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We revisit the classical but as yet unresolved problem of predicting the strength of11

breaking 2-D and 3-D gravity water waves, as quantified by the amount of wave energy12

dissipated per breaking event. Following Duncan (1983), the wave energy dissipation rate13

per unit length of breaking crest may be related to the fifth moment of the wave speed14

and the non-dimensional breaking strength parameter b. We use a finite-volume Navier-15

Stokes solver with LES resolution and volume-of-fluid surface reconstruction (Derakhti &16

Kirby 2014a, 2016) to simulate nonlinear wave evolution, with a strong focus on breaking17

onset and post-breaking behavior for representative cases of wave packets with breaking18

due to dispersive focusing and to modulational instability. The present study uses these19

results to investigate the relationship between the breaking strength parameter b and the20

breaking onset parameter B proposed recently by Barthelemy et al. (2018). The latter,21

formed from the local energy flux normalized by the local energy density and the local22

crest speed, simplifies, on the wave surface, to the ratio of fluid speed to crest speed.23

Following a wave crest, when B exceeds a generic threshold value at the wave crest24

(Barthelemy et al. 2018), breaking is imminent. We find a robust relationship between25

the breaking strength parameter b and the rate of change of breaking onset parameter,26

dB/dt at the wave crest, as it transitions through the generic breaking onset threshold27

(B ∼ 0.85), scaled by the local period of the breaking wave. This result significantly28

refines previous efforts to express b in terms of a wave packet steepness parameter, which29

is both difficult to define robustly and which does not provide a generically accurate30

forecast of the energy dissipated by breaking.31

1. Introduction32

We revisit the classical but as yet unresolved problem of predicting the breaking33

strength of 2-D and 3-D gravity water waves. The most commonly used approach is34

the Phillips (1985) spectral framework for the mean breaking crest length per unit area35

with speeds in the range (c, c + dc). This is combined with the Duncan (1983) scaling36

argument for the wave energy dissipation rate per unit length of breaking crest, ε, given37

by38

ε =
ε̃

τ l
= bρg−1c5b , (1.1)

where ε̃ is the total wave energy dissipation due to wave breaking, τ is the averaging39

period and is on the order of the active breaking period, l is the mean length of the40
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breaking crest during the averaging period, ρ is the density of the liquid phase, g is41

the gravitational acceleration, cb is the phase speed of the breaking wave, and b is the42

dimensionless constant of proportionality, hereafter referred to as the breaking strength43

parameter.44

Field and laboratory data have shown a strong dependence of b, within the scatter of45

data, on the global wave steepness S calculated on the basis of spectral information for46

wave packets (Romero et al. 2012). Derakhti & Kirby (2016) provided a new scaling for b47

based on the spectrally-averaged global steepness of a wave field, where the scatter of es-48

timates of b based on numerical computations was considerably decreased compared with49

the existing formulations (Romero et al. 2012). The formulations of Romero et al. (2012)50

and Derakhti & Kirby (2016) provide estimates of b > 0 for packets with S >∼ 0.08.51

However, S for non-breaking packets can reach values of 0.3 or higher. Thus, another cri-52

terion, based on additional information beyond that provided by parameter S, is needed53

to distinguish between breaking and non-breaking packets. Also, although such a param-54

eterization is adaptable via the spectral saturation for use in phase-averaged spectral55

wind-wave models, the evaluation of S is problematic in phase-resolved models. Finally,56

we note that, existing versions of the data analysis (e.g., Banner & Peirson 2007) give57

values of b for multiple-breaking events which fall appreciably below values reported for58

single-breaking focused wave packets (Romero et al. 2012, Figure 1), suggesting a signif-59

icant physical difference between the mechanism of breaking in the two types of events.60

