Using Data-Driven Domain Randomization to Transfer Robust Control
Policies to Mobile Robots

Matthew Sheckells!, Gowtham Garimella!, Subhransu Mishra!, and Marin Kobilarov?

Abstract— This work develops a technique for using robot
motion trajectories to create a high quality stochastic dynamics
model that is then leveraged in simulation to train control
policies with associated performance guarantees. We demon-
strate the idea by collecting dynamics data from a 1/5 scale
agile ground vehicle, fitting a stochastic dynamics model, and
training a policy in simulation to drive around an oval track
at up to 6.5 m/s while avoiding obstacles. We show that the
control policy can be transferred back to the real vehicle with
little loss in predicted performance. We compare this to an
approach that uses a simple analytic car model to train a policy
in simulation and show that using a model with stochasticity
learned from data leads to higher performance in terms of
trajectory tracking accuracy and collision probability. Further-
more, we show empirically that simulation-derived performance
guarantees transfer to the actual vehicle when executing a policy
optimized using a deep stochastic dynamics model fit to vehicle
data.

I. INTRODUCTION

Training control policies for a robotic system in simulation
is attractive since data can be generated quickly and the
safety of the robot is not a concern. However, policies trained
in simulation often do not perform as well when transferred
to the real world since the simulator may not completely
match reality. Recent research suggests that domain random-
ization is a promising approach to generating policies that are
robust to modelling errors in the simulator [1], [2], [3], [4],
[5]. This technique injects noise into the model parameters
or dynamics of the simulated system in order to make the
generated control policy reliable under a variety of condi-
tions. Many procedures, however, choose the uncertainty of
the simulator in an ad-hoc, hand-tuned manner, often with
great results [2], [3].

In this work, we propose to learn the uncertainty of the
simulator in a data-driven fashion. We first fit a deep stochas-
tic dynamics model to data generated from the real system.
Then, we use this model to train a control policy using
the stochastic dynamics. We train the policy using PROPS,
a reinforcement learning algorithm that searches in policy
space and which uses the training data to generate a statistical
performance guarantee for future executions of the policy [6].
We show empirically that when the policy is transferred
to the real robot that the performance guarantees computed
in simulation, such as not exceeding a given probability of
collision, still hold. An important consequence of this is that

IM. Sheckells, G. Garimella, S. Mishra, and M. Kobi-
larov are with the Department of Computer Science and
the Department of Mechanical Engineering, Johns Hopkins
University, 3400 N Charles Str, Baltimore, MD 21218, USA

msheckells|ggarimel|smishra9|marin@jhu.edu

Fig. 1. The JHU all-terrain mobile robot used for navigation experiments.
we can approximately quantify and improve the expected
performance and safety of a policy in simulation before
executing it on the actual physical system. We demonstrate
this approach by computing an obstacle avoiding trajectory
tracking control policy for an agile Unmanned Ground
Vehicle (UGV) travelling up to 6.5 m/s. We show that this
approach outperforms a relatively simple procedure which
trains a policy in simulation using a standard kinematic car
model injected with noise from a hand-tuned distribution.

A. Related Work

This work is closely related to recent research in using
domain randomization in reinforcement learning as well as
older developments in nonlinear system identification and
model-based policy search.

1) Domain Randomization: Using domain randomization
to make control policies robust to the transfer from simu-
lation to reality, also known as “sim-to-real”, is a relatively
new avenue of research that has seen a lot of activity over the
last two years. Tobin et al. first used domain randomization
in a rendering engine to train an object detector completely
in simulation and then use it in the real world to perform
robotic grasping [1]. Researchers at OpenAl similarly trained
an object pose estimation model in simulation using a
randomized renderer while also using reinforcement learning
to optimize a control strategy for in-hand manipulation in a
randomized simulation. They were able to transfer both the
pose estimator and control strategy to a real robotic hand
with little performance degradation [2]. Other work trained
control policies in simulation with randomized dynamics
and successfully deployed the policies on real robots for
manipulating objects [4], [7] and quadruped control [3].

