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ABSTRACT

Communication inspired by animals is a timely topic of
research in the modeling and control of multi-agent systems.
Examples of such bio-inspired communication methods include
pheromone trails used by ants to forage for food and echoloca-
tion used by bats to orient themselves and hunt. Source search-
ing is one of many challenges in the field of swarm robotics that
tackles an analogous problem to animals foraging for food. This
paper seeks to compare two communication methods, inspired
by sonar and pheromones, in the context of a multi-agent for-
aging problem. We explore which model is more effective at
recruiting agents to forage from a found target. The results of
this work begin to uncover the complicated relationship between
sensing modality, collective tasks, and spontaneous cooperation
in groups.

INTRODUCTION

Collective behavior describes the coordinated actions of a
large group of social animals working together to the benefit
of accomplishing a common goal [1,2]. Among these animal
groups, an impressive example is ants, which are known to co-
operate for collective transport, and building structures [3,4]. As
ants forage for food, a number of methods may be used based
on the size of the colony and species of ant [3]. For example,
the Argentine ant (Linepithema humile) uses the “mass recruit-
ment” strategy, where scouts are sent out to locate food and,
upon finding a source, they return to the colony laying a chem-

*Address all correspondence to this author.

ical trail in the form of pheromones. This trail between the
source and colony causes other members to be recruited to the
foraging effort and is strengthened over time as more members
drop their own pheromone [5]. Depending on the species of ant,
this pheromone trail can be controlled or continuously dropped
and in both cases evaporates withing a couple of hours of being
laid [6]. Even with evaporation and sensing distance limitations,
pheromones are a useful method of indirect communication as
they do not require a colony member to be in contact with an-
other to understand where to go. In this way, it acts as an efficient
communication method allowing members to continue to work
and communicate with others asynchronously based on spatial
locations.

Emergence of collective behavior in bats is qualitatively
different from ants and most other social animals due to their
unique way of sensing the environment. Many species of bats
use echolocation for object detection and navigation [7]. Echolo-
cation is a form of active sensing in which the sensor emits a
signal in the environment and gathers information by intercept-
ing its echo. In contrast, in passive sensing, the sensor relies on
signals generated by the environment. Sonar, radar and LiDAR
are examples of active sensors, while microphones and cameras
are examples of passive sensors. The use of active sensing by
individuals provides a unique opportunity for communication, as
sensing signals can be eavesdropped and interpreted by peers in
a group. Some studies suggest that bats can detect their con-
specific’s echolocation signal during group flight. For example,
bats are able to identify each other and family members by lis-
tening to their echolocation [8]. In addition, the work by Barclay
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shows that little brown bats exploit eavesdropping in their search
for food, night roosts, nursery colonies and mating/hibernation
sites [9]. Another reason for eavesdropping can be related to sig-
nal jamming. A study by Chiu, et al. shows that, when a pair of
bats is flying together, one bat may stop echolocation presumably
to avoid signal jamming [10]. From a competitive point of view,
a study on wild bats shows that individuals may intentionally jam
each other during the competition over food [11].

Engineers take inspiration from animal collective behavior
in many application areas, like swarm robotics. Large groups of
simple robots with sufficient communication can lead to com-
plex interactions between agents and their environment. All co-
ordination requires some type of sensing and communication,
and the hardware used to accomplish this is frequently inspired
by nature [12—15]. Using bio-inspired sensing and communica-
tion provides engineers with potentially robust solutions to com-
mon problems faced in designing how agents will interact in
autonomous multi-agent systems to perform a task collectively.
Examples of such tasks include aggregation / dispersion, collec-
tive movement and transport of objects, and collaborative source
searching [16]. Towards this goal, modeling group behaviors us-
ing novel communication systems is an important step in the de-
sign of multi-agent systems, as it allows us to predict if such
systems would be effective in the physical world.

In this paper, we seek to compare collective behavior be-
tween groups of agents using three bio-inspired communication
models in a random foraging problem. These models, two of
which are inspired by pheromone communication and the other
by sonar eavesdropping in bats, are compared to find which is
a more effective communication strategy in terms of recruiting
agents to forage from a nearby target. Our main findings suggest
that eavesdropping is a more effective recruitment strategy that
is easily implemented with any sufficiently loud sonar compared
to our pheromone model.

