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Abstract  

 

Is there a fixed limit on how many objects we can hold actively in mind? Generally, researchers 

have found participants perform less well at remembering a small number of objects if those 

objects are more complex, suggesting a limited resource rather than a fixed number of objects 

best explains working memory performance. However, some evidence has suggested that 

stimulus similarity better accounts for these effects, and that after accounting for such similarity, 

the data support a slot-based fixed item limit for working memory. Much of the evidence used to 

support the latter claim relies on working memory displays containing different categories of 

items. It has been found that for large, across-category changes, performance does not differ for 

different kinds of complex stimuli. However, many of these studies fail to adequately control for 

the potential use of ensemble information in discriminating such large, across-category changes. 

Here, we sought to identify how much ensemble representations may explain performance across 

these tasks. In Experiment 1, we observed that as set size increased from 4 to 12 items, capacity 

estimates for across-category changes increased linearly as well, providing evidence against the 

claim of a fixed capacity. In Experiment 2, we controlled for stimulus complexity and similarity 

but varied the utility of ensemble representations for the change detection task. We observed 

significantly greater capacity when ensemble information could be used. Altogether, these results 

are contrary to a slot-like, fixed-object constraint on working memory capacity, and consistent 

with object complexity and ensemble representations strongly affecting working memory 

performance.  

 

Keywords: visual working memory, ensemble representations, stimulus complexity, stimulus 

similarity 



 

Introduction 

Working memory enables the storage and manipulation of information over brief durations of 

time. It is widely considered a core cognitive system, used to support a wide variety of behaviors 

in day-to-day life (Baddeley & Hitch, 1974; Cowan, 2008; Schurgin, 2018). Visual working 

memory capacity is severely limited, with participants' performance suffering significantly if 

asked to remember more than 3-4 items (Luck & Vogel, 2013; Ma, Husain, Bays, 2014). 

Individual estimates of working memory performance have been shown to strongly correlate 

with scholastic achievement (Alloway & Alloway, 2010; Daneman & Carpenter, 1980) and fluid 

intelligence (Fukuda, Vogel, Mayr, & Awh, 2010; Oberauer, Schulze, Wilhelm, & Sü, 2005). 

Accordingly, a large body of research on working memory has focused on understanding the 

nature of these underlying capacity limitations.  

 A wide variety of work focuses on visual working memory for simple features or 

arbitrary bindings of simple features. In this literature, the debate has largely focused on the 

extent to which capacity limits are best characterized by a fixed constraint on how many objects 

can be remembered (Luck & Vogel, 1997; Woodman, Vogel & Luck, 2001; Luck & Vogel, 

2013) or some form of continuous resource that becomes more thinly distributed as the number 

of items to be remembered increases, resulting in decreased performance when more than 3-4 

items must be remembered (Wilken & Ma, 2004; Bays & Husain, 2008; Ma, Husain & Bays, 

2014; Schurgin, Wixted, Brady, 2018).   

 This debate has led to important insights about the nature of working memory, and the 

model of using simple stimuli -- which are thought to prevent contamination from other memory 

systems (Lin & Luck, 2012) in order to allow the direct quantification of memory capacity -- has 



uncovered a huge and diverse amount of features pertaining to limits on visual working memory. 

However, in the real world, we do not encounter arbitrary sets of simple features. Thus, it is also 

important to understand visual working memory for more complex objects.  

 

Working memory for complex objects 

The literature on working memory for complex objects has largely been focused in two distinct 

directions. One line of work, on meaningful real-world objects, has concentrated on the role of 

existing knowledge in supporting working memory and the potential contributions from long-

term memory systems in the short-term storage of items (e.g., Brady, Störmer, Alvarez, 2016; 

Curby & Gauthier, 2007; Kaiser, Stein, Peelen, 2015; O'Donnell, Clement & Brockmole, 2018; 

Schurgin, Cunningham, Egeth, & Brady 2018).  

 Another line of work has continued to avoid semantically meaningful, real-world objects, 

but has nevertheless focused on more complex objects than the traditional visual working 

memory literature. For example, initial research looking at memory for more complex, but still 

non-meaningful objects, observed that when the items in visual working memory tasks are more 

complex than combinations of simple features (e.g. arbitrary polygons, 3D cubes, etc), fewer 

items can be remembered (Alvarez & Cavanagh, 2004). These results provided some of the first 

strong evidence against an object-based limit, as they showed that the complexity of objects, and 

therefore amount of information that needs to be held in mind to remember them, affects 

working memory capacity (see also Taylor et al. 2017; Luria et al. 2010). 