Sadeghi et al. trained a visual servoing policy in simulation
while randomizing properties such as camera viewpoint
and lighting conditions, showing that the transferred policy
generalized to unseen objects in the real world [5].

2) Stochastic Dynamics Modelling: Neural networks are
a powerful tool for modelling nonlinear functions, so re-
searchers have used them to model nonlinear system dy-
namics [8], [9], [10] and stochastic dynamics [11] for the
past two decades. Recent methods have used ensembles of
deep models to account for both inherent model uncertainty
and uncertainty in model parameters induced by the learning
process (e.g. the data distribution) [12]. A different approach
is to use Gaussian Process (GP) regression [13] or Bayesian
Neural Networks (BNN) [14], [15] to model the dynamics
and covariance as a continuous function of the state and
control input.

3) Model-based Policy Search: This work falls in the
realm of model-based policy search since we fit a model
of the system using data from the vehicle and leverage
that for stochastic policy optimization. There are several
related works: PILCO learns a stochastic dynamics model
using a GP and explicitly incorporates uncertainty into
planning and control while using approximate inference to
evaluate the policy and an analytic policy gradient to make
policy updates [16], [17]. Deep PILCO maintains the same
framework as PILCO but replaces the GP with a BNN
in order to scale better to high dimensional observation
spaces [18]. Guided policy search fits a series of linear-
Gaussian models to local system dynamics, while using a
Gaussian Mixture Model to capture a rough global estimate
of the dynamics. These models are used to optimize local
policies which are then used as target distributions for fitting
a global policy [19]. More recent work used deep probabilis-
tic models to perform uncertainty-aware model-predictive
control [20], [12] and stochastic policy optimization using
Back-Propagation Through Time (BPTT) [21] and Trust
Region Policy Optimization (TRPO) [22]. Rajeswaran et
al. developed the EPOpt algorithm which uses adversarial
training and an ensemble of simulated source domains to
train a policy that is robust to different target domains and
unmodelled disturbances [23]. The proposed approach is
similar to related work in that it finds a maximum likelihood
estimate of the target system and then uses it for policy
optimization in simulation. The key difference here is that
we show empirically that performance guarantees generated
by the PROPS policy search algorithm transfer to the real
system when using a learned stochastic model.

II. DATA-DRIVEN DOMAIN RANDOMIZATION

Policy transfer from simulation to a real robot often leads
to sub-optimal or even unsafe results if the policy is trained
in a single, deterministic environment. This is because small
differences between the simulated and real environment can
lead to drastic differences in policy behavior. Recent research
has shown that randomizing some aspects of the environment
robustifies the policy and leads to better policy transfer.
This technique is called domain randomization. Here, we

introduce a procedure for modelling the uncertainty in the
real environment in order to inject uncertainty into the
simulation. Previous techniques use an ad-hoc procedure
to pick which parameters of the simulation to randomize.
This usually leads to a tuning procedure in which there is
a trade-off between policy robustness and how conservative
the policy is, where more noise leads to a more robust yet
more conservative policy. In contrast to this, we attempt to
learn the dynamics distribution from robot-generated data so
that the policy is not overly conservative. Next, we describe
the model and how we use it for generating random system
trajectories.

A. Stochastic Dynamics Model

The state of the dynamic system is denoted by x € R”
with control inputs © € R™. We assume that the dynamics
take the form of a stochastic ODE

&= f(z,u) + g(z,v)w,

where w(t) is a random variable taking values in R sampled
from a standard Gaussian N (0, I;), uncorrelated in time. The
functions f and g are the mean and the Cholesky form of
the covariance of the dynamics, respectively. More formally:

Elz(t)] = f(x(t), u(t)),
Elz(t)a(7)"] = g(2(t), u(t))g(z(t), u(t) "6(t - 1),

where 0(t — 7) is the Dirac delta for given times ¢ and 7.
While ¢ can be chosen high enough to capture the noise
complexity, we set £ = n for the rest of this work as it works
well in practice without making the model too complex. The
dynamics can be approximated by some parameterized model
fg and g-. Next, we describe the loss function for fitting such
a model to dynamics data.

