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We revisit the classical but as yet unresolved problem of predicting the strength of
breaking 2-D and 3-D gravity water waves, as quantified by the amount of wave energy
dissipated per breaking event. Following Duncan (1983), the wave energy dissipation rate
per unit length of breaking crest may be related to the fifth moment of the wave speed
and the non-dimensional breaking strength parameter b. We use a finite-volume Navier-
Stokes solver with LES resolution and volume-of-fluid surface reconstruction (Derakhti &
Kirby 2014a, 2016) to simulate nonlinear wave evolution, with a strong focus on breaking
onset and post-breaking behavior for representative cases of wave packets with breaking
due to dispersive focusing and to modulational instability. The present study uses these
results to investigate the relationship between the breaking strength parameter b and the
breaking onset parameter B proposed recently by Barthelemy et al. (2018). The latter,
formed from the local energy flux normalized by the local energy density and the local
crest speed, simplifies, on the wave surface, to the ratio of fluid speed to crest speed.
Following a wave crest, when B exceeds a generic threshold value at the wave crest
(Barthelemy et al. 2018), breaking is imminent. We find a robust relationship between
the breaking strength parameter b and the rate of change of breaking onset parameter,
dB/dt at the wave crest, as it transitions through the generic breaking onset threshold
(B ~ 0.85), scaled by the local period of the breaking wave. This result significantly
refines previous efforts to express b in terms of a wave packet steepness parameter, which
is both difficult to define robustly and which does not provide a generically accurate
forecast of the energy dissipated by breaking.

1. Introduction

We revisit the classical but as yet unresolved problem of predicting the breaking
strength of 2-D and 3-D gravity water waves. The most commonly used approach is
the Phillips (1985) spectral framework for the mean breaking crest length per unit area
with speeds in the range (c,c + dc). This is combined with the Duncan (1983) scaling
argument for the wave energy dissipation rate per unit length of breaking crest, €, given
by

e=S = bpg~Lcp (1.1)

7l ’
where € is the total wave energy dissipation due to wave breaking, 7 is the averaging
period and is on the order of the active breaking period, [ is the mean length of the
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2 M. Derakhti, M. L. Banner, and J. T. Kirby

breaking crest during the averaging period, p is the density of the liquid phase, g is
the gravitational acceleration, ¢, is the phase speed of the breaking wave, and b is the
dimensionless constant of proportionality, hereafter referred to as the breaking strength
parameter.

Field and laboratory data have shown a strong dependence of b, within the scatter of
data, on the global wave steepness S calculated on the basis of spectral information for
wave packets (Romero et al. 2012). Derakhti & Kirby (2016) provided a new scaling for b
based on the spectrally-averaged global steepness of a wave field, where the scatter of es-
timates of b based on numerical computations was considerably decreased compared with
the existing formulations (Romero et al. 2012). The formulations of Romero et al. (2012)
and Derakhti & Kirby (2016) provide estimates of b > 0 for packets with S >~ 0.08.
However, S for non-breaking packets can reach values of 0.3 or higher. Thus, another cri-
terion, based on additional information beyond that provided by parameter S, is needed
to distinguish between breaking and non-breaking packets. Also, although such a param-
eterization is adaptable via the spectral saturation for use in phase-averaged spectral
wind-wave models, the evaluation of S is problematic in phase-resolved models. Finally,
we note that, existing versions of the data analysis (e.g., Banner & Peirson 2007) give
values of b for multiple-breaking events which fall appreciably below values reported for
single-breaking focused wave packets (Romero et al. 2012, Figure 1), suggesting a signif-
icant physical difference between the mechanism of breaking in the two types of events.
However, this can be primarily attributed to different choices for averaging periods, as
discussed in detail in §4 below.