 

The role of change difficulty 



One potential limitation of using complex objects to study visual working memory is that as 

stimulus complexity increases, so does the potential similarity of foils offered at test. As a result, 

the decreasing working memory performance for more complex stimuli might not be the result of 

complexity per se, but rather increased sample-test similarity. To investigate this possibility, 

Awh and colleagues (2007) investigated observers’ ability to detect within-category changes 

(e.g. a cube to another cube), where sample-test similarity was high, and across-category changes 

(e.g. a cube to a Chinese character), where sample-test similarity was low. They observed that 

performance was greater for across- relative to within-category changes, suggesting sample-test 

similarity was affecting working memory performance. Moreover, across-category change 

capacity estimates were around four objects, leading to the claim that once similarity is taken 

into account there may be a fixed object limit on working memory (see also Barton, Ester, & 

Awh, 2009; Fukuda, Vogel, et al., 2010; Scolari, Vogel, & Awh, 2008). Importantly, since with 

only one item in mind participants are nearly perfect at the within-category discriminations for 

these objects (Alvarez & Cavanagh, 2004), this claim required the introduction of a resource-like 

addition to the model rather than true slots – e.g., while supposedly a fixed number of items are 

held in mind, it must be proposed that the items are stored with varying amounts of precision 

(see also Zhang & Luck, 2008, which similarly rejected a pure slot model in favor of a discrete 

resource model). This work of Awh and colleagues (2007) has been extremely influential in 

sustaining the idea of a slot-like representation, even for complex objects. 

 

The role of spatial ensemble/global texture information 

In order to investigate the underlying nature of visual working memory limitations, the majority 

of studies share one fundamental manipulation – varying set size. By pressuring visual working 



memory beyond its capacity, researchers seek to examine what may be the source of this 

limitation. An implicit assumption guiding these studies is that only memory information about 

individual items contributes to working memory performance. In fact, the vast majority of 

working memory studies report "K" values, a capacity estimate derived from the assumption that 

a fixed number of items is represented (according to a high-threshold theory) and that this 

capacity can be calculated separately across all set sizes (Cowan, 2001; Pashler, 1988). Once the 

number of items shown is greater than the capacity of the participant, the idea is that this "K" 

value should remain approximately fixed, and this has often been found. Usually participants are 

shown to remember approximately 3-4 items by this logic (e.g., Cowan, 2001).  

In addition to the potential for rejecting the idea of considering 'how many' items are 

remembered in such a high-threshold manner (e.g.,Schurgin, Wixted & Brady, 2018), another 

issues with this approach is that previous research has demonstrated observers can rely on other 

memory sources, such as ensemble information, to inform working memory performance (Brady 

& Alvarez, 2011). For example, recalled locations of individual objects in a cluster are pulled 

toward the centroid location of the set (Lew & Vul, 2015), and participants are much more 

accurate at detecting changes that change not only items but also ensemble structure of a display 

(e.g., Brady & Tenenbaum, 2013; Orhan & Jacobs, 2013). In addition, ensemble information can 

inform memory for complex stimuli, such as the perceived emotion of a neutral face (Corbin & 

Crawford, 2018). For example, Jiang et al. (2016) found high similarity along a feature 

dimension (i.e. face identity) actually facilitated memory performance compared to a low 

similarity condition, likely by reducing noise in the memory representation via ensemble 

information (in contrast to predictions that more distinct items should improve memory by 

reducing competition, e.g., Cohen et al. 2014).  



Importantly, such ensemble effects also appear to differ as a function of set size (Brady & 

Alvarez, 2015a). At large set sizes, where many items are present, item information is noisier, 

and thus models of how participants use ensemble information predict a greater reliance on such 

information (e.g., Brady & Alvarez, 2011). As a result, any account of working memory 

limitations utilizing set size manipulations needs to account for the potential role of ensemble 

information.  

 Indeed, in a replication of Awh et al. (2007) an analysis of individual displays found 

greater capacity estimates when items were clustered in ways that resulted in more useful global 

ensemble information, compared to when items were more individually dispersed throughout the 

display (Brady & Alvarez, 2015b). This was not a form of all-or-none perceptual grouping ("all 

the cubes are over there") because participants remained aware of the individual identities to a 

certain extent as well. Instead, the evidence suggested that people represent both individual items 

and information about the general spatial distribution of items in the display, perhaps via spatial 

ensemble (Alvarez & Oliva, 2009) or peripheral texture information (as proposed by Balas et al. 

2009; Rosenholtz, 2016). This suggests when given an across-category change, observers may be 

utilizing ensemble information to inform their judgments, thereby inflating their working 

memory performance and violating another assumption of high-threshold capacity estimates.  

 There exist many possible versions of how ensemble information may inform across-

category change performance, even accounts with explicit strategies (such as only encoding 

items of a particular category). Here, we focus on spatial ensemble accounts, informed by 

research suggesting people represent summary information about the spatial structure in simple 

displays (Balas et al. 2009; Brady & Alvarez, 2015). Figure 1 provides a schematic of this logic. 

Participants first encode a display with different stimuli categories (e.g., cubes and Chinese 



characters). At test, if a change occurred, participants would be able to rely on two sources of 

information. If the change occurred for an item for which observers have a working memory 

representation, they could use this information to correctly indicate a change has occurred. 

