CV method randomly splits the training database into 10 equisized 

folds. The ML model – the hyper-parameters/functions of which need to be optimized – is trained using 

data-records from 9 folds, and subsequently blind-tested against data-records in the 10th fold. This process 

is iteratively repeated 9 times – each time using a unique combination of folds for training of the ML model 

and its blind-testing. During each iteration, the relevant parameters and functions of the ML models are 

fine-tuned such that prediction errors [measured in terms of root mean squared error (RMSE)] are 
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progressively minimized. Functions and parameters’ values after the last iteration are selected as 

“optimum,” and used – without further changes – for subsequent testing of the ML model against a blind 

test dataset.  

 

3.2. The ensemble machine learning model 

In this study, an ensemble ML model (AR-RF) was developed by hybridizing the RF model with 

the additive regression (AR) technique. AR is an optimization algorithm based on the gradient boosting 

approach [73]. With the ensemble model, AR was paired with the RF model to semi-autonomously 

determine optimum values of the two hyper-parameters of the RF model (i.e., nt and nLV, representing 

number of trees and number of leaves per tree, respectively), thereby improving its prediction performance. 

The ensemble ML model’s structure constitutes three separate stages of processing of the database.  

 In stage A, the RF model is employed, wherein the values of nt and nLV are set at 450 and 5 (values 

determined as optimum by the 10-fold CV method), respectively. An objective function, F, is defined. 

The objective function is a numerical value equivalent to the total RMSE of RF model’s predictions, 

as estimated at the end of stage A. The “deep” unpruned trees constructed by the RF model are retained.  

 In stage B, the AR technique is implemented. The residuals of the predictions (i.e., RMSE) are used to 

construct a second set of trees, along with the original “deep” trees. The objective here is to train the 

second set of trees – by varying-and-optimizing the values of two hyper-parameters of the RF model 

(nt and nLV) – to fit the residuals such as that the overall training error is reduced. This tandem between 

the aforementioned pair of steps – of performing predictions using the RF model, and subsequently 

refining the prediction performance by fitting the residuals – is repeated over several iterations until 

convergence is reached, that is, reduction in training error is < 10-6 units for 3 successive iterations.  

 Finally, in stage C, the RF model is employed to make predictions against new test dataset(s). For such 

predictions, the AR-determined optimum values of nt and nLV are used without any further changes.  
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4. Experimental section 

4.1. Glass compositional design  

Alkali borosilicate glasses: Figure 1a presents the batched and analyzed compositions of the sodium 

borosilicate glasses highlighted in the Na2O–B2O3–SiO2 ternary diagram. This composition-space was 

chosen so as to provide a large range of homogenous glasses in the Na2O-B2O3-SiO2 system, encompassing 

both sodium silicate and sodium borate endpoints as well as glasses of intermediate compositions. The 

details about the composition, processing, and dissolution behavior of the glasses can be found elsewhere 

[15]. 

Alkali aluminoborate glasses: Figure 1b presents the ternary diagram of the investigated glasses, 

overlaying target, and measured compositions, as well as glass-forming range. The glasses were synthesized 

using the melt-quench technique. Overall, the glasses encompass a broad compositional domain including 

peralkaline (Na/Al>1), metaluminous (Na/Al=1), and per-aluminous (Na/Al<1) regions of the Na2O-Al2O3-

B2O3 ternary system. The details about the synthesis, processing and dissolution behavior of glasses have 

been published elsewhere [74].  

Alkali aluminoborosilicate glasses: The glasses in the system Na2OAl2O3 B2O3SiO2 were synthesized 

using the melt-quench technique. These glasses cover a broad composition space in the Na2O-Al2O3-B2O3-

SiO2 system, extending from well-studied sodium aluminosilicate compositions to less-studied B2O3-rich 

compositions. The details about the composition, processing, and dissolution behavior of the glasses can 

be found elsewhere [75].  

Alkali borophosphosilicate glasses: The glasses in the system Na2O–B2O3–P2O5–SiO2 were designed in 

the per-alkaline (Na/B >1), sub-boric (Na/B = 1), and meta-boric (Na/B <1) regimes. Accordingly, three 

P2O5–free sodium borosilicate glasses, as plotted in Figure 1a, were chosen as the baseline compositions. 

Further, P2O5 was incorporated in the glasses in a manner that the Na/B molar ratios of the baseline 

compositions remain constant across the composition walk. The details of the investigated glass 

compositions (mol.%) are presented below. 

(i) Glasses with Na/B >1:  x P2O5  (100-x) (25Na2O-20B2O3-45SiO2)  
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(ii) Glasses with Na/B =1: x P2O5  (100-x) (25Na2O-25 B2O3-50 SiO2) 

(iii) Glasses with Na/B <1: x P2O5  (100-x) (25Na2O-30B2O3-45SiO2) 

where, x varies between 0 – 5 mol.%. The glasses were synthesized using the melt-quench technique as per 

the methodology described in our previous article [15]. The details about the dissolution behavior of glasses 

will be published in our forthcoming article. 