However, this can be primarily attributed to different choices for averaging periods, as61

discussed in detail in §4 below.62

Barthelemy et al. (2018) showed that highest non-breaking waves were clearly sepa-63

rated from marginally breaking waves by their normalized energy fluxes localized near64

the crest tip region, and that initial breaking instability occurs within a very compact65

region centered on the wave crest. On the surface, the expression for normalized energy66

flux (denoted by symbol B) reduces to the ratio of fluid velocity at the crest to the67

translational velocity of the crest for the tallest wave in the evolving group. Barthelemy68

et al. (2018) found that a value of B = 0.85 provides a robust threshold for breaking69

onset for 2-D wave packets propagating in deep or intermediate uniform water depths.70

Further targeted study of representative cases of the most severe laterally-focused 3-D71

wave packets in deep and intermediate depth water shows that the threshold remains72

robust. These numerical findings for 2-D and 3-D cases were closely supported by the73

observations of Saket et al. (2017, 2018).74

Our goal here is to find a robust and local parameterization to predict the breaking75

strength of 2-D and 3-D gravity water waves. We use a large-eddy-simulation (LES)/volume-76

of-fluid (VOF) model (Derakhti & Kirby 2014a, 2016) to simulate nonlinear wave evolu-77

tion, with a strong focus on breaking onset and post-breaking behavior for representative78

cases of wave packets, and examine breaking due to dispersive focusing and to modula-79

tional instability. Using these numerical results, we investigate the relationship between80

the breaking strength parameter b and the breaking onset parameter B proposed by81

Barthelemy et al. (2018). While the results are potentially applicable more generally, in82

this paper we concentrate on breaking events due to focusing or modulational instability83

in wave packets over flat bottom topography and for conditions ranging from deep to84

intermediate depth, with depth to wavelength ratios ranging from 0.68 to 0.13. Exami-85

nation of depth-limited breaking or breaking due to strong opposing currents is left for86

future study.87
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Case S fc ∆f/fc N h h/L0 tan θ(y) cb Tb Γ b

no. (s−1) (m) (m/s) (s) ×10−3

A1 0.30 0.88 0.75 32 0.60 0.25 0 - - - -
A2 0.3005 0.88 0.75 32 0.60 0.25 0 - - - -
A3 0.302 0.88 0.75 32 0.60 0.25 0 1.71 1.14 0.45 0.4
A4 0.31 0.88 0.75 32 0.60 0.25 0 1.64 1.08 0.83 4.5
A5 0.41 0.88 0.75 32 0.60 0.25 0 1.59 1.04 1.22 30.1
A6 0.44 0.88 0.75 32 0.60 0.25 0 1.59 1.04 1.44 40.9
B1 0.25 0.88 0.75 32 0.25 0.13 [-0.8,0.8] 1.35 1.30 1.29 45.1
B2 0.25 0.88 0.75 32 0.60 0.25 [-0.8,0.8] 1.76 1.16 1.19 23.4
B3 0.35 0.88 0.75 32 0.60 0.25 [-0.5,0.5] 1.68 1.06 1.62 72.7
B4 0.35 0.88 0.75 32 0.85 0.30 [-0.5,0.5] 1.80 1.09 1.39 35.3
C1 0.32 0.75 1.0 32 0.60 0.17 0 1.94 1.41 0.65 1.6
C2 0.36 0.75 1.0 32 0.60 0.17 0 1.91 1.37 0.86 12.4
C3 0.40 0.75 1.0 32 0.60 0.17 0 1.95 1.43 1.14 22.3
M1 0.160 1.48 0.0954 2 0.55 0.68 0 0.88-0.92 0.56-0.59 0.61-1.07 1.4-16.9
M2 0.176 1.48 0.0954 2 0.55 0.68 0 0.89-0.95 0.57-0.61 0.46-1.12 0.3-17.3

Table 1. Input parameters for the simulated alongcrest-uniform (2-D) and short-crested (3-D)
focused wave packets and 2-D modulated wave trains. xf and tf are 9 m and 20 s in 2-D and 5
m and 12 s in 3-D focused packets respectively.