Barthelemy et al. (2018) showed that highest non-breaking waves were clearly sepa-
rated from marginally breaking waves by their normalized energy fluxes localized near
the crest tip region, and that initial breaking instability occurs within a very compact
region centered on the wave crest. On the surface, the expression for normalized energy
flux (denoted by symbol B) reduces to the ratio of fluid velocity at the crest to the
translational velocity of the crest for the tallest wave in the evolving group. Barthelemy
et al. (2018) found that a value of B = 0.85 provides a robust threshold for breaking
onset for 2-D wave packets propagating in deep or intermediate uniform water depths.
Further targeted study of representative cases of the most severe laterally-focused 3-D
wave packets in deep and intermediate depth water shows that the threshold remains
robust. These numerical findings for 2-D and 3-D cases were closely supported by the
observations of Saket et al. (2017, 2018).

Our goal here is to find a robust and local parameterization to predict the breaking
strength of 2-D and 3-D gravity water waves. We use a large-eddy-simulation (LES)/volume-
of-fluid (VOF) model (Derakhti & Kirby 2014a, 2016) to simulate nonlinear wave evolu-
tion, with a strong focus on breaking onset and post-breaking behavior for representative
cases of wave packets, and examine breaking due to dispersive focusing and to modula-
tional instability. Using these numerical results, we investigate the relationship between
the breaking strength parameter b and the breaking onset parameter B proposed by
Barthelemy et al. (2018). While the results are potentially applicable more generally, in
this paper we concentrate on breaking events due to focusing or modulational instability
in wave packets over flat bottom topography and for conditions ranging from deep to
intermediate depth, with depth to wavelength ratios ranging from 0.68 to 0.13. Exami-
nation of depth-limited breaking or breaking due to strong opposing currents is left for
future study.
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Case S fe Af/fe N h h/Lg tanf(y) ch T, r b
no. (s™h (m) (m/s) (s) x1073
Al 0.30 0.88 0.75 32 0.60 0.25

0
A2 03005 0.88 0.75 32 0.60 0.25 0 - - -
A3 0.302 088 0.75 32 0.60 0.25 0 1.71 1.14 0.45 0.4
0
0

A4 0.31 0.88 0.75 32 0.60 0.25 1.64 1.08 0.83 4.5
1.59 1.04 1.22 30.1

A5 0.41 0.88 0.75 32 0.60 0.25

A6 0.44 088 0.75 32 0.60 0.25 0 1.59 1.04 1.44 40.9
B1 0.25 0.88 0.75 32 0.25 0.13 [-0.8,0.8] 1.35 1.30 1.29 45.1
B2 0.25 0.88 0.75 32 0.60 0.25 [-0.8,0.8] 1.76 1.16 1.19 23.4
B3 0.35 0.88 0.75 32 0.60 0.25 [-0.5,0.5] 1.68 1.06 1.62 2.7
B4 0.35 0.88 0.75 32 0.85 0.30 [-0.5,0.5] 1.80 1.09 1.39 35.3
C1 032 075 1.0 32 0.60 0.17 0 1.94 1.41 0.65 1.6
C2 036 0.75 1.0 32 0.60 0.17 0 1.91 1.37 0.86 12.4
C3 0.40 0.75 1.0 32 0.60 0.17 0 1.95 1.43 1.14 22.3

M1 0.160 1.48 0.0954 2 0.55 0.68 0 0.88-0.92 0.56-0.59 0.61-1.07 1.4-16.9
M2 0.176 1.48 0.0954 2 0.55 0.68 0 0.89-0.95 0.57-0.61 0.46-1.12 0.3-17.3

TABLE 1. Input parameters for the simulated alongcrest-uniform (2-D) and short-crested (3-D)
focused wave packets and 2-D modulated wave trains. z; and ¢y are 9 m and 20 s in 2-D and 5
m and 12 s in 3-D focused packets respectively.