 

4.2. Experimental dataset of glass dissolution  

The dissolution tests were performed on glass particles with their particle size varying between 300 

– 425 µm. A detailed methodology of sample preparation, and surface area analysis (using ImageJ software) 

has been published in our previous article [15]. The dissolution behavior of glasses was studied by 

submerging 20 – 60 mg of glass particles in 30 – 50 mL of the selected aqueous solutions (corresponding 

to SA/V [i.e., the ratio of surface area (SA) of glass to volume (V) of solution] of 2 – 7.5 m-1; SA/V was 

held constant in each set of experiments as can be seen in Table 1). Acidic pH experiments (pH 0-to-4), 

were performed in HCl (1 M, 0.01 M, and 0.0001 M HCl for pH 0, 2, and 4, respectively). Near-neutral pH 

experiments (pH 5-9) were performed in either DI water or 0.1 M Tris-HCl/Tris-HNO3 buffer solutions. 

Tris-HCl and Tris-HNO3 solutions were prepared by adding Tris(hydroxymethyl)aminomethane to DI 

water and adjusting the pH to the desired value by adding appropriate amounts of 1 M HCl or 1 M HNO3. 

Basic solutions (pH 10-to-13) were prepared by diluting concentrated tetramethylammonium hydroxide to 

0.0001 M and 0.1 M solutions with DI water for pH 10 and pH 13, respectively. All powder–solution 

mixtures were immediately sealed into sterilized polypropylene flasks (static media; aqueous solution was 

not replenished with time) and placed in an oven at temperatures ranging from 35 – 65 ºC. The dissolution 

experiments ranged from as little as 2 minutes to 120 days, depending on the glass composition and 

experimental conditions used. A summary of the dissolution protocols for each system studied can be found 

in Table 1. In addition to analyses of neat (unused) and blank (glass-free) control solutions, all the 

experiments were performed in triplicates to evaluate uncertainty of final results. The pH evolution of 
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solution during glass corrosion was measured at room temperature using a pH meter (Mettler Toledo 

InLab® Pro-ISM). The liquid aliquots of the corrosion solutions were filtered and acidified (with HNO3) 

before being chemically analyzed by either inductively coupled plasma – optical emission spectroscopy 

(ICP-OES, PerkinElmer 7300 or 8300) or inductively coupled plasma – mass spectroscopy (ICP-MS, 

Agilent 7700s), depending upon expected elemental concentration levels (where ICP-MS has detection 

limits near <0.02-0.05 and ICP-OES has detection limits near <0.1-0.2 ppm; each of the detection limits 

listed are element-specific). The normalized loss (NL) of each element (Na, Al, B, P, and Si) released from 

glasses into the surrounding solution was calculated using Eq. 1, 

𝑁𝐿𝑖 =
𝐶𝑖 − 𝐶𝑜

(
𝑆𝐴
𝑉

) 𝑓𝑖

 
(1) 

where Ci is the concentration of element i in the solution as detected by ICP-OES or ICP-MS; fi is the 

mass fraction of the element i in the glass; and Co is the background concentration (as determined from 

blank solutions). When the normalized loss data is plotted against time and linearly fit, the approximate 

forward dissolution rate can be estimated. 

 

5. Database Development and Assessment of Prediction Accuracy of ML Models  

5.1. Development of database 

 Datasets collected from the glass dissolution studies (section 4.2) were consolidated into a singular 

database, and then used for training the ML models (section 3.0; and Supplementary Information) and 

subsequently for evaluation of the models’ abilities to predict time-dependent glass dissolution – assessed 

in terms of critical ion (CI) normalized mass loss – in previously untrained compositional domains. The 

database consisted of 1364 unique data-records, wherein each data-record had 10 inputs and 1 output. The 

inputs included pertinent physiochemical properties of the [glass + solution] system: initial pH of the 

solution; elemental composition of the glasses (in mass fraction); temperature (in ℃) at which the 

dissolution studies were carried out; specific surface area (in m2.g-1) of the glass; volume of the solution (in 

cm3); and time (in min). It is acknowledged that there are additional parameters relevant to solution 
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chemistry (e.g., ionic strength, and type of ionic species) that could potentially affect dissolution behavior 

of the glasses (although not as appreciably as solution pH does [76]). However, as these parameters were 

not consistently available for all experiments, they were not included in the database. The output parameter 

included the extent of glass dissolution, expressed in the form of CI normalized mass loss (g. m-2) of the 

glass. For glasses consisting of boron (B), B was considered as a critical ion; and for selected glasses (i.e., 

only 98 out of 1364) that were devoid of any boron, silicon (Si) was chosen as the critical ion. Here it should 

be noted that for the 98 glasses devoid of boron, the alteration rate calculation from silicon release during 

Stage II probably underestimates the rate values because Si is not a tracer (unlike boron). Statistical 

parameters pertaining to the database are shown in Table 2.  