2. Numerical experiments88

A detailed description of the polydisperse two-fluid model and boundary conditions89

used may be found in Derakhti & Kirby (2014a, §2). Demonstrations of model conver-90

gence and performance may be found in Derakhti & Kirby (2014b, 2016). The model91

parameters for a polydisperse bubble phase are chosen as summarized in Derakhti &92

Kirby (2014a, Table 4). Here, the incident wave boundary condition and model set-up93

are discussed briefly.94

We define the coordinate system (x, y, z) such that x and y represent the along-tank95

and transverse directions respectively and z is the vertical direction, positive upward and96

measured from the still water level. The reference time t∗ and x-location x∗ are taken97

as the time and location at which B following the crest tip reaches the threshold value98

of 0.85 for breaking packets, or its maximum for non-breaking packets, respectively and99

are normalized by the local period and wave length of the carrier wave respectively.100

All model simulations are performed with the model initialized with quiescent condi-101

tions. An incident wave packet is then generated at the model upstream boundary. The102

input wave packet was composed of N sinusoidal components of steepness ankn, n =103

1, · · · , N where an = S/(Nkn) and kn are the amplitude and wave number of the nth104

frequency component and S =
∑N
n=1 ankn is the linear prediction of the wave packet105

global steepness. Based on linear theory, the free surface elevation for the 2-D (Rapp &106

Melville 1990; Derakhti & Kirby 2014a) and 3-D (Wu & Nepf 2002; Kirby & Derakhti107

2018) focused packets at the wavemaker is given by108

η(0, y, t) =
N∑
n=1

an cos[2πfn(t− tf ) +
knxf

cos θ(y)
], (2.1)

where fn is the frequency of the nth component, xf and tf are the predefined, linear109

theory estimates of location and time of the focal point respectively, and θ(y) is the angle110

of incidence of each wave component at various transverse locations with cos θ(y) = 1111
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Figure 1. (a, c, e) Snapshots of the spatial variation of the normalized free surface elevations
near the maximum crest, and (b, d, f) the temporal variation of B before and after the breaking
onset for the weak spilling A3, spilling A4 and strong plunging A6 breaking 2-D focused packets.

in 2-D and cos θ(y) = xf/
√
x2f + y2 in 3-D breaking cases. The discrete frequencies fn112

were uniformly spaced over the band ∆f = fN − f1 with a central frequency defined113

by fc = 1/2(fN + f1). Following the set up of the initially bimodal wave trains in114

Banner & Peirson (2007), the free surface elevation for a 2-D modulated wave train at115

the wavemaker is given by116

η(0, y, t) = a1 cos(ω1t) + a2 cos(ω2t−
π

18
), (2.2)

where ω1 = 2πf1, ω2 = ω1+2π∆f , S = a1k1+k2a2 and a2/a1 = 0.3. Increasing the global117

steepness S increases the strength of the resulting breaking event in both focused packets118

and modulated wave trains. Finally, fluid velocities for each component are calculated119

using linear theory and then superimposed at the wavemaker. Table 1 summarizes the120

input parameters for all simulated cases.121

3. A new parameterization for the breaking strength parameter b122

Figure 1 shows snapshots of free surface elevations before and after breaking onset as123

well as the temporal variation of B for the evolving wave crest for the single-breaking124

focused packets A3, A4 and A6. Figure 2 shows corresponding results for the multiple-125

breaking modulated wave train M2. Results show that, as the strength of breaking in-126

creases, the rate of change of B near the threshold value, dB/dt|Bth
, increases. Consistent127

with Barthelemy et al. (2018), warning of imminent breaking onset (t∗ = 0 here) occurs128

up to a fifth of a carrier wave period prior to a breaking event. As a consequence, the129

wave form at B = Bth is well defined and the free surface is single-valued.130
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Figure 2. (a) Snapshots of the spatial variation of the normalized free surface elevations near
the maximum crest, and (b) the temporal variation of B for four successive breaking events in
the 2-D multiple-breaking modulated wave train M2.