However, even if the observer failed to encode information for that specific item, they could still 

use ensemble representations to inform their performance. For example, they may know in a 

particular area of the display (outlined in red) there were no cube-like features present, and 

subsequently use this information to correctly indicate a change has occurred. Critically, such 

ensemble representations (here schematized using the texture tiling algorithm of Balas et al. 

2009) can be utilized primarily if a change is across-category, as this can create large texture 

changes between displays, but would not be as beneficial for within-category changes, given the 

general feature information at the changed location would be consistent between displays.  

According to this ensemble representation account, as the number of categorically similar 

items in a display increases, this increases the potential utility of ensemble representations (e.g. if 

only four items are in a display, ensemble representations are less useful than when eight items 

are in a display). In addition, the spatial arrangement of items will affect the utility of this 

strategy, as displays with categorically similar items clustered in the same locations will tend to 

have greater capacity estimates than displays where the items are more inter-dispersed (Brady & 

Alvarez, 2015b). In contrast to this ensemble account, the slot-model prediction is that observers 

only have item representations available (or not), and can only use these to inform working 

memory performance, even at high set sizes.  

 

 



 
Figure 1. Schematic of a spatial ensemble account of working memory performance. Here, 

participants encode a display of cubes and characters, and at test are presented a display with 

an across-category change (i.e. character to cube). An observer could rely on an item 

representation (i.e. memory of that particular character) to correctly indicate a change has 

occurred. However, in the absence of a strong item memory, or in addition to this memory, the 

observer could utilize an ensemble representation, such as they may know in a particular area of 

the display (outlined in red) there were no cube-like features present, and thus use this 

information to correct indicate a change has occurred. Critically, as the number of categorically 

similar items in a display increases, so too does the ability to utilize an ensemble-based strategy 

to inform performance. In contrast, according to a slot-model account, observers can only utilize 

item representations at test to inform performance.  

 

 

The current studies 

We sought to expand upon these findings and directly address the role of ensemble 

contributions to working memory capacity for large, across-category changes, and particularly 

the validity of calculating a "capacity" (K) metric for such displays. Specifically, in Experiment 

1, we replicated Awh et al. (2007) but analyzed set size separately, with a range of set sizes (4, 8, 

12). By comparing performance for across-category changes as set size increased, we could 



evaluate whether observers increasingly relied on ensemble information to inform their 

judgments. We also quantified working memory performance using d', a measure of memory 

signal strength that does not rely on high-threshold assumptions, to understand working memory 

performance and the potential utilization of ensemble information at high set sizes.  

In Experiment 2, we next assessed the role of ensemble information directly while 

controlling for the complexity and similarity of stimuli. In particular, participants completed a 

visual working memory task with Chinese characters and random polygons that were either 

outlines (less distinct from the Chinese characters in terms of spatial ensemble information) or 

were filled-in (more distinct from the Chinese characters in terms of ensemble information). 

There was no significant difference for within-category changes whether a polygon was outlined 

or filled-in, confirming we had controlled for the complexity and similarity of the stimuli. Thus, 

we could directly assess whether when stimuli contained greater ensemble information, but 

complexity and similarity was controlled for, if there was a difference in performance for across-

category changes. Overall, we found strong evidence in favor of the idea that participants do not 

use a slot-like representation and that they take advantage of ensemble information to detect 

changes. 

  

Experiment 1: Replication of Awh Et al. (2007) with Higher Set Sizes 

In Experiment 1, we replicated Awh et al.’s (2007) finding that observers are better at detecting 

across-category changes than within-category changes when remembering complex objects. 

However, in order to assess the potential role of ensemble information in this task, we added a 

set size 12 condition and analyzed data separately by set size. It has been argued that similar 

across-category change capacity estimates of ~4 objects across stimulus type suggest a fixed (i.e. 



‘slot-like’) constraint on visual working memory capacity. However, previous research collapsed 

capacity over set sizes (i.e. reporting a single capacity estimate averaged across set size 4 and 8). 

If visual working memory utilizes ensemble information to improve capacity, we expect to see 

that as set size increases, estimated capacity should not be fixed, since the underlying 

representations are not actually item-based in the way assumed by the capacity formula. Instead, 

increasing set size should increase the ensemble information available in the display, and 

therefore there should be an increase in estimated working memory capacity for large, across-

category changes as set size increases.  

 

Methods 

Participants. A group of 22 University of California, San Diego undergraduates participated in 

Experiment 1. The results from one participant was excluded due to noncompliance with 

instructions. All participants reported normal or corrected-to-normal visual acuity, and no 

previous experience reading or writing Chinese/Japanese characters. Participation was voluntary, 

and in exchange for extra credit in related courses. The experimental protocol was approved by 

the University of California, San Diego IRB. 

 

Apparatus. Experiment 1 took place in a dimly lit sound-attenuated room. Stimuli were 

presented on a Macintosh iMac computer with a refresh rate of 60 Hz.  

 

Stimuli and Procedure. Stimuli were generated using MATLAB and the Psychophysics toolbox 

(Brainard, 1997; Pelli, 1997). Participants completed 576 trials of a visual working memory task. 

