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Abstract

Unlike many current navigation approaches for micro air vehicles, the relative navigation (RN) framework presented in
this paper ensures that the filter state remains observable in GPS-denied environments by working with respect to a local
reference frame. By subtly restructuring the problem, RN ensures that the filter uncertainty remains bounded, consistent,
and normally-distributed, and insulates flight-critical estimation and control processes from large global updates. This paper
thoroughly outlines the RN framework and demonstrates its practicality with several long flight tests in unknown GPS-denied
and GPS-degraded environments. The relative front end is shown to produce low-drift estimates and smooth, stable control
while leveraging off-the-shelf algorithms. The system runs in real time with onboard processing, fuses a variety of vision
sensors, and works indoors and outdoors without requiring special tuning for particular sensors or environments. RN is shown
to produce globally-consistent, metric, and localized maps by incorporating loop closures and intermittent GPS measurements.
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1 Introduction

Economists anticipate that autonomous micro air vehicles
(MAVs) will give rise to a handful of billion-dollar mar-
kets, including infrastructure inspection, security, precision
agriculture, transportation, and delivery (Pricewaterhouse-
Coopers 2016). Using MAVs to inspect bridges, dams,
chemical plants, and refineries is particularly motivating as
it would take the place of dangerous, time consuming, and
expensive human inspections; however, these markets are
still largely speculative because autonomous MAV naviga-
tion is an active research problem, especially in confined,
unknown environments where global positioning system
(GPS) measurements are unavailable or degraded.

Current MAV navigation approaches rely heavily on GPS
for estimation, guidance, and control; however, GPS sig-
nals can be spoofed, jammed, or blocked by structures and
foliage. GPS measurements can be further degraded by mul-
tipath, atmospheric delays, or poor positioning of visible
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satellites. When GPS is unavailable, the MAV’s global posi-
tion and heading is not observable (Martinelli 2012; Weiss
et al. 2012; Jones et al. 2007). As a result, when the global
state is tracked directly in a filter the estimates eventually
drift, leading to filter inconsistency and non-optimal sensor
fusion (Bailey et al. 2006; Bar-Shalom et al. 2002). Signif-
icant reliability issues arise when working with respect to a
globally-referenced state during prolonged GPS dropout and
heading uncertainty (Wheeler et al. 2018).

Many current GPS-denied MAYV systems utilize a Kalman
filter at the core of the navigation solution. Despite the issues
discussed above, the majority of these solutions estimate and
control with respect to a single, inertial reference frame:
either the GPS origin or the MAV s initial pose. This formu-
lation is convenient; however, there are several underlying
issues that commonly arise in GPS-degraded environments
when tracking the global state directly in a filter and control-
ling with respect to those estimates:

— Controlling with respect to the unobservable global state
precludes any guarantee on the stability of the system.

— In the absence of global measurements, estimates of the
unobservable global state drift over time and the uncer-
tainty grows without bound. If GPS is reacquired after
a prolonged period of dropout and used as an update in
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the filter, the global state may jump considerably. This
jump, if not accounted for, may in turn produce extreme
control inputs (Weiss et al. 2012; Shen et al. 2014; Cham-
bers et al. 2014; Tomic et al. 2012; Scherer et al. 2015).
A large global uncertainty also reduces the filter’s ability
to properly reject degraded GPS measurements, causing
the state estimate to degrade.

— During prolonged GPS dropout, the unobservable global
filter states become inconsistent (Bailey et al. 2006;
Wheeler et al. 2018), resulting in a poor understanding
of the uncertainty of the vehicle’s global pose. Incon-
sistency reduces estimator optimality (Bar-Shalom et al.
2002), can cause the estimator to gate valid GPS measure-
ments if GPS is eventually reacquired, and can negatively
impact applications such as geofencing that require a
good understanding of the global uncertainty.

While various methods have been introduced in the literature
to help mitigate or work around these issues, ultimately the
root cause is unobservability.

This paper uses the recently proposed relative navigation
(RN) framework (Leishman et al. 2014) as an alternative,
locally-observable approach for GPS-denied MAV navi-
gation. By using a view matcher, such as camera-based
visual odometry (Scaramuzza and Fraundorfer 2011; Fraun-
dorfer and Scaramuzza 2012) or laser-based scan match-
ing (Bachrach et al. 2011; Gutmann and Schlegel 1996),
the relative navigation filter estimates the MAV’s state with
respect to its local environment, while global state recon-
struction is relegated to a lightweight pose-graph back end
that concatenates these local estimates. The relative state
estimator ensures that the state being tracked by the fil-
ter is observable and that the uncertainty remains bounded,
consistent, and normally-distributed (Wheeler et al. 2018),
better satisfying the assumptions underlying a Kalman fil-
ter approach. By removing the global-state estimation from
the front end, RN also ensures that large or delayed global-
state updates, which come from incorporating loop-closure
constraints or eventual global measurements, do not impact
the flight-critical control and estimation feedback. While the
global state is still inherently unobservable in the absence
of global measurements, consistency is maintained by esti-
mating the global state outside the filter with the back-end
pose graph, where the non-Gaussian uncertainties can be bet-
ter represented. In addition, robust optimization methods can
identify and reject gross GPS outliers and false-positive loop
closures.

One of the primary contributions, and more novel aspects,
of the RN approach is the architecture that confines all func-
tions critical to safe flight in a relative front end which
operates on observable states, while relegating all global
estimation and mission planning to a back end which can
better handle the non-Gaussian uncertainties and which is
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Fig. 1 MAV smoothly navigating through a GPS-degraded environ-

not subject to the strict timing requirements that apply to
the flight-critical components. This decoupling also prevents
jumps in global state estimates from destabilizing the vehicle.
The advantages of this approach in terms of observability and
consistency have been previously investigated by Wheeler
et al. (2018). This paper focuses primarily on the practical
advantages and implementation aspects of the architecture,
and on hardware demonstrations of its effectiveness. The con-
tributions of the paper are twofold:

First, the details necessary to implement the complete
RN framework are presented, including the subtleties of
the interactions between the relative front end and global
back end. Specifically, we describe the relative estimator
reset operation necessary to maintain observability, and
present the relative guidance and control strategy neces-
sary to ensure smooth, stable flight. We discuss how to
reconstruct the global state with consistent banana-shaped
uncertainty distributions, and describe how to incorporate
GPS and loop-closure information to improve the global
state estimate. We explain how the high-level path planner
facilitates autonomous missions and show how to leverage
off-the-shelf algorithms for visual odometry, place recogni-
tion, and robust pose-graph optimization.

The second contribution consists of several prolonged
hardware flight tests demonstrating the effectiveness of RN
for autonomous GPS-degraded MAV navigation in var-
ied, unknown environments, such as that shown in Fig. 1.
We demonstrate that the relative front end successfully
fuses multiple vision sensors, works indoors and outdoors,
and results in low drift with no state jumps. We further
demonstrate the onboard generation of a globally-consistent,
metric, and localized map by identifying and incorporating
loop-closure constraints and intermittent GPS measure-
ments. Using this map, we demonstrate the fully-autonomous
completion of mission objectives, including performing a
position-hold about a global position waypoint while in a
GPS-denied environment.
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Section 2 reviews current state-of-the-art methods for
GPS-degraded MAV navigation and Sect. 3 overviews the
relative navigation framework. Sections 4 and 5 describe the
components of the relative front end and global back end of
the RN architecture respectively. In addition to outlining each
component’s role, the specific algorithms used for the hard-
ware implementation are also presented. Section 6 describes
the experimental flight tests, including the hardware and test
procedures, while Sect. 7 describes the flight test results.
Finally, Sect. 8 summarizes the contributions of the paper.

