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ABSTRACT
In this paper, we introduce an agent-based model of lost per-

son behavior that may be used to improve current methods for
wilderness search and rescue (SAR). The model defines agents
moving on a landscape with behavior considered as a random
variable. The behavior uses a distribution of four known lost
person behavior strategies in order to simulate possible trajec-
tories for the agent. We simulate all possible distributions of
behaviors in the model and compute distributions of horizontal
distances traveled in a fixed time. By comparing these results to
analogous data from a database of lost person cases, we explore
the model’s validity with respect to real-world data.

INTRODUCTION
Every year, thousands of people go missing in the United

States. According to the National Crime Information Center,
nearly 610,000 people were reported as missing in the United
States in 2018 [1]. Coordinated search and rescue (SAR) op-
erations provide the best chance to locate a missing individual
alive, and the key to a successful search is locating the lost per-
son (LP) as rapidly as possible. As time elapses, the size of the
search area grows geometrically and searchers are tasked with
an increasingly daunting task of finding a person in a large area
in a short amount of time. Because these searches can involve
high risks to humans, the lost person SAR can be redefined by
enabling teams of human searchers and autonomous unmanned
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aerial vehicles (UAVs) to collaborate towards improving search
outcomes. In order to optimize the search process, mathematical
models of lost person behavior with respect to geophysical and
transient landscape features could be used in conjunction with
observable data from the UAVs. The goal of this paper is to in-
troduce a model of lost person behavior that could be used to
make UAV SAR searches more efficient.

Existing models of human behavior have been used exten-
sively to study pedestrian dynamics, including force-based mod-
els showing collision avoidance, vision-based guidance, or goal-
oriented behaviors [2–6] and agent-based models based on be-
havioral heuristics [7], as well as the motion of animal groups [8].
Many of these models are used to study social interactions be-
tween individuals, but the behavior of a walking lost person can
also be modeled analogously to a pedestrian, that is, as a self-
propelled particle. Among the limited academic literature for
modeling the behavior of a LP, there are two models that imple-
ment a human movement algorithm, including a Bayesian ap-
proach to estimate the location of the LP [9] and an agent-based
approach [10]. The Bayesian method discretizes the search area
and computes probabilities of transitioning between cells based
on previous behavior and landscape features [9]. The agent-
based model in [10] simulates different behaviors for a LP on
a landscape. However, both of these models fail to include spe-
cific types of lost person behavior (e.g., people with dementia or
autism), which are known to significantly change behavior [11].
Thus, creating a spatially-resolved, agent-based model will al-
low for predicting specific paths taken by the lost person that can
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be quickly explored by UAVs. In this paper, we will also take
into account the different types of lost person behavioral profiles
that have been collected and analyzed in the International Search
& Rescue Incident database (ISRID), which amalgamates data
from over 50,000 lost person searches [12].

When using an agent-based model, the rules and interaction
behaviors are defined with respect to the individual. In this work,
we model the behavior of a lost individual in the wilderness us-
ing a variety of different behavioral lost person types (LPT) as
defined by [11]. By knowing the type of individual that is miss-
ing, the strategies used by that person may be predicted, and in
turn optimize the SAR process. Specifically, once we have in-
formation on the type of person who is lost, we can predict the
trajectories of the LP for SAR teams to utilize. Our model will
allow us to generate a family of trajectories that define a spatial
distribution where a lost person can be expected as a function of
time. Conversely, by simulating possible distributions of behav-
iors, we can also compare the LPTs taken from real-world data
to the behaviors used in our model to inform the profiles with
information from the dataset.

MODELING
Agent dynamics

In this model, an agent is considered to be a self-propelled
particle moving in discrete time on a 2D grid of L×W square
cells of fixed side length Lc. Cells of the grid are considered to
be on a so-called linear feature or not, which is discussed in detail
in the Map data processing subsection below.

The agent moves from its position to one of the eight adja-
cent cells by executing an algorithm which defines the strategies
that it may use. We define four possible strategies based on [11]:

1. Random Walking (RW): An individual moves randomly.
One may often have no apparent purpose other than finding
something that looks familiar.

2. Route Traveling (RT): An individual travels on some un-
known trail, path, drainage, or other aid. These specific
paths are defined by linear features and are calculated based
on elevation at a certain point in the model.

3. Direction Traveling (DT): An individual moves cross-
country, often ignoring trails and paths. They will some-
times cross railroad tracks, power lines, highways, and back-
yards.

