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Abstract

We develop asymptotic expressions for wave action density and action
flux, using an extension of Kirby & Chen (1989)’s perturbation solution
for weakly-sheared currents allowing for a basic flow with Froude number
F = U/y/gh = O(1) but with weak vertical shear. The accuracy of the
expressions for action density and flux are established by comparison to
analytic results for a current with constant shear, and to numerical results
for a field case involving a buoyant ebb-tidal plume with strong vertical shear
and for a case involving a numerically determined profile for a wind-driven
current. We compare our results to those from recent work of Quinn et al.
(2017), and find unresolved discrepancies in that prior work. We provide
additional suggestions for efficiently implementing the required extensions
in coupled wave/circulation models using a Taylor series expansion based
on conditions at peak frequency and direction. These results generalize the
previous work of Banihashemi et al. (2017) to motions in two horizontal

dimensions, and cover the determination of the wave action.

Keywords: wave-current interaction, wave action conservation, ocean

Preprint submitted to Ocean Modelling July 18, 2019



10

11

12

13

14

15

16

17

18

19

20

models, waves over sheared currents

1. Introduction

Significant advances have been made in the numerical modeling of wave-
current interaction in recent decades. An important component in these
advances has been the recognition of wave action as the fundamental con-
served quantity expressing the wave-averaged energy of a slowly-varying
wave train. The simplest description is typically based on the underlying
dynamics for monochromatic waves, governed by the wave action balance of

Bretherton & Garrett (1968) and given by

Ni+Vy-F=0 (1)

where subscripted commas denote partial differentiation. For the case of
depth uniform mean current U, action density N' = E/o and action flux
F = Ncgq, where E is energy density, 0 = w — k- U = \/gktanhkh is
intrinsic frequency, h and k£ = |k| are depth and wavenumber, and c4q =
wx = 0x+ U is the absolute group velocity vector in stationary coordinates.

Phase-averaged spectral wave models typically calculate wave properties
based on the linear theory for waves superposed on depth-uniform currents.
However, currents in the field are occasionally strongly sheared over the
vertical, leading to the need for a treatment of the rotationality or shear in
the flow field. An approximate treatment for the effect of current shear may
be based on a perturbation approach that has been developed through a
sequence of papers (Stewart & Joy, 1974; Skop, 1987; Kirby & Chen, 1989;
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Ellingsen & Li, 2017), with Kirby & Chen (1989, hereafter referred to as
KC89) providing a solution to second order for the finite depth case for
currents that are assumed to deviate only weakly from depth-uniformity.

The main utility of the approximate solution has been the specifica-
tion of a depth-weighted current U, specified by Skop (1987) and KC89 and
given by (12) below, as a representative depth-uniform current for determin-
ing intrinsic frequency and action density in spectral wave models (van der
Westhuysen & Lesser, 2007; Ardhuin et al., 2008). As pointed out in the
original study of KC89 and recently elaborated on by Banihashemi et al.
(2017, hereafter BKD17), the depth weighted current U does not represent
a consistent approximation for the current contribution to the group velocity
Cyq at leading order. BKD17 demonstrate the inappropriateness of the use
of the weighted current U as the current speed in the expression for absolute
group velocity, and establish the accuracy of the alternate value U which fol-
lows naturally from consideration of the dependence of U on wavenumber k
when differentiating the dispersion relation to get group velocity. The accu-
racy of this result provides a target for determining appropriate expressions
for the group velocity for use in estimating wave action flux.

Models for spectral wave conditions more commonly solve for NV (x,t, o, 6)
using a spectral action balance equation, which, for Cartesian coordinates,

is given by (Hasselmann, 1973)

S
/\/,t+Vh‘ (NCgQ)+(CUN)7J+<CQN)79: ; (2)

where the third and forth terms represent transport in spectral space (o, ).
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Expressions for these propagation speeds are taken from linear wave the-
ory (Whitham, 1974; Dingemans, 1997) for waves superimposed on depth-
uniform currents. The right hand side of the equation represents source and
sink terms associated with wave generation, dissipation and