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Abstract

The advancement of glass science has played a pivotal role in enhancing the quality and length of
human life. However, with an ever-increasing demand for glasses in a variety of healthcare applications —
especially with controlled degradation rates — it is becoming difficult to design new glass compositions
using conventional approaches. For example, it is difficult, if not impossible, to design new gene-activation
bioactive glasses, with controlled release of functional ions tailored for specific patient states, using trial-
and-error based approaches. Notwithstanding, it is possible to design new glasses with controlled release
of functional ions by using artificial intelligence-based methods, for example, supervised machine learning
(ML). In this paper, we present an ensemble ML model for reliable prediction of time- and composition-
dependent dissolution behavior of a wide variety of oxide glasses relevant for various biomedical
applications. A comprehensive database, comprising of over 1300 data-records consolidated from original
glass dissolution experiments, has been used for training and subsequent testing of prediction performance
of the ML model. Results demonstrate that the ensemble ML model can predict chemical degradation
behavior of glasses in aqueous solutions over a wide range of pH relevant for their usage in a human body
where the environment can be highly acidic (for example, pH = 3), for example, due to secretion of citric
acid by osteoclasts, or highly alkaline (pH ~10) due to the release of alkali cations from bioactive glasses.
Outcomes of this study can be leveraged to design glasses with controlled dissolution behavior in various

biological environments.

Keywords: biomedical; glass dissolution; ensemble machine learning; random forest; and additive

regression
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1. Introduction

Biomaterials are typically divided into the following three categories — (i) first-generation; (ii)
second-generation; and (iii) third-generation biomaterials — principally based on their dissolution behavior
in aqueous biological media (e.g., human blood plasma and saliva). Such interaction critically dictates a
given biomaterial’s overall behavior, and thus its function, in the human body [1]. The first-generation
biomaterials were supposed to be bio-inert; as such, these materials were designed to exhibit high chemical
durability (i.e., “practically insoluble,” with little-to-no dissolution) when in contact with biological or non-
biological fluids (e.g., when used in dental applications). The most common examples of first-generation
biomaterials are metallic or ceramic (e.g., Al,O3 and ZrO») implants, Y,03-Al>03-SiO; based radioactive
glass microspheres used for the treatment of hepatocarcinoma [2], and lithium disilicate based glass-
ceramics, generally designed in the Li,O-K,0-Al,03-Si0; glass-forming system, for application in dentistry
[3]. The second-generation biomaterials were designed with moderate chemical durability with respect to
their first-generation analogues. These materials were designed to interact — in a gradual manner — with the
biological fluids and progressively degrade, thus resulting in mineralization (e.g., formation of
hydroxyapatite layer on the glass surface) and bonding with tissue or bone. The first bioactive material ever
produced was a glass designed in the Na,O-CaO-SiOs ternary system, known as 45S5 Bioglass® [4]. Since
its invention, several bioactive glass compositions with varying dissolution kinetics (when in contact with
biological fluids) have been designed and reported in the scientific literature [5—13]. In the case of third-
generation biomaterials, the synthetic material is expected to be bioactive and resorbable, such that, once
implanted in the human body, the material would aid in the healing process. When in contact with
physiological fluids, the bioactive glass is expected to deliver chemical conditions (i.e., ionic species and
complexes) that commence a synchronized sequence of cellular level responses, ultimately resulting in
expression of genes required for living tissue regeneration [14]. The most common examples of third-
generation biomaterials are borate and borosilicate based glasses that are designed to undergo controlled

chemical degradation (followed by resorption), resulting in a controlled release of functional ions [7,15,16].
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It is evident from the abovementioned description that although the three generations of
biomaterials may differ in their chemical make-ups and final applications, one common property that is
crucial for their design is their dissolution behavior (chemical durability) upon contact with biological or
non-biological fluids. Therefore, accurate prediction of aqueous dissolution of glasses — in relation to their
pristine compositions — can facilitate the design of glasses for application in a broad spectrum of healthcare.
However, predicting dissolution behavior of glass in an aqueous solution (solvent) is an arduous task owing
to its dependence on a myriad of factors, thus giving rise to prodigiously large degrees of freedom. The
aforesaid factors include, but are not limited to, bulk and surface chemistry of glass, pH and chemistry of
the solvent, temperature, and the methodology used to study glass corrosion [17,18]. The two major
challenges that impede the design and development of biomedical glasses with controlled dissolution
behavior are: (i) lack of knowledge about underlying compositional and structural drivers that control the
mechanism and kinetics of glass dissolution in aqueous solutions; and (ii) lack of reliable computational
models to decipher the dominant compositional and structural descriptors which upon convergence with
the experimental data on glass dissolution can be used to develop predictive Quantitative Structure-
Property Relationship (OSPR) models. These knowledge-gaps have, in effect, necessitated the prevailing
trend to design biomedical glasses — especially those that exhibit desired dissolution behavior — using
semi-empirical, expensive, and time-consuming Edisonian approaches involving rigorous and iterative
synthesis-testing cycles [19]. A notable example is 13-93B3 glass, which has primarily been derived from
a well-known silicate-based bioactive glass 13-93 through trial-and-error based iterative cycles of glass
syntheses (through partial replacements of SiO, with B>Os) and property-assessments, with a little rationale
or revelation of the underlying glass-formation mechanisms [7,20].

A promising approach towards the design of original glasses for application in the healthcare
industry is through the analysis of a large set of experimental data using artificial intelligence-based
methods. The idea of using data-driven methods — such as supervised machine learning (ML), a tributary
of artificial intelligence — for prediction and optimization of materials’ properties (e.g., dissolution
behavior) forms the premise of the United States Materials Genome Initiative [21,22]. In pursuit of the idea,

4
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researchers from various scientific domains have compiled extensive datasets of materials and subsequently
employed ML models to better understand and reveal the underlying Hume-Rothery-like QSPR models
[23-26]. Knowledge of such relationships for any given material can be leveraged to promptly and reliably
predict a material’s properties or to design a new material that meets the desired set of performance criteria
[27-32]. Accordingly, the work presented here is an attempt to unify the powers of experimental materials
science and artificial intelligence to design glasses with tailored dissolution behavior for their potential

applications in healthcare.