4. Staying Put (SP): An individual makes an active decision to
stay put, often attempting to signal or build shelter.

We model the LPT as a random variable whose probability mass
function (PMF) is a 4D vector that captures the probability of
an agent using each strategy at a given time. For example,
an agent with LPT defined by a probability (RW, RT, DT, SP)
= (0.5,0,0.4,0.1) has a 50% chance of random walking, a 40%
chance of direction traveling, and a 10% chance of staying put

at a given time step. To update the agent’s position in time, in-
dependent realizations of this distribution are generated and the
agent’s position is updated according to the model of the ran-
domly selected strategy.

We select an initial position x(1) ∈N2 for the agent and ran-
domly generate a second position x(2) ∈ N2 from the eight cells
surrounding x(1). We compute v(1) = x(2)− x(1) as an initial
velocity. To generate motion from the four strategies, we first
consider the agent placed in the center of a 3×3 grid, which is a
subset of the larger discrete map in body coordinates with respect
to the agent. At time step t, the 3× 3 grid with x(t) at its cen-
ter is oriented so that x(t)+ v(t) is the cell above x(t), which is
accomplished by appropriately rounding coordinate values when
this orientation is not orthogonal to the map axes.

We consider how the four strategies above define updates in
this 3×3 grid and x(t +1) in global coordinates, using Figure 1
as a reference and the PMFs in Table 1. When the individual
walks randomly (RW, strategy 1), the chance of moving into any
of the other adjacent cells is the same, including staying in place.
When route traveling (RT, strategy 2), the agent will check each
of the surrounding cells for a linear feature and, if found, the
updated position will be randomly selected from positions 1, 2,
or 3 in body coordinates if they are on the linear path, see Fig-
ure 1. If a feature is not found, the agent will walk randomly
following strategy 1. When direction traveling (DT, strategy 3),
the agent will only move forward, that is, to position 2 in body
coordinates. Lastly, when staying put (SP, strategy 4), the only
possible update is the previous position, that is position 5 in body
coordinates. At time step t, the agent generates a realization of

TABLE 1. PMF FOR EACH BEHAVIOR STRATEGY, GIVEN IN
THE ORDER OF POSITIONS (1,2,3,4,5,6,7,8,9) FOR THE 3× 3
GRID COORDINATES RELATIVE TO THE AGENT.

Strategy PMF for updated position

RW ( 1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 )

RT ( 1
3 ,

1
3 ,

1
3 ,0,0,0,0,0,0) if on a linear feature

DT (0,1,0,0,0,0,0,0,0)

SP (0,0,0,0,1,0,0,0,0)

the LPT PMF, which defines a strategy to use. Then the updated
position x(t + 1) is computed using this strategy, as well as the
resulting velocity v(t +1). The model is iterated to generate the
agent’s trajectory for T time steps.
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FIGURE 1. SCHEMATIC OF AN AGENT’S TRAJECTORIES FOR
THREE BEHAVIOR STRATEGIES EVOLVING OVER TIME FROM
LEFT TO RIGHT. THE AGENT’S INITIAL POSITION IS THE CIR-
CLE, EACH POSSIBLE NEXT STEP IS GREEN, AND LINEAR
FEATURES ARE REPRESENTED AS THE DARK GREEN DASHED
LINE. RANDOM WALKING (TOP) WILL HAVE EQUAL PROBA-
BILITIES FOR THE NEXT POSITION IN THE ADJACENT CELLS.
ROUTE TRAVELING (MIDDLE) WILL MOVE FORWARD ONTO
A LINEAR FEATURE. DIRECTION TRAVELING (BOTTOM) WILL
ALWAYS MOVE FORWARD INTO POSITION 2.

Map data processing
The possible trajectories for a lost individual are simulated

on a map generated from USGS geographic information system
(GIS) data. We collect this data using the MATLAB command
webmap, which accesses the ESRI database [13]. The map gives
the elevation of the landscape with respect to sea level at a given
resolution. Linear features, such as drainages and roads, are gen-
erally visible as critical points in the magnitude of the gradient of
the elevation map. As such, we calculate the gradient field using
the derivative of a Gaussian filter. We then compute the gradient
magnitude and find linear features using the Canny Edge Detec-
tion method [14]. This function is able to find edges by looking
for local maxima and minima of a scalar field.