Figure 3 shows a plan view of the spatial distribution of the normalized free surface131

elevations at t∗ = 0 at which B(y ∼ 0) = Bth and after breaking onset at t∗ = 0.5 as132

well as the spatio-temporal variation of B for the 3-D breaking focused packets B1, B2133

and B4. The latter picture is constructed by displaying the corresponding B curves at134

each transverse location. In each case, the dashed lines in the left and middle columns of135

Figure 3 correspond to the two vertical dashed lines shown in the right column and show136

the location of the crest maximum at the associated times. Due to a strong 3-D focusing137

of the incident wave packet, the position of the crest maximum at each transverse location138

may experience rapid change even close to the breaking region, resulting in unrealistic139

dB/dt values. Panel (a) demonstrates an example of such a jump in the location of the140

maximum crest at |y∗| ∼ 0.6. The corresponding high values of B shown in the panel141

(c) for |y∗| ∼ 0.6 are then just an artifact of the post-processing method. Figure 3 also142

shows that the breaking process starts around y∗ = 0, with the breaking crest gradually143

growing in width during the active breaking period, and that B has approximately the144

same temporal structure within the region close to the crest maximum location prior to145

breaking onset (|y∗| < 0.15, −0.1 < t∗). Further, the length of the breaking crest, as146

shown by the dotted-dashed line in the right column of Figure 3, expands proportional147

to ∼ (t− to)1/2 where to is the time at which the crest overturning starts. Such growth148

rate of the length of breaking crest is consistent with theoretical work of Pomeau et al.149
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Figure 3. (Left and middle columns) Plan view of the spatial variation of the normalized
free surface elevations near the maximum crest at (a, d, g) t∗ = 0, and (b, e, h) t∗ = 0.5, as
well as (right column) the spatio-temporal variation of B for the 3-D focused packets (a, b, c)
B1, (d, e, f) B2, and (g, h, i) B4. The corresponding crest locations of the two vertical dashed
lines in the right frames are shown by the dashed lines in the left and middle frames in each
case. In the right column, white color shows regions where B has exceeded a value of 1 or has
become poorly defined due to breakdown of the smooth water surface. Dotted-dashed lines show
y∗ = ±α1(t∗ − α2)1/2, where α1 ≈ 0.5 and α2 = 0.09.
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Figure 4. Temporal variation of (a, c) B, and (b, d) (dotted lines with markers) the local wave
length L and (solid lines with markers) local wave period T , normalized by their corresponding
values at B = Bth, for (a, b) various focused packets, and (c, d) three successive breaking events
in modulated wave train M2. In (a) the dotted line represents the highly nonlinear non-breaking
case A2. In (a, c), solid lines show the linear fit in the interval |B − Bth| < 0.03 shown by the
yellow boxes. Here, L is defined by the two successive zero crossing points around the crest
maximum (Figure 6), and T is obtained by using linear dispersion relation (Appendix A).

(2008). Hereafter we choose B(y∗ = 0) as the representative B value for the 3-D cases to150

compare with the 2-D cases for the proposed parameterization discussed below.151

Panels (a) and (c) of Figure 4 present the temporal variation of B for a number of152

breaking events (with various breaking strengths) due to dispersive focusing and modu-153

lational instability, together with a highly nonlinear non-breaking case A2 which has a154

global steepness slightly smaller than the weakest breaking focused packet A3 (see Ta-155

ble 1). For breaking cases, a linear fit in the interval |B−Bth| < α (α = 0.03 in Figure 4),156

shown by the yellow boxes, is also presented. The sensitivity of the results to choice of157

α will be examined below. The slope of each such fitted line, hereafter referred to as158

dB/dt|Bth
, will be used to parameterize the breaking strength parameter b.159

To construct a non-dimensional parameter, we also need to identify an appropriate160

time scale, for which we choose the local period, Tb, of the carrier wave at B = Bth,161

obtained by using the linear dispersion relation and the local wave length Lb defined162

based on the two successive zero up- and zero down-crossing points around the crest163

maximum (see Figure 6). Panels (b) and (d) of Figure 4 show that estimates of L and164

T constructed in this manner have a small variation as the crest approaches breaking165

onset. Here, Lb and Tb refer to the associated values of L and T at B = Bth respectively.166

Figure 5 shows the variation of the breaking strength parameter b with the new param-167

eter Γ = TbdB/dt|Bth
for all simulated cases. Our methodology to calculate the breaking168

strength parameter b is similar to that used in Derakhti & Kirby (2016) with a modifica-169

tion explained in the Appendix A. The reader is referred to Derakhti & Kirby (2014a,b,170
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Figure 5. Variation in the breaking strength parameter b with the new parameter
Γ = TbdB/dt|Bth that represents the normalized rate of change of B as it transitions through
the breaking onset. Dashed line indicates a fitted curve to the numerical data. Red line segments
represent sensitivity to choice of α in the estimation of dB/dt obtained by linear curve fitting
in the interval |B −Bth| < α.