2. Numerical experiments

A detailed description of the polydisperse two-fluid model and boundary conditions
used may be found in Derakhti & Kirby (2014a, §2). Demonstrations of model conver-
gence and performance may be found in Derakhti & Kirby (20145, 2016). The model
parameters for a polydisperse bubble phase are chosen as summarized in Derakhti &
Kirby (2014a, Table 4). Here, the incident wave boundary condition and model set-up
are discussed briefly.

We define the coordinate system (z,y, z) such that = and y represent the along-tank
and transverse directions respectively and z is the vertical direction, positive upward and
measured from the still water level. The reference time t* and z-location x* are taken
as the time and location at which B following the crest tip reaches the threshold value
of 0.85 for breaking packets, or its maximum for non-breaking packets, respectively and
are normalized by the local period and wave length of the carrier wave respectively.

All model simulations are performed with the model initialized with quiescent condi-
tions. An incident wave packet is then generated at the model upstream boundary. The
input wave packet was composed of N sinusoidal components of steepness an,ky,,n =
1,-++, N where a, = S/(Nk,) and k, are the amplitude and wave number of the nth
frequency component and S = Zﬁle anky is the linear prediction of the wave packet
global steepness. Based on linear theory, the free surface elevation for the 2-D (Rapp &
Melville 1990; Derakhti & Kirby 2014a) and 3-D (Wu & Nepf 2002; Kirby & Derakhti
2018) focused packets at the wavemaker is given by

knl‘f

cos G(y)]7 (2.1)

N
77(07 Y, t) = Z (79} COS[Qﬂfn(t — tf) +
n=1

where f,, is the frequency of the nth component, ¢ and ¢; are the predefined, linear
theory estimates of location and time of the focal point respectively, and 6(y) is the angle
of incidence of each wave component at various transverse locations with cos0(y) = 1
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FIGURE 1. (a,c,e) Snapshots of the spatial variation of the normalized free surface elevations

near the maximum crest, and (b, d, f) the temporal variation of B before and after the breaking
onset for the weak spilling A3, spilling A4 and strong plunging A6 breaking 2-D focused packets.

in 2-D and cosf(y) = x¢/, /x?- + 42 in 3-D breaking cases. The discrete frequencies f,,

were uniformly spaced over the band Af = fy — f1 with a central frequency defined
by fo = 1/2(fn + f1). Following the set up of the initially bimodal wave trains in
Banner & Peirson (2007), the free surface elevation for a 2-D modulated wave train at
the wavemaker is given by

118), (2.2)

where wy = 27 f1, we = w1 +27Af, S = a1k +koas and as/a; = 0.3. Increasing the global
steepness S increases the strength of the resulting breaking event in both focused packets
and modulated wave trains. Finally, fluid velocities for each component are calculated
using linear theory and then superimposed at the wavemaker. Table 1 summarizes the
input parameters for all simulated cases.

1(0,y,t) = ay cos(wit) + as cos(wat —

3. A new parameterization for the breaking strength parameter b

Figure 1 shows snapshots of free surface elevations before and after breaking onset as
well as the temporal variation of B for the evolving wave crest for the single-breaking
focused packets A3, A4 and A6. Figure 2 shows corresponding results for the multiple-
breaking modulated wave train M2. Results show that, as the strength of breaking in-
creases, the rate of change of B near the threshold value, dB/dt|p,, , increases. Consistent
with Barthelemy et al. (2018), warning of imminent breaking onset (¢* = 0 here) occurs
up to a fifth of a carrier wave period prior to a breaking event. As a consequence, the
wave form at B = By, is well defined and the free surface is single-valued.
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FIGURE 2. (a) Snapshots of the spatial variation of the normalized free surface elevations near
the maximum crest, and (b) the temporal variation of B for four successive breaking events in
the 2-D multiple-breaking modulated wave train M2.