2 Related work

Because of the many applications of MAVs in GPS-denied
and GPS-degraded environments, significant research has
been performed in improving the capability and robustness of
state estimation in these situations. Much of this work builds
upon the simultaneous localization and mapping (SLAM) lit-
erature, but is adapted for MAVs. The full SLAM problem
involves concurrently estimating the position of surrounding
landmarks while reconstructing the vehicle’s complete tra-
jectory; however, due to the strict size, weight, power, and
timing requirements associated with autonomous MAV oper-
ation, the SLAM problem is often simplified when applied
to MAVs, only solving for the current pose of the vehicle and
surrounding landmarks.

Early work demonstrated indoor MAV flight and provides
approaches for many MAV navigation problems such as map-
ping, path planning, and control of GPS-denied multirotor
platforms for short indoor trajectories. Grisetti et al. (2010)
and Grzonka et al. (2012) present a graph-based SLAM
approach to leverage laser scan-matching constraints, while
Bachrach et al. (2011) and Bachrach et al. (2010) fuse scan
matching data with inertial measurements in an extended
Kalman filter (EKF), demonstrating a vision-aided naviga-
tion solution. Blosch et al. (2010) uses an EKF to track the
global pose of individual landmarks, demonstrating a suc-
cessful EKF-SLAM approach.

Some more recent work in this area has focused on
improving the consistency of pose estimation without global
measurements, extending the length of autonomous trajecto-
ries, and diversifying the environments in which MAVss can
operate. Chowdhary et al. (2013) demonstrated a success-
ful GPS-denied monocular vision-aided inertial navigation
system (INS) including autonomous landing and takeoff.
Scaramuzza et al. (2014) were the first to demonstrate pro-
longed (350 m) autonomous MAV flight in a GPS-denied
environment. Their work used a single monocular camera for
onboard stabilization and control. Shen et al. (2014) intro-
duced a method for simultaneously fusing multiple relative
view-matchers to increase robustness in difficult environ-
ments and demonstrated autonomous flight on a prolonged

(440 m) indoor-outdoor flight. They used a stochastic-
cloning filtering approach (Roumeliotis and Burdick 2002),
which is designed to better propagate uncertainty but allows
the global state covariance to grow unbounded in the absence
of global measurement updates. Scherer et al. (2012) pre-
sented a graph-based state estimation system that fuses visual
odometry, inertial measurements, and intermittent GPS infor-
mation. The relative navigation approach shares many ideas
with this approach, but removes the pose-graph optimization
from the flight-critical path by additionally incorporating a
front-end estimator.

Each of these previously mentioned methods ultimately
track the unobserved global state. As shown by Wheeler et al.
(2018), methods that directly estimate the global state are sus-
ceptible to inconsistency and state jumps during prolonged
GPS dropout. The value of arelative parameterization is well-
documented in the full-SLAM literature (Bailey et al. 2006;
Moore et al. 2009; Sibley et al. 2009; Chong and Kleeman
1999; Kim et al. 2010), but has not been fully applied to
MAV navigation. Moore et al. (2009) noted the limitations
of using either a body-fixed or a globally-fixed reference
frame for ground vehicles, and proposed using a local frame
in which the vehicle moves smoothly. Bailey et al. (2006)
showed that estimating the vehicle and landmark location
with respect to a global coordinate frame results in incon-
sistency as heading uncertainty increases, and asserted that
submapping was the only method at the time of publication
for implementing consistent large-scale EKF-SLAM . Rela-
tive submapping methods (Chong and Kleeman 1999; Kim
et al. 2010) estimate the state of the vehicle and landmarks
with respect to a local coordinate frame. These submaps
are subsequently fused and form a more consistent global
estimate. Sibley et al. (2009) proposed a completely relative
bundle-adjustment formulation for incrementally solving the
full SLAM problem in constant time. In essence, relative
navigation demonstrates how to apply these relative ideas
discussed in the full-SLAM literature to computationally
constrained and dynamically unstable MAV platforms using
an EKF to ensure smooth flight in GPS-degraded environ-
ments.

3 Relative navigation overview

The intuition behind relative navigation is straightforward.
An alert driver can safely navigate indefinitely, even if
completely lost or disoriented. This is because humans
instinctively perceive the world and make decisions with
respect to the current local environment, as opposed to work-
ing with respect to an arbitrary global reference point. When
a driver is lost, ideally an accompanying passenger looks for
landmarks, references a map or GPS unit, plans the optimal
global route, and then provides low-frequency, high-level
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Fig. 2 Relative navigation architecture. Using relative motion mea-
surements, such as from visual odometry or scan matching algorithms,
the vehicle estimates its local state. These estimates are used for flight-
critical path planning and control. As a separate process, the global back
end incorporates any available global information. Its only influence on
the front end is through locally-defined guidance objectives. Diagram
adapted from Leishman et al. (2014)

instructions to the driver in the local frame—for example,
“turn around when possible” or “make the next right turn.”
In this way, time- and safety-critical estimation and control
decisions are decoupled from potentially erroneous global
information.

Figure 2 presents the relative navigation architecture intro-
duced by Leishman et al. (2014), where the decoupled
responsibilities of the relative front end and global back end
are analogous to adriver and passenger. Using relative motion
measurements, available from a keyframe-based view-based
odometry source such as visual odometry or scan matching,
the relative front-end filter estimates its pose with respect
to its local environment. This observable, relative state esti-
mate is used for flight-critical path planning and control. The
filter resets its relative states to zero each time the view-
based odometry declares a new keyframe, which happens
when enough motion has occured that sufficient keyframe
features are no longer in view. Before resetting, the filter
passes its current relative pose estimate and covariance to the
back end. As a separate process, the global back end concate-
nates these relative states as edges in a pose-graph map, and
additionally incorporates any available global information
such as place recognition constraints or GPS measurements.
The only way the global back end influences the front end is
through locally-defined guidance objectives.

The relative navigation architecture is readily applied to
existing systems, as it does not make any assumptions about
the vehicle platform or sensor suite. A wide variety of algo-
rithms can be used to implement each component, and due
to the modular nature of RN, it is straightforward to inter-
change the algorithms as needed. The RN framework also
allows multiple view-matchers to be used simultaneously for
increased robustness in difficult environments. In the next

@ Springer

two sections we describe the details of the relative front end
and the global back end.

4 Relative front end

By working with respect to the local environment, the rel-
ative front end ensures that the flight-critical estimation,
guidance, and control always operates with respect to an
observable state, allowing smooth, stable flight even when
global information is degraded or undergoing large cor-
rections. When relative navigation was first presented by
Leishman et al. (2014), the discussion emphasized a par-
ticular choice for a visual odometry algorithm, estimator,
path planner, and controller. This section generalizes that
discussion by outlining the fundamental nature of each front-
end component, highlighting how existing algorithms would
need to be adapted to fit into the relative navigation architec-
ture. Specifically, we describe how to incorporate current
state-of-the-art view-based odometry algorithms, describe
the relative estimator reset operation necessary to maintain
observability, and present the relative guidance and control
strategy necessary to ensure smooth, stable flight.

4.1 View-based odometry

When GPS is not available, MAV's commonly use odometry
measurements computed from exteroceptive sensors such as
laser scanners or cameras. A variety of odometry algorithms
exist including laser scan matching (Bachrach et al. 2011;
Gutmann and Schlegel 1996) and visual odometry (Scara-
muzza and Fraundorfer 2011; Fraundorfer and Scaramuzza
2012). In the context of the RN framework, these view-
based odometry algorithms output the incremental or relative
transform between the two frames (images or scans), with-
out performing any type of global localization. While some
odometry methods compare consecutive frames, others com-
pare the current frame to a recent keyframe. When a keyframe
is used, a series of odometry measurements are computed
with respect to this keyframe. Generally the keyframe is
updated only when there is insufficient overlap to provide a
reliable odometry measurement. As a result, keyframe-based
odometry reduces temporal drift in the computed odometry
as compared to frame-to-frame matching (Shen et al. 2014,
Leutenegger et al. 2015).