Displays contained either 4, 8, or 12 items (equally balanced across trials) consisting of 



intermixed cubes and Chinese characters (see Figure 2). Displays always contained an equal 

number of cubes and characters, and stimuli were randomly selected from the 8 possible stimuli 

for each category during every trial. Stimuli positions were randomly selected positions within a 

square region (3.95° per side), constrained to a 5 X 5 grid of possible locations excluding 

fixation (i.e. 24 total positions). Images were 2.38°, and their positions were randomly jittered 

horizontally and vertically within region by up to 0.6°. There were no other restrictions on image 

position.  

 Participants would press the space bar to initiate a trial. They would then see a fixation 

cross for 1000 ms, followed by a study display containing intermixed cubes and characters for 

500 ms. Afterward a blank delay screen was shown for 900 ms. At subsequent test, a single item 

reappeared in one of the previous stimulus locations (with location serving as the cue for what 

object was being tested) and participants had to report whether that test item was the same or 

different from the item that had been in that same location in the previous display. The test item 

was shown on screen until participants made a response. For half of the trials the test item was 

exactly the same as in the previous display (i.e. same), and for the other half of trials the test item 

changed (i.e. different). On different trials, half the changes were within-category changes (e.g., 

a cube to a different cube) and half were across-category changes (e.g., a cube to a Chinese 

character; see Figure 3). Trials were randomly interweaved across set size and type of test.  

 

 



 
Figure 2. Possible stimuli of Experiment 1 and 2 (adapted from Awh et al., 2007). In Experiment 

1, participants saw a display containing either Cubes or Chinese Characters. In Experiment 2, 

participants saw a display containing Chinese Characters and random Polygons that were either 

outlined or filled-in.  

 

 

 

 
Figure 3. Participants performed a change detection task containing half cubes and half Chinese 

characters at set sizes 4, 8, or 12. At test when a change occurred (50% of trials), this change 

was either within-category (small) or across-category (large). The test item was shown on screen 

until participants made a response.  

 

 



Data Analysis. To estimate visual working memory capacity that allowed for a direct comparison 

of Awh et al. (2007), we estimated the 'number' of individual items remembered using Cowan’s 

K (Cowan, 2001): K = (H – FA) * N, where K is the number of items stored, H is the hit rate, FA 

is the false alarm rate, and N is the number of items presented. This is the appropriate high-

threshold model for the case where only a single item reappears at test (Pashler, 1988; Rouder et 

al. 2011). 

 

In addition, we report d' values (a measure of memory signal strength), to quantify performance 

without reliance on a high-threshold, slot-like model: d' = Z(H) – Z(FA) (Macmillan & 

Creelman, 2004). In the present manuscript, Cowan’s K is referred to as working memory 

‘capacity,’ since it is hypothesized to be fixed across set size, whereas d' is referred to as 

working memory ‘performance’. We also report reaction time data, to assist in the interpretation 

of accuracy-based analyses (excluding reaction times greater than 5 seconds).  

 

Results and Discussion 

First, we investigated whether we replicated the general effect between within-category and 

across-category changes observed in Awh et al. (2007). Collapsing across stimulus type and set 

size, we observed a capacity of approximately one object in the within-category change 

condition and four objects in the across-category change condition (K = 1.02 vs 3.88), t(20) = 

10.7, p < 0.01. These results are consistent with a near-direct replication of previous results 

(albeit with the addition of a set size 12 condition). Quantifying performance, we observed a d' = 

0.49 for the within-category and d' = 1.70 for the across-category change condition, respectively. 



We found a similar pattern for reaction times, with slower responses for within-category (1.20 

seconds) versus across-category (1.05 seconds) changes, t(20)=5.10, p < 0.01.  

Our primary interest was performance in the across-category change conditions. As 

expected, performance dropped at greater set sizes. An ANOVA of across-category change 

detection performance estimates found a significant main effect of set size (4, 8 or 12), 

F(2,40)=134.17, p<0.001, η2  = 0.87. Follow-up analyses revealed d' decreased as a function of 

set size, from 4 items (d'=2.69) to 8 items (d'=1.58) to 12 items (d'=1.14) (all p’s < 0.001; see 

Figure 4B). For reaction time, an ANOVA also found a significant main effect of set size, 

F(2,40) = 19.04, p < 0.001, η2  = 0.49, with follow-up analyses revealing reaction time increased 

as a function of set size, from 4 items (0.95 sec) to 8 items (1.06 sec) to 12 items (1.13 sec) (all 

p’s < 0.01). Altogether, these results provide evidence suggesting performance decreased as a 

function of set size. Of critical interest was whether the difference in across-category change 

performance as set size increased was consistent with the high-threshold 'capacity' model as 

proposed by Awh et al. (2007). In particular, the ‘capacity’ formula (K) is designed to correct 

performance for the greater difficulty at higher set sizes and reveal “how many items” were 

remembered at each set size. If participants had a fixed K value at all high set sizes, this would 

support the idea that there was a fixed item limit, assuming the other requirements of a high-

threshold theory were met as well. However, if this high-threshold view is incorrect, or if 

observers utilized ensemble information to facilitate across-category change performance, then 

as the number of stimuli increases this should lead to a greater reliance on non-object-based 

spatial ensemble information, and thus 'capacity' should increase.  