Figure 3 shows a plan view of the spatial distribution of the normalized free surface
elevations at t* = 0 at which B(y ~ 0) = By, and after breaking onset at t* = 0.5 as
well as the spatio-temporal variation of B for the 3-D breaking focused packets B1, B2
and B4. The latter picture is constructed by displaying the corresponding B curves at
each transverse location. In each case, the dashed lines in the left and middle columns of
Figure 3 correspond to the two vertical dashed lines shown in the right column and show
the location of the crest maximum at the associated times. Due to a strong 3-D focusing
of the incident wave packet, the position of the crest maximum at each transverse location
may experience rapid change even close to the breaking region, resulting in unrealistic
dB/dt values. Panel (a) demonstrates an example of such a jump in the location of the
maximum crest at |y*| ~ 0.6. The corresponding high values of B shown in the panel
(c) for |y*| ~ 0.6 are then just an artifact of the post-processing method. Figure 3 also
shows that the breaking process starts around y* = 0, with the breaking crest gradually
growing in width during the active breaking period, and that B has approximately the
same temporal structure within the region close to the crest maximum location prior to
breaking onset (|y*| < 0.15, —0.1 < t*). Further, the length of the breaking crest, as
shown by the dotted-dashed line in the right column of Figure 3, expands proportional
to ~ (t — t,)"/? where t, is the time at which the crest overturning starts. Such growth
rate of the length of breaking crest is consistent with theoretical work of Pomeau et al.
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0.25 0.45 0.65 0.85

FIGURE 3. (Left and middle columns) Plan view of the spatial variation of the normalized
free surface elevations near the maximum crest at (a,d,g) t* = 0, and (b,e,h) t* = 0.5, as
well as (right column) the spatio-temporal variation of B for the 3-D focused packets (a, b, c)
B1, (d,e, f) B2, and (g, h,7) B4. The corresponding crest locations of the two vertical dashed
lines in the right frames are shown by the dashed lines in the left and middle frames in each
case. In the right column, white color shows regions where B has exceeded a value of 1 or has
become poorly defined due to breakdown of the smooth water surface. Dotted-dashed lines show
yr=ta(t* — a2)1/2, where a1 ~ 0.5 and as = 0.09.
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FIGURE 4. Temporal variation of (a,c) B, and (b, d) (dotted lines with markers) the local wave
length L and (solid lines with markers) local wave period T, normalized by their corresponding
values at B = By, for (a,b) various focused packets, and (¢, d) three successive breaking events
in modulated wave train M2. In (a) the dotted line represents the highly nonlinear non-breaking
case A2. In (a,c), solid lines show the linear fit in the interval |B — Bys| < 0.03 shown by the
yellow boxes. Here, L is defined by the two successive zero crossing points around the crest
maximum (Figure 6), and T is obtained by using linear dispersion relation (Appendix A).

(2008). Hereafter we choose B(y* = 0) as the representative B value for the 3-D cases to
compare with the 2-D cases for the proposed parameterization discussed below.

Panels (a) and (¢) of Figure 4 present the temporal variation of B for a number of
breaking events (with various breaking strengths) due to dispersive focusing and modu-
lational instability, together with a highly nonlinear non-breaking case A2 which has a
global steepness slightly smaller than the weakest breaking focused packet A3 (see Ta-
ble 1). For breaking cases, a linear fit in the interval |B — By, | < o (v = 0.03 in Figure 4),
shown by the yellow boxes, is also presented. The sensitivity of the results to choice of
a will be examined below. The slope of each such fitted line, hereafter referred to as
dB/dt|p,,, will be used to parameterize the breaking strength parameter b.

To construct a non-dimensional parameter, we also need to identify an appropriate
time scale, for which we choose the local period, Ty, of the carrier wave at B = By,
obtained by using the linear dispersion relation and the local wave length L; defined
based on the two successive zero up- and zero down-crossing points around the crest
maximum (see Figure 6). Panels (b) and (d) of Figure 4 show that estimates of L and
T constructed in this manner have a small variation as the crest approaches breaking
onset. Here, L, and T}, refer to the associated values of L and T at B = By, respectively.