2. Approach to predict the dissolution of glasses using machine learning

In the context of glasses, ML is highly promising owing to its unique abilities: (i) to reveal — in an
explicit manner — the influential factors that dictate properties (e.g., dissolution behavior) of the material
even when the underlying structure-property correlations are highly nonlinear and non-monotonic; (ii) to
leverage the knowledge of structure-property relationships to make predictions in previously untrained
compositional domains; and (iii) to determine optimum composition of the material that is expected to
deliver desired properties. Indeed, past studies — albeit a few — have shown that ML models, when trained
using a sufficiently large and diverse database, can reliably predict various properties of glasses, including
dissolution behavior [27,33,34], mechanical properties [35], glass-forming ability [36], and crystalline-to-
amorphous phase transition temperatures [37,38]. However, when using ML as a predictive tool to design
biomedical glasses with disparate dissolution behavior, the problem is two-fold. The first major challenge
is the unavailability of comprehensive — yet consistent — experimental datasets of biomedical glass
dissolution in scientific literature. This may be attributed to several reasons, majority of which originate
from inconsistencies in synthesis and processing conditions of glasses further aggravated by variations in
methods of characterization of their properties as has been discussed in our previous paper [15]. The second
challenge is the choice of an appropriate ML model that is capable of handling highly nonlinear and non-
monotonic cause-effect relationships. The majority of prior studies have used artificial neural networks
(ANN), support vector machine (SVM), and decision trees (DT) based ML models to predict glass’

5
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properties [33,34]. It is pertinent to point out that ANN and SVM — while often considered reliable — could
falter at making accurate predictions in data-domains that feature highly nonlinear (e.g., periodic) and/or
highly non-monotonic functional relationship between the output and inputs [39—42] — as is expected to be
the case with structure-property relations in glasses. This is because ANN and SVM are premised on local
optimization-and-search algorithms (e.g., the back-propagation mechanism that is used in neural network-
based ML models for optimization of activation functions’ parameters), which significantly augment the
prospect of convergence at (or around) a local minimum as opposed to the global minimum. Because of
this drawback, ANN and SVM models could produce disparate — even inferior — prediction performances
as they are progressively trained with new datasets [39—42]. The other commonly-used family of ML
models, that is, the DT models (e.g., the M5Prime model [43] and the classification-and-regression-trees
model [44]), split the overall training database into multiple smaller ones in a manner that the input-output
relationship within every small subset is linear (i.e., described by multivariate linear functions) [45-47].
Since this ‘flowchart-like’ structure of the DT model makes it efficient (in terms of computational
complexity) and simple-to-use, its prediction accuracy is substantially relegated when the actual input-
output correlation within the training database is highly nonlinear [42]. In recent studies [33,35,42], it has
been shown that the random forests (RF) model, based on modification of the bootstrap aggregation
decision tree algorithm, outperforms several standalone ML models in terms of prediction of materials’
properties. These studies have attributed the RF model’s superior prediction performance to its unique
ability to process variables — regardless of whether they are discrete or non-discrete (continuous) — over
data-domains featuring various permutations and combinations of complexities [e.g., (non)monotonicity
and (non)linearity] [48]. In spite of these merits, developing an RF model for a progressively growing
database — for example, when new data-records are periodically amended to an existing database — can be
challenging [49,50]. This is because the RF model comprises of two hyper-parameters (i.e., number of trees
in the forest, and number of leaves per tree) that need to be optimized (by the user) in relation to nature as
well as volume of the database. Typically, such optimizations are carried out using trial-and-error based
approaches or using a multi-fold cross-validation method [51], which can be time-consuming and result in

6
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issues like high bias (underfitting) or high variance (overfitting) [24,49,50]. In recent studies [42,52], it has
been shown that this deficiency of the RF model can be overcome — and its prediction performance can be
boosted — by hybridizing it with an optimization algorithm (e.g., the firefly algorithm). The optimized
algorithm is able to vary-and-optimize the aforementioned hyper-parameters of the RF model
autonomously (i.e., without any user intervention) in relation to characteristics of the training database.
This not only improves the prediction performance of the RF model but also facilitates its adaptation
(through adjustments in values of the RF model’s hyper-parameters) when it is re-trained using newer or
larger training databases. The standalone RF model has previously been used to predict the dissolution
behavior of silicate glasses [27,33,34]. However, to the best of the authors’ knowledge, the RF model — or
any other RF-based ML model, for that matter — have never been used for biomedical glasses. Furthermore,
in prior studies [27,33,34], ML models have been used for prediction of dissolution kinetics exclusively
during stage I of glass corrosion.* This is good in the cases where the controlled release of functional ions
is important for specific biological applications, for example, release of Ag" from the glass to promote
antibacterial activity, or Cu?" to promote angiogenic behavior [16]. However, in the cases where long-term
performance of glasses is important, characterization and understanding of stage II (residual rate regime)
of glass dissolution along with stage I is of great practical significance. As an example, during stage II of
dissolution of bioactive glasses, the precipitation of amorphous calcium phosphate on the silica—rich gel
layer and its slow transformation of crystalline hydroxyapatite occurs, which further interacts with collagen
fibrils of damaged bone to form a bond [53]. Nevertheless, experimental measurements of stage II
dissolution of biomedical glasses are scarce in literature. Furthermore, prediction of long-term glass
dissolution behavior is difficult because of the complexities that arise from large changes in surface area of

glass particulates and solvent chemistry (i.e., pH, ionic strength, and under-saturation) with respect to their

I'When a glass is exposed to dilute solution, the process begins by corrosion of the glass surface with no solution
feedback at an initial rate of ro (sometimes called the forward rate). This period, termed Stage I, produces a rate that
is maximum for the given temperature and pH; and is controlled by the hydrolysis of network forming species. As the
concentration of glass formers in solution increases, the driving force for dissolution decreases, and alteration layers
begin to form. The change in mechanistic drivers leads to a nearly constant and slow residual rate (r;) during a period
termed Stage II.
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initial values. Given the superior prediction performance of the hybridized RF model, in terms of predicting
physiochemical behavior of complex material systems [42,52], it is deemed important to examine if the
same (or a similar) model would be able to produce high-fidelity predictions of composition-dependent
dissolution behavior of biomedical glasses, not just during stage I but also through stage II.

To overcome the aforesaid challenges, in the past five years, the authors have collected a
comprehensive experimental dataset on the dissolution of oxide glasses over a broad compositional space
encompassing the Na>O-B,03-Si0,, Na,0-Al,03-B,03-Si0,, Na,0-B,03-P,05-Si0,, and Na,O-AlOs-
B»0; systems. The choice of glass composition systems has been made based on their chemical and
structural diversity along with their proposed potential applications in healthcare. As examples:
aluminosilicate, aluminoborate, and aluminoborosilicate glasses are used as glass-ionomer cements [54—
57] ; borate, aluminoborate, and borosilicate based bioactive glasses are used in fields of hard and soft tissue
engineering [7,15,58-60]; and borate and aluminoborate glasses are used for radiation synovectomy

treatment of rheumatoid arthritis [61,62]. Emphasis has been given to exhaustively, and in a consistent

manner, account for the influential factors — for example, time, initial pH of solvent, and temperature — that
affect the dissolution behavior of glasses. The aim is to use the experimental data along with an ensemble
ML model — developed by combining the random forests (RF) model with an optimization technique, that
is, additive regression (AR) — to predict the time-dependent dissolution (measured in terms of surface area
normalized critical ion mass loss) of the glasses in relation to their compositions and influential
physiochemical properties (e.g., temperature) of the system. The performance of the ensemble ML model
is benchmarked — on the basis of five statistical parameters as well as a singular composite performance
index (CPI) — against six commonly-used standalone ML models [i.e., linear regression (LR); elastic net
regression (ENR); Gaussian Process Regression (GPR); multilayer perceptron ANN (MLP-ANN); SVM;
and RF]. On the basis of such comparisons, it is shown that the hybrid ML model is able to produce high-
fidelity predictions of glass dissolution while outperforming all standalone ML models in terms of

prediction performance.