An ANOVA of across-category change detection capacity estimates found a significant 

main effect of set size (4, 8 or 12), F(2,40)=18.77, p<0.001, η2  = 0.48. Follow-up analyses 



revealed capacity estimates increased as a function of set size, from 4 items (K=3.06) to 8 items 

(K=3.98) to 12 items (K=4.61) (all p’s < 0.001; see Figure 4A). In other words, performance as a 

function of set size dropped less sharply than proposed by slot models. A potential limitation of 

these results is the possibility of ceiling effects at set size 4, as performance was quite high. 

However, we found K values well below 4 (i.e., 3.06), and most importantly set size 4 is not the 

critical comparison in this design, as we are primarily interested in working memory 

performance when this system was pressured (i.e. set size 8 and 12). 

 Thus, despite being widely cited, the results of Awh et al. (2007) do not in fact suggest a 

fixed 'capacity' limit for across-category changes, even according to the model of capacity used 

in the paper and frequently used by proponents of slot-like views (Cowan, 2001). Consistent with 

previous reports, this may be because observers utilize ensemble representations to improve 

performance during across category-changes, particularly in displays with large set sizes (e.g., 

Brady & Alvarez, 2015b). In addition, capacity estimates suggested working memory 

performance for across-category changes actually increased as a function of set size, rather than 

remaining approximately fixed as expected by models who believe this formula accounts for 

how performance changes with set size (e.g., Awh et al. 2007).  

 

 

 

 



 
Figure 4. (A) In contrast to Awh et al. (2007), which collapsed results across set size 4 and 8, we 

observed increasing 'capacity' estimates for across-category changes as set size increased. This 

may be because observers rely on ensemble strategies to detect across-category changes. (B) 

When analyzing the same across-category change data using d', a measure of memory signal 

strength, we observed decreasing performance as set size increased. * designates p < 0.001. 

Error bars represent within-subject error (Cousineau, 2005). 

 

 

 

Experiment 2: Controlling for Complexity and Similarity - Greater Capacity with 

Increased Utility of Texture 

In Experiment 1 we observed greater visual working memory capacity estimates in across-

category change conditions as set size increased, consistent with our hypothesis that observers 

utilize ensemble information to improve visual working memory performance, particularly at 

large set sizes (e.g., Brady & Alvarez, 2015b). These results are inconsistent with the fixed 4-

item limit observed by Awh and colleagues (2007) and in line with more recent research 

suggesting observers remember far less information in across-category changes when the utility 

of ensemble information is reduced (Brady & Alvarez, 2015b). To pursue this claim even 

further, we tested the potential utilization of ensemble information while directly controlling for 



other possible factors, such as stimulus complexity (Alvarez & Cavangh, 2004) and sample-test 

similarity (Awh et al., 2007).  

 Specifically, participants completed a visual working memory task across two sessions 

involving Chinese characters and random polygons. During one session, the random polygon 

stimuli were outlined, and during the other session the random polygon stimuli were exactly the 

same but filled-in with gray. As a result, both sessions were identical in their stimulus 

complexity and the similarity of their foils, but critically differed in how ensemble information 

may be utilized. We reasoned when polygons are filled-in, this added more distinctive, 

discriminative texture information that should increase the ability of observers to utilize 

ensemble information to inform working memory performance, compared to when the polygons 

were outlines. That is, peripheral texture information and other non-item based representations 

should be more informative for telling apart filled-in polygons from characters than outlined-

polygons from characters -- even though if only one item was remembered, both would be 

effectively maximally dissimilar changes from a character.  

 

Methods 

Participants. A separate group of 20 University of California, San Diego undergraduates 

participated in Experiment 2. All participants reported normal or corrected-to-normal visual 

acuity, and no previous experience reading or writing Chinese/Japanese characters. Participation 

was voluntary, and in exchange for extra credit in related courses. The experimental protocol was 

approved by the University of California, San Diego IRB. 

 



Stimuli, Apparatus, Procedure. Experiment 2 was identical to Experiment 1, with the following 

exceptions: Participants completed 288 trials of a working memory task. All trials were at set 

size 8. The stimuli in the displays were intermixed Chinese characters and random polygons. 

Participants completed this task twice across two sessions (taking place at least one day apart but 

no longer than 7 days apart). During one session the random polygons were outlined, and during 

the other session the random polygons were filled-in (session order counterbalanced equally 

across participants; see Figure 5A). 

 

Data Analysis. The analyses used were identical to that of Experiment 1.  