Figure 5 shows the variation of the breaking strength parameter b with the new param-
eter I' = TpdB/dt|g,,, for all simulated cases. Our methodology to calculate the breaking
strength parameter b is similar to that used in Derakhti & Kirby (2016) with a modifica-
tion explained in the Appendix A. The reader is referred to Derakhti & Kirby (2014 a,b,
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FIGURE 5. Variation in the breaking strength parameter b with the new parameter
I' = TydB/dt|s,, that represents the normalized rate of change of B as it transitions through
the breaking onset. Dashed line indicates a fitted curve to the numerical data. Red line segments
represent sensitivity to choice of « in the estimation of dB/d¢ obtained by linear curve fitting
in the interval |B — By | < a.

2016) for the detailed examination of the model prediction of the total energy dissipation
compared with corresponding measured data, as well as the sensitivity of the simulation
results with respect to the selected grid resolution. In summary, we found that model
estimates of the loss of total wave energy due to wave breaking are typically within 10%
of observed levels, after correcting for the change in the downstream group velocity fol-
lowing breaking (Derakhti & Kirby 2016). As a result, the uncertainty in the predicted
b values are expected to be less than 10% for the cases considered here.

For each case, the horizontal red line segment in Figure 5 shows the variation of I" with
respect to the selected interval |B — By,| < o, (with 0.02 < o < 0.05), to perform the
linear fit to obtain dB/dt|p,,, and the marker represents the associated averaged value
of I'. Results show that the rate of change of B following the crest tip as it transitions
through the breaking onset, and thus the parameter I', are not sensitive to a specific
choice of « for a < 0.05. Finally, the results show that I' can successfully predict the
breaking strength parameter b. Assuming a formulation with the form b ~ aq(T' — ag)*
and using the least-square curve fitting technique, we obtain

b =0.034(T" — 0.30)*°. (3.1)

4. Discussion and Conclusions

The results shown in Figure 5 establish that the strength of individual breaking events
in an irregular wave train, as well as the onset of breaking, can be estimated from
properties of the wave crest as it approaches breaking. This is the centerpiece figure of
this paper, and shows a systematic collapse of the proposed breaking strength predictor I"
for a diverse range of representative 2-D water wave focused packets and modulated wave
trains in deep and intermediate depth waters, as well as several cases of 3-D dispersive
focusing packets.
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A significant finding is that the results in Figure 5 do not show a pronounced difference
between values of b obtained for focused packets or modulational events. This result
contrasts with previous discussions of the two cases (e.g., Romero et al. 2012, Figure
1) where reported b values for modulational cases appear to be significantly smaller
than values for focused packet breaking events. This discrepancy results from different
choices of averaging procedures between investigators in the analysis of data for wave
packets (usually on the order of the local carrier wave period Tp) and modulated wave
trains (usually on the order of the wave group period Ty); in our modulated wave trains
T4/Ty =~ 12. Further, we found that the successive breaking events in our modulated wave
trains (Figure 2) have considerably different breaking strength, or b values. The b values
for the modulational cases in Figure 5 represent b for each successive breaking event, as
opposed to an average over multiple events within a group (e.g., Banner & Peirson 2007;
Allis 2013). For example, we find that b varies in the range 0.3 x 1073 to 17.3 x 1072 for
the case M2 with an ensemble value of ~ 6 x 1072, A recent comparison of this aspect
of the b methodology is shown in Derakhti & Kirby (2016, Figure 14).

Based on these findings, we conclude that there is no significant difference between
the mechanics of breaking events in focused or modulated wave trains, in contrast to
previous discussions based on inconsistent methods for estimating b. This conclusion is
strongly supported by the different sets of published b measurements. These show that
the dynamic range of reported b values, from weak to strong breaking, is very similar
for focused and modulation-induced breaking cases within each data set, based on the b
estimation methodology utilized.