 

5.2. Assessment of prediction accuracy of ML models 

For the purposes of training, and to assess the prediction performance, of ML models, the 

experimental database (described in section 5.1) was randomly apportioned into two subsets: one for 

training and the other for testing. 75% of data-records of the parent database (i.e., training set) were used 

for training of the ML models (i.e., optimization of functions and values of hyper-parameters); and the 

remaining 25% of the data-records (i.e., testing set) were utilized for assessment of prediction performance 

of the models. Various past studies [42,47,77,78] have also used such split of 75%-to-25% in the parent 

database for training and testing of ML models as such splitting permits not only adequate optimization of 

the ML models functions and parameters but also the ability to test prediction performances of the ML 

models over previously untrained data-records. It is clarified that while splitting of the parent database was 

done in a randomized manner, care was taken to ensure that the training dataset was archetypal – albeit a 

shortened version – of the parent database. To this end, the training set was formulated in manner that each 

input variable spanned over a wide range between (and excluding) its minimum and maximum values in 

the parent database. Such formulation of the training dataset is important to ensure that, during training, the 

ML models are able to learn composition-dissolution behavior links in the glasses not just during stage I 

(i.e., within minutes of dissolution) but also during the later stages (i.e., after several hours of dissolution).   
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To quantitatively measure prediction performance of the ML models (against the testing set), 5 

distinct statistical parameters were extracted through comparisons of the models’ predictions against actual 

measurements. These parameters include: coefficient of determination (R2); root mean squared error 

(RMSE); Person correlation coefficient (R); mean absolute percentage error (MAPE); and mean absolute 

error (MAE).  Equations used to calculate the aforesaid parameters can be found in [42]. 

𝐶𝑃𝐼 =  
1

𝑁
∑

𝑃𝑗 − 𝑃𝑚𝑖𝑛,𝑗

𝑃𝑚𝑎𝑥,𝑗 − 𝑃𝑚𝑖𝑛,𝑗

𝑗=𝑁

𝑗=1

 (2) 

The five statistical parameters, described above, were integrated into the composite performance 

index (CPI, see Eq. 2) [42,47,79], to obtain a singular, unified measure of prediction performance of each 

ML model. In Eq. 2: N (=5) is the total number of statistical parameters used to measure performance of 

the models; Pj is magnitude of the jth statistical parameter; and Pj, min and Pj,max are the minimum (i.e., worst) 

and maximum (i.e., best) values of the jth statistical parameter. With Eq. 2 formulated in the manner 

described here, CPI of any given ML model can vary between 0-and-1. The best ML model would acquire 

a CPI value of 0 (or the lowest value) and the worst ML model would obtain a value of 1 (or the highest 

value). Therefore, on the sole the basis of CPI values – which accounts for all five statistical parameters 

(i.e., performance measures) – the ML models can be ranked (from best to worst) in terms of their prediction 

performances.    

 

6. Results and Discussion 

6.1. Prediction of Glass Dissolution Behavior 

In typical regression-oriented ML models, the overall quality of the model is assessed in terms of 

two aspects: (i) capability of the model to uncover underlying cause-effect correlations from the training 

set; and (ii) to apply the learned knowledge to perform predictions in previously unseen data-domains (i.e., 

new sets of inputs). To put it simply, prediction performance of a ML model distills down to its capability 

of identifying one or more trends in the dataset linking the input variables with the output, and subsequently 

using such trends for interpolation – and even extrapolation, in some cases – in blank data-domains. To 
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assess the accuracy of predictions produced by ML models – and to order them on the basis of their 

prediction performances – an experimental database, comprised of glasses’ compositions, experimental 

process variables (i.e., SA/V, initial pH of the solvent, and temperature), and time-dependent dissolution 

behavior of the glasses (described in section 5.1) was used. Readers are reminded that, in both the training 

and testing datasets, each data-record featured 10 inputs and 1 output (i.e., normalized CI mass loss of the 

glass). Predictions of dissolution of glasses belonging to the testing set, as yielded by the ML models, are 

compared against experimental measurements in Figures 2-5; for reference, predictions of dissolution of 

glasses from the training set are also included. Statistical parameters pertaining to prediction of glasses 

from the testing set are itemized in Table 3; here, parameters pertaining to glasses from the training set are 

not included as their magnitudes are similar to their counterparts from the testing set.   

 As can be seen in Table 3, predictions of glass dissolution, produced by the ML models, range 

from poor to excellent, with the Pearson correlation coefficient (R) ranging from 0.39 to 0.99 and the root 

mean squared error (RMSE) ranging from 11.2 to 75.2 g. m-2. If we consider the maximum absolute 

percentage error (MAPE) of the best performing ML model, the margin of error in predictions of glass 

dissolution is ± 9 g m-2. This is excellent considering that even in experimental measurements of glass 

dissolution, typical standard deviations are within the same order of magnitude as 10 g m-2  [80]. On the 

basis of the values of CPI – the integrated measure of prediction performance – the ML models can be 

ranked as ensemble ML > standalone RF > SVM > MLP-ANN > LR > GPR > ENR. 