Accepted for publication in Acta Biomaterialia

3. Machine learning

Section 3.1, below, presents a concise overview of six standalone models (MLP-ANN; SVM; LR;
ENR; GPR; and RF) that have been used in this study. Section 3.2 briefly describes the ensemble ML model
(AR-RF), developed by hybridizing the RF model with an optimization scheme (i.e., AR: additive
regression). Further details (e.g., underlying algorithms) pertaining to the ML models are provided in

Supplementary Information.

3.1. Overview of standalone machine learning models

Artificial neural network — abbreviated as ANN — consists of multiple neurons arranged in hierarchical
layers. Each of the neurons serves as a computational element and is responsible for processing information
relayed from the previous layer of neurons (using sigmoidal or logistic-transfer activation functions) and
transmitting the processed information to the next layer of neurons [63]. The structure of ANN resembles
the network of interconnected neurons within the human brain — wherein information is processed (and
simplified) and transmitted from one layer to another in a hierarchical manner. Multilayer perceptron
artificial neural network (MLP-ANN) is a subclass of ANN with multiple layers of neurons, and, therefore,
strong self-learning capabilities [64]. Support vector machine (SVM), a commonly used ML model for both
classification and regression purposes, approximates the correlation — either in the form of multivariate
linear or nonlinear functions — between inputs and output of a dataset. This is accomplished by employing
an optimization scheme — as opposed to a regression approach — geared towards minimizing an objective
cost function (i.e., ¢-insensitive loss function), or simply put, to transform input data into a higher-
dimensional structure such that data with similar characteristics are sequestered from dissimilar ones [65].
Linear regression (LR) is a simple ML technique that uses piecewise linear functions — driven by
independent predictors — to predict a numerical target based on a set of independent inputs [66]. Elastic net
regression (ENR) is a modified form of linear regression. The ENR model was originally developed [67]
to improve the prediction performance of the LR model, especially when applied to datasets pertaining to
heterogeneous systems with large number of variables. The improvement involves identifying significant

9
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variables and then assigning larger coefficients to them as compared to less significant variables. If a given
variable is deemed inconsequential, its coefficient is reduced to 0. Gaussian process regression (GPR) is a
regression algorithm based on the Bayes’ theorem, which identifies the most probable outcome (or
hypothesis) on the basis of prior knowledge acquired from the training database [68]. The GPR model
employs a stochastic process to collect random variables, any finite number of which have a joint Gaussian
distribution [69]. The variables — which represent prior knowledge — are used to estimate the probability of
a given outcome, and compare it against the probabilities of all possible outcomes. Through such
comparisons, the prior knowledge is updated iteratively throughout the training process; ultimately, the
outcome with the highest probability is selected as the final prediction. Random forests (RF) is a
modification of [decision tree algorithm + bootstrap aggregation], premised on amalgamation of bagging
and adaptive nearest neighbors to achieve logic-based inference of input-output correlations in a dataset.
RF employs two-stage randomization to grow a large number of uncorrelated “deep” trees, all without any
pruning or smoothening (unlike conventional decision trees-based models, which do require pruning during
the training process) [70,71].

The authors would like to point out that all standalone ML models described above comprise of
hyper-parameters that needs to be adjusted by the user to improve their prediction performance. In some
models, user intervention is also required to select optimal functions (e.g., type of kernel function used for
transformation of dimensionality of data in SVM; and type of activation function used for activation of
neurons in MLP-ANN). In this study, for the selection of optimal functions and hyper-parameters for each
ML model, 10-fold cross-validation (CV) method [47,51,72] was used as the primary performance-
assessment method. In short, the 10-fold CV method randomly splits the training database into 10 equisized
folds. The ML model — the hyper-parameters/functions of which need to be optimized — is trained using
data-records from 9 folds, and subsequently blind-tested against data-records in the 10" fold. This process
is iteratively repeated 9 times — each time using a unique combination of folds for training of the ML model
and its blind-testing. During each iteration, the relevant parameters and functions of the ML models are
fine-tuned such that prediction errors [measured in terms of root mean squared error (RMSE)] are

10
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progressively minimized. Functions and parameters’ values after the last iteration are selected as

“optimum,” and used — without further changes — for subsequent testing of the ML model against a blind

test dataset.

3.2. The ensemble machine learning model

In this study, an ensemble ML model (AR-RF) was developed by hybridizing the RF model with

the additive regression (AR) technique. AR is an optimization algorithm based on the gradient boosting

approach [73]. With the ensemble model, AR was paired with the RF model to semi-autonomously

determine optimum values of the two hyper-parameters of the RF model (i.e., n, and n.y, representing

number of trees and number of leaves per tree, respectively), thereby improving its prediction performance.

The ensemble ML model’s structure constitutes three separate stages of processing of the database.

In stage A, the RF model is employed, wherein the values of n, and n;y are set at 450 and 5 (values
determined as optimum by the 10-fold CV method), respectively. An objective function, F, is defined.
The objective function is a numerical value equivalent to the total RMSE of RF model’s predictions,
as estimated at the end of stage 4. The “deep” unpruned trees constructed by the RF model are retained.
In stage B, the AR technique is implemented. The residuals of the predictions (i.e., RMSE) are used to
construct a second set of trees, along with the original “deep” trees. The objective here is to train the
second set of trees — by varying-and-optimizing the values of two hyper-parameters of the RF model
(n: and nry) — to fit the residuals such as that the overall training error is reduced. This tandem between
the aforementioned pair of steps — of performing predictions using the RF model, and subsequently
refining the prediction performance by fitting the residuals — is repeated over several iterations until
convergence is reached, that is, reduction in training error is < 107 units for 3 successive iterations.

Finally, in stage C, the RF model is employed to make predictions against new test dataset(s). For such

predictions, the AR-determined optimum values of n; and n.y are used without any further changes.
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4. Experimental section

4.1. Glass compositional design

Alkali borosilicate glasses: Figure 1a presents the batched and analyzed compositions of the sodium
borosilicate glasses highlighted in the Na,O-B,0s—Si0, ternary diagram. This composition-space was
chosen so as to provide a large range of homogenous glasses in the Na;0-B,03-Si0, system, encompassing
both sodium silicate and sodium borate endpoints as well as glasses of intermediate compositions. The
details about the composition, processing, and dissolution behavior of the glasses can be found elsewhere
[15].