 

Results and Discussion 

Collapsing across stimulus type (i.e. sessions) we observed a significant difference in 

performance (d') for within-category (d' = 0.44)  and across-category changes (d' = 1.54), t(19) = 

9.41, p <0.001, with a corresponding difference in 'capacity' for within-category (K = 1.31) and 

across-category changes (K = 4.13), t(19) = 9.58, p < 0.001. We observed the same pattern for 

reaction times as well, with slower responses for within-category (1.17 seconds) versus across-

category (1.11 seconds) changes, t(20) = 2.34, p = 0.04. Thus, we again replicated the general 

effect observed by Awh and colleagues (2007).  

 Next, in order to evaluate the potential utilization of ensemble representations affecting 

working memory capacity estimates, we compared performance for within-category and across-

category changes across outlined vs filled-in polygons. We reasoned that both a filled-in and 

outlined polygon should be extremely dissimilar to a Chinese character and are thus not limited 

by 'precision', as in the model of Awh et al. (2007), but that they would markedly differ in the 



ability of participants to make use of more spatial ensemble-based information to discriminate 

them.  

We observed no difference for within-category changes whether the polygons displayed 

in the task were outlined (d' = 0.27, K=0.73) or filled-in (d' = 0.21, K=0.54), t(19) = 0.74, p = 

0.47 for d', t(19)=0.82, p=0.42 for K. This pattern is consistent across reaction time as well, with 

similar reaction times for outlined (1.21 seconds) and filled-in (1.21 seconds) polygons, t(19) = 

1.04, p = 0.31. This lack of any observable effects reinforces that the relative complexity and 

similarity of polygon stimuli used across sessions was equal.  

 Critically, we found a significant effect for across-category changes, with greater 

performance when the polygons contained in the display were filled-in (d' = 1.75, K=4.49) 

compared to when they were outlined (d' = 1.41, K=3.77), t(19) = 3.38, p < 0.01 for d', t(19) = 

3.71, p = 0.001 for K (Figure 5B). A similar trend to this pattern was observed in reaction time 

(filled-in RT = 1.07 seconds, outlined RT = 1.16 seconds), t(19) = 1.07, p = 0.26. Thus, in a 

working memory task when the texture information was more discriminative between the 

Chinese characters and polygons (i.e. filled-in), participants performance (quantified either as d' 

or K) increased, likely due to the use of less item-based, more global ensemble strategies to 

increase performance.  

 A potential limitation of the present study is that rather than solely being based on 

ensemble structure, there is a potential that some aspects of the benefit for filled vs. outlined 

polygons could arise from a difference in across-category similarity when polygons were 

outlined, compared to when they were filled. Specifically, it may be that outlined polygons are 

slightly more similar to Chinese characters, resulting in worse performance in across-category 

changes compared to when those polygons are filled-in (and thus less similar). This would 



require an expansion of the idea of item 'precision' (as previously proposed) such that there could 

be items stored that are so imprecise that they can be discriminated from filled-in polygons but 

not from outlined polygons, and that there could be (approximately) 5 items represented. For 

example, consider the high-threshold model used by Cowan's K, where if it an item is 

represented, a change is always detected, but if the item is not represented, participants must 

guess. Such a model, where there is no noise in responses but simply unrepresented items,  

would require that participants are storing, on average, one high-precision item (sufficient to 

distinguish within-category changes), three medium-precision items (sufficient to distinguish 

most across-category changes) and one low-precision item (sufficient to distinguish only some 

across-category category changes). While possible, this is clearly quite distinct from a slot-like 

model and from the claims of Awh et al. (2007), and is effectively a continuous resource model.  

This model could be softened to keep a slot-like limit on performance but move to a more 

signal-detection-like explanation of responses, where rather than specifying a certain number of 

items are encoded vs. not encoded, items are conceived as having different memory strengths 

and these memory strengths do not result in all-or-none correct vs. incorrect responses. Under 

such a framework our results can be accounted for in a more nuanced way, with memory 

strength varying between items such that, on average across trials, the within-category change 

can be successfully detected for around 1 out of 5 memorized items, the across-category change 

for the outline polygons for 4 out of 5, and the across-category change for the filled polygons for 

5 out of 5, with the greater performance for filled polygons arising from either their greater 

apparent dissimilarity to the Chinese characters or the memory strength derived from ensemble 

representations.  



In general, we believe that previous evidence of ensemble structure being used in 

displays like the current experiments suggest that the usage of ensemble information is a likely 

explanation of the results (e.g., Brady & Alvarez, 2015; Brady & Tenenbaum, 2013), particularly 

in light of the set size difference in Experiment 1. In other words, we propose that participants 

are using low-precision information about several items, but these representations are not strictly 

item-based but also ensemble-based.  

 

 
Figure 5. (A) In Experiment 2, participants completed change-detection task at set size 8. 

Displays consisted half of Chinese characters and half random polygons. However, depending 

on the session, the polygons shown were either outlines (less discriminative from the characters 

in terms of texture) or filled-in (more discriminative from the characters in terms of texture). 



Thus, similarity and complexity were controlled for across the different types of polygons, with 

the only difference across sessions the amount of texture information that could be utilized by a 

global ensemble-based strategy. (B) There was no difference for within-category changes for 

polygons whether they were outlines or filled-in, confirming complexity and similarity were 

controlled. However, we found significantly greater capacity for filled-in relative to outline 

polygons, suggesting greater texture information and the use of ensemble information drives 

effects observed for across-category changes. This same pattern of results was observed using d', 

which does not rely on high-threshold, slot-like assumptions of working memory performance. 