When searching for a lost individual in real applications,
searchers need to have certain information about the LP to begin
the investigation. An important piece of data is initial location
of the LP, which could be either the point last seen, given by an

FIGURE 2. SATELLITE PHOTO OF A REGIONAL MAP OF
BLACKSBURG, VIRGINIA USED AS A DOMAIN FOR SIMU-
LATED LP.

eyewitness, or the last known point where there is often substan-
tial evidence to place the subject. Since both of these points can
move as the search progresses, the initial planning point (IPP) is
the recommended choice to use to measure the progress of the
search [11]. In the model, the initial positions are assumed to be
the IPPs and the horizontal distance from initial to final point

Dh = ‖x(T )− x(3)‖ (1)

is the metric used to compare the different behaviors. Notice that
we use x(3) as the initial position to enable Dh to go to zero when
only SP is used, since agents are necessarily forced to move in
the first time step to compute initial velocity.

SIMULATION RESULTS
The model was simulated on a L×W = 2000×4000 gridded

map of Blacksburg and the surrounding area with center coordi-
nates 37′16′′12◦N 80′21′′36◦W. A satellite image of the map is
shown in Figure 2, which covers an area of 13.3 km × 26.7 km.
The resolution of each square block is approximately Lc = 6.7
meters. Simulations were run for the time it would take for a
person to walk an hour with an average pace of 4 kilometers an
hour and with a time step of 6 seconds, that is T = 600.

The elevation of the map was procured from the GIS data
and is seen in Figure 3 with the locations of IC1 = [1406,906]
and IC2 = [1967,918] marked. We used MATLAB version
2018a to analyze the map and simulate the model. Using the
Canny Edge Detection method in MATLAB, the linear features
were determined based on the intensity of the gradient of eleva-
tion. The black points in Figure 4 represent the resulting linear
features used in the simulations.
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FIGURE 3. ELEVATION MAP IN METERS WITH TWO INITIAL
CONDITIONS MARKED, IC1 AND IC2, AS WHITE CIRCLES. THE
FIRST INITIAL CONDITION IS LOCATED NEAR A PROMINENT
LINEAR FEATURE AND THE SECOND INITIAL CONDITION IS
NOT.

To be able to realistically model the behavior of a lost per-
son, all possible LPT PMFs for the four behaviors need to be
simulated, since a single person might employ a variety of dif-
ferent strategies while lost. We increment the probability of each
strategy between 0 and 1 by steps of 0.1, and retain valid PMFs
(that is, which sum to 1). The result is 266 unique LPTs with
varying proportions of random walking, route traveling, distance
traveling, and staying put.

We run the simulation over 100 replicates, and we compute
Dh for all 266 distributions and two initial conditions IC1 and
IC2. In Figure 5, the different distributions for the four strategies
are shown for each of the 266 different types in the top plot. The
second and third plots depict the distances from the initial condi-
tion averaged over 100 replicates with corresponding error bars
for the standard deviation. By comparing the distances to their
distributions, we can look for patterns in the behavioral types.

In Figure 5, the horizontal distances for each type of LP are
shown below the first plot. The patterns in this figure show the
correlation between the different distributions and how far the LP
will travel from the IPP. As a sanity check, we observe that, when
the only strategy used is staying put (all yellow in the top plot),
the distance from the initial point is zero. In contrast, when the
distribution is only direction traveling (all green in the top plot),
the distance jumps to over 4000 meters, which is much higher
than any of the other Dh values. Another pattern shows that the
distance decreases as route traveling increases with respect to
distance traveling and staying put decreasing (increasing pattern
of light blue in the top plot). However, when only route traveling
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FIGURE 4. RESULTS OF THE CANNY EDGE DETECTION
USED TO FIND THE LINEAR FEATURES OF THE DOMAIN.

is used, we see that the distance is increased in IC1 in compari-
son to IC2 due to the fact that the first initial condition is placed
near a linear feature and the second is not. In this case, the agent
near IC2 actually performs random walking since route travel-
ing is not possible. In general, as more random walking occurs
(more dark blue in the top plot), the distances tend to decrease to
a more constant distribution in contrast to the saw-tooth patterns
seen in the earlier distributions. These saw-tooth configurations
occur when staying put decreases while direction traveling in-
creases, causing the distance to increase and abruptly drop off
once staying put becomes dominant.

Validation
In order to evaluate the validity of the model, a metric is

needed to compare different distributions of behaviors. In his
book, Koester has categorized types of lost person subjects from
ISRID along with statistics from incident reports [11]. The ta-
bles list distances between where the LP is found and the IPP
for 25%, 50%, 75%, and 95% quartiles of cases, with 50% rep-
resenting the median. These distributions denote a cumulative
distribution (CDF) of distance for each type of lost person and
can be directly compared to the PMFs of Dh generated by re-
peatedly simulating our model. We transform the CDFs of the
person types into PMFs on the same support as our model PMFs
for comparison.