Alkali aluminoborate glasses: Figure 1b presents the ternary diagram of the investigated glasses,
overlaying target, and measured compositions, as well as glass-forming range. The glasses were synthesized
using the melt-quench technique. Overall, the glasses encompass a broad compositional domain including
peralkaline (Na/Al>1), metaluminous (Na/Al=1), and per-aluminous (Na/Al<1) regions of the Na,O-Al,O;-
B,0; ternary system. The details about the synthesis, processing and dissolution behavior of glasses have
been published elsewhere [74].

Alkali aluminoborosilicate glasses: The glasses in the system Na,O—Al;O3— B203—Si0; were synthesized
using the melt-quench technique. These glasses cover a broad composition space in the Na;O-Al>03-B,Os-
Si0O; system, extending from well-studied sodium aluminosilicate compositions to less-studied B>Os-rich
compositions. The details about the composition, processing, and dissolution behavior of the glasses can
be found elsewhere [75].

Alkali borophosphosilicate glasses: The glasses in the system Na,O—B,03;—P,05—SiO; were designed in
the per-alkaline (Na/B >1), sub-boric (Na/B = 1), and meta-boric (Na/B <1) regimes. Accordingly, three
P,Os—free sodium borosilicate glasses, as plotted in Figure 1a, were chosen as the baseline compositions.
Further, P,Os was incorporated in the glasses in a manner that the Na/B molar ratios of the baseline
compositions remain constant across the composition walk. The details of the investigated glass

compositions (mol.%) are presented below.

(i)  Glasses with Na/B >1: x P,Os— (100-x) (25Na,0-20B,03-45Si0,)
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(i1) Glasses with Na/B =1: x P,Os— (100-x) (25Na,0-25 B»03-50 SiO,)

(iii)  Glasses with Na/B <1: x P,0s — (100-x) (25Na;0-30B,05-45Si05)

where, x varies between 0 — 5 mol.%. The glasses were synthesized using the melt-quench technique as per
the methodology described in our previous article [15]. The details about the dissolution behavior of glasses

will be published in our forthcoming article.

4.2. Experimental dataset of glass dissolution

The dissolution tests were performed on glass particles with their particle size varying between 300
—425 pm. A detailed methodology of sample preparation, and surface area analysis (using ImagelJ software)
has been published in our previous article [15]. The dissolution behavior of glasses was studied by
submerging 20 — 60 mg of glass particles in 30 — 50 mL of the selected aqueous solutions (corresponding
to SA/V [i.e., the ratio of surface area (SA) of glass to volume (V) of solution] of 2 — 7.5 m™'; SA/V was
held constant in each set of experiments as can be seen in Table 1). Acidic pH experiments (pH 0-to-4),
were performed in HC1 (1 M, 0.01 M, and 0.0001 M HCI for pH 0, 2, and 4, respectively). Near-neutral pH
experiments (pH 5-9) were performed in either DI water or 0.1 M Tris-HCl/Tris-HNOs buffer solutions.
Tris-HCI and Tris-HNO; solutions were prepared by adding Tris(hydroxymethyl)aminomethane to DI
water and adjusting the pH to the desired value by adding appropriate amounts of 1 M HCl or 1 M HNO:s.
Basic solutions (pH 10-to-13) were prepared by diluting concentrated tetramethylammonium hydroxide to
0.0001 M and 0.1 M solutions with DI water for pH 10 and pH 13, respectively. All powder—solution
mixtures were immediately sealed into sterilized polypropylene flasks (static media; aqueous solution was
not replenished with time) and placed in an oven at temperatures ranging from 35 — 65 °C. The dissolution
experiments ranged from as little as 2 minutes to 120 days, depending on the glass composition and
experimental conditions used. A summary of the dissolution protocols for each system studied can be found
in Table 1. In addition to analyses of neat (unused) and blank (glass-free) control solutions, all the

experiments were performed in triplicates to evaluate uncertainty of final results. The pH evolution of
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solution during glass corrosion was measured at room temperature using a pH meter (Mettler Toledo
InLab® Pro-ISM). The liquid aliquots of the corrosion solutions were filtered and acidified (with HNO3)
before being chemically analyzed by either inductively coupled plasma — optical emission spectroscopy
(ICP-OES, PerkinElmer 7300 or 8300) or inductively coupled plasma — mass spectroscopy (ICP-MS,
Agilent 7700s), depending upon expected elemental concentration levels (where ICP-MS has detection
limits near <0.02-0.05 and ICP-OES has detection limits near <0.1-0.2 ppm; each of the detection limits
listed are element-specific). The normalized loss (NL) of each element (Na, Al, B, P, and Si) released from
glasses into the surrounding solution was calculated using Eq. 1,

Ci— G (eY)
()

where C; is the concentration of element i in the solution as detected by ICP-OES or ICP-MS; f; is the

NLi =

mass fraction of the element i in the glass; and C, is the background concentration (as determined from
blank solutions). When the normalized loss data is plotted against time and linearly fit, the approximate

forward dissolution rate can be estimated.

5. Database Development and Assessment of Prediction Accuracy of ML Models
5.1. Development of database

Datasets collected from the glass dissolution studies (section 4.2) were consolidated into a singular
database, and then used for training the ML models (section 3.0; and Supplementary Information) and
subsequently for evaluation of the models’ abilities to predict time-dependent glass dissolution — assessed
in terms of critical ion (CI) normalized mass loss — in previously untrained compositional domains. The
database consisted of 1364 unique data-records, wherein each data-record had 10 inputs and 1 output. The
inputs included pertinent physiochemical properties of the [glass + solution] system: initial pH of the
solution; elemental composition of the glasses (in mass fraction); temperature (in °C) at which the
dissolution studies were carried out; specific surface area (in m?.g™!) of the glass; volume of the solution (in

cm’); and time (in min). It is acknowledged that there are additional parameters relevant to solution
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chemistry (e.g., ionic strength, and type of ionic species) that could potentially affect dissolution behavior
of the glasses (although not as appreciably as solution pH does [76]). However, as these parameters were
not consistently available for all experiments, they were not included in the database. The output parameter
included the extent of glass dissolution, expressed in the form of CI normalized mass loss (g. m?) of the
glass. For glasses consisting of boron (B), B was considered as a critical ion; and for selected glasses (i.e.,
only 98 out of 1364) that were devoid of any boron, silicon (Si) was chosen as the critical ion. Here it should
be noted that for the 98 glasses devoid of boron, the alteration rate calculation from silicon release during
Stage II probably underestimates the rate values because Si is not a tracer (unlike boron). Statistical

parameters pertaining to the database are shown in Table 2.