*designates p = 0.001. Error bars represent within-subject error.  

 

Discussion 

Overall, we found that as the utility of ensemble information in a display increased, whether 

through increased set size (Experiment 1) or via the stimuli themselves (Experiment 2), across-

category performance increased as well. In addition, we found evidence refuting the claim of 

previous work that there is a fixed 'capacity' for across-category changes. These results 

demonstrate that across-category change performance is not fixed across set size, and so it is not 

an informative index of if performance is based on some slot-like limit on the number of objects. 

Further, we provide direct evidence against a fixed object limit in visual working memory, as it 

appears that across-category changes are not solely an effect of low sample-test similarity but 

reflect the utilization of spatial ensemble information. These results are consistent with a 

continuous, distributed resource account of working memory, especially those continuous 

resource accounts that allow for ensemble-based in addition to item-based representation.  

 

Recent evidence for the importance of stimulus complexity  

Research on visual working memory has consistently shown that stimulus complexity affects 

performance significantly in a variety of different tasks, and this is true even in simpler stimuli 

(e.g., conjunctions of orientations and colors; Cowan et al., 2013, Fougnie et al., 2010, Hardman 

& Cowan, 2015; Oberauer & Eichenberger, 2013), and even when using continuous report 



techniques, where no foil is offered and thus accounts based on the difficulties of change 

detection are not relevant (e.g., Oberauer & Eichenberger, 2013).  

 In general, there is a convergence of evidence that performance for complex objects is 

limited even with only 1-2 objects in mind. For example, Taylor et al. (2017) administered a 

change detection task to participants, but where participants completed blocks of a single 

stimulus type that varied in complexity relative to one another (e.g. letters, words, colors or 

shapes). They analyzed their data with a measurement model that gave an estimate not only for 

memory capacity, but for the probability of comparison errors as well. Critically, this model did 

not require within and across-category changes, and thus freed participants from potential issues 

that may arise with encoding items from different categories. They observed that capacity 

estimates, and not comparison error estimates, varied as a function of stimulus complexity. 

Furthermore, their most complex stimuli (shapes) resulted in a capacity estimates of ~1 object. It 

is important to note that other studies have also attempted to estimate error rates with comparing 

complex within-category stimuli and have found evidence suggesting complexity does not matter 

(Barton et al., 2009, Umemoto et al., 2010), but the specific models used to support these claims 

have been found to rely on incorrect assumptions and implementation (Morey, Morey, Brisson, 

& Tremblay, 2012).  

A general performance limit with performance dropping and resource limits approached 

when remembering only ~1-2 complex but non-semantically meaningful objects is also 

corroborated by neural evidence. For example, when participants completed a change detection 

task containing either colored squares or polygons (similar to the stimuli in Experiment 2), 

researchers observed lower behavioral performance for more complex objects (i.e. polygons 

compared to colored squares). In addition, neural activity was collected via EEG, and a well-



known marker of perceptual maintenance in visual working memory, the sustained posterior 

contralateral negativity (SPCN; equivalent to contralateral delay activity), was larger during the 

delay period for complex objects than for simple objects, suggesting visual working memory 

needed to maintain more perceptual information for complex objects (despite lower overall 

behavioral performance) (Luria et al., 2010). Taken together, these studies provide strong 

evidence in favor of the idea that stimulus complexity affects visual working memory 

performance.   

 

Evidence against a ‘slot-model’ of visual working memory 

The present results provide strong evidence against a ‘slot-model’ of complex objects in visual 

working memory, which suggests people always represent information as a fixed number of 

objects (~4) regardless of complexity, and these items vary only in precision (e.g., Awh et al. 

2007; Barton, Ester, & Awh, 2009; Fukuda, Vogel, et al., 2010). Much of this research relies on 

tasks with set sizes either at this theorized limit (i.e. 4 objects) or by averaging performance 

across set sizes. However, in our replication of Awh et al. (2007) that included set sizes 4-12 

(Experiment 1) we found that when analyzing each set size separately across-category, estimates 

of ‘capacity’ increased significantly when more items were in the display (e.g., performance as a 

function of set size dropped less sharply than proposed by slot models). At the highest set size, 

we obtained across-category capacity average capacity estimates of almost 5 items in working 

memory, considerably higher than those reported by Awh et al. (2007) in a similar task and, most 

critically, with performance not reflecting a fixed 'K' across set sizes. 

Overall, these results are incompatible with a potential object-based limit of visual 

working memory, which continues to require post-hoc amendments to explain extant data (see 



Schurgin, 2018 for a review). This work adds to the growing literature suggesting that even when 

using all the assumptions of the discrete-resource versions of the slot model to quantify data, as 

in the current work, the data do not obey the regularities required of this model, like a fixed 

capacity estimate across set size (see also Bays 2018). 