To define a metric of distance between the two distributions,
the Kullback-Leibler (KL) divergence metric is used [15]. For
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Walking

FIGURE 5. (TOP) PROBABILITY DISTRIBUTIONS FOR ALL 266 LPTS WITH CORRESPONDING Dh IN METERS AVERAGED OVER 100
REPLICATES BELOW. THE DISTANCES ARE SHOWN FOR INITIAL CONDITION 1 (MIDDLE) AND INITIAL CONDITION 2 (BOTTOM).
ERROR BARS SHOW ± ONE STANDARD DEVIATION OVER REPLICATES.

two discrete distributions P and Q, the KL divergence is defined
as:

DKL(P ‖ Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(2)

where x ∈X are realizations of the distributions. Because the
KL divergence is applied to PMFs, it is necessary to compute
the probability mass functions for the CDFs from [11]. First, we

normalize the model distributions by making the set of values of
Dh standard normal and compute a normalized PMF for each of
the 266 types. Then, we define the database LPT as a CDF of
Dh by interpolating the CDF over a linear space with 100 steps
spanning the largest possible distance reported in [11]. We differ-
entiate this interpolated CDF to find the unnormalized database
PMF. After making this PMF standard normal by subtracting the
mean and dividing by the standard deviation, we interpolate both
the model and database distributions over their overlapping bins.
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This is to ensure that neither distribution has any zero entries,
which may cause the KL divergence to go to infinity. Finally, we
compute the metric

DKL(P ‖ Q)+DKL(Q ‖ P) (3)

where P is each database PMF and Q is each of the LPT distribu-
tions from the model. Notice that this quantity is always positive,
unlike the KL divergence in (2). We use this measure of differ-
ence to show which model LPT fits the best with the distributions
given in [11].

Comparison with real LP data
The five different behavior categories selected from [11] are

Autism, All Terrain Vehicle (ATV), Child, Dementia, and Vehi-
cle. A LP in the autistic LP category will often show impairment
in social interaction and difficulty in communication. They will
often travel randomly to follow the path of least resistance, stay
put by hiding in structures for extended periods of time, or travel
in a direction due to a fascination with water, lights, reflections,
and an intense interest in transportation [11]. The ATV LP cat-
egory includes subjects who were driving an ATV for recreation
or some activity and became lost. Some of the possible strate-
gies used are route traveling, direction traveling, and many times,
staying put. Most cases reported are due to trauma which can dis-
able the ATV. The Child LP category describes children from the
ages 7-9 years old. At this age, directional skills are much more
developed than children under six, and they are usually able to
give directions and draw maps. Children in this age range be-
come lost because they will often try to take shortcuts, and will
frequently use the route traveling strategy. The Dementia LP cat-
egory includes LPs with a propensity to keep traveling straight
ahead until they get stuck. They appear to lack the ability to turn
around and have also been seen to just stay put when they are
stuck. In more severe cases, a LP with dementia will be seen to
random walk. The Vehicle LP category refers specifically to LPs
originating at an abandoned vehicle. This category represents
individuals who leave a vehicle to proceed on foot, which may
be the result of an accident, the vehicle becoming stranded, or
running out of fuel. Many of the LPs will follow roads or linear
features when traveling on foot [11].

In Figure 6, the five different database PMFs for the cho-
sen behavior categories are shown plotted against the best fitting
model PMFs for the two initial conditions. Using the KL diver-
gence in (3), we found the model LPTs with the smallest dif-
ference from each of the database, or experimental, PMFs. The
corresponding distributions for the best fits in Figure 6 are listed
in Table 2 for IC1 and IC2. In the figure, we see that the model
PMFs are consistent between the ICs and some of them match
the experimental data better than others. The Autism, Child, and
Dementia categories all tend to have similar shapes, including

light tails. When we look at Table 2, we see that even though
the Dh plots from Figure 5 seemed to match well between the
different ICs, different strategies are used for the experimental
LPTs. For example, in the Autism category for IC1, 90% of the
behavior comes from route traveling and 10% from staying put.
In contrast, for IC2, while 50% is still route traveling, we now
see some random walking and direction traveling as well. In the
ATV category, the distributions are more similar with 50% direc-
tion traveling in both IC1 and IC2 with the other behaviors also
alike in percentages. For the Child category, we see the same
distributions between the ICs as the Autism LPT. There is a large
difference in the ICs for the Dementia category with 90% of the
behavior coming from route traveling in IC1 and 0% of route
traveling in IC2. Lastly, for the Vehicle LPT, we also see a large
difference in strategies used with 60% direction traveling in IC1
and 0% of the same strategy in IC2. Even though the Dh plots
looked similar for these initial conditions, the results from these
best fit computations tell us otherwise.