In contrast to the current work, which uses only the incre-
mental transform computed by the view-matching algorithm
as an input to the filter (similar to other approaches such as
that of Shen et al. (2014)), some work (such as that by Scara-
muzza et al. (2014) and Weiss and Siegwart (2011)) uses
the term visual odometry to refer to a black-box algorithm
that provides pseudo-global position updates to the filter. In
this case the odometry algorithm is performing additional
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steps to concatenate and optimize the incremental transforms
to produce an estimate of the exteroceptive sensor’s global
pose. Such implementations exceed the scope of what is
required as an input to the RN framework, since we per-
form this global concatenation in the back-end pose graph.
However, the excellent work that has gone into these imple-
mentations can often be leveraged in the RN framework by
isolating the portion of the algorithm that computes the rel-
ative updates between frames, while removing the global
portions. This is the approach we used with the DEMO
RGB-D odometry algorithm (Zhang et al. 2014) and with
the CSM scan-matching algorithm (Censi 2008) for our flight
test results.

As shown in Fig. 2, the view-matcher is only loosely cou-
pled to the estimator. As such, it is straightforward to accept
relative measurements from any source or sensor, such as
RGB-D and stereo visual odometry or a laser scan matcher.
Monocular cameras introduce the additional difficulty of
translational scale ambiguity in the visual odometry solution.
While some work has been done on addressing this difficulty
by combining the relative navigation approach with tightly-
coupled visual-inertial estimation techniques (Jackson et al.
2019), the architecture and results presented in this paper
are restricted to odometry measurements with known scale
factors computed from sensors with depth information.

The framework can additionally handle multiple relative
sensors, which can increase the robustness of the system in
difficult environmental conditions. For example, Koch et al.
(2016) demonstrated using RN to simultaneously incorpo-
rate relative measurements from a laser scanner and RGB-D
camera. While the scan matcher broke down in long hall-
ways and the visual odometry broke down in a dark room,
the redundant sensing allowed the vehicle to successfully
navigate these environments.

As mentioned above, for the results in Sect. 7 we used
relative adaptations of DEMO (Zhang et al. 2014) for visual
odometry and CSM (Censi 2008) for scan matching.

4.2 Relative state estimation

Most MAV navigation approaches continue to estimate the
global state, even when GPS-dropout makes the global state
unobservable. Given an inertial measurement unit, altimeter,
and even visual odometry measurements, the global position
and heading of a MAV in the horizontal plane cannot be
observed (Martinelli 2012; Weiss et al. 2012). With time, the
associated state estimates drift and become inconsistent.
One fundamental advantage of RN is that the front-
end state always remains observable when accurate relative
odometry measurements are available. RN maintains observ-
ability by defining the state with respect to a local node frame.
The node frame is defined as the gravity-aligned coordinate
frame that is positioned on the ground exactly under the

ey 1

(b) After reset

(a) Before reset

Fig.3 2D illustration of node frame reset operation. a The relative esti-
mator tracks the MAV’s position and heading (x, y, ¥) with respect to
the current node frame nj. The estimated state (blue) will not perfectly
align with the true MAV state (green), but the estimator’s covariance
(blue oval) should correctly represent the underlying uncertainty. b
When a new keyframe is declared, the new node frame ny is defined
at the true, yet globally unknown, MAYV pose. The estimated pose (gray)
and covariance (gray oval) are saved as an edge constraint in the back-
end pose graph and the MAV’s (x, y, ) states and their corresponding
covariance terms are reset to zero (Color figure online)

MAV when the current keyframe was taken. Because each
node frame is gravity-aligned and positioned on the ground,
the MAV’s altitude, roll, and pitch (z, ¢, #) with respect to
the node frame are estimated no differently than if defined
with respect to a global origin. By referencing the current
node frame, however, the horizontal position and yaw states
(x, y, ¥) now correspond to the relative position and head-
ing of the MAV with respect to the most recent odometry
keyframe. In this way, relative measurements provided by a
view-matcher directly measure the MAV’s relative position
and heading, causing the state to be observable by con-
struction provided there are a sufficient number of features
distributed throughout the field of view to produce accurate
measurements. With regular, direct updates, the uncertainty
of the vehicle’s relative state remains consistent, bounded,
and approximately Gaussian (Wheeler et al. 2018).

A variety of estimation techniques are used for MAV
navigation and could be adapted to become a relative esti-
mator. The fundamental concept is that the estimator’s state
and covariance should be reset whenever a new keyframe is
declared. Figure 3 illustrates the process of transitioning from
one keyframe to the next. The relative estimator tracks the
MAV’s position and heading (x, y, ) relative to the current
node frame n; . Naturally the estimated state will not perfectly
align with the true MAV state, but the estimator’s covariance
should correctly represent the underlying uncertainty. When
a new keyframe is declared, the new node frame nj4; is
defined at the true, yet globally unknown, MAV position. The
current pose and covariance are saved as an edge constraint
in the back-end pose graph and then the MAV’s position and
heading states and their corresponding covariance terms are

@ Springer



Autonomous Robots

T T - . T

= Forward

= 0.5 |—Right 1
£ Down | | ZZ 1 Z
& 0 < 0&4’4 Z-l 4
fé |
a -0.5 1

=il ’ 1 L L 1

140 142 144 146 148 150 152

Time (s)

20 — , ' —ve L
. = Roll
o 10} |==Pitch 4
% Yaw
i . )
() > N
3 0 Mwo-o"wm 0&\""4 N
2.0+t 1

-20 L I L L
140 142 144 146 148 150 152
Time (s)

Fig. 4 Typical mid-flight state estimates. The vertical gray lines indi-
cate a new node frame, and the labels indicate the associated node
identifier. With each new node frame, the forward, right, and yaw states
are reset to zero, while the down, roll, and pitch states are unaffected.
The vehicle was yawing from 142 s to 146 s and moving forward at a
constant velocity from 150 s to 152 s. While the state estimates are dis-
continuous, the relative navigation approach facilitates smooth, stable
navigation in GPS-degraded environments

reset to zero. In this way, the global uncertainty is removed
from the front-end filter and delegated to the global back
end.

Figure 4 shows example state estimates, where the hori-
zontal position and heading states are reset at each new node
frame. While the discontinuities in the state estimates may
appear concerning from a control perspective, they occur at
known times and thus are reliably handled by the relative path
planner and controller to produce smooth, stable control. It is
important to note that while the front-end filter tracks the full
six degrees-of-freedom pose, it is sufficient to only optimize
the relative states (x, y, 1) in the back end.

For the flight results described in Sect. 7, we used an indi-
rect formulation of the multiplicative extended Kalman filter
as presented by Koch et al. (2017). A unit quaternion is used
to represent the MAV’s attitude while attitude error is propa-
gated using a minimal three-state representation. When a new
keyframe is declared, care is taken to only reset the unob-
served horizontal position and heading, leaving roll, pitch,
altitude and their associated uncertainties unchanged. Refer
to the work by Koch et al. (2017) for additional estimator
details including the state, dynamics, sensor models, and spe-
cific details about the reset step.
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Some similarities and differences exist between the RN
relative estimator and the popular robocentric estimation
approach. As described by Koch et al. (2017), a relative
estimator can be defined in either an inertial or robocentric
representation. A robocentric approach tracks the position of
landmarks with respect to the current body’s pose. While
robocentric dynamics are less intuitive, this formulation
ensures improved observability and consistency properties
for the landmark states, similar to RN. Most robocentric
approaches, however, continue to track the global state of
the MAV with respect to the current body. After prolonged
flight without global information, the global uncertainty is
not well represented by a Gaussian distribution in typical
Cartesian coordinates, leading to estimator inconsistency
(Wheeleretal. 2018). The relative navigation framework pro-
vides a method to use either inertial or body-fixed dynamics,
produces smooth, observable state estimates for control, and
represents the global state consistently.

4.3 Relative path planning and control

Within the relative navigation framework, all front-end guid-
ance and control is computed with respect to the current node
frame. Many current MAV controllers drive the estimated
global state to a desired global state. These same controllers
can be directly applied to drive the estimated relative state to
a desired relative state. Any control approach can be used as
long as care is taken to ensure that the estimator and controller
are working with respect to the same reference frame.