MODELING

We define three agent-based models to test foraging recruit-
ment effectiveness of the sonar- and pheromone-based commu-
nication. In all models, agents initialize their positions at a home
and search for a foraging target. Once agents have found the tar-
get, they try to recruit others to the path between target and home.
Two models, inspired by ants, were designed with agents com-
municating through pheromone trails dropped over their previ-
ously traveled positions. The third model, inspired by the echolo-
cation used by bats, was designed with agents using sound as
their communication method, where a “found target” signal is
emitted when an agent arrives at the target.

In all three discrete-time models, agent i has a two-
dimensional position and velocity ¥;() € R? and ¥;(t) € R?, re-
spectively, at time stept € Nfori=1,2,...,N. The N agents are
initialized to leave home at time t = 0 with velocities assigned

randomly in R2 with a uniform distribution. In line with [6],
the agents have a constant speed s € R*. The home is a two-
dimensional point H and the target is a circle with center 7' and
radius rr. If the agent senses the target or a signal from a peer (ei-
ther through pheromone trails or eavesdropping), then the agent
updates its velocity and position according the models below. We
call this action “gathering”, since it results in traveling repeatedly
on the path between the target and home. Otherwise, they per-
form a random walk; we call this action “foraging”. To avoid
agents traveling too far from the target without finding it, a “re-
turn home” tag is introduced at intervals of #, for all agents that
are foraging. At these times, foraging agents return home and
emerge with randomly assigned velocities. This periodic process
acts as a virtual boundary and shortens the time to convergence.

Ant-inspired model

The first two models are inspired by ants, which forage and
gather as a group by simultaneously walking and dropping an
attractive pheromone, which acts as to recruit other foragers.
As stated in the introduction, our inspiring system is the Ar-
gentine ant which drops pheromone almost continuously [6, 17].
We define a “continuous drop” model, in which the agents drop
units of pheromone that attract others who encounter it. How-
ever, the Argentine ant is unusual in this continuous deposition
of pheromone; most ant species opt to only drop pheromone on
salient paths, such as when a food source has been found [17].
This motivates our second “targeted drop” model, which seeks
to capture the dynamics of a species where an agent only drops
pheromone once the target location is found. These two models
can be compared to see if either mode of pheromone communi-
cation is more effective than echolocation.

In both the continuous and targeted pheromone models,
agents initially forage by performing a random walk until they
encounter a pheromone trail or the target (called points of inter-
est). Sensing of a point of interest occurs when the point of inter-
est is within a circle of radius p, centered at the agent’s position
X; and when the angle between the agent’s velocity v; and the
point of interest relative to X; is less than some angular threshold
0.

When a point of interest is sensed, agents update their ve-
locity according to whether they sense either the target or a
pheromone trail. If the point of interest is a pheromone trail,
agents will turn in the direction of highest concentration of
pheromone in its sensing space, see Figure 1. That is,

Vit+1)=sN| Y N[B;(1)—%(1)] (1)
jeAi(r)

where N[ii] = ii/||u]|, p;(¢) is the position of a pheromone de-
posit j existing at time step ¢, and .#{(¢) is the set of indices of
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FIGURE 1. A schematic of the sensing space of the agent with posi-
tion X;(¢) and how it locates each pheromone deposit (shown as black
x’s) and updates its velocity V; based on a center of mass calculation.
The agent’s sensing space is shaded in pink, with linear range p, and
angular range 0. Pheromone deposits which are present but not sensed
by the agent are shown as gray Xx’s.

pheromone deposits that can be sensed by agent i. We note that
this model is deterministic, unlike others in the literature which
use the pheromone distribution to define a random variable is
sampled to define the agent’s turn rate and direction [6, 17]. If
the point of interest is the target T, agents turn toward the home
position H and follow this path alternating between H and where
the historical path intersected T indefinitely. That is,

B+ 1) sN[H — %;(¢)] if i has most recently visited T
el = sN[T — X;(¢)] if i has most recently visited H.