B. Model Loss Function

Given trajectory data from a real system, we can find
functions fg and g, which maximize the likelihood of the
data and therefore provide a good probabilistic model of the
system.

Assume that we have M samples of the dynamics X =
{Il....,I]w},U = {ul,...,uM},X = {zl,xM} To
simplify notation, we denote f; = fo(x;,u;) and §; =
G~ (i, u;). The likelihood of the data is given by the joint
probability density

Mo 3T 6 @)
X167, x,0) = [[= i
e | N Rl T
As is typical, we can instead maximize the simpler log
likelihood

M
. 1 . AT 4T 1. A
p(X10,7, X, U) =Y = 5 (@i = f) 97" 47 (= fi)
=1
1 A AT

n
~5 In|g:g; | — 3 In 27.

Since g is lower triangular, the last two terms above can be
sjmpliﬁed to — Zj In g;;; — % In 2. Furthermore, g;l(j;i —
/i) can be solved efficiently using forward substitution since

g; is lower triangular. Thus, we can fit a probabilistic model
of the dynamics by minimizing the loss

1 .
97 25 szil (
=1

C. Model Architecture

In this work, we choose fg and g, to be simple neural
networks. Both consist of an input layer, several fully-
connected hidden layers with ReLU activation functions,
and an output layer. The fg network simply outputs an n-
dimensional vector. The §, network outputs n(n + 1)/2
numbers that are re-shaped into a lower triangular matrix.
The diagonal of the matrix is constrained to a positive
number by exponentiating the diagonal output from g,. We
then add a small regularizing constant to the diagonal to
ensure invertibility of the matrix. We whiten the data before
passing it to the input layer to normalize the data and avoid
saturating activation functions. Each hidden layers uses batch
normalization also to avoid activation saturation.

—fi)+ Zlngm

D. Sampling Trajectories from Stochastic Model

Starting from an initial state x(, we can generate a random
trajectory sample using the stochastic model with an Euler
integration scheme ~

Tiy1 = x; + T dt,

where dt is the simulation time step and z is sampled from

(fe(l‘l, i)y Gy (T3, U3) Gy (24, u;)). Thus, we can use the
learned stochastic model to randomize the environment while
performing stochastic policy optimization.

III. STOCHASTIC POLICY OPTIMIZATION

With a good probabilistic model of the dynamics in hand,
the goal of policy search is to find an optimal policy for the
model. Also of primary importance is providing a formal
guarantee on the future performance of the system under the
policy. In this section, we review a previously developed pol-
icy search method that directly minimizes a bound on future
performance, called PAC Robust Policy Search (PROPS) [6],
with PAC meaning “’probably-approximately-correct”.

A common way to define policy search in policy parameter
space is through the optimization

v* = arg myin Eremp(in[J(7)],

where J is a cost function encoding the desired behavior, £
is a vector of decision variables defining the control policy,
7 is the system response governed by the density p(-|¢), and
v parameterizes a surrogate distribution over the decision
variables. The surrogate stochastic model induces a joint
density p(7,&|v) = p(7|€)7(£]v) which contains the natural
stochasticity of the system p(7|¢) and artificial control-
exploration stochasticity 7 (£|v) due to the surrogate model.

PROPS works within the framework of Iterative Stochastic
Policy Optimization (ISPO). The goal of ISPO is to generate
an optimal control policy which minimizes the cost function
TW) 2 E ;eopp) [J(7)]. We perform the search directly
in the parameter space of the policy and learn a distribution

Log Position Dynamics Covariance

0
< 0.0

Velomty (m/s)

0.2

Steering angle (rad)
0.3 0.0

05

Fig. 2. Log position dynamics covariance (computed as log (o g + 02))

histogram over steering angle and velocity for the learned stochastlc
dynamics. The model learns that p is noisier at higher steering angles and
velocities. Here, the orientation input to the covariance model is 6 = 0, but
we see similar results for all @ € [—m, w|. Furthermore, to generate this
histogram we set v = v, Jc = 0.

over the policy parameters 7(:|v). ISPO iteratively builds
a surrogate stochastic model 7(¢|v) from which a policy &
can be sampled. The goal is to then minimize the expected
cost J(v) iteratively until convergence. This usually cor-
responds to 7(&|v) shrinking to a tight peak around £* or
around several peaks if the distribution is multi-modal. The
general framework for solving the problem is described in
Algorithm 1.