Each time the relative estimator resets to a new node frame,
the path planner and controller must also update to ensure that
they are operating with respect this new frame. Depending on
the chosen control strategy, this update operation may range
from updating an entire potential field to requiring no action
as in the case of a body-fixed velocity controller.

Let x¢ /» Tepresent the state @ with respect to frame b,
expressed in frame c. Using this notation, Fig. 5 illustrates

Ng—1

goal

Fig. 5 Updating a relative goal when a new node frame is declared.
The goal with respect to the previous keyframe, xfg,/—klf], is expressed
with .respect to the new keyf.rame, x’; Ik using the edge constraint xﬁ k=1
provided by the relative estimator
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Fig.6 Control architecture. The autopilot performs high-rate feedback
control about roll, pitch, yaw rate, and thrust commands provided from
the onboard computer. Diagram adapted from Wheeler et al. (2016)

the process of updating a position goal that is expressed with
respect to the previous node frame n;_; to the current node
frame ny. In short, the relative path planner uses the estimated
edge constraint between subsequent node frames provided
by the relative estimator, xi/_kt 1» to express the previous goal
xf;;kl_l in the new node frame, xg Ik Because each node frame
is gravity-aligned and positioned on the ground, any roll,
pitch, altitude, or body-fixed velocity components of the goal
remain unchanged.

As a practical note, we recommend that the relative con-
troller incorporate logic to monitor if the relative estimator’s
node frame identifier matches the node frame identifier of the
current goal. If the node frame identifiers are not in sync or no
goal is supplied by the path planner, the MAV is directed to
hover in place. While this step is an important safety precau-
tion, the controller did not enter this state during our flight
testing. With a careful implementation, the control perfor-
mance does not degrade due to the relative state reset.

Figure 6 presents the control architecture used to avoid
collisions and produce the smooth, flight-critical control
needed to safely operate the MAV in unknown, dynamic
environments with unpredictable external disturbances. The

onboard computer uses its current relative state estimate and
a path planning algorithm to calculate a trajectory to the cur-
rent relative goal. We use the reactive obstacle avoidance
plugin framework (Jackson et al. 2016b) to use the latest
sensor information to modify the current trajectory when
needed to avoid a pending collision. Control loops are then
closed around this modified trajectory to produce desired
accelerations. At this point, the non-linear model of the MAV
dynamics is inverted (Michael et al. 2010; Raffo et al. 2010),
providing a desired roll, pitch, yaw rate, and thrust com-
mand. These attitude setpoints are passed to the autopilot
where high-rate attitude feedback control is performed.

For the results in Sect. 7, the path planner uses position
feedback to supply high-rate velocity goals. These velocity
goals are then modified using the cushioned extended-
periphery obstacle avoidance algorithm (Jackson et al.
2016b). An LQR feedback controller is closed around the
modified velocity setpoints to produce desired accelerations,
which are then passed through the model inversion to pro-
duce the roll, pitch, yaw rate, and thrust command that is sent
to the autopilot.

5 Global back end

While the relative front end ensures flight-worthiness, if a
MAV is tasked with performing a global mission then a global
state estimate is required. This section describes how the
global state and its uncertainty are reconstructed. While the
overall concept of the RN back end was presented previously
by Leishman et al. (2014), the implementation details pre-
sented in this section are unique contributions of this paper.

5.1 Pose-graph map

Before resetting the state and establishing a new node frame,
the front end saves the estimated relative pose and associated
uncertainty. Because each node frame is defined to be located
at the true (yet globally unknown) position of the MAYV, the
uncertainty is reset with each node frame. This ensures that
the saved pose estimates from one node frame to the next are
mutually independent. This facilitates structuring the back
end as a pose graph.

A pose graph is a conventional graph where each vertex or
node corresponds to the global pose of a vehicle at a certain
instant in time, and graph edges represent the relative change
in position and attitude from one node to another. Odometry
measurements, such as the relative pose estimates from the
relative estimator, provide edge constraints between sequen-
tial nodes. If a place recognition algorithm detects that the
vehicle has returned to a previous pose, an edge constraint
between non-consecutive poses, known as a loop closure, is
introduced in the graph. The vehicle’s global pose can be
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Fig. 7 To reconstruct the MAV pose with respect to the origin, each
estimated edge (blue line) is compounded, followed by the MAV state
with respect to the current node (green line). A loop-closure constraint
(red line) in general will not perfectly agree with the odometry con-
straints, resulting in an over-constrained system (Color figure online)

reconstructed by first traversing the graph from the origin to
the current node, compounding each estimated edge in the
path, and then incorporating the relative state. When loop
closures are added, the graph is over-constrained and multi-
ple paths, and therefore multiple pose estimates, are possible.
This is illustrated in Fig. 7. A weighted-least-squares opti-
mization can be performed to reconcile these discrepancies,
removing accumulated drift. Other, more involved frame-
works leverage the factor graph data structure which uses
Bayesian methods to infer the pose of the MAV over time by
representing edge constraints as factors. Factor graph meth-
ods have the added benefit of being able to solve for the
global uncertainty of each pose and can incorporate other
measurements such as range-only or IMU preintegration
factors (Forster et al. 2015; Carlone et al. 2014). Both factor-
graph and pose-graph formulations are able to solve for the
optimal set of poses given odometry and loop-closure edge
constraints with associated uncertainties.

Formulating the back-end optimization problem as a pose
graph results in the following beneficial properties:

— A variety of well-developed pose-graph optimization
frameworks exist to find a consistent global representa-
tion of the trajectory after accounting for all constraints
(Kummerle et al. 2011; Kaess et al. 2008; Dellaert and
Kaess 2006; Kaess et al. 2012).

— Robust pose-graph optimization techniques can identify
and remove the effect of erroneous constraints such as
false-positive loop closures or degraded GPS (Sunder-
hauf and Protzel 2013; Agarwal et al. 2013; Latif et al.
2013).

— A pose-graph representation provides a straightforward
method to consistently represent a MAV’s global state
uncertainty. When global measurements are unavailable,
representing error using the vector space formed by
the Lie algebra se(3) produces banana-shaped, Gaus-
sian uncertainty distributions that better parameterize the
underlying distribution (Wheeler et al. 2018; Barfoot and
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Furgale 2014; Long et al. 2012). The ability of the pose-
graph representation to reconstruct this distribution was
extensively explored in the context of the RN framework
by Wheeler et al. (2018).

— A pose graph provides a lightweight representation of
a trajectory, ensuring scalability and practicality on
resource-constrained platforms or networks. Long tra-
jectories with a large number of loop closures can benefit
from node removal techniques which further reduce
the complexity of the optimization problem (Carlevaris-
Bianco et al. 2014).

Pose graphs are commonly used for MAV back ends; how-
ever, many approaches that track the global state in the front
end do not provide a clear method to construct independent
edge constraints and covariances, an issue addressed explic-
itly by relative navigation.

5.2 Place recognition

An important aspect of pose-graph back ends is the ability
to remove accumulated drift if the MAV detects that it has
returned to a previously visited location. Place recognition
algorithms efficiently compare the current keyframe image or
scan to each previous keyframe image or scan. When a strong
correspondence is detected, the relative transformation is
computed and an edge constraint between non-consecutive
nodes, known as a loop closure, is included in the pose graph.

Place recognition is a challenging problem, but a variety
of approaches have been successfully demonstrated (Lowry
et al. 2016). To scale well, the method must be fast and
efficient. Additionally, the algorithm should correctly detect
loop closures when there are partial occlusions, varied view-
points or lighting conditions, or minor scene changes. It
should also correctly avoid perceptual aliasing, which is
falsely correlating nearly identical, yet non-unique, scenes
such as two similar brick walls.