2016) for the detailed examination of the model prediction of the total energy dissipation171

compared with corresponding measured data, as well as the sensitivity of the simulation172

results with respect to the selected grid resolution. In summary, we found that model173

estimates of the loss of total wave energy due to wave breaking are typically within 10%174

of observed levels, after correcting for the change in the downstream group velocity fol-175

lowing breaking (Derakhti & Kirby 2016). As a result, the uncertainty in the predicted176

b values are expected to be less than 10% for the cases considered here.177

For each case, the horizontal red line segment in Figure 5 shows the variation of Γ with178

respect to the selected interval |B − Bth| < α, (with 0.02 6 α 6 0.05), to perform the179

linear fit to obtain dB/dt|Bth
, and the marker represents the associated averaged value180

of Γ. Results show that the rate of change of B following the crest tip as it transitions181

through the breaking onset, and thus the parameter Γ, are not sensitive to a specific182

choice of α for α 6 0.05. Finally, the results show that Γ can successfully predict the183

breaking strength parameter b. Assuming a formulation with the form b ∼ a1(Γ− a2)a3184

and using the least-square curve fitting technique, we obtain185

b = 0.034(Γ− 0.30)2.5. (3.1)

4. Discussion and Conclusions186

The results shown in Figure 5 establish that the strength of individual breaking events187

in an irregular wave train, as well as the onset of breaking, can be estimated from188

properties of the wave crest as it approaches breaking. This is the centerpiece figure of189

this paper, and shows a systematic collapse of the proposed breaking strength predictor Γ190

for a diverse range of representative 2-D water wave focused packets and modulated wave191

trains in deep and intermediate depth waters, as well as several cases of 3-D dispersive192

focusing packets.193



Predicting the breaking strength of gravity water waves 9

A significant finding is that the results in Figure 5 do not show a pronounced difference194

between values of b obtained for focused packets or modulational events. This result195

contrasts with previous discussions of the two cases (e.g., Romero et al. 2012, Figure196

1) where reported b values for modulational cases appear to be significantly smaller197

than values for focused packet breaking events. This discrepancy results from different198

choices of averaging procedures between investigators in the analysis of data for wave199

packets (usually on the order of the local carrier wave period Tb) and modulated wave200

trains (usually on the order of the wave group period Tg); in our modulated wave trains201

Tg/Tb ≈ 12. Further, we found that the successive breaking events in our modulated wave202

trains (Figure 2) have considerably different breaking strength, or b values. The b values203

for the modulational cases in Figure 5 represent b for each successive breaking event, as204

opposed to an average over multiple events within a group (e.g., Banner & Peirson 2007;205

Allis 2013). For example, we find that b varies in the range 0.3× 10−3 to 17.3× 10−3 for206

the case M2 with an ensemble value of ∼ 6 × 10−3. A recent comparison of this aspect207

of the b methodology is shown in Derakhti & Kirby (2016, Figure 14).208

Based on these findings, we conclude that there is no significant difference between209

the mechanics of breaking events in focused or modulated wave trains, in contrast to210

previous discussions based on inconsistent methods for estimating b. This conclusion is211

strongly supported by the different sets of published b measurements. These show that212

the dynamic range of reported b values, from weak to strong breaking, is very similar213

for focused and modulation-induced breaking cases within each data set, based on the b214

estimation methodology utilized.215

The success of the parameterization for predicting breaking strength found here would216

make it possible to better describe breaking events in codes based on potential flow217

theory, such as high-order spectral (HOS) codes, where breaking is not predicted by the218

model itself (see Ducrozet et al. 2017, for a recent review of the HOS approach). The219

development of criteria for the onset and strength of breaking in such models has long220

been a subject for investigation. Recently, Seiffert et al. (2017) have investigated the221

use of the parameter B as a breaking onset criterion in HOS, while Seiffert & Ducrozet222