Algorithm 1 Iterative Stochastic Policy Optimization (ISPO)
1: Initialize hyper-distribution vg, 7 - 0
2: while Bound on expected cost greater than threshold do

3: for j=1,...,M do
4: Sample trajectory (&;,7;) ~ p(-|v;)
5: Compute a new policy v;11 using observed costs

(J(7),- . J(rar)) set i =i+ 1

A key step in ISPO is computing the new policy based
on the observed costs of previously executed policies. The
specific implementation of the update step (Step 5) corre-
sponds to different policy search algorithms such as Reward-
weighted Regression (RwR) [24] or Relative Entropy Policy
Search (REPS) [25]. This work uses a recently introduced
algorithm called PAC Robust Policy Search (PROPS) for
updating the policy based on minimizing an upper confidence
bound on its expected future cost. PROPS performs an
optimization of the form

min ja(l/) + ad(v,) + ¢(a, N,), (D

v,a

where J,, is a robust empirical estimate of 7, d(-,-) denotes
a distance between policy distributions, N is the number of
samples, and ¢ is a concentration-of-measure term which
reflects the discrepancy between the empirical cost Jo and
the true mean cost J. The expression in (1) (denoted J ™)
is in fact a high-confidence bound on the expected cost, i.e.
with probability 1 — § it hold that J < J*. PROPS is
explained in more detail in previous work [6].

Fig. 3.
14 m oval track at 6.5 m/s while avoiding virtual obstacles.

The robot using an optimized control policy to follow a 22 m X

IV. TRAINING OBSTACLE AVOIDANCE POLICY FOR AN
AGILE MOBILE ROBOT

Using the procedure outlined in §II, we learn a deep
stochastic dynamic model of a 1/5 scale off-road UGV
and use it to train a control policy in simulation using the
algorithm described in §III. Furthermore, we train another
control policy on a simple kinematic car model (with and
without hand-tuned noise) using the same policy search
algorithm and compare the performance of each policy when
evaluated on the real vehicle. The goal of each policy is
to track an oval trajectory at a speed of 6.5 m/s while
avoiding randomly generated virtual obstacles in the path
of the vehicle. Figure 3 illustrates the task.

A. Robot

Our UGV is a heavily modified 1/5 scale Redcat Racing
Rampage XB-E equipped with an onboard Gigabyte BRIX
computer with an 17 processor. A LORD Microstrain 3DM-
GX4-25 IMU measures inertial data while a u-blox C94-M8P
RTK GPS computes global position. A hall effect sensor
encoder measures the rotation rate of the drive shaft, which is
converted to the body velocity of the vehicle after calibration.

B. Deep Stochastic UGV Model

We collected about 30 minutes of dynamics data, including
position, orientation, wheel velocity, steering angle, and
steering and velocity commands, while manually driving
the car on an astroturf field and took care to make sure
the data distribution evenly spanned the state-action space
of the vehicle expected for the task. We built a stochastic
dynamics model using the technique described in §II, using
3 hidden layers of 64 units for both the f and g models. The
model inputs include the car orientation 6, body-z velocity
v, steering angle d;, velocity command v., and commanded
steering angle d.. The model outputs &, with = (p, 6, v, d5),
where p = (p,, p,) € R? is the position of the vehicle.

The learned mean dynamics of the car behaved similarly
to a simple kinematic car model at lower velocities, while
the learned covariance model indicated higher noise in p at
higher velocities and sharper steering angles as illustrated in
Figure 2.