To ensure scalability, many approaches use a bag-of-
words approach (Sivic and Zisserman 2003; Nister and
Stewenius 2006). Salient features are identified in a repre-
sentative set of images and are clustered to form a set of
common, yet visually distinct, image features. This precom-
puted set of features, known as the vocabulary, is then used
to describe each vehicle image. Using a common vocabu-
lary allows for a sparse representation and facilitates rapid
comparison. Commonly, hierarchical trees are also used for
quicker comparisons. Some methods use the estimated global
uncertainty to limit the set of past images that are compared.

While any place recognition algorithm could be used, we
use fast, appearance-based mapping (FAB-MAP), a linear-
complexity algorithm that uses Bayesian probabilities to
infer the likelihood of a match while explicitly rejecting per-
ceptual aliasing in the environment (Cummins and Newman
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Fig. 8 Example loop closure detected using FAB-MAP between
keyframe 80 and keyframe 416 during flight test 2

2011; Glover et al. 2012). This appearance-based matching
technique provides only an image pair, so the RGB-D visual
odometry algorithm described by Leishman et al. (2014)
is used to calculate the full six degrees-of-freedom trans-
form between the two images. This algorithm uses RANSAC
(Fischler and Bolles 1981) to find the transform between
the RGB-D image pair, and the number of outliers in the
RANSAC model can be used to filter false loop closures.
With this method, no false loop closures have been detected
in the entirety of our flight-testing experience, and it has been
shown to be computationally tractable on a MAV. An exam-
ple loop closure is shown in Fig. 8.

5.3 GPS integration

While loop closures and odometry can be used in a pose
graph formulation to produce a metric map of previous states,
globally-referenced measurements, such as GPS, can be used
to localize the map in the global frame and further improve
global-state estimation. Measurements to landmarks with
known global positions can also be used to localize the map
globally. For example, while the results presented in Sect. 7
do not use any a priori information, it is trivial to seed the
place recognition algorithm with a set of geo-located images.

Many MAV navigation methods estimate the global state
in the front end and can directly fuse global measurements.
This works well when global information is regularly avail-
able and accurate, but is shown to lead to inconsistency when
the estimates drift during prolonged GPS dropout (Bailey
etal. 2006; Wheeler et al. 2018). Furthermore, directly apply-
ing a global measurement to remove drift induces a large state
update, often causing the control effort to jump which can
destabilize the system (Weiss et al. 2012; Shen et al. 2014,
Chambers et al. 2014; Tomic et al. 2012; Scherer et al. 2015).
Several methods have been proposed to address this, such as
simultaneously tracking a GPS-corrected and odometry-only
global trajectory (Shen et al. 2014) or using a series of mea-
surement gates (Chambers et al. 2014).

Alternatively, global measurements can be handled exclu-
sively in the back-end pose graph using a virtual-zero node.
Described by Rehder et al. (2012) and Scherer et al. (2012),
the virtual-zero node represents the GPS origin. To ensure

Fig.9 Back-end GPS integration method. For each GPS measurement,
one node and two edge constraints are added. The new node (green
circle) is related to the virtual-zero node using the measurement and
uncertainty reported by the GPS receiver (dashed green line), and is
related to the current node frame using the current relative state esti-
mate (solid green line). A virtual constraint with maximum uncertainty
is added between the first node and the virtual zero node to ensure
connectedness (black line) (Color figure online)

the pose graph is fully connected, an arbitrary edge constraint
with infinite uncertainty, known as the virtual constraint, is
applied between the virtual-zero node and the node represent-
ing the MAV’s origin. For each GPS measurement received,
one node and two edge constraints are added to the pose
graph, as shown in Fig. 9. A node is added to represent
the current vehicle pose. This node is related to the virtual-
zero node using the measurement and uncertainty reported
from the GPS, and is related to the current node frame using
the current relative state estimate. Upon optimizing the pose
graph after the first GPS measurement, the virtual constraint
will correctly estimate the global position of the MAV’s start-
ing point. Incorporating subsequent GPS measurements will
refine this position estimate and provide a heading estimate
for the MAV’s starting point, causing the entire pose graph
map to be globally localized. Similar concepts have been used
to incorporate multiple agents with unknown initial starting
points (Kim et al. 2010).

In practice, pose graph optimizers are less likely to diverge
when all constraints are of a similar order of magnitude. GPS
constraints are challenging because the GPS origin is gener-
ally far away. To address this issue, we save the initial GPS
measurement and subtract it from each GPS measurement
before adding the edge constraint. As a result, the virtual
zero constraint represents the position of the first node with
respect to the first GPS measurement, as opposed to repre-
senting the position of the first node with respect to the GPS
origin. If it is necessary to express the pose graph in a global
coordinate frame, such as for visualizing the graph on an
ortho-rectified image, the initial GPS measurement is simply
added to each pose.

There are several significant advantages of using pose
graphs for incorporating GPS measurements. First, due to
the decoupled nature of the relative navigation framework,
global state jumps cannot degrade flight-critical control. This
also means that processing or networking delays can be tol-
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erated. Second, robust optimization techniques can be used
to detect erroneous GPS measurements. Once detected, any
negative effect is completely removed from the system. Such
a claim is not possible using conventional, front-end filtering
methods. Finally, as few as two global measurements can be
leveraged to localize the pose graph map, a research problem
originally motivated by Rehder et al. (2012).

5.4 Optimization

Pose graph optimization is formulated as a weighted least-
squares problem. The objective of the optimization is to find
the set of global poses x for each node such that the set of rel-
ative edge constraints & are best satisfied collectively. Edge
constraints are partitioned into three sets: odometry con-
straints &, loop-closure constraints ., and GPS constraints
¢. Each edge constraint £;; has an associated information
matrix £2;; to represent the confidence of the constraint con-
necting nodes i and j. A particular estimate of global node
poses X can be used to determine the currently estimated
relative relationship between nodes:

&ij =hij(x).
Using this notation, the optimization is formulated as

X" = argming Z
&jel0, 2.9}

(hi; (%) — &) (h;; (X) — &)).

Before loop-closure and GPS constraints are introduced into
the system, the optimization problem is not overconstrained
and a zero-cost, odometry-only trajectory is available. When
additional constraints are added, the optimization works to
modify the trajectory, particularly adjusting the portions of
the trajectory with the greatest uncertainty.

Pose-graph optimization is a well-researched problem.
The optimization is commonly solved using iterative Gauss—
Newton techniques. First, the global position of each node
is estimated, often using the odometry-only trajectory. Then,
for each iteration, the cost function is linearized about the
current state estimate and the optimal state update for the
linearized system is computed and applied. There are sev-
eral known issues with this method that are addressed in the
literature:

— A naive implementation requires large matrix inversions
and therefore does not scale well. However, several
popular pose-graph optimization frameworks have been
presented that leverage sparse matrix properties and show
improved scalability (Kummerle et al. 2011; Kaess et al.
2008).

— Gauss—Newton approaches can converge to a local min-
imum or even diverge, particularly when the initial state

@ Springer

estimate is poor, which is common for drifting MAVs
in GPS-denied environments. Several approaches have
been presented to address initialization issues, including
by Olson et al. (2006).

— Least-squares optimization is highly sensitive to outliers.
While outliers are unlikely for odometry constraints,
false-positive loop-closure constraints or degraded GPS
measurements can significantly impact the optimization.
Switching constraints (Sunderhauf and Protzel 2013),
dynamic covariance scaling (DCS) (Agarwal et al. 2013),
max-mixture models (Olson and Agarwal 2013) and the
RRR algorithm (Latif et al. 2013) are all proven methods
for detecting outliers and mitigating their effect on the
optimization.

While these and similar methods help prevent the back end
from diverging, they do not guarantee convergence, nor do
they necessarily provide smooth or timely global-state esti-
mates. This further highlights the importance of decoupling
flight-critical processes from global information. For the
flight-test results in Sect. 7 we used g2o (Kummerle et al.
2011) with dynamic covariance scaling (Agarwal etal. 2013).