The ENR model had the poorest prediction performance of all ML models implemented in this 

study. As can be seen in Figure 2a, across the 342 cases used for evaluation of the model’s prediction 

performance, majority of predictions exhibited significant departures from the actual values. LR and GPR 

models (Figure 2b-c) produced superior prediction performances compared to the ENR model, albeit 

significantly lower than the SVM, MLP-ANN, and RF-based models. Such poor prediction performances 

of the ENR, LR, GPR models are not surprising because the former two models use multivariate linear 

functions and the latter uses Gaussian distribution functions over datasets that – in all likelihood – feature 

far more complex correlations between the input variables and the output. It is worth pointing out that non-
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linear and non-monotonic composition-properties correlations are not unique to biomedical glasses; glasses 

of other families (e.g., silicates) also feature such complex correlations. Indeed, in a recent study [33], it 

was shown that ML models based on linear (LR) and Gaussian distribution (ENR) functions – even when 

trained and optimized in a comprehensive manner (using a multi-fold CV method, as used in this study) – 

failed to capture the inherently nonlinear relationship between dissolution rate of silicate glasses and the 

pH of the contacting solution. The models’ prediction performances deteriorated even further when, in 

addition to pH, other influential variables of the system (e.g., composition of silicate glasses) were varied 

[33]. Therefore, based on the above discussion, it can be said that for prediction of properties of any given 

material, it is crucial to select ML models founded on mathematical formulations that are in alignment with 

the material’s elementary composition-properties relationship. In the specific case of glass, it is important 

to select ML models premised on nonlinear mathematical formulations; otherwise, the models’ predictions 

are rendered inaccurate, thereby making them unsuitable for blind predictions as well as for optimizations.   

     As shown in Figure 3, prediction performances (assessed in terms of R2) of MLP-ANN and SVM 

models were similar, and superior compared to LR, GPR, and ENR models (Table 3). As the MLP-ANN 

model employs a series of nonlinear logistic-transfer functions – as activation functions for the neurons – 

to develop input-output correlations, it is not surprising that its prediction performance supersedes those of 

models constructed using linear functions. Similarly, SVM, on account of its classification-and-

optimization-based structure and use of nonlinear kernel function (to develop hyperplanes for data 

classification), is proficient at handling nonlinear input-output correlations, thus making it suitable for 

prediction of composition-dependent dissolution behavior of glasses. As previously stated in section 2.0, 

both MLP-ANN and SVM models utilize local search-and-optimization mechanism during their training 

[39–42]. While this mechanism generally leads to faster convergence and reliable detection of extrema in 

the database, it endures a characteristic disadvantage of converging to a (one of several) local minimum 

rather than the global minimum. This drawback is often inconsequential – with little-to-no effect on 

prediction performance – in datasets wherein the functional relationship between the input variables and 

output is broadly linear and/or monotonic [41,42]. However, in the case of glass dissolution, the input-



Accepted for publication in Acta Biomaterialia  

 

19 

 

output correlations are expected to be complex (presumably highly nonlinear). This could, potentially, 

render the predictions of MLP-ANN and SVM models inaccurate – especially in comparison to ML models 

that are better at handing highly nonlinear input-output correlations within the database (e.g., the RF model; 

see Table 3). In this study, the hyper-parameters (i.e., MLP-ANN: number of hidden layers and number of 

neurons per hidden layer; and SVM: kernel function and parameters) of the models were rigorously 

optimized through the 10-fold CV method (see section 3.1). On account of this optimization, it is expected 

that the inherent drawbacks of the MLP-ANN and SVM models were overcome – at least partially – thereby 

allowing them to produce predictions with superior accuracy compared to other ML models that were based 

on linear or Gaussian distribution functions (see Table 3). In the context of MLP-ANN and SVM models, 

it is important to point out that several past studies have posited that the models’ prediction performances 

can be bolstered by using: Genetic programing [81,82]; or bootstrap aggregation based methods (e.g., 

boosting) [45,47]; or by using theoretically-guided constraints (e.g., to eliminate negative, thus unrealistic, 

values of CI normalized mass loss that were produced as outputs of ML models in Figure 3). While, in this 

study, these aspects – of improving prediction performance of MLP-ANN and SVM models – have not 

been examined, the performance of an ensemble ML model, wherein the RF model is hybridized with a 

gradient boosting-based AR technique, has been examined and benchmarked against the standalone RF 

model (described below).  