C. Simple Stochastic UGV Model

The UGV can be modelled using a kinematic bicycle
model, where the state includes the position p = (pg,py) €
R? and orientation 6, and the control inputs include the body-
x velocity v and the steering angle J,. The state is then

x = (p,0) with dynamics

Dz U+ Wy 0
Py| = [R(O) Opxa] | wy, |+ 0 ,
0 0 v(ta%‘% + wp)

2

where R(0) € SO(2), wy,wy,wy are zero-mean normally
distributed random variables with respective covariances
0z,0y,00, and L is the UGV wheelbase. The model also
incorporates a tunable control delay. We train policies both
for the model without noise (i.e. 04,0y,09 = 0) and with
noise of various amplitudes, while showing results for the
policy that performed best on the real UGV.

D. Control Policy

Using the models discussed in the previous section, we
optimize control policies for the UGV in simulation using
PROPS. We use a policy based on feedback controllers
for achieving desired lateral offset, speed, and obstacle
avoidance, with relatively few learnable parameters. Next,
we discuss the representation of the car that we use for the
policy and then explain the details of the policy itself.

1) Curvilinear Car Dynamics: During motion planning, it
is useful to express the state of an autonomous vehicle with
respect to some curvilinear coordinate system. For example,
the reference curvature of the coordinate system can follow
the center line of a road or path. We define the state of the
vehicle as Teyry = (5,6, €0,v,a,05) € RS, where s is the
arc length along the reference path, e, is the lateral offset
from the path, ey is the angular offset from the path tangent
at s, and v is the forward body-velocity, and a is the forward
body-acceleration. The control inputs to the system consist
of the jerk u; € R and steering angle rate us € R. Typical
bicycle dynamics expressed using path coordinates are given
as

v COS eg

s 1—k(s)e,
€r vsin ey
; tands .
€| _ |vEg K(8)$ 7 3)
v a
@ U
(55 us

where x(s) is the curvature of the path at s and L is the
wheelbase of the vehicle [26].

2) Controller Design: While there exists previous work
which can perform obstacle avoidance while guiding the
system to a static goal (e.g. [27], [28], [29]), to the author’s
knowledge no such control design methodology exists to
simultaneously track a trajectory and avoid obstacles while
providing convergence guarantees.

Here, we design a Lyapunov stable controller that achieves
a desired track offset and velocity in a de-coupled manner.
A higher level planner commands a track offset to the lateral
controller that is computed to avoid any detected obstacles.

Lateral controller: The lateral controller guides the
vehicle to the center of the track lane, i.e. e, = 0. We derive
such a control law using backstepping on the lateral offset.
We start with the Lyapunov candidate Vy = k + Le2
which has the time derivative

2°°r?
Vo = éplkr e + é,]

'I"pr

=¢é, |k, e, +asineg + vcosey Q—UM
’ 1—k(s)e,
with 6 £ futa“ %: and k., > 0. Setting 0 to the desired value

: 1
6,2 v/ﬁ(s) cosep (<&,

1—k(s)e, wvcosey

er —asineg — ky éy)

with k., > 0 makes VO < .O an_d renders the system stable,
but we cannot directly set 8 to 84. Thus, we create a seg:ond
storage function V; which drives the error zg £ 6 — 6, to
Zero

m:%+%4
Noting that Vg = é,.[v cos eg(6 — 04)] — k., €2, we have
Vi =2 [é,vcos eg + 2] — Ky, €2
= 2 {érvcoseg + ata}rllés vsez 0 55 —94 — rdéf.
Setting
Uy = 05 = LCOSQ 0 {ataLn 0 0, — é,vcoseq — k2929:|

makes V; < 0, thereby stabilizing the system. Thus, by gives
a control law for tracking a reference line and has three
tunable parameters k.., kr,, k-,

Speed Control: The speed control law is a simple
PD controller on the forward-jerk u; of the vehicle u; =
ky,(va — v) — ky,a to achieve a desired speed vq. The
desired speed is set to the goal speed vg40,; While the vehicle
is driving straight; however, it is often important for the
vehicle to slow down while turning to avoid obstacles. So, we
introduce a tunable lateral acceleration constraint a;q¢maq»
which limits vy to be smaller at larger steering angles, i.e.
Vd < 'Umax((ss) £ \/alatmarL/|tan 5s| If Vgoal < Umazs
we set vg = Vgoal-

Obstacle Avoidance: A high level control strategy
chooses the desired track offset for the vehicle based on
the position of detected obstacles. If an obstacle is detected
within some radius of the vehicle, denoted kg4.:, then the
desired track offset is shifted by a distance Kgpif¢e away
from the obstacle in the direction that the vehicle is pointing
relative to the obstacle. So, if the robot is pointing to the left
of the obstacle, then the desired track offset is shifted to the
left. If the track itself is already far enough away from the
detected obstacle, then no shift occurs. Both kg and kgp; £
are tunable parameters in the navigation system.