5.2. Assessment of prediction accuracy of ML models

For the purposes of training, and to assess the prediction performance, of ML models, the
experimental database (described in section 5.1) was randomly apportioned into two subsets: one for
training and the other for testing. 75% of data-records of the parent database (i.e., training set) were used
for training of the ML models (i.e., optimization of functions and values of hyper-parameters); and the
remaining 25% of the data-records (i.e., testing set) were utilized for assessment of prediction performance
of the models. Various past studies [42,47,77,78] have also used such split of 75%-t0-25% in the parent
database for training and testing of ML models as such splitting permits not only adequate optimization of
the ML models functions and parameters but also the ability to test prediction performances of the ML
models over previously untrained data-records. It is clarified that while splitting of the parent database was
done in a randomized manner, care was taken to ensure that the training dataset was archetypal — albeit a
shortened version — of the parent database. To this end, the training set was formulated in manner that each
input variable spanned over a wide range between (and excluding) its minimum and maximum values in
the parent database. Such formulation of the training dataset is important to ensure that, during training, the
ML models are able to learn composition-dissolution behavior links in the glasses not just during stage |
(i.e., within minutes of dissolution) but also during the later stages (i.e., after several hours of dissolution).
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To quantitatively measure prediction performance of the ML models (against the testing set), 5
distinct statistical parameters were extracted through comparisons of the models’ predictions against actual
measurements. These parameters include: coefficient of determination (R?); root mean squared error
(RMSE); Person correlation coefficient (R); mean absolute percentage error (MAPE); and mean absolute

error (MAE). Equations used to calculate the aforesaid parameters can be found in [42].

CPI =

2|~

& op-p
Z Pm(ix, j _m};:;]in, j @
j=1

The five statistical parameters, described above, were integrated into the composite performance
index (CPI, see Eq. 2) [42,47,79], to obtain a singular, unified measure of prediction performance of each
ML model. In Eq. 2: N (=5) is the total number of statistical parameters used to measure performance of
the models; P; is magnitude of the j statistical parameter; and P; ,ui» and P . are the minimum (i.e., worst)
and maximum (i.e., best) values of the j statistical parameter. With Eq. 2 formulated in the manner
described here, CPI of any given ML model can vary between 0-and-1. The best ML model would acquire
a CPI value of 0 (or the lowest value) and the worst ML model would obtain a value of 1 (or the highest
value). Therefore, on the sole the basis of CPI values — which accounts for all five statistical parameters

(i.e., performance measures) — the ML models can be ranked (from best to worst) in terms of their prediction

performances.

6. Results and Discussion
6.1. Prediction of Glass Dissolution Behavior

In typical regression-oriented ML models, the overall quality of the model is assessed in terms of
two aspects: (i) capability of the model to uncover underlying cause-effect correlations from the training
set; and (ii) to apply the learned knowledge to perform predictions in previously unseen data-domains (i.e.,
new sets of inputs). To put it simply, prediction performance of a ML model distills down to its capability
of identifying one or more trends in the dataset linking the input variables with the output, and subsequently

using such trends for interpolation — and even extrapolation, in some cases — in blank data-domains. To
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assess the accuracy of predictions produced by ML models — and to order them on the basis of their
prediction performances — an experimental database, comprised of glasses’ compositions, experimental
process variables (i.e., SA/V, initial pH of the solvent, and temperature), and time-dependent dissolution
behavior of the glasses (described in section 5.1) was used. Readers are reminded that, in both the training
and testing datasets, each data-record featured 10 inputs and 1 output (i.e., normalized CI mass loss of the
glass). Predictions of dissolution of glasses belonging to the testing set, as yielded by the ML models, are
compared against experimental measurements in Figures 2-5; for reference, predictions of dissolution of
glasses from the training set are also included. Statistical parameters pertaining to prediction of glasses
from the testing set are itemized in Table 3; here, parameters pertaining to glasses from the training set are
not included as their magnitudes are similar to their counterparts from the testing set.

As can be seen in Table 3, predictions of glass dissolution, produced by the ML models, range
from poor to excellent, with the Pearson correlation coefficient (R) ranging from 0.39 to 0.99 and the root
mean squared error (RMSE) ranging from 11.2 to 75.2 g. m™>. If we consider the maximum absolute
percentage error (MAPE) of the best performing ML model, the margin of error in predictions of glass
dissolution is + 9 g m™. This is excellent considering that even in experimental measurements of glass
dissolution, typical standard deviations are within the same order of magnitude as 10 g m? [80]. On the
basis of the values of CPI — the integrated measure of prediction performance — the ML models can be
ranked as ensemble ML > standalone RF > SVM > MLP-ANN > LR > GPR > ENR.

The ENR model had the poorest prediction performance of all ML models implemented in this
study. As can be seen in Figure 2a, across the 342 cases used for evaluation of the model’s prediction
performance, majority of predictions exhibited significant departures from the actual values. LR and GPR
models (Figure 2b-c) produced superior prediction performances compared to the ENR model, albeit
significantly lower than the SVM, MLP-ANN, and RF-based models. Such poor prediction performances
of the ENR, LR, GPR models are not surprising because the former two models use multivariate linear
functions and the latter uses Gaussian distribution functions over datasets that — in all likelihood — feature
far more complex correlations between the input variables and the output. It is worth pointing out that non-
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linear and non-monotonic composition-properties correlations are not unique to biomedical glasses; glasses
of other families (e.g., silicates) also feature such complex correlations. Indeed, in a recent study [33], it
was shown that ML models based on linear (LR) and Gaussian distribution (ENR) functions — even when
trained and optimized in a comprehensive manner (using a multi-fold CV method, as used in this study) —
failed to capture the inherently nonlinear relationship between dissolution rate of silicate glasses and the
pH of the contacting solution. The models’ prediction performances deteriorated even further when, in
addition to pH, other influential variables of the system (e.g., composition of silicate glasses) were varied
[33]. Therefore, based on the above discussion, it can be said that for prediction of properties of any given
material, it is crucial to select ML models founded on mathematical formulations that are in alignment with
the material’s elementary composition-properties relationship. In the specific case of glass, it is important
to select ML models premised on nonlinear mathematical formulations; otherwise, the models’ predictions
are rendered inaccurate, thereby making them unsuitable for blind predictions as well as for optimizations.