2
Agents using this update are considered to be gatherers. Cartoons
illustrating how the two pheromone models work are given in
Figure 2.

As the models update, agents create a pheromone trail at
their positions, which we label p;(¢). The distinction between
the two pheromone models is that the continuous model aug-
ments the set of points j; with all agent positions at all time
steps, while the targeted model only adds points to the set of j;
when the conditions to use the update (2) have been satisfied. In
other words, agents using the targeted model only start making
a pheromone trail continuously affer they have first encountered
the target. For both models, points on the pheromone trail are set
to decay at a fixed rate d, so that j;(r —d) is no longer sensed by

agents for times greater than 7.

For both pheromone models, agent i’s new position is found
with the updated velocity following

Xi(t+1) =%(t) +vi(t+1). 3)

Bat-inspired model

As itis reported in [18], bats use different types of echoloca-
tion calls when engaged in searching or foraging versus the final
stage of attacking prey. It has been shown that other bats nearby
may eavesdrop on these calls to infer behavior, allowing them to
actively compete with conspecifics for food [11]. In this model,
we build an interaction based on such eavesdropping, but we de-
sign agents which collaborate for collective foraging, rather than
competing.

Similar to the ant-inspired models, an agent using the bat-
inspired model leaves the nest and forages via a random walk to
find the target. When an agent finds the target, it will forage,
alternating between Hand T following the velocity update rule
expressed in (2). However, instead of dropping pheromone, the
gathering agents broadcast a “found target” signal analogous to
the feeding buzz used by bats. This signal is assumed to be au-
dible within a circle of radius pg centered at the gatherer’s posi-
tion. Therefore, all the agents within this circle can “eavesdrop”
and infer the gatherer’s intention, and move towards it. In other
words, agent i will update its velocity at time ¢ based on

i+ 1) = sN Ry (1) — %i(1)] @)

when ||X; — X,|| < ps where g € {1,2,...,N} is the index of the
gatherer. When an agent eavesdrops on a group of gathering
agents, it randomly selects one of the gatherers using a uniform
distribution. This agent keeps following the randomly-selected
gatherer until it finds the target. At this time, it becomes a gath-
ering agent itself and follows the update rule in (2) to alternate
between home and target while broadcasting a found target sig-
nal. When the velocity of each agent at the next time step is
found, the position of each agent updates by (3). A cartoon illus-
trating how the eavesdropping model is given in Figure 2.

Foraging behavior

If an agent is not using either the pheromone or the eaves-
dropping model above, it forages by performing a random walk
defined by the discrete-time update

X(@+1) =X)+av(t+1)+ (1 — a)Vi(t). )

Here, a € [0, 1] is a weight on a two-time-step filter that smooths
the agent’s trajectory.
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Continuous
pheromone

Targeted
pheromone

Eavesdropping

FIGURE 2. Time lapse of model dynamics for (top row) continuous pheromone model in which agents drop pheromone continuously, (middle row)

targeted pheromone model that agents only drop pheromone when they found the target, and (bottom row) eavesdropping model in which agents listen
to agents close by. Agent positions are shown as dots and the target is shown as a red star. Agents path histories are shown by dotted lines and
pheromone trails are shown by solid lines (black and blue) and sensing spaces by shaded circular sections. For the eavesdropping model, sensing space

and eavesdropping range are shown by the circles around agent positions. Once an agent reaches the target using the eavesdropping model, the sensible

range for the found target signal is shown by the shaded gray circle.

Recruitment metric

We define a metric to assess the success of each model in
enabling recruitment of agents gathering between the target and
home. Since a gathering agent is successfully performing forag-
ing between target and home, the percentage of gathering agents
at each time step demonstrates the success of the model at that
time. Therefore, we record the number of gathering agents R(r)
using update (2) over time as a metric to compare the models.