Thus, the whole navigation policy has 8 tunable param-
eters: lateral gains k. ,k;,,k.,, velocity control parame-
ters k;vp,kvd,alatmw, and obstacle avoidance parameters
kdet, ksnife. These compose the vector £ € R (see Sec. III).

E. Policy Optimization

Navigation Cost: The policy search cost function that

we attempt to minimize takes the form
ty/dt

J(r)= Z [Ra%+QT€T§+Qv(Ut/Ugoal_1)2 + [ve|O(dy)]dt

t=0

where (-); indicates the state at a discrete time index ¢,
R,Q.,Q, > 0 are tuning weights, dt is the time step, and
O(d) is a cost that encourages obstacle avoidance and is
defined as

O(Olow) + Clow(olow - d)27 d < Olow
O(d) = < Chigh(onigh — d)?, Olow < d < Opigh
0, otherwise,

where d is the distance from the car to the closest obstacle
with distance measured from the edge of the car to the edge
of the obstacle. The variables o4, and 0;4,, are distance
thresholds that determine when the car incurs a small penalty
or a large penalty for being close to the obstacle, respectively.
O(d) is multiplied by the car velocity to encourage the
vehicle to stay away from the obstacle rather than allowing
it to quickly speed close by the obstacle without incurring a
large penalty.

For our experiments we set Ugoq = 6.5 m/s,ty =
7s,dt = 0.02s,R =1073,Q, = 0.25,Q, = 4,Clpp =
800, Chigh = 80, 010 = 0.5 m, and opigp = 1.0 m.

Stochastic Policies: The surrogate policy p(-|v) is a
Gaussian with a diagonal covariance matrix. We initialize
the surrogate policy to have a standard deviation of 2 in all
dimensions.

Environment: The robot attempts to follow a 22 m X
14 m oval track at a goal velocity of 6.5 m/s. At the start of
each episode, an obstacle is randomly generated 8 m in front
of the vehicle with a track offset uniformly distributed in the
range [—4 m,4 m] and a radius uniformly distributed in the
range [0.3 m, 1.0 m]. An episode terminates either when the
robot has hit an obstacle or when ¢y seconds have elapsed.
When the episode terminates, the obstacle is cleared and
a new obstacle is generated at the beginning of the next
episode. The robot state at the end of one episode is the
same as its initial state at the beginning of the next episode,
i.e. the robot remains in motion from one episode to the next.

Policy Search: We train each policy for 260 iterations
using PROPS, collecting 50 episodes (i.e. trajectory roll-
outs) in each iteration and using a sliding window of 20
batches for each policy update. For the PROPS algorithm,
we set the bound confidence 1 — J = .95 indicating that
the computed performance bound should hold with 95%
probability. PROPS is not sensitive to this user-selected
parameter and has no other tunable parameters.

FE. Results and Discussion

Figure 4 shows the convergence of the navigation policy
parameters over time for the deep stochastic model and
simple noisy car model, respectively. The policy trained
on the simple model learns to track the reference much

Policy v.s. lterations

[S R
ot

‘ﬁ N k"J
e b ot
C w o
i\
; Ky,

wt
k v

kv,
[SRE L N R B |
[¥23

/
/

ot

ks,
=l
o W
]
]
Fidet
o
- o
! j
1?5

[SRE

Aatmar

k:afufz‘

ot

0 200 0 200
—— Simple — Deep

Fig. 4. Comparison of the convergence of policies trained using a simple
ad-hoc stochastic car model (red) and deep stochastic model (blue).

more aggressively with a larger k;, and smaller k.. It also
computes a larger obstacle avoidance distance kgp;p¢ and
smaller detection radius k4., compared to the policy trained
on the deep stochastic model.