On the basis of statistical parameters listed in Tables 3, and results shown in Figure 4, it is clear 

that in terms of prediction accuracy, the RF model is superior compared to all standalone ML models that 

were used in this study. This result is not surprising – and, in fact, in very good agreement with prior studies 

[33,34,42,78] that have also reported that the prediction performance of RF model often supersedes those 

of several standalone ML models. Superior prediction performance of the RF model is attributed to its 

structure – which comprises of a large number of “deep” trees that are grown without any smoothening or 

pruning. The unpruned “deep” trees allow data in the training set to be split in a logical manner, which, in 

turn, not only reduces generalization errors but also serves to mitigate overfitting (high bias) of the training 

data. Furthermore, the two-stage randomization employed in the RF model (see Supplementary 
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Information for more details) diminishes correlation among the unpruned trees, thus reducing variation 

(underfitting) and ensuring homogeneity among the data represented in each of the tree-nodes. It is 

interesting to note that prediction performance of the RF model was bolstered when it was hybridized with 

the AR technique. This is better shown in Figure 4b and Table 3. As can be seen, the ensemble (AR-RF) 

model reliably captured the functional relationship between the input variables and output, and was able to 

leverage the learned relationship to reliably interpolate in previously untrained data-domains. Such 

improvement in prediction accuracy of the ensemble model – vis-à-vis the RF model – is elicited by the 

inclusion of AR, which iteratively varies-and-optimizes the two hyper-parameters of the RF model (i.e., 

number of trees and leaves per tree) until the deviation between actual values and model’s predictions 

reaches its ultimate minimum. It is also interesting to note in Table 3 that compared to the standalone RF 

model, prediction performance of the ensemble model is better, albeit only slightly. The implication of the 

aforesaid slight improvement – brought about by incorporation of AR – is that the application of AR is not 

particularly beneficial when the training and testing datasets comprise of only tens or hundreds of data-

records. Conversely, when the parent database is large – for example, the database (with > 50000 data-

records) that was used in a prior study [78] – the application of AR is expressly advantageous as it could 

elicit substantial improvements in prediction performance of the RF model. 

Finally, based on our extensive literature review, we found that prediction errors of the ensemble 

ML model (measured in terms of R2 or RMSE) presented in this study were consistently and substantially 

lower than those reported in prior studies that were focused on prediction of glass dissolution [33,34]. It is, 

however, acknowledged that RMSE and R2, by themselves, do not conclusively prove that the union of RF 

and AR will dependably produce more accurate predictions compared to other ML models. This is because 

the overall prediction performance of any given ML model is affected by various factors, and, therefore, it 

is difficult – if not impossible – to compare (or rank) different ML models, especially when they are devised 

and operated by different users. The aforementioned factors include, but are not limited to: (i) nature and 

volume of the parent database, and its splitting into training and testing sets; (ii) pre-processing (or lack 

thereof) of the parent database, or datasets derived from it (i.e., training and testing sets); (iii) type and 
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number of statistical parameters (e.g., R2 and RMSE) used for assessment of prediction performance; and 

(iv) techniques used to optimize the hyper-parameters of the ML models. In spite of the abovementioned 

factors, the high values of R and R2 – combined with the low values of RMSE, MAE, and MAPE (see 

Table 3) – strongly suggest that the ensemble AR-RF model is a reliable tool for predictions of glass 

dissolution, especially glasses of the biomedical family, in relation to physical and chemical characteristics 

of the [glass + solvent] system. Given the model’s excellent prediction performance, it could be said that 

with further improvements – for example, by using a larger  and more diverse database for training – the 

model can potentially be used for performing prediction in reverse, that is, optimization: determination of 

optimal glass compositions and/or experimental process parameters that lead to desired dissolution 

behavior. 

 

6.2. Predicting the dissolution behavior of unknown glass compositions  

Results shown in section 6.1, and the accompanying discussions, show that the ensemble ML 

model – comprised of AR and RF models – is able to reliably predict the dissolution behavior of glasses in 

relation to their composition and relevant physiochemical characteristics of the system (e.g., SA/V and pH). 

In this section, the training of the ensemble ML model (on the basis of which the model learned the 

functional correlation(s) between input variables and the output of the database), and its ability to reliably 

predict dissolution of glasses were leveraged to sketch generic composition-reactivity trends in two distinct 

families of biomedical glasses. The first family of glasses selected for the analyses was 

(Na2O)0.25(Al2O3)0.25(B2O3)x(SiO2)0.5-x glasses. For these glasses, the SA/V and temperature were fixed at 

2.5 or 7.5 m-1 and 35 oC, respectively. Next, the ensemble ML model was employed to estimate the extent 

of dissolution (i.e., CI normalized mass loss at different times) of the glasses, at different reaction times, in 

relation to the glasses’ original composition (i.e., B2O3 content, or the value of x) and pH of the solvent 

(i.e., pH = 0 and pH = 2). The second family of glasses selected for the analyses was (Na2O)0.8-

x(Al2O3)0.20(B2O3)x glasses. For these glasses, the SA/V, temperature, and solvent pH were fixed at 5 m-1, 

65 oC, and 7, respectively. The ensemble ML model was then used to estimate the extent of dissolution of 
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the glasses – at different times – in relation to their composition (i.e., B2O3 content, or the value of x). 