TABLE 2. BEST FIT BEHAVIOR PMFS FOR LOST PERSON BE-
HAVIOR TYPES (RW, RT, DT, SP). ALSO SHOWN IN FIGURE 6.

LPT Init Cond 1 Init Cond 2

Autism (0,0.9,0,0.1) (0.1,0.5,0.2,0.2)

ATV (0.2,0.2,0.5,0.1) (0.1,0.1,0.5,0.3)

Child (0,0.9,0,0.1) (0.1,0.5,0.2,0.2)

Dementia (0,0.9,0.1,0) (0.2,0,0.3,0.5)

Vehicle (0.3,0.1,0.6,0) (0.2,0.6,0,0.2)

DISCUSSION
The agent-based model developed in this paper attempts to

model the dynamics of a lost person in the wilderness by using
different behavioral types and statistics from a database of lost
person cases [11]. In search and rescue operations, knowing the
type of lost individual can help predict the strategies that may be
utilized to find one’s way and gain insight into the goals of the
LP. Using this model in conjunction with UAVs will hopefully
make the SAR process more efficient and reliable.

By using the distance from the IPP as a metric, we can see
patterns in the way a LP might behave and the total displace-
ment they will travel. Generally, when traveling randomly, a LP
would likely travel a shorter distance versus when they are trav-
eling in one direction. Based on the description from [11], a
LPT for Autism will frequently travel randomly or in one direc-
tion. However, from the comparison with the model PMFs, we

6 Copyright c© 2019 by ASME



-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

Pr
ob

ab
ili

ty
 fo

r a
ut

is
m

-1.5 -1 -0.5 0 0.5 1 1.5 2
0.05

0.1

0.15

Pr
ob

ab
ili

ty
 fo

r A
TV

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

Pr
ob

ab
ili

ty
 fo

r c
hi

ld

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
 fo

r d
em

en
tia

-1 -0.5 0 0.5 1 1.5 2 2.5
Normalized coordinates

0

0.2

0.4

Pr
ob

ab
ili

ty
 fo

r v
eh

ic
le

Database PMF
Model PMF with IC 1
Model PMF with IC 2

FIGURE 6. NORMALIZED PROBABILITY MASS FUNCTIONS FOR EACH OF THE FIVE CHOSEN LOST PERSON TYPES FROM THE
DATABASE (AUTISM, ATV, CHILD, DEMENTIA, VEHICLE) PLOTTED WITH THE BEST FITTING MODEL PMFS FOR BOTH INITIAL
CONDITIONS.
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see that the best fit behaviors are route traveling and staying put.
Similarly with a LPT for Dementia, the typical behavior expected
by the SAR community will often be direction traveling, but in
the comparison in Table 2, the best fit PMFs have little direction
traveling.

These discrepancies between the model and the ISRID
statistics make it difficult to draw hard conclusions from this
study. This lack of correspondence may signify that this model
is still in an early form and can be improved with more behav-
iors that LPs are known to use, like view enhancing where the
LP moves uphill to visually orient herself or backtracking where
the LP follows a previously traversed route. In addition, we must
consider that the statistics from the database report the distribu-
tions where LPs were found, which may not be consistent with
where they would be after an hour of travel, which is what we
simulated. Incorporating the length of searches into this research
in the future may enable a more fair comparison.

An interesting aspect of the model is that the plots of the
distances from the IPP tend to be the same even though different
behavioral strategies are used. Thus, the distributions of strate-
gies are not unique since a LP can get to the same place by doing
different things. To improve this model, the ability to change be-
haviors while traveling should incorporate more realistic behav-
iors, especially if considering elevation data and the tendency for
people to move downhill.

CONCLUSIONS

In this paper, we introduce an agent-based model of lost per-
son behavior that defines agents moving on a landscape with be-
havior considered as a random variable. By using a distribution
of four known lost person behavior strategies to simulate possible
trajectories for the agent, we compute distributions of horizontal
distances traveled in a fixed time and compare these results to
analogous data from a database of lost person cases in order to
explore the model’s validity with respect to real-world data.

The next steps for the model are clear. Including more lost
person strategies which consider the landscape beyond only lin-
ear features, accounting for the effect of fatigue, and performing
simulations over longer time intervals will paint a more realistic
picture of the actual behaviors used by lost people. Making these
improvements will give more accurate trajectories and hopefully
decrease the amount of time a SAR operation takes.
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