The success of the parameterization for predicting breaking strength found here would
make it possible to better describe breaking events in codes based on potential flow
theory, such as high-order spectral (HOS) codes, where breaking is not predicted by the
model itself (see Ducrozet et al. 2017, for a recent review of the HOS approach). The
development of criteria for the onset and strength of breaking in such models has long
been a subject for investigation. Recently, Seiffert et al. (2017) have investigated the
use of the parameter B as a breaking onset criterion in HOS, while Seiffert & Ducrozet
(2018) discuss the specification of an eddy viscosity model after the onset of breaking
is identified. It is our belief that the specification of such a dissipation model should
be based on the parameterization of total dissipation in terms of the rate of change
of B developed here, which would provide a strong link between the present work and
operational wave modeling.

The universality of the B parameter and its rate of change as robust indicators of wave
breaking onset and strength clearly warrant further study. We close by reiterating that
the present work provides a first indication of a direct link between the local properties
of a wave crest as it transitions through an apparently generic breaking threshold, and
the resultant overall energy dissipation resulting from the breaking event. The results
are underpinned by fundamental energy flux considerations as proposed in Barthelemy
et al. (2018).
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and through the use of computational resources provided by Information Technologies
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tralian Research Council for his breaking waves research. The LES/VOF code is based
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FIGURE 6. Definitions of the local wave parameters. L is the local wave length, L; is the asso-
ciated value of L at breaking onset at which B = By, = 0.85, and ky = 27/ Ly is the local wave
number at breaking onset.

Appendix A. Determination of the breaking strength parameter b

Rearranging (1.1), the breaking strength parameter b is written as

gé

b= pcrl’ (A1)
where € is the total wave energy dissipation due to wave breaking, 7 ~ O(T}) is the
averaging period and is usually on the order of the active breaking period, and [ is
mean length of the breaking crest during the active breaking period, 0 < ¢t — ¢, <
7. Following Derakhti & Kirby (2016) and Tian et al. (2008), we estimate the local
wavenumber at breaking onset, k;, defined based on the two successive zero up- and
zero down-crossing points around the crest maximum as shown in Figure 6. Then, the
linear dispersion relation is used to estimate the breaking wave phase speed and period
as ¢, = (g/kp tanh kbh)1/2 and Ty, = 27 /kycp respectively.

As described by Derakhti & Kirby (2014a, §4.3), the dissipation rate during active
breaking has a strong spatio-temporal variation, and thus € = €/7] may be interpreted as
an averaged dissipation rate in the interval 0 < ¢ — ¢, < 7. Following Derakhti & Kirby
(2014a, 2016), we set 7 = 0.75T.

Derakhti & Kirby (2016) describe a methodology for computing € in focused wave
packet experiments that depends on the spatial isolation of breaking events and on the
fact that the domain is essentially quiescent before and after passage of the wave train.
For multiple-breaking cases, and, particularly for the modulational instability cases con-
sidered here, the spatial extent of breaking events may overlap in time, rendering the
integral-over-all-time approach described by Derakhti & Kirby (2016) inapplicable. A
modification to allow for localization of the total energy loss estimate in both space and
time is described here. Starting from a local equation for mechanical energy e(x,y, z,t)
and energy flux f = u(p + e) per unit volume,

€’t+V'f:61 (A2)

where € represents dissipation/unit volume, we consider the breaking event to be isolated
within a region 1 < < 22,41 < y < y2,t1 < ¢ < to. Integrating (A 2) over depth and
then over x, y and t gives

T2 Y2 m t2 y2 pt2 pm Z2 2tz pn Y2
{/ / / edz dydx} + {/ / / fz dzdtdy} + {/ / / fy dzdtdz]
1 Y1 —h t1 Y1 t1 —h z1 T t1 —h y

1

T2 Y2 to n
= / / / / edtdzdydr = ¢, (A 3)
Ty Y1 t1 —h

where t; < t, and T < to — tp, where t;, is the time of breaking onset as defined in §2.
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