Composition-reactivity trends generated by the ensemble ML model are shown in Figure 5. In addition to 

the ML-predicted trends, experimentally-obtained values are added to the plots for the purposes of 

benchmarking.             

In the case of (Na2O)0.25(Al2O3)0.25(B2O3)x(SiO2)0.5-x glasses, at pH = 0, the ML model predicts non-

monotonic variation in the extent of glass dissolution with respect to increasing B2O3 content in the glass 

(Figure 5a). Conversely, at pH = 2, the model predicts monotonic increase in extent of glass dissolution 

with increasing B2O3 content (Figure 5b). In (Na2O)0.8-xAl2O3)0.20(B2O3)x  glasses, at shorter reaction times 

(i.e., at t = 1 h), the extent of glass dissolution decreases with increasing B2O3 content. At later ages (at t ≥ 

12 h), the extent of glass dissolution is broadly unchanged with respect to B2O3 content. As can be seen in 

Figure 5, the experimentally-obtained data points are in good agreement with the ML-predicted trends, 

thus validating the ensemble ML model’s ability to predict glass dissolution behavior in new, previously 

untrained, compositional domains. It is worth pointing out that the trends shown in Figure 5 – which are 

essentially obtained via interpolation – are not smooth; they feature sharp changes in curvature (indicating 

non-differentiable functional relationship between dissolution and composition) between successive 

experimentally-measured data points. The abrupt curvature changes are attributed partly to the intrinsic 

limitation of the RF model (i.e., inability to produce smooth inputs-output correlations), and primarily to a 

specific limitation in the database: its diversity. More specifically, the database used for training of the 

ensemble ML – albeit reasonably large (> 1300 distinct data-records) – features limited variations in the 

inputs (e.g., pH of the solvent, temperature, and SA/V and composition of the glass). For instance, in the 

case of (Na2O)0.25(Al2O3)0.25(B2O3)x(SiO2)0.5-x glasses, the database includes only 11 different compositions, 

2 different SA/V, and a singular temperature. Given the ensemble ML model’s excellent prediction 

performance – as demonstrated in Figures 4 and 5 – it could be said that with further diversification of the 

database, the model can potentially be used for high-fidelity predictions (i.e., interpolations as well as some 

extrapolations) of glass dissolution behavior. A larger and more diverse database will also enable the ability 

to perform prediction in reverse, that is, optimization: determination of optimal biomedical glass 
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compositions, and the accompanying experimental process parameters (e.g., SA/V), that lead to desired 

dissolution behavior (or controlled release of ions).  

 

7. Implications on the design of new glasses for healthcare 

 The kinetics and mechanism of aqueous corrosion are two aspects that are critical to the design of 

any glass/ceramic based biomaterial, irrespective of its application. This is because glass, and its 

derivatives, are used in myriad applications in the human body – starting from mouth where they interact 

with alcoholic and non-alcoholic (non-dairy) drinks with their pH varying between 2 – 7 [83] to their 

application as bioactive materials for bone regeneration and tissue engineering where the local pH can reach 

as high as ~10 due to the release alkali cations from the glass into the biological fluids [83,84]. A significant, 

and ever-increasing, body of evidence in the literature indicates that the ionic dissolution products from 

inorganic materials are key to understanding their biological performance in the context of tissue 

engineering applications. The controlled release of trace elements, for example, strontium, cobalt copper or 

zinc, from the biomaterials (e.g., glass-based scaffolds) into the physiological fluids is believed to favorably 

affect the behavior of human cells and enhance the bioactivity of the scaffolds related to both osteogenesis 

and angiogenesis [16]. Therefore, the possibility of predicting the dissolution dynamics of glasses, and the 

ability to design glasses (of desired compositions) with controlled release of functional ions using machine 

learning brings a paradigm shift in the field of biomaterials research. To the best of authors’ knowledge, 

there are very few studies – most of which are cited in a recent review [28] – that describe the application 

of machine learning in the field of glasses for healthcare applications. An example of one such study is by 

Echezarreta – Lopez and Landin [29], wherein the authors placed emphasis on describing the relationship 

between critical bioactive glass characteristics and their  antibacterial behaviors. Thus, the present article 

is an important effort in the direction of predictive modeling of dissolution behavior of glasses with focus 

on designing new biomaterials with controlled degradation rates. It is worth mentioning that the ML 

formalisms applied in this study can be readily extended to predict and optimize other important properties 

of biomaterials, such as glass forming ability (i.e., probability of glass formation in relation to its 
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composition, and ambient pressure and temperature), crystalline-to-amorphous phase transition 

temperature, liquidous temperature, and mechanical properties (e.g., elastic modulus and fracture 

toughness). For such extension of ML models, comprehensive databases linking composition of the 

materials with their properties would be needed, and using such databases the models would have been to 

trained and tested in the same manner as that described in this study.  