SIMULATIONS
Parameters

All simulations were performed using MATLAB version
R2018a. Using experimental data found by [6], each agent has

a constant speed s = 0.02 m/s. The simulation space is dimen-
sional in meters, with home H being set at the origin and tar-
get T placed at (0.5,0.5). Each simulation was performed with
N =100 agents. All models were simulated for 3600 time steps,
with the time step being 1 s, and 50 repetitions were performed.
Both ant-inspired models follow the same parameters for sens-
ing and following pheromone, with a sensing range and angle
of pp =0.02 m and 6 = 90° angle, respectively [6]. We use a
pheromone decay rate of d = 1000 s. The bat-inspired model is
simulated with an eavesdropping range ps between 0.01 m and
0.03 m at intervals of 0.002 m. For the random walk, we define
a = 0.25 by qualitatively comparing the smoothness of ant tra-
jectories in [6] with those generated by the model with a range of
values for . In preliminary simulations, we observed foraging
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TABLE 1. SIMULATION PARAMETERS

Variable Symbol  Value
Length of simulations t 3600 s
Simulation replicates - 50
Number of agents N 100

Speed of agents s 0.02 m/s
Smoothing variable a 0.25s
Pheromone decay rate d 1000 s
Eavesdropping ranges Ps [0.01,0.03] m
Pheromone sensing range P, 0.02 m
Pheromone sensing angle 0 90°

Return home time interval ¢, 600 s
Target center location T (0.5,0.5) m
Target radius rr 0.1m
Home location H (0,0) m

agents effectively losing the intended target. To avoid this, we
defined the “return home” tag to be at 600 s intervals. The tag
acts as a virtual boundary, stopping agents from becoming effec-
tively lost. A summary of these simulation parameters is shown
in Table 1.
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FIGURE 3. Recruitment of continuous and targeted pheromone mod-

els over time. Shaded areas indicate mean + one standard deviation
computed over 50 simulation replicates.
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FIGURE 4. Mean recruitment for the eavesdropping model over time
as ps is varied.
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FIGURE 5. Standard deviation of recruitment for the eavesdropping
model over time as py is varied.

Results

Figure 3 presents the time-series for foraging recruitment for
the two ant-inspired models, with mean and standard deviation
over the 50 replicates shown. Comparing these models, we see
that both models are generally equivalent during the transient,
though they converge to different final values at = 3600 s, see
Figure 3. We performed a Kolmogorov-Smirnov test in MAT-
LAB and found that the differences in the final distributions are
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statistically significant with a p-value of 0.05 [19].

Figures 4 and 5 show the mean and standard deviation of
the recruitment time-series in the eavesdropping model as a heat
map, where the vertical axis varies the eavesdropping range used
in the model and statistics are computed over the 50 replicates. In
Figure 4, we see that the pattern for each value of py is the same
as the ant-inspired model, going from a zero to a value near 100
as time increases. However, the recruitment converges sooner as
the eavesdropping range increases, saturating once ps > 0.022
m. The larger eavesdropping range increases the likelihood that
an agent is recruited when foraging. In addition, we note that the
standard deviation of the recruitment peaks during the transient,
since R varies the most between replicates in this phase.

To compare the performance of the bat- and ant-inspired
models, we can find where the recruitment time series from the
eavesdropping model best matches the continuous and targeted
pheromone in two ways. First, we find the value of ps for which
the norm of the difference between the entire time series from
the eavesdropping and pheromone models is minimized. Next,
we find the value of ps for which the absolute difference be-
tween the final recruitment values from the eavesdropping and
pheromone models is minimized. Plots comparing these values
are shown for the continuous and targeted models in Figures 6
and 7, respectively. For both models, we see that the eavesdrop-
ping model that best fits the pheromone models converges to a
higher recruitment value at t = 3600 s. In addition, the eaves-
dropping model that best matches the final values lies entirely
under the recruitment curves for the pheromone models.

DISCUSSION

These results suggest that the targeted pheromone model is
able to recruit more individuals than the continuous pheromone
model, as it converges to a statistically higher value in the sim-
ulated time. A reason for this difference in performance could
be that, even when pheromone decays quickly as it does in these
models, there is still a large amount of pheromone surrounding
H in the continuous drop model. This pheromone distribution,
corresponding to recently visiting agents that are not necessarily
coming from the target direction, may lead agents away from the
trail towards 7' when they re-emerge from H. By comparlson
targeted pheromone dropping creates a clear trail towards T, in-
creasing the chance that an agent randomly leaving H can pick up
the correct travel direction towards the target. In fact, we can see
a discrete jump in recruitment at 600 s intervals when the forag-
ing agents all return home, which allows for comparatively more
agents to be recruited by those that are already gathering. These
jumps are less noticeable in the continuous pheromone model,
which supports the explanation of behavior above.