Experiment 2 provided additional evidence against ‘slot’-like representations. Again, we 

found that performance exceeded what would be expected for a slot-like model, and that even 

accounting for possible ‘precision’ differences between items, as in previous discrete resource 

models (Awh et al. 2007; Zhang & Luck, 2008) does not support a fixed item limit. To account 

for our data such a model would require that participants are storing one high-precision item 

(sufficient to distinguish within-category changes), three medium-precision items (sufficient to 

distinguish most across-category changes) and one low-precision item (sufficient to distinguish 

only some across-category category changes). This is effectively a continuous resource model. 

 

The importance of accounting for ensemble information 

More broadly, these results reinforce the need to dissociate item-level and ensemble-level 

representations contributions to working memory performance. We are not the first to make this 

point, as previous research has found that ensemble statistics can inflate working memory 

performance in a variety of different tasks (Brady & Alvarez, 2011; Orhan & Jacobs, 2013; 

Brady & Tenenbaum, 2013; Brady & Alvarez, 2015b). However, this emerging and consistent 

evidence highlights the importance of taking into account the potential use of global ensemble 

information or explicit chunking strategies (Nassar, Helmers & Frank, 2018) in both visual 

working memory tasks and the models used to explain those tasks.   



 Ensemble information is especially relevant to the study of working memory, considering 

the vast majority of research on working memory is concerned with understanding its apparent 

limitations. In order to study these limitations, many experiments vary set size in ways meant to 

pressure or exceed working memory capacity, with conditions that include a large number of 

items in a display. As the number of items in a display increase, it is important that researchers 

understand the role ensemble information may be contributing to performance. Many researchers 

using high set sizes to investigate working memory limitations have not considered how 

ensemble information might affect performance in their tasks, potentially inflating estimates of 

working memory performance. This becomes even more problematic when different stimuli are 

used across conditions, which may have varying ensemble information available. As we have 

shown, even the same stimuli but with differing usefulness of texture information (i.e. outlined 

vs filled-in) can significantly change working memory performance in a task (inflating 'capacity' 

estimates by almost one item!).  

 It is also worth noting that the most widely used estimates of working memory capacity, 

Cowan’s K, relies not only on a strong high-threshold memory assumption, but on an assumption 

that individual representations are the sole contribution to working memory performance. As a 

result, K estimates may not be the best measure of working memory performance, especially at 

high set sizes when the contribution of ensemble information likely increases.  

One potential solution may be to analyze data using a signal detection framework, where 

the assumptions guiding memory performance are well established. Indeed, in Experiment 1 we 

observed, as expected, that as set size increased, d' decreased. This appears to more accurately 

reflect participants performance at high set sizes than the assumptions of Cowan’s K, which 



suggested that performance increased at high set sizes (above previously documented limits of a 

‘capacity’ around 3-4 objects).  

Consistent with the present results, recent research suggests that working memory 

performance is best captured under a signal detection framework that takes into account the 

psychological representation of the relevant feature space (Schurgin, Wixted & Brady, 2018). 

Such a model, which directly assesses the role of stimulus perceptual characteristics, could be 

used to more directly incorporate ensemble information into estimates of performance.  

 

Implications for visual working memory and fluid intelligence 

Previous research has found a strong correlation between visual working memory capacity and 

fluid intelligence, further indicating visual working memory’s importance as a core cognitive 

system. However, this relationship has been observed only for large, across-category change 

performance (r=0.66), whereas no relationship between fluid intelligence has been observed for 

smaller, within-category changes (r=-0.05) (Fukuda et al., 2010). Previously these results were 

interpreted to support that the relationship between visual working memory and fluid intelligence 

was tied to capacity (i.e. large change performance), not the resolution of working memory 

representations (i.e. small change performance).  

 However, our results suggest an alternative interpretation to this relationship. 

Specifically, it may be that observers with greater fluid intelligence are better able to shift their 

strategy in visual working memory tasks to utilize ensemble information or to switch -- between 

trials -- their reliance on item vs. ensemble information. Thus, the correlation between visual 

working memory performance and fluid intelligence may not be directly attributable to capacity 

per se, but rather the ability to shift strategies in a way that maximizes the utility of ensemble 



information. Future research should investigate what factors might be driving this relationship, 

i.e. whether this correlation is due to visual working memory capacity or strategic utilization of 

ensemble information. 

 

Conclusion 

The present results provide evidence against the idea that fixed item limits are present for more 

complex objects, and argue that observers utilizing ensemble strategies to improve working 

memory performance, particularly at high set sizes. As this ensemble-based strategy becomes 

more beneficial (e.g. high set size or via increased texture in stimuli), this inflates performance 

and violates one of the assumptions of capacity models of working memory that generally are 

based on the assumption only item representations contribute to performance. In the real-world, 

observers likely utilize both individual item and ensemble representations to inform their 

performance in working memory tasks. As a result, tasks and models of working memory need 

to better account (or discount) for the role ensemble representations may have in informing 

performance.  
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