   

8. Conclusion  

The design and application of biomedical glasses – such as Theraspehere®, 45S5 Bioglass®, and 

DermaFuseTM – have charted new, efficient pathways for treatment of various human ailments, which has 

revolutionized the healthcare industry.  As the demand for biomedical glasses – in particular with controlled 

degradation rates – continues to increase, it has become apparent that the design and discovery of new 

biomedical glasses can only be expedited if their dissolution behavior in biological fluids can be reliably 

predicted in vitro and, ultimately, controlled (by optimizing glass composition). Conversely, due to the 

prodigiously large physiochemical degrees of freedom in [glass + solvent] systems, accurate prediction of 

aqueous dissolution behavior of glass is an insurmountable task if the tools used for such prediction are 

based on conventional, trial-and-error based (i.e., Edisonian) approaches. Furthermore, such Edisonian 

approaches – which are time-consuming, cumbersome, and expensive – are largely unable to reveal the 

underlying Quantitative Structure-Property Relationships (QSPRs), thus making it infeasible to discover 

or design new biomedical glasses with desired performance (e.g., dissolution behvaior).    

This study, focused on prompt and reliable prediction of aqueous dissolution behavior of  potential 

glassy biomaterials, transcends beyond the conventional approach into an entirely new paradigm of artifical 

intelliegence. Speficially, this study presents an original ensemble machine learning (ML) model – 

developed by uniting the random forests (RF) model with the additive regression (AR) technique – to 

predict dissolution behavior of four different types of biomedical glasses (sodium borosilicates; sodium 

aluminoborates; sodium aluminoborosilicates; and sodium boro-phosphosilicates) in aqueous solutions 

maintained at different temperatures, pH environments (ranging from 0-to-13), and surface area-to-volume 
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ratios (SA/V). The ensemble ML model was trained using 75% of a parent database, comprising of >1300 

experimentally-obtained, distinct data-records. Each data-record featured 10 inputs (i.e., glass composition; 

initial pH of the solvent; temperature; surface area-to-volume ratio of the system; and time) and 1 output 

(extent of glass dissolution, expressed as normalized mass loss of critical ion). After the model’s training, 

input-output correlations learned during the training process were leveraged by the model to make 

predictions in previously untrained data-domains (i.e., remaining 25% of the parent database).  

Results show that the ensemble ML model is able to promptly and reliably predict composition- 

and time-dependent aqueous dissolution behavior of all four families of glasses. In terms of prediction 

performance, the ensemble model consistently, and comprehensively, outperformed other standalone ML 

models. Excellent prediction performance of the ensemble model was attributed to its primary component, 

RF, which comprises of a large number of “deep” trees that are grown without any smoothening or pruning. 

The prediction performance of the RF model was further bolstered when it was combined with AR. This 

enhancement was attributed to the AR technique’s ability to iteratively vary-and-optimize the two hyper-

parameters of the RF model (i.e., number of trees and leaves per tree) until the deviation between actual 

values and the RF model’s predictions was reduced to its ultimate minimum.  

High-fidelity predictions produced by the ensemble ML model suggests that the model could be as 

a tool for optimization of glass dissolution behavior. In this study, ≈1300 data-records were used for training 

of the model. Inclusion of more data-records into the database (e.g., dissolution behavior of P2O5-containing 

45S5 Bioglasses and other biomedical glasses) will enhance its volume and diversity, which will, in turn, 

further reduce the model’s prediction errors, thereby making the model more amenable for optimization-

based tasks. More specifically, a larger and more diverse database will enable the ability to perform 

prediction in reverse, that is, optimization: determination of optimal, new biomedical glass compositions, 

and the accompanying experimental process parameters, that lead to desired dissolution behavior. Lastly, 

the coupling of ML models with physics-based computational tools – for example, density functional 

theory, molecular dynamics, and phase-field based models – could elicit substantial improvement in the 

general performance of ML models [28,85,86]. Through such coupling, the models could mutually inform 
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each other (e.g., physics-based model could provide theoretical guidance to the ML model), thus reducing 

the overall dimensionality of the problem and enabling improved predictions and optimizations.   
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List of Figures 

Figure 1: The batched and analyzed compositions of: (a) sodium borosilicate glasses in the Na2O–B2O3–

SiO2 ternary diagram; and (b) sodium aluminoborate glasses in the Na2O–Al2O3–B2O3 ternary diagram. 

 

Figure 2: Predictions produced by: (a) ENR; (b) LR; and (c) GPR models compared against actual values 

of dissolution of glasses (drawn from the training and testing datasets described in section 5.1). R2 of the 

predictions are shown in the legends. The dashed line represents the line of ideality and the solid lines 

represent a ±10% bound.   