As shown in Figure 3, prediction performances (assessed in terms of R?) of MLP-ANN and SVM
models were similar, and superior compared to LR, GPR, and ENR models (Table 3). As the MLP-ANN
model employs a series of nonlinear logistic-transfer functions — as activation functions for the neurons —
to develop input-output correlations, it is not surprising that its prediction performance supersedes those of
models constructed using linear functions. Similarly, SVM, on account of its classification-and-
optimization-based structure and use of nonlinear kernel function (to develop hyperplanes for data
classification), is proficient at handling nonlinear input-output correlations, thus making it suitable for
prediction of composition-dependent dissolution behavior of glasses. As previously stated in section 2.0,
both MLP-ANN and SVM models utilize local search-and-optimization mechanism during their training
[39—42]. While this mechanism generally leads to faster convergence and reliable detection of extrema in
the database, it endures a characteristic disadvantage of converging to a (one of several) local minimum
rather than the global minimum. This drawback is often inconsequential — with little-to-no effect on
prediction performance — in datasets wherein the functional relationship between the input variables and
output is broadly linear and/or monotonic [41,42]. However, in the case of glass dissolution, the input-
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output correlations are expected to be complex (presumably highly nonlinear). This could, potentially,
render the predictions of MLP-ANN and SVM models inaccurate — especially in comparison to ML models
that are better at handing highly nonlinear input-output correlations within the database (e.g., the RF model;
see Table 3). In this study, the hyper-parameters (i.e., MLP-ANN: number of hidden layers and number of
neurons per hidden layer; and SVM: kernel function and parameters) of the models were rigorously
optimized through the 10-fold CV method (see section 3.1). On account of this optimization, it is expected
that the inherent drawbacks of the MLP-ANN and SVM models were overcome — at least partially — thereby
allowing them to produce predictions with superior accuracy compared to other ML models that were based
on linear or Gaussian distribution functions (see Table 3). In the context of MLP-ANN and SVM models,
it is important to point out that several past studies have posited that the models’ prediction performances
can be bolstered by using: Genetic programing [81,82]; or bootstrap aggregation based methods (e.g.,
boosting) [45,47]; or by using theoretically-guided constraints (e.g., to eliminate negative, thus unrealistic,
values of CI normalized mass loss that were produced as outputs of ML models in Figure 3). While, in this
study, these aspects — of improving prediction performance of MLP-ANN and SVM models — have not
been examined, the performance of an ensemble ML model, wherein the RF model is hybridized with a
gradient boosting-based AR technique, has been examined and benchmarked against the standalone RF
model (described below).

On the basis of statistical parameters listed in Tables 3, and results shown in Figure 4, it is clear
that in terms of prediction accuracy, the RF model is superior compared to all standalone ML models that
were used in this study. This result is not surprising — and, in fact, in very good agreement with prior studies
[33,34,42,78] that have also reported that the prediction performance of RF model often supersedes those
of several standalone ML models. Superior prediction performance of the RF model is attributed to its
structure — which comprises of a large number of “deep” trees that are grown without any smoothening or
pruning. The unpruned “deep” trees allow data in the training set to be split in a logical manner, which, in
turn, not only reduces generalization errors but also serves to mitigate overfitting (high bias) of the training
data. Furthermore, the two-stage randomization employed in the RF model (see Supplementary
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Information for more details) diminishes correlation among the unpruned trees, thus reducing variation
(underfitting) and ensuring homogeneity among the data represented in each of the tree-nodes. It is
interesting to note that prediction performance of the RF model was bolstered when it was hybridized with
the AR technique. This is better shown in Figure 4b and Table 3. As can be seen, the ensemble (AR-RF)
model reliably captured the functional relationship between the input variables and output, and was able to
leverage the learned relationship to reliably interpolate in previously untrained data-domains. Such
improvement in prediction accuracy of the ensemble model — vis-a-vis the RF model — is elicited by the
inclusion of AR, which iteratively varies-and-optimizes the two hyper-parameters of the RF model (i.e.,
number of trees and leaves per tree) until the deviation between actual values and model’s predictions
reaches its ultimate minimum. It is also interesting to note in Table 3 that compared to the standalone RF
model, prediction performance of the ensemble model is better, albeit only slightly. The implication of the
aforesaid slight improvement — brought about by incorporation of AR — is that the application of AR is not
particularly beneficial when the training and testing datasets comprise of only tens or hundreds of data-
records. Conversely, when the parent database is large — for example, the database (with > 50000 data-
records) that was used in a prior study [78] — the application of AR is expressly advantageous as it could
elicit substantial improvements in prediction performance of the RF model.

Finally, based on our extensive literature review, we found that prediction errors of the ensemble
ML model (measured in terms of R? or RMSE) presented in this study were consistently and substantially
lower than those reported in prior studies that were focused on prediction of glass dissolution [33,34]. It is,
however, acknowledged that RMSE and R?, by themselves, do not conclusively prove that the union of RF
and AR will dependably produce more accurate predictions compared to other ML models. This is because
the overall prediction performance of any given ML model is affected by various factors, and, therefore, it
is difficult — if not impossible — to compare (or rank) different ML models, especially when they are devised
and operated by different users. The aforementioned factors include, but are not limited to: (i) nature and
volume of the parent database, and its splitting into training and testing sets; (ii) pre-processing (or lack
thereof) of the parent database, or datasets derived from it (i.e., training and testing sets); (iii) type and
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number of statistical parameters (e.g., R? and RMSE) used for assessment of prediction performance; and
(iv) techniques used to optimize the hyper-parameters of the ML models. In spite of the abovementioned
factors, the high values of R and R?> — combined with the low values of RMSE, MAE, and MAPE (see
Table 3) — strongly suggest that the ensemble AR-RF model is a reliable tool for predictions of glass
dissolution, especially glasses of the biomedical family, in relation to physical and chemical characteristics
of the [glass + solvent] system. Given the model’s excellent prediction performance, it could be said that
with further improvements — for example, by using a larger and more diverse database for training — the
model can potentially be used for performing prediction in reverse, that is, optimization: determination of
optimal glass compositions and/or experimental process parameters that lead to desired dissolution

behavior.

6.2. Predicting the dissolution behavior of unknown glass compositions

Results shown in section 6.1, and the accompanying discussions, show that the ensemble ML
model — comprised of AR and RF models — is able to reliably predict the dissolution behavior of glasses in
relation to their composition and relevant physiochemical characteristics of the system (e.g., SA/V and pH).
In this section, the training of the ensemble ML model (on the basis of which the model learned the
functional correlation(s) between input variables and the output of the database), and its ability to reliably
predict dissolution of glasses were leveraged to sketch generic composition-reactivity trends in two distinct
families of biomedical glasses. The first family of glasses selected for the analyses was
(Na20)0.25(A1203)0.25(B203)«(S102)0 5-x glasses. For these glasses, the SA/V and temperature were fixed at
2.5 or 7.5 m™! and 35 °C, respectively. Next, the ensemble ML model was employed to estimate the extent
of dissolution (i.e., CI normalized mass loss at different times) of the glasses, at different reaction times, in
relation to the glasses’ original composition (i.e., B2Os content, or the value of x) and pH of the solvent
(i.e., pH = 0 and pH = 2). The second family of glasses selected for the analyses was (NaxO)os-
(A1203)020(B205)x glasses. For these glasses, the SA/V, temperature, and solvent pH were fixed at 5 m™!,
65 °C, and 7, respectively. The ensemble ML model was then used to estimate the extent of dissolution of
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the glasses — at different times — in relation to their composition (i.e., B»O3 content, or the value of x).
Composition-reactivity trends generated by the ensemble ML model are shown in Figure 5. In addition to
the ML-predicted trends, experimentally-obtained values are added to the plots for the purposes of
benchmarking.