Table I compares the average absolute track offset |e,|
and average velocity tracking error |v — vg0q:| Of the policy
trained on the noiseless simple car model with 0, = 0, =
og = 0, the stochastic simple model with o, = 1.5,0, =
0.15,09 = 0.11 (chosen based on hyper-parameter search
using real UGV performance), and the deep stochastic model
when executed on the real UGV. The policy trained on
the stochastic model outperforms those trained on both the
simple models in terms of following the oval track and
achieving the goal velocity of 6.5 m/s. Qualitatively, Figure 6
shows a representative trajectory from each policy, where the
policy trained on the simple model aggressively overshoots
the track while the policy trained on the deep model does
not. Note that each policy exhibits some degree of error in
following the track due to the fact that the vehicle must move
away from the path to avoid obstacles. Furthermore, slowing
down to satisfy the learned lateral acceleration constraint
leads to some velocity tracking error. The policy trained on
dynamics closer to the real vehicle is able to find optimal
parameters that minimize these tracking error metrics while
still safely avoiding obstacles.

PROPS provides a PAC performance guarantee for each
policy based on performance of previously executed poli-
cies. These guarantees are only expected to transfer from
simulation to the real vehicle if the simulation environment
distribution (i.e. the dynamics) matches that of the real vehi-
cle. Figure 5 compares the simulation-derived performance
bound to the actual mean performance of each policy when
executed on the real vehicle for 200 episodes. The real world
cost and collision probability of the policy optimized using
the deep stochastic dynamics is upper bounded by the associ-
ated guarantees while the policies optimized using a simple
dynamic model with user-tuned noise are not. Training in
simulation using learned stochastic dynamics provides guar-
antees that actually transfer to the real world, indicating that
it is a powerful tool to estimate the performance of a policy
before executing it in the reality. Furthermore, the policy

Cost Collision Probability

17.5 Type
= Mean 0.07
15.0 Bound
0.06
12.5
0.05
10.0 0.04
7.5 0.03
5.0 0.02
2.5 0.01 I
0.0 0.00

Deep Simple (Det) Simple (Noise) Deep Simple (Det) Simple (Noise)
Model Model

Fig. 5. Mean cost and collision probability for policies executed on the
real vehicle compared to simulation-derived performance guarantees. The
policy trained using a deep stochastic model both satisfies the performance
bounds computed in simulation and outperforms the policies trained on a
simple deterministic (Det) and noisy (Noise) kinematic car model.

trained on the deep stochastic model outperforms the policy
trained on the simple model in terms of mean trajectory cost
while maintaining a similar collision probability.

[Model [Avg Offset | Avg Vel Error | Avg Vel | Max Vel |
Simple (Det) 1.8 m 2.8 m/s 3.7 m/s 5.8 m/s
Simple (Noise) 1.4 m 2.0 m/s 4.5 m/s 6.2 m/s
Deep Stochastic 14 m 1.8 m/s 4.7 m/s 6.5 m/s
TABLE 1
PoLiCY TRACKING PERFORMANCE ON UGV
25 25 6.0
—— Reference

20 20 I Obstacles 5.5
15 ° 15 e 509
_ P “ e £
Ew [/ i 10 . 452
. q ™ q E 3
5\ 7 5 & / 402

AN £ 8 dl
0 ‘*---ig,-a"’ 0 »*‘;--‘3{—';” I 3.5
5 5 3.0
0 10 20 10 0 10
X (m) X (m)
Fig. 6. Sample trajectories executed by the UGV using the policy trained

on a simple stochastic car model (left) and deep stochastic model (right).
The color of the arrow indicates the velocity of the UGV.

V. CONCLUSION

This work developed a technique for transferring control
policies from simulation to reality while preserving perfor-
mance guarantees. We achieved this by fitting a stochastic
dynamic model to data generated from a robotic car and then
used the model in simulation to optimize a control policy for
a car to navigate an oval track while avoiding obstacles. We
transferred the policy back to the real car and experiments
showed that it maintained a similar level of performance as in
simulation, whereas a policy trained using a simple kinematic
car model did not. Furthermore, experiments showed that
performance guarantees generated in simulation successfully
transferred to the real vehicle.