5.5 Global path planning

The role of the global path planner is first to determine the
optimal MAV trajectory by assessing relevant global infor-
mation, and second to transform the plan to be with respect
to the current node frame for use in the relative front end. A
variety of path planning algorithms could be used depending
on the mission objective, including autonomous exploration,
mapping, target tracking, waypoint following, cooperative
control, or landing. After a plan is determined, the global
path planner passes relative goals to the relative path planner.
When a new keyframe is declared, these goals are updated
to be expressed with respect to the latest node frame. These
relative goals are the only way the global back end influences
the MAYV, which helps isolate the front end from destabiliz-
ing or erroneous global information. This idea is illustrated
in Fig. 10.

A simple global path planner was implemented for the
flight test results in Sect. 7. Since the MAV begins without
any global information, a user initially takes the place of
the global path planner by supplying a series of position or
velocity setpoints. After the MAV travels for some distance
and creates a global map, the user specifies a desired global
waypoint on the map. At this point, Dijkstra’s algorithm is
used to search through the back-end pose graph to find the
shortest known path to the desired waypoint. The global path
planner then supplies velocity setpoints to the relative front
end to direct the MAV along the path to the global waypoint.
This method is sufficient for autonomous MAV navigation
in unknown environments and demonstrates the role of the
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Fig. 10 Illustrations of how incorporating global information influ-
ences vehicle control. The columns respectively represent estimation
and planning, and the dashed arrows indicate optional relationships.
a Introducing global information into a conventional approach causes a
global state jump which directly influences control (Weiss et al. 2012;
Shen et al. 2014; Chambers et al. 2014; Tomic et al. 2012; Scherer et al.
2015). b With the relative navigation approach, a global state jump never
affects the relative state estimate. Vehicle control is only influenced as
the global path planner provides an updated relative goal to the relative
path planner

global path planner, but more sophisticated planners could
be implemented for other mission scenarios.

6 Experimental setup

The experimental platform, shown in Fig. 11, is a hexacopter
with a diameter of 0.69 m through the prop centers and a
mass of 4.8 kg. The vehicle carries a 3DR Pixhawk autopi-
lot, onboard computer, IMU, RGB-D camera, planar laser
scanner, GPS receiver, and ultrasonic altimeter. The details

GPS
Autopilot

Processor
Laser

Camera

Fig. 11 The vehicle used for the flight tests

Table 1 Hardware details

Component Description
Platform Hexacopter, 4.8 kg, 0.69 m diameter
Autopilot 3DR Pixhawk

RGB-D Camera

Laser Scanner

ASUS Xtion Pro Live
Hokuyo UTM-30LX

MU MicroStrain 3DM-GX3-15
Altimeter 12CXL-MaxSonar-EZ MB 1242

GPS U-blox LEA-6T

Processor Intel Core i7-2710QE (2.1 GHz x 4)
Memory 8GB DDR3

of the hardware configuration are summarized in Table 1.
It is important to note that the purpose of this research is to
demonstrate a successful framework for GPS-degraded MAV
navigation and not to meet a particular specification or opti-
mally address a specific application. We selected common
sensors, processors, and algorithms without much consid-
eration for optimizing the MAV’s size, weight, speed, or
endurance.

The data flow and networking between the various system
components are illustrated in Fig. 12. The relative naviga-
tion framework was implemented entirely on the onboard
computer in C++ using the Robot Operating System (ROS)
(Quigley et al. 2009) middleware. Attitude control was per-
formed by a 3DR Pixhawk autopilot running a customized
version of the PX4 firmware!. During fully autonomous sec-
tions of flight, a ground station laptop was used to send
waypoint commands to the onboard computer over Wi-Fi via
the ROS messaging system. During semi-autonomous sec-
tions of flight, velocity commands were sent to the onboard
computer by a human operator using a wireless Microsoft
Xbox controller. At all times, a human safety pilot had a direct
RC link to the Pixhawk autopilot to override attitude com-
mands from the onboard computer if necessary. Safety pilot

! The PX4 firmware is customized to accept inputs from the onboard
computer while also allowing an RC safety pilot to override these com-
mands if necessary. We have subsequently transitioned to using the
ROSflight autopilot (Jackson et al. 2016a); see https://rosflight.org.
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Fig. 12 The data flow and networking between the various system
components

intervention was not required during the flight tests described
in this paper.

The following three flight tests demonstrate autonomous
MAV navigation in a variety of challenging unknown envi-
ronments using the relative navigation framework. All per-
ception, estimation, control, and mapping was performed
onboard the vehicle and in real time. Estimation and con-
trol were performed at the rate of the IMU measurements,
which was 100 Hz. Visual odometry was performed at 15 Hz
using the RGB-D camera, and laser-scan matching was per-
formed at 40 Hz. No adjustments or tuning were required
to prepare the vehicle for the different scenarios other than
choosing between the RGB-D camera and laser scanner,
illustrating that the framework does not make environment-
specific assumptions. The flight tests are described in the
following sections, and are summarized in Table 2. A dis-
cussion of the results demonstrated by these flight tests is
given in Sect. 7.

6.1 Flight test 1: outdoor GPS-denied

In the first flight test, the vehicle flew a trajectory around the
perimeter of a large building, marked in black in Fig. 17. The
flight lasted 9 min, and the total distance traveled was 320 m.
For this flight test the system obtained visual odometry from

Table 2 Summary of flight tests

25
20 |

15

North (m)

-10 +

1 1
-5 0 5 10 15 20 25
East (m)

Fig. 13 Flight test 2. The vehicle started at the blue circle moving
clockwise, following the blue path, red path, yellow path, and then
purple path. The vehicle flew in the middle of the hallway and was
facing the direction of motion except for the path indicated by purple
dots when the vehicle traveled backwards (Color figure online)

the RGB-D camera. A human operator provided velocity set-
points to the vehicle through the Xbox controller. Because
the MAV flew within a few meters of the building through-
out the flight, reliable GPS measurements were not available.
Because the vehicle did not revisit any portion of the flight
path, loop-closure constraints were also unavailable.

6.2 Flight test 2: indoor GPS-denied

This flight test was conducted indoors through a series of
hallways. The flight path of the vehicle is overlaid on the
floor plan of the building in Fig. 13. The flight lasted 12 min,
and the total distance traveled was 390 m. Visual odometry
was obtained using the RGB-D camera. The odometry was
of high quality throughout most of the flight, but its accu-
racy degraded in the southeast corner when the camera was
pointed at a blank wall. A human operator provided velocity
setpoints to the vehicle using the Xbox controller to guide
the vehicle through the hallways. A total of 139 loop clo-
sures were detected using the RGB-D camera. This flight test
was originally attempted by Leishman et al. (2014); however,

Flight Test Environment Distance Duration Sensor GPS Loop closures Nodes Figures

1 (Sect. 6.1) Outdoor (dusk) 320 m 9 min RGB-D Denied 0 491 17

2 (Sect. 6.2) Indoor 390 m 12 min RGB-D Denied 139 659 13,14,16,18
3 (Sect. 6.3) Indoor/outdoor (night) 240 m 9 min laser Intermittent 30 891 1,15, 19
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Fig. 14 Large MAV smoothly navigating through a tight, nondescript
hallway

the trajectory flown was significantly shorter, no loops were
closed, and the back-end place recognition, map optimiza-
tion, and global path planner had not yet been implemented.

Figure 14 shows the vehicle flying down one of the hall-
ways. The hallways were relatively nondescript, with few
visually interesting features. Despite this, the odometry and
place recognition algorithms performed well. Another chal-
lenge presented by the hallways was their narrow width; the
hallways ranged between only 1.8 m and 2.5 m wide, as
compared to the 1.1 m total diameter of the vehicle. The
narrow confines produced significant aerodynamic ground
and wall effect. To highlight the significance of this effect,
a highly experienced safety pilot attempted to fly the trajec-
tory in attitude stabilized mode via RC control, and struggled
to maintain stability in the wider hallways to the extent that
flying in the narrower hallways was unfeasible.