(2018) discuss the specification of an eddy viscosity model after the onset of breaking223

is identified. It is our belief that the specification of such a dissipation model should224

be based on the parameterization of total dissipation in terms of the rate of change225

of B developed here, which would provide a strong link between the present work and226

operational wave modeling.227

The universality of the B parameter and its rate of change as robust indicators of wave228

breaking onset and strength clearly warrant further study. We close by reiterating that229

the present work provides a first indication of a direct link between the local properties230

of a wave crest as it transitions through an apparently generic breaking threshold, and231

the resultant overall energy dissipation resulting from the breaking event. The results232

are underpinned by fundamental energy flux considerations as proposed in Barthelemy233

et al. (2018).234
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Figure 6. Definitions of the local wave parameters. L is the local wave length, Lb is the asso-
ciated value of L at breaking onset at which B = Bth = 0.85, and kb = 2π/Lb is the local wave
number at breaking onset.

Appendix A. Determination of the breaking strength parameter b242

Rearranging (1.1), the breaking strength parameter b is written as243

b =
gε̃

ρc5bτ l
, (A 1)

where ε̃ is the total wave energy dissipation due to wave breaking, τ ∼ O(Tb) is the244

averaging period and is usually on the order of the active breaking period, and l is245

mean length of the breaking crest during the active breaking period, 0 < t − tb <246

τ . Following Derakhti & Kirby (2016) and Tian et al. (2008), we estimate the local247

wavenumber at breaking onset, kb, defined based on the two successive zero up- and248

zero down-crossing points around the crest maximum as shown in Figure 6. Then, the249

linear dispersion relation is used to estimate the breaking wave phase speed and period250

as cb = (g/kb tanh kbh)1/2 and Tb = 2π/kbcb respectively.251

As described by Derakhti & Kirby (2014a, §4.3), the dissipation rate during active252

breaking has a strong spatio-temporal variation, and thus ε = ε̃/τ l may be interpreted as253

an averaged dissipation rate in the interval 0 < t − tb < τ . Following Derakhti & Kirby254

(2014a, 2016), we set τ = 0.75Tb.255

Derakhti & Kirby (2016) describe a methodology for computing ε̃ in focused wave256

packet experiments that depends on the spatial isolation of breaking events and on the257

fact that the domain is essentially quiescent before and after passage of the wave train.258

For multiple-breaking cases, and, particularly for the modulational instability cases con-259

sidered here, the spatial extent of breaking events may overlap in time, rendering the260

integral-over-all-time approach described by Derakhti & Kirby (2016) inapplicable. A261

modification to allow for localization of the total energy loss estimate in both space and262

time is described here. Starting from a local equation for mechanical energy e(x, y, z, t)263

and energy flux f = u(p+ e) per unit volume,264

e,t +∇ · f = ε′ (A 2)

where ε′ represents dissipation/unit volume, we consider the breaking event to be isolated265

within a region x1 6 x 6 x2, y1 6 y 6 y2, t1 6 t 6 t2. Integrating (A 2) over depth and266

then over x, y and t gives267 [∫ x2

x1

∫ y2

y1

∫ η

−h
e dz dy dx

]t2
t1

+

[∫ y2

y1

∫ t2

t1

∫ η

−h
fx dz dt dy

]x2

x1

+

[∫ x2

x1

∫ t2

t1

∫ η

−h
fy dz dt dx

]y2
y1

=

=

∫ x2

x1

∫ y2

y1

∫ t2

t1

∫ η

−h
ε′dt dz dy dx = ε̃, (A 3)

where t1 6 tb and τ � t2 − tb, where tb is the time of breaking onset as defined in §2.268
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