Future research will apply this policy transfer technique
to more general, unstructured control policies for more
aggressive off-road driving. We will also look at theoreti-
cally bounding the difference in simulated and actual policy
performance based on the discrepancy between the learned
model and the dynamics training data.

[1]

[2]

[3]

[4]

[6

=

[7]
[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 23-30, IEEE, 2017.
OpenAl, “Learning dexterous in-hand manipulation,” 2018.

J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv:1710.06537, 2017.

F. Sadeghi, A. Toshev, E. Jang, and S. Levine, “Sim2real viewpoint
invariant visual servoing by recurrent control,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4691-4699, 2018.

M. Sheckells, G. Garimella, and M. Kobilarov, “Robust policy search
with applications to safe vehicle navigation,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 2343-2349,
IEEE, 2017.

R. Antonova, S. Cruciani, C. Smith, and D. Kragic, “Reinforcement
learning for pivoting task,” arXiv preprint arXiv:1703.00472, 2017.
K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on
neural networks, vol. 1, no. 1, pp. 4-27, 1990.

S. Chen, S. Billings, and P. Grant, “Non-linear system identification
using neural networks,” International journal of control, vol. 51, no. 6,
pp. 1191-1214, 1990.

A. Draeger, S. Engell, and H. Ranke, “Model predictive control using
neural networks,” IEEE Control systems, vol. 15, no. 5, pp. 61-66,
1995.

S. E. Vt and Y. C. Shin, “Radial basis function neural network
for approximation and estimation of nonlinear stochastic dynamic
systems,” [EEE Transactions on Neural Networks, vol. 5, no. 4,
pp- 594-603, 1994.

K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” arXiv preprint arXiv:1805.12114, 2018.

C. K. Williams and C. E. Rasmussen, “Gaussian processes for regres-
sion,” in Advances in neural information processing systems, pp. 514—
520, 1996.

C. M. Bishop, “Bayesian neural networks,” Journal of the Brazilian
Computer Society, vol. 4, no. 1, 1997.

R. M. Neal, “Bayesian training of backpropagation networks by the
hybrid monte carlo method,” tech. rep., Citeseer, 1992.

M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465—
472, 2011.

M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control
a low-cost manipulator using data-efficient reinforcement learning,”
2011.

Y. Gal, R. McAllister, and C. E. Rasmussen, “Improving pilco with
bayesian neural network dynamics models,” in Data-Efficient Machine
Learning workshop, ICML, vol. 4, 2016.

S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems, pp. 1071-1079, 2014.

B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and
scalable predictive uncertainty estimation using deep ensembles,” in
Advances in Neural Information Processing Systems, pp. 6402-6413,
2017.

S. Depeweg, J. M. Herndndez-Lobato, F. Doshi-Velez, and S. Udluft,
“Learning and policy search in stochastic dynamical systems with
bayesian neural networks,” arXiv preprint arXiv:1605.07127, 2016.
T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel,
“Model-ensemble trust-region policy optimization,” arXiv preprint
arXiv:1802.10592, 2018.

A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning, pp. 745-750, ACM,
2007.

[25]

[26]

[27]

[28]

[29]

J. Peters, K. Miilling, and Y. Altun, “Relative entropy policy search.,”
in AAAI pp. 1607-1612, Atlanta, 2010.

A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a
nonholonomic car-like robot,” in Robot motion planning and control,
pp. 171-253, Springer, 1998.

G. Garimella, M. Sheckells, and M. Kobilarov, “A stabilizing gyro-
scopic obstacle avoidance controller for underactuated systems,” in
IEEE 55th Conference on Decision and Control (CDC), pp. 5010—
5016, IEEE, 2016.

M. T. Wolf and J. W. Burdick, “Artificial potential functions for
highway driving with collision avoidance,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 3731-3736,
IEEE, 2008.

O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 1, pp. 341-346, IEEE, 1999.