6.3 Flight test 3: indoor/outdoor intermittent GPS

The third flight test consisted of two loops through both
indoor and outdoor environments through and near a build-
ing. This flight test incorporated loop closures, intermittent
degraded GPS, and autonomous path planning and flight into
asingle experiment. The flight lasted 9 min and traveled a dis-
tance of 240 m. The path that the vehicle flew is overlaid on a
satellite image of the building in Fig. 15. The vehicle started
inside the southeast wing of the building, flew through the
courtyard into the northeast wing of the building, down the
alleyway to the east of the building and back into the south-
east wing, then repeated the same path. In all, there were
four transitions from indoor to outdoor, and four transitions
from outdoor to indoor. These transitions are commonly trou-
blesome for GPS-degraded navigation approaches because
odometry algorithms can sometimes degrade and GPS accu-
racy can vary significantly through the transition.

Fig. 15 Flight test 3. The vehicle started at the blue circle, moving
clockwise, following the blue path, red path, and then yellow path. The
vehicle was facing the direction of motion. Purple indicates regions
of autonomous waypoint following and black indicates the doorways
(Color figure online)

Odometry was obtained from the laser scanner, while loop
closures were obtained using the RGB-D camera. The flight
test was conducted at night, so loop closures were obtained
only in the well-lit indoor portions. In all, 30 loop closures
were detected. Due to the close proximity to the buildings,
GPS updates were very limited. GPS measurements were
gated until the GPS receiver’s self-reported accuracy estimate
dropped below a reasonable threshold. As a result, all GPS
measurements were gated until the second time the vehicle
flew down the alley between buildings. Even then, only ten
GPS updates were received, and these updates were biased
to the north by about two meters.

During the first loop, the vehicle was guided by velocity
setpoints provided by a human operator using the Xbox con-
troller. After the first loop-closure constraints were detected
and the map was optimized to remove drift, fully autonomous
waypoint following was demonstrated. A human operator
clicked on a previously visited point on the map, and the vehi-
cle retraced its previous path to arrive at the desired waypoint.
Three of these fully autonomous segments were carried out,
marked in purple in Fig. 15, including one during an outdoor
to indoor transition.

In addition to the results presented in this paper, this
same indoor/outdoor flight was also performed a second
time during the day using the RGB-D camera instead of
the laser scanner. The alternate odometry source produced
comparable front-end estimation and control, introduced 45
loop-closure constraints, successfully incorporated 36 GPS
measurements, and performed four autonomous waypoint
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missions. This helps to highlight the modularity and exten-
sibility of the relative navigation framework. We chose to
present the laser scanner results because they demonstrate
the use of a different odometry source than that used in the
other two flight tests.

7 Results

This section discusses the results from the flight tests
described in Sect. 6 as they relate to various aspects of
the relative navigation architecture. In general, these results
demonstrate that the proposed architecture runs onboard the
vehicle in real time, and that it enables missions involv-
ing real vehicles in realistic environments. The results show
that the system is able to operate in both indoor and out-
door environments, and handle transitions between them.
Notably, no tweaking or tuning of the system was required
between the flight tests other than choosing which sensor (the
RGB-D camera or laser scanner) would be used for odom-
etry. This demonstrates that the architecture does not make
environment-specific assumptions, and that it is not tied to
one particular sensor.

Section 7.1 discusses the estimation accuracy and con-
sistency from using the relative navigation approach. Sec-
tion 7.2 discusses the performance of the pose-graph opti-
mization, and Sect. 7.3 discusses the capabilities for
autonomous flight demonstrated by the tests.

7.1 Estimation accuracy and consistency

Figure 16 shows the pose-graph map for the first 130 m
of flight test 2. Up to this point no loop closures had been
detected, meaning that the pose graph simply compounds the
relative edges produced by the front-end estimator to recon-
struct the global pose without any additional optimization.
The accuracy of this global pose therefore directly reflects
the accuracy of the front-end estimator. Figure 16 shows that
only 1.8 m of drift were accumulated in the first 130 m of
flight, yielding a drift rate of 1.4 percent per distance trav-
eled. For the 139 loop closures in flight test 2, the maximum
drift rate was 1.5 percent with an average drift rate of 0.85
percent. For the 30 loop closures in flight test 3, the maxi-
mum drift rate was 2.8 percent with an average of 1.8 percent.
The overall accuracy of an approach depends on the environ-
ment, quality of sensors and calibration, and sophistication
of odometry algorithms. These flight tests highlight that RN
facilitates good performance with off-the-shelf algorithms
and sensors.

Another advantage of the pose-graph representation is
that it accurately captures the uncertainty in the global pose
of the vehicle. Approaches that estimate the global pose
directly in the filter represent the uncertainty as a Gaussian
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Fig. 16 Pose-graph map for the first 130 m of flight test 2. At this
point the first loop closure (red) was detected and used to improve
the global map without affecting local stability. Before optimization,
the global pose estimate created by compounding relative edges had
accumulated 1.8 m of drift (Color figure online)

normal distribution characterized by its covariance matrix,
which produces an ellipsoidal confidence region. Yet, it has
been shown that the true uncertainty distribution produced
as a vehicle moves through the environment with uncer-
tainty in its heading is a banana-shaped distribution (Thrun
et al. 2005), which is a Gaussian distribution expressed in
exponential coordinates (Long et al. 2012). A pose graph
represents the global pose as a sequence of short transforms,
each with an associated ellipsoidal uncertainty. It was shown
by Barfoot and Furgale (2014) that this series of uncertainties
can be combined to produce a total uncertainty estimate that
is an excellent approximation to the true banana-shaped dis-
tribution. Therefore, the pose-graph representation contains
all of the information that is necessary to produce an accurate
estimate of the global pose uncertainty. Figure 17 shows the
90 percent confidence regions created from the pose graph
at several points using the method presented by Wheeler
et al. (2018). This method samples from the individual edge
covariances in a Monte-Carlo fashion, then fits a Gaussian
distribution in exponential coordinates to the resulting distri-
bution of final pose estimates.”> As can be seen, the resulting

distributions correctly capture the banana shape of the true
uncertainty distribution. In addition, at every point along the
trajectory, the 90 percent confidence region captures the true
location of the vehicle. This demonstrates that the uncer-

2 Individual edge covariances can also be combined using the fourth-
order analytical approximation presented by Barfoot and Furgale
(2014).
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Fig.17 Pose-graph map for flight test 1. Heading errors cause the posi-
tion uncertainty to grow. The global back end compounds the small,
Gaussian edge covariances to form banana-shaped uncertainty estimates
that correctly represent the underlying uncertainty. The 90 percent con-
fidence regions are shown for several instances throughout the trajectory

tainty estimate in the global pose reconstructed using the
pose graph is consistent. More details on the consistency of
the relative navigation approach, and how it compares with
other state-of-the-art methods, are given by Wheeler et al.
(2018).

7.2 Map optimization

Figure 18 shows the pose-graph optimization results for
flight test 2. Figure 18a shows the unoptimized map pro-
duced by compounding the relative front-end pose estimates.
These odometry edges are represented by the blue lines

with keyframes marked as dots, and loop closures detected
between keyframes are represented by red lines. Over the
course of the 390 m flight, several meters of drift accumulated
so that the resulting map lies outside of confines of the hall-
way where the vehicle actually flew. Figure 18c shows that
after the map has been optimized, this drift has been removed
and the estimates of the vehicle’s global trajectory lie within
the hallways. The complete optimization took seven itera-
tions to converge and took less than 8 ms running onboard
the vehicle during flight.