Comparing Figures 3 and 4, eavesdropping can perform
much better or worse than either pheromone model, with the ma-
jority of tested eavesdropping ranges easily out performing the

100 ‘
continuous pheromone o= |
- = = p, = 0.0159 Re
80 v
60 1
X
40 + 1
20 1
0
0 500 1000 1500 2000 2500 3000 3500
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FIGURE 6. Continuous pheromone time series compared to the best
fit eavesdropping range, with both time series averaged over 50 repli-
cates. The solid line shows the pheromone model, while the dashed and
dotted lines show best fits for the entire time series and the final value,

respectively.
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60 r
~
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FIGURE 7. Targeted pheromone time series compared to the best fit
eavesdropping range, with both time series averaged over 50 replicates.
The solid line shows the pheromone model, while the dashed and dotted
lines show best fits for the entire time series and the final value, respec-
tively.

pheromone. The eavesdropping model performs equivalently to
the pheromone model at about 3/4 of the range of pheromone
sensing (ps = 0.012 m and 0.0144 m, see Figures 6 and 7, com-
pared to p, = 0.02 m). If values were scaled to be more practical
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for actual use in a robotic system, sonar would have to be ex-
tremely quiet to perform equivalently. Since most sonar sensors
can be operated at a higher intensity than the parameters used
here, sonar may be a preferable sensing scheme to pheromone
when designing a foraging robotic swarm. Howeyver, this conclu-
sion neglects the existence of potentially negative or confounding
interference as a result of eavesdropping. In systems which use
much higher sonar intensity, this consideration would have to be
taken into account.

While the sonar model does generally outperform the
pheromone model in the simulated time, it is observed that the
pheromone models may converge in a faster time as seen by the
steep slope in Figures 6 and 7. We believe this is due to the fact
that pheromone trails are semi-permanent and, once established,
are continuously being strengthened. This is in contrast to eaves-
dropping, which requires an agent to be in the vicinity of another
agent which is already on the trail to gain the necessary informa-
tion to follow. In fact, when the the decay rate of the pheromone
is 1 time step, the targeted pheromone model and the eavesdrop-
ping model are equivalent. If the decay rate is increased from 1,
we expect the faster convergence of recruitment with pheromone.

CONCLUSION AND FUTURE WORK

In this paper, we compared three models from two different
bio-inspired communication methods to test their recruitment ef-
fectiveness in a collective foraging problem. We found that con-
tinuous dropping of pheromone can lead to less efficient recruit-
ment and, through eavesdropping, agents can recruit large num-
bers of other agents to assist in foraging from a known target.

Continuing to expand on these ideas, we hope to use the
findings in [3] to model different behaviors shown in variable
sized colonies using bio-inspired communication in the future.
We would like, in addition, to investigate the performance of
pheromone-based sensing with other sensing mechanisms in a
multi-agent team of robots.

ACKNOWLEDGMENT
This work is supported by the National Science Foundation
under grant 1751498.

REFERENCES

[1] Krause, J., and Ruxton, G. D., 2002. Living in groups. Ox-
ford University Press.

[2] Sumpter, D. J., 2010. Collective animal behavior. Prince-
ton University Press.

[3] Beckers, R., Goss, S., Deneubourg, J.-L., and Pasteels, J.-
M., 1989. “Colony size, communication and ant forag-
ing strategy”. Psyche: A Journal of Entomology, 96(3-4),
pp- 239-256.

[4] Franks, N. R., Wilby, A., Silverman, B. W., and Tofts, C.,
1992. “Self-organizing nest construction in ants: sophisti-
cated building by blind bulldozing”. Animal behaviour, 44,
pp- 357-375.