In the case of (Na20)0.25(A1:03)0.25(B203)x(S102)0.5-x glasses, at pH = 0, the ML model predicts non-
monotonic variation in the extent of glass dissolution with respect to increasing B,Os content in the glass
(Figure 5a). Conversely, at pH = 2, the model predicts monotonic increase in extent of glass dissolution
with increasing B,Os content (Figure Sb). In (Na20)sxAl203)0.20(B203)x glasses, at shorter reaction times
(i.e., at t =1 h), the extent of glass dissolution decreases with increasing B>Oj3 content. At later ages (at t >
12 h), the extent of glass dissolution is broadly unchanged with respect to BO3 content. As can be seen in
Figure 5, the experimentally-obtained data points are in good agreement with the ML-predicted trends,
thus validating the ensemble ML model’s ability to predict glass dissolution behavior in new, previously
untrained, compositional domains. It is worth pointing out that the trends shown in Figure S5 — which are
essentially obtained via interpolation — are not smooth; they feature sharp changes in curvature (indicating
non-differentiable functional relationship between dissolution and composition) between successive
experimentally-measured data points. The abrupt curvature changes are attributed partly to the intrinsic
limitation of the RF model (i.e., inability to produce smooth inputs-output correlations), and primarily to a
specific limitation in the database: its diversity. More specifically, the database used for training of the
ensemble ML — albeit reasonably large (> 1300 distinct data-records) — features limited variations in the
inputs (e.g., pH of the solvent, temperature, and SA/V and composition of the glass). For instance, in the
case of (Nax0)0.25(A1203)0.25(B203)x(Si02)0.5x glasses, the database includes only 11 different compositions,
2 different SA/V, and a singular temperature. Given the ensemble ML model’s excellent prediction
performance — as demonstrated in Figures 4 and 5 — it could be said that with further diversification of the
database, the model can potentially be used for high-fidelity predictions (i.e., interpolations as well as some
extrapolations) of glass dissolution behavior. A larger and more diverse database will also enable the ability
to perform prediction in reverse, that is, optimization: determination of optimal biomedical glass
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compositions, and the accompanying experimental process parameters (e.g., SA/V), that lead to desired

dissolution behavior (or controlled release of ions).

7. Implications on the design of new glasses for healthcare

The kinetics and mechanism of aqueous corrosion are two aspects that are critical to the design of
any glass/ceramic based biomaterial, irrespective of its application. This is because glass, and its
derivatives, are used in myriad applications in the human body — starting from mouth where they interact
with alcoholic and non-alcoholic (non-dairy) drinks with their pH varying between 2 — 7 [83] to their
application as bioactive materials for bone regeneration and tissue engineering where the local pH can reach
as high as ~10 due to the release alkali cations from the glass into the biological fluids [83,84]. A significant,
and ever-increasing, body of evidence in the literature indicates that the ionic dissolution products from
inorganic materials are key to understanding their biological performance in the context of tissue
engineering applications. The controlled release of trace elements, for example, strontium, cobalt copper or
zinc, from the biomaterials (e.g., glass-based scaffolds) into the physiological fluids is believed to favorably
affect the behavior of human cells and enhance the bioactivity of the scaffolds related to both osteogenesis
and angiogenesis [16]. Therefore, the possibility of predicting the dissolution dynamics of glasses, and the
ability to design glasses (of desired compositions) with controlled release of functional ions using machine
learning brings a paradigm shift in the field of biomaterials research. To the best of authors’ knowledge,
there are very few studies — most of which are cited in a recent review [28] — that describe the application
of machine learning in the field of glasses for healthcare applications. An example of one such study is by
Echezarreta — Lopez and Landin [29], wherein the authors placed emphasis on describing the relationship
between critical bioactive glass characteristics and their antibacterial behaviors. Thus, the present article
is an important effort in the direction of predictive modeling of dissolution behavior of glasses with focus
on designing new biomaterials with controlled degradation rates. It is worth mentioning that the ML
formalisms applied in this study can be readily extended to predict and optimize other important properties
of biomaterials, such as glass forming ability (i.e., probability of glass formation in relation to its
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composition, and ambient pressure and temperature), crystalline-to-amorphous phase transition
temperature, liquidous temperature, and mechanical properties (e.g., elastic modulus and fracture
toughness). For such extension of ML models, comprehensive databases linking composition of the
materials with their properties would be needed, and using such databases the models would have been to

trained and tested in the same manner as that described in this study.

8. Conclusion

The design and application of biomedical glasses — such as Theraspehere®, 45S5 Bioglass®, and
DermaFuse™ — have charted new, efficient pathways for treatment of various human ailments, which has
revolutionized the healthcare industry. Asthe demand for biomedical glasses — in particular with controlled
degradation rates — continues to increase, it has become apparent that the design and discovery of new
biomedical glasses can only be expedited if their dissolution behavior in biological fluids can be reliably
predicted in vitro and, ultimately, controlled (by optimizing glass composition). Conversely, due to the
prodigiously large physiochemical degrees of freedom in [glass + solvent] systems, accurate prediction of
aqueous dissolution behavior of glass is an insurmountable task if the tools used for such prediction are
based on conventional, trial-and-error based (i.e., Edisonian) approaches. Furthermore, such Edisonian
approaches — which are time-consuming, cumbersome, and expensive — are largely unable to reveal the
underlying Quantitative Structure-Property Relationships (OSPRs), thus making it infeasible to discover
or design new biomedical glasses with desired performance (e.g., dissolution behvaior).

This study, focused on prompt and reliable prediction of aqueous dissolution behavior of potential
glassy biomaterials, transcends beyond the conventional approach into an entirely new paradigm of artifical
intelliegence. Speficially, this study presents an original ensemble machine learning (ML) model —
developed by uniting the random forests (RF) model with the additive regression (AR) technique — to
predict dissolution behavior of four different types of biomedical glasses (sodium borosilicates; sodium
aluminoborates; sodium aluminoborosilicates; and sodium boro-phosphosilicates) in aqueous solutions
maintained at different temperatures, pH environments (ranging from 0-to-13), and surface area-to-volume
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ratios (SA/V). The ensemble ML model was trained using 75% of a parent database, comprising of >1300
experimentally-obtained, distinct data-records. Each data-record featured 10 inputs (i.e., glass composition;
initial pH of the solvent; temperature; surface area-to-volume ratio of the system; and time) and 1 output
(extent of glass dissolution, expressed as normalized mass loss of critical ion). After the model’s training,
input-output correlations learned during the training process were leveraged by the model to make
predictions in previously untrained data-domains (i.e., remaining 25% of the parent database).