During flight test 2, the place recognition algorithm did
not produce any false-positive loop-closure detections. This
is particularly impressive given the fairly uniform appear-
ance of the hallways that the vehicle flew through (see Figs. 8
and 14). To demonstrate the impact that false-positive loop-
closure constraints can have, and to demonstrate the ability of
the robust optimization algorithm to detect and reject these
spurious constraints, three false-positive loop-closure con-
straints were artificially introduced to the pose graph. These
are shown in yellow in Fig. 18a. Figure 18b shows the opti-
mized pose graph obtained by a non-robust optimization
algorithm that naively incorporates the false-positive con-
straints. The three false constraints have a drastic impact on
the accuracy of the optimized map, even though there are 139
valid loop closures constraining the map. Figure 18c, on
the other hand, demonstrates the effectiveness of dynamic
covariance scaling in correctly detecting and rejecting the
false-positive loop closures to produce a highly accurate opti-
mized map.

The unoptimized pose-graph map for flight test 3 is shown
in Fig. 19a. As with flight test 2, the relative edges from the
front-end estimator are shown in blue, and the loop-closure
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(a) Unoptimized trajectory

Fig. 18 Pose-graph map for flight test 2. a Throughout the 390 m
flight 139 loop closures were detected (red) and three false-positive loop
closures were artificially introduced (yellow). b False-positive loop clo-

(b) Non-robust optimization

(¢) Robust optimization
sures cause a non-robust optimization to diverge. ¢ Robust optimization

techniques result in a consistent map. The optimization ran onboard and
took 8 ms to converge (Color figure online)
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15

10 -

North (m)

(b) Post-optimization

Fig. 19 Pose-graph map for flight test 3. a Trajectory (blue) before
incorporating loop closures (red) and GPS measurements (green). For
plotting purposes, the GPS is plotted relative to the first received GPS
measurement. b After incorporating the ten available GPS measure-
ments (green), the trajectory is globally localized. Black indicates the
doorways. Note that because all of the available GPS measurements
were slightly biased to the north, the final map is also biased (Color
figure online)

constraints are shown in red. Again, no false-positive loop
closures were detected during this flight test. In addition
to loop-closure constraints, flight test 3 introduces intermit-
tent GPS measurements. The ten valid GPS measurements
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are plotted as green points in Fig. 19a, and the correspond-
ing edges in the graph are represented by green lines. As
described in Sect. 5.3, the GPS constraints were defined with
respect to the first GPS measurement, which is plotted at the
origin. The final optimized map incorporating both loop clo-
sures and GPS measurements is shown in Fig. 19b. While
truth is not available, the accuracy of the final map can be
evaluated by comparing it to the satellite image of the build-
ing. The doors of the building that the vehicle flew through
are marked as black lines in Fig. 19b. Due to the challenging
urban canyon environment, all of the GPS measurement were
biased to the north by a few meters, and so the resulting map
is also biased to the north. Correcting for this bias, however, it
can be seen that the optimized trajectory passes through each
of the doors and matches the path that the vehicle actually
flew.

One important result that this flight test demonstrates is
the ability of the relative navigation architecture to perform
delayed localization using few GPS points. Before the first
GPS measurement is received, the map is metrically consis-
tent with respect to the starting location of the vehicle, but
is not localized globally. In other words, the vehicle knows
where it is relative to its starting point, but has no knowledge
of where it is in the world. This unlocalized map, however,
is still sufficient for navigation purposes, and the vehicle was
able to fly autonomous waypoints before it received GPS
measurements. When the vehicle received the first GPS mea-
surement, however, it was able to pin the map to a location
in the world. Subsequent measurements allowed it to orient
the map and refine its position estimate. For flight test 3, this
localization did not occur until several minutes into the flight.
In addition, the localization is accomplished using few (only
ten) GPS measurements. This is significant in the context of
other GPS-degraded approaches that require GPS for a pro-
longed (the first 80 seconds of flight) initial alignment phase
(Scaramuzza et al. 2014) or have GPS for a majority of their
flight (Shen et al. 2014).

7.3 Autonomous flight

A basic requirement for autonomous flight is robust and sta-
ble control of the vehicle. While difficult to quantify, the
robustness of the relative navigation architecture is demon-
strated by the scope of flight tests presented in this paper.
For example, flight test 2 demonstrates smooth, stable flight
down narrow hallways that produce significant aerodynamic
ground and wall effect. The high-rate feedback control and
accurate relative state estimates facilitated missions that
would be infeasible for experienced human pilots. In flight
test 3, the vehicle smoothly transitions through eight door-
ways. Between the three flight tests presented, the platform
was flown for almost a kilometer through congested envi-
ronments without incident. Throughout the flight tests, the
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control performance did not suffer from the resetting of the
relative states.

A unique advantage of relative navigation that is demon-
strated by the flight-test results is the architecture’s innate
ability to handle jumps in the global-state estimate. For exam-
ple, the pose-graph optimization at the first loop closure in
flight test 2 resulted in a global state jump of 1.8 m, and the
optimization at the first loop closure in flight test 3 resulted
in a jump of 2.3 m. In addition, the first GPS measure-
ments received in flight test 3 caused a large state jump as
the map was rotated counterclockwise by 90 deg and trans-
lated approximately 28 m when it was first localized globally.
Despite these large state jumps, the control of the vehicle did
not suffer at all because, as described in Fig. 10, control is
carried out in the relative frame and insulated from global
state jumps by the path planner. Conceptually, this allows
the MAV’s perception of the local environment to remained
fixed while the global map shifts beneath it.

In addition to smooth local control, flight test 3 also
demonstrated autonomous global navigation. After the first
loop closures were received and the drift in the map was
removed, a waypoint was provided by an operator clicking
on a previously visited location on the generated pose graph.
The vehicle then autonomously followed the map back to this
location. Autonomous waypoint following was demonstrated
three times, traveling 35 m through congested environments
including during an outdoor to indoor transition. The regions
where this took place are highlighted in purple on Fig. 15.
The final waypoint was selected after GPS measurements
were incorporated into the pose-graph map. The user, by
selecting a pixel on an ortho-rectified image, was effectively
establishing a desired GPS waypoint for the vehicle. Of note,
this global waypoint was located indoors. The vehicle then
autonomously navigated to that global waypoint and sta-
bilized its position. This result is particularly compelling
because the vehicle correctly stabilized itself about a global
waypoint despite being in a GPS-denied environment.

8 Conclusion

Developing dependable, autonomous MAYV solutions that are
robust to GPS degradation is a challenging but highly rel-
evant field of research. This paper demonstrates that the
relative navigation framework offers a compelling alterna-
tive paradigm for approaching the problem. By decoupling
flight-critical estimation, guidance, and control algorithms
from unobservable global states that are prone to inconsis-
tency and state jumps, relative navigation avoids many issues
that plague other state-of-the-art approaches.

This paper presents the details necessary to implement the
complete relative navigation framework, including resetting
the relative estimator to ensure observability and adapting

existing view-matching, path planning, and control algo-
rithms for reliable, smooth flight. We describe how to
leverage pose graphs to opportunistically incorporate loop-
closure and GPS constraints, and outline how the high-level
path planner facilitates autonomous missions while insulat-
ing the vehicle from the negative effects of global state jumps.

Through a series of prolonged flight tests, we demon-
strated the effectiveness of the relative navigation approach
for autonomous GPS-degraded MAV navigation in varied,
unknown environments. We showed that the system can
utilize a variety of vision sensors, works indoors and out-
doors, runs in real-time with onboard processing, and does
not require special tuning for particular sensors or environ-
ments. We demonstrated stable front-end performance with
low drift while leveraging off-the-shelf sensors and algo-
rithms. We further demonstrated the onboard generation of a
globally-consistent, metric, and localized map by identifying
and incorporating loop-closure constraints and/or intermit-
tent GPS measurements. With this map, we demonstrated the
fully autonomous completion of mission objectives, includ-
ing performing a position-hold about a GPS waypoint while
in a GPS-denied environment.

One of the most important aspects of the relative naviga-
tion architecture is that it does not make any assumptions
about a particular platform, sensor suite, environment, or use
case. Many existing systems could be readily modified to fit
within the relative navigation framework, and thereby benefit
from its theoretical and practical advantages.
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