[5] Carroll, C. R., and Janzen, D. H., 1973. “Ecology of forag-
ing by ants”. Annual Review of Ecology and Systematics,
4(1), pp. 231-257.

[6] Perna, A., Granovskiy, B., Garnier, S., Nicolis, S. C., Lab-
dan, M., Theraulaz, G., Fourcassi, V., and Sumpter, D. J. T.,
2012. “Individual rules for trail pattern formation in ar-
gentine ants (Linepithema humile)”. PLOS Computational
Biology, 8(7),07, pp. 1-12.

[7] Hristov, N. 1., Allen, L. C., and Chadwell, B. A., 2013.
“New advances in the study of group behavior in bats”.
In Bat Evolution, Ecology, and Conservation. Springer,
pp- 271-291.

[8] Masters, W. M., Raver, K. A., and Kazial, K. A., 1995.
“Sonar signals of big brown bats, Eptesicus fuscus, contain
information about individual identity, age and family affili-
ation”. Animal Behaviour, 50(5), pp. 1243-1260.

[9] Barclay, R. M., 1982. “Interindividual use of echolocation
calls: eavesdropping by bats”. Behavioral Ecology and So-
ciobiology, 10(4), pp. 271-275.

[10] Chiu, C., Xian, W., and Moss, C. F., 2008. “Flying in si-
lence: echolocating bats cease vocalizing to avoid sonar
jamming”. Proceedings of the National Academy of Sci-
ences, 105(35), pp. 13116-13121.

[11] Corcoran, A. J., and Conner, W. E., 2014. “Bats jamming
bats: Food competition through sonar interference”. Sci-
ence, 346(6210), pp. 745-747.

[12] Pfeifer, R., Lungarella, M., and lida, F., 2007. “Self-
organization, embodiment, and biologically inspired
robotics”. Science, 318(5853), pp. 1088—1093.

[13] Kulkarni, R. V., and Venayagamoorthy, G. K., 2010. “Bio-
inspired algorithms for autonomous deployment and local-
ization of sensor nodes”. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews),
40(6), pp. 663-675.

[14] Panait, L., and Luke, S., 2004. “A pheromone-based util-
ity model for collaborative foraging”. In Proceedings of
the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, IEEE, pp. 36—43.

[15] Sugawara, K., Kazama, T., and Watanabe, T., 2004. “Forag-
ing behavior of interacting robots with virtual pheromone”.
In 2004 TIEEE/RSJ International Conference on Intelligent
Robots and Systems, Vol. 3, pp. 3074-3079.

[16] Navarro, 1., and Matia, F., 2012. “An introduction to swarm
robotics”. ISRN Robotics, 2013.

[17] Deneubourg, J. L., Aron, S., Goss, S., and Pasteels, J. M.,
1990. “The self-organizing exploratory pattern of the ar-
gentine ant”. Journal of Insect Behavior, 3(2), Mar,
pp. 159-168.

Copyright © 2019 ASME

020z Arenigad gz uo Jasn AjisioAlun sjels pue apnjsul oluyoalAlod elulbiiA Aq ypd 061.6-610299SP-G00ES LIZ00A08SSF9/S00VS L LZOOA/SS L6S/6 L 0200SA/spd-sbulpesooid/00sa/Bio-swse  uoios||ooje)bipawse/:sdyy woy papeojumoq



[18] Surlykke, A., and Nachtigall, P. E., 2014. “Biosonar of bats
and toothed whales: An overview”. In Biosonar. Springer,
pp. 1-9.

[19] Massey Jr, F. J., 1951. “The Kolmogorov-Smirnov test for
goodness of fit”. Journal of the American Statistical Asso-
ciation, 46(253), pp. 68-78.

Copyright © 2019 ASME

020z Arenigad gz uo Jasn AjisioAlun sjels pue apnjsul oluyoalAlod elulbiiA Aq ypd 061.6-610299SP-G00ES LIZ00A08SSF9/S00VS L LZOOA/SS L6S/6 L 0200SA/spd-sbulpesooid/00sa/Bio-swse  uoios||ooje)bipawse/:sdyy woy papeojumoq