 

Figure 3: Predictions produced by: (a) MLP-ANN; and (b) SVM models compared against actual values 

of dissolution of glasses (drawn from the training and testing datasets described in section 5.1). R2 of the 

predictions are shown in the legends. The dashed line represents the line of ideality and the solid lines 

represent a ±10% bound.  s 

 

Figure 4: Predictions produced by: (a) standalone RF; and (b) ensemble (AR-RF) ML models compared 

against actual values of dissolution of glasses (drawn from the training and testing datasets described in 

section 5.1). R2 of the predictions are shown in the legends. The dashed line represents the line of ideality 

and the solid lines represent a ±10% bound.   

 

Figure 5: Prediction of time- and composition-dependent dissolution behavior of: (a) 

(Na2O)0.25(Al2O3)0.25(B2O3)x(SiO2)0.5-x glasses at pH = 0 (35 oC) ; (b) (Na2O)0.25(Al2O3)0.25(B2O3)x(SiO2)0.5-x 

glasses at pH = 2 (35 oC); and (c) (Na2O)0.8-xAl2O3)0.20(B2O3)x  glasses at pH = 7 (65 oC). The circular 

symbols represent experimental measurements. The SA/V of the glasses featured in (a), (b), and (c) are 7.5 

m-1, 2.5 m-1, and 5 m-1, respectively. 
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Table 1: Summary of physiochemical parameters pertaining to the [glass + solution] systems. 

Glass system (mol.%) SA/V (m-1) T (ºC) Solutions studied Time 

25Na2O–xB2O3–(75-x)SiO2 5 65 DI water 1 h – 14 d 

Na2O–Al2O3–B2O3 5 65 DI water 15 min – 24 h 

25Na2O–25Al2O3–xB2O3– 

(50-x) SiO2 
2.5 & 7.5* 35 

1 M HCl (pH 0) 

0.01 M HCl (pH 2) 

0.0001 M HCl (pH 4) 

2 min – 7 d 

19.37 Na2O–16.93B2O3–

63.70 SiO2 
5 65 0.1 M TMAH (pH 13) 1 h – 120 d 

18.62Na2O–3.87Al2O3–

16.28B2O3–61.24 SiO2 
5 65 0.1 M TMAH (pH 13) 1 h – 120 d 

Na2O-P2O5-B2O3-SiO2 5 37 
0.1 M Tris-HCl (pH 7.4) 

0.1 M Tris-HNO3 (pH 7.4) 
1 h – 28 d 

* 7.5 m-1 was used for pH 0 and 2.5 m-1 was used for pH 2 and 4 
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Table 2: Statistical parameters relevant to the 11 attributes (10 inputs and 1 output) of the database 

used for training and testing of the ML models. The database comprises of 1364 distinct data-records. 

Attribute Unit Min. Max. Mean Std. Dev. 

Solution pH Unitless 0.0000 13.000 5.2977 2.9828 

Na Composition  mass fraction 0.0919 0.2837 0.1613 0.0275 

B Composition  mass fraction 0.0000 0.2533 0.1065 0.0703 

Si Composition  mass fraction 0.0000 0.6167 0.1261 0.1316 

Al Composition  mass fraction 0.0000 0.1967 0.1105 0.0855 

P Composition  mass fraction 0.0000 0.0463 0.0034 0.0103 

Temperature ℃ 35.000 65.000 43.665 12.486 

Specific SA m2. g-1 0.0042 0.0050 0.0046 0.0003 

Solution Volume cm3 30.000 100.00 60.059 23.716 

Time min 1.0000 172800 2496.8 12569 

Critical ion normalized 

loss 
g. m-2 0.0000 294.92 73.312 83.487 
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Table 3: Statistical parameters pertaining to ML models’ predictions of dissolution behavior 

(normalized CI mass loss) of glasses from the testing set. The worst and the best ML models – in terms 

of prediction accuracy – are highlighted in bold. 

ML Model R R2 MAE MAPE RMSE CPI 

 Unitless Unitless g. m-2 % g. m-2 Unitless 

LR 0.73 0.53 42.8 62.4 55.7 0.66 

ENR 0.39 0.15 41.5 89.4 75.2 0.99 

MLP-ANN 0.78 0.61 42.8 62.4 59.3 0.64 

SVM 0.82 0.67 31.9 46.5 48.0 0.48 

GPR 0.71 0.50 44.1 64.3 57.7 0.69 

Standalone RF 0.99 0.97 7.98 11.6 13.5 0.03 

Ensemble (AR-RF) 0.99 0.98 6.15 8.97 11.2 0.00 
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Figure 2  
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Figure 4  



Accepted for publication in Acta Biomaterialia  

 

40 

 

 

   

(a) (b) (c) 

Figure 5  

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/339032622