Results show that the ensemble ML model is able to promptly and reliably predict composition-
and time-dependent aqueous dissolution behavior of all four families of glasses. In terms of prediction
performance, the ensemble model consistently, and comprehensively, outperformed other standalone ML
models. Excellent prediction performance of the ensemble model was attributed to its primary component,
RF, which comprises of a large number of “deep” trees that are grown without any smoothening or pruning.
The prediction performance of the RF model was further bolstered when it was combined with AR. This
enhancement was attributed to the AR technique’s ability to iteratively vary-and-optimize the two hyper-
parameters of the RF model (i.e., number of trees and leaves per tree) until the deviation between actual
values and the RF model’s predictions was reduced to its ultimate minimum.

High-fidelity predictions produced by the ensemble ML model suggests that the model could be as
a tool for optimization of glass dissolution behavior. In this study, ~1300 data-records were used for training
of the model. Inclusion of more data-records into the database (e.g., dissolution behavior of P,Os-containing
45S5 Bioglasses and other biomedical glasses) will enhance its volume and diversity, which will, in turn,
further reduce the model’s prediction errors, thereby making the model more amenable for optimization-
based tasks. More specifically, a larger and more diverse database will enable the ability to perform
prediction in reverse, that is, optimization: determination of optimal, new biomedical glass compositions,
and the accompanying experimental process parameters, that lead to desired dissolution behavior. Lastly,
the coupling of ML models with physics-based computational tools — for example, density functional
theory, molecular dynamics, and phase-field based models — could elicit substantial improvement in the
general performance of ML models [28,85,86]. Through such coupling, the models could mutually inform
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each other (e.g., physics-based model could provide theoretical guidance to the ML model), thus reducing

the overall dimensionality of the problem and enabling improved predictions and optimizations.
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Figure 1: The batched and analyzed compositions of: (a) sodium borosilicate glasses in the Na,O—B,Os—

Si0; ternary diagram; and (b) sodium aluminoborate glasses in the Na,O—Al,O3-B,0s ternary diagram.

Figure 2: Predictions produced by: (a) ENR; (b) LR; and (¢) GPR models compared against actual values
of dissolution of glasses (drawn from the training and testing datasets described in section 5.1). R? of the
predictions are shown in the legends. The dashed line represents the line of ideality and the solid lines

represent a £10% bound.

Figure 3: Predictions produced by: (a) MLP-ANN; and (b) SVM models compared against actual values
of dissolution of glasses (drawn from the training and testing datasets described in section 5.1). R? of the
predictions are shown in the legends. The dashed line represents the line of ideality and the solid lines

represent a £10% bound. s

Figure 4: Predictions produced by: (a) standalone RF; and (b) ensemble (AR-RF) ML models compared
against actual values of dissolution of glasses (drawn from the training and testing datasets described in
section 5.1). R? of the predictions are shown in the legends. The dashed line represents the line of ideality

and the solid lines represent a +10% bound.

Figure 5: Prediction of time- and composition-dependent dissolution behavior of: (a)
(Na20)0.25(A1,03)0.25(B203)x(Si02)0.5x glasses at pH = 0 (35 °C) ; (b) (Na20)0.25(A1203)0.25(B203)x(S102)0.5-x
glasses at pH = 2 (35 °C); and (¢) (Na20)o.5xA1203)0.20(B203)x glasses at pH = 7 (65 °C). The circular
symbols represent experimental measurements. The SA/V of the glasses featured in (a), (b), and (c) are 7.5

m™, 2.5m, and 5 m!, respectively.
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Table 1: Summary of physiochemical parameters pertaining to the [glass + solution] systems.

Glass system (mol.%) SA/V(m™) T (°C) Solutions studied Time
25Na,0-xB,05—(75-x)Si0; 5 65 DI water 1h-14d
Na,O-Al;03-B,03 5 65 DI water 15min—-24h
B } - 1 M HCI (pH 0)
25N320(5%f$128?5 B0 Hs5g 754 35 0.01 M HCI (pH 2) 2min—74d
? 0.0001 M HCI (pH 4)
19.37 Na,0—16.93B,05—
6370 SiO, 5 65 0.1 M TMAH (pH 13) 1h-120d
18.62Na,0-3.87AL0s—
16,288,061 24 Si0, 5 65 0.1 M TMAH (pH 13) 1h-120d
Na;0-P205-B;0:-8i0; 5 37 0.1 M Tris-HCI (pH 7.4) 1h-28d

0.1 M Tris-HNO; (pH 7.4)

* 7.5 m! was used for pH 0 and 2.5 m™! was used for pH 2 and 4
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Table 2: Statistical parameters relevant to the 11 attributes (10 inputs and 1 output) of the database
used for training and testing of the ML models. The database comprises of 1364 distinct data-records.

Attribute Unit Min. Max. Mean Std. Dev.
Solution pH Unitless 0.0000 13.000 5.2977 2.9828
Na Composition mass fraction 0.0919 0.2837 0.1613 0.0275
B Composition mass fraction 0.0000 0.2533 0.1065 0.0703
Si Composition mass fraction 0.0000 0.6167 0.1261 0.1316
Al Composition mass fraction 0.0000 0.1967 0.1105 0.0855
P Composition mass fraction 0.0000 0.0463 0.0034 0.0103
Temperature °C 35.000 65.000 43.665 12.486
Specific SA m?. g’! 0.0042 0.0050 0.0046 0.0003
Solution Volume cm’ 30.000 100.00 60.059 23.716
Time min 1.0000 172800 2496.8 12569
Critical ion normalized g. m? 0.0000 294.92 73.312 83.487

loss
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Table 3: Statistical parameters pertaining to ML models’ predictions of dissolution behavior
(normalized CI mass loss) of glasses from the testing set. The worst and the best ML models — in terms

of prediction accuracy — are highlighted in bold.

ML Model R R? MAE MAPE RMSE CP1
Unitless Unitless g. m? % g. m? Unitless

LR 0.73 0.53 42.8 62.4 55.7 0.66

ENR 0.39 0.15 41.5 89.4 75.2 0.99

MLP-ANN 0.78 0.61 42.8 62.4 59.3 0.64

SVM 0.82 0.67 31.9 46.5 48.0 0.48

GPR 0.71 0.50 44.1 64.3 57.7 0.69

Standalone RF 0.99 0.97 7.98 11.6 13.5 0.03

Ensemble (AR-RF) 0.99 0.98 6.15 8.97 11.2 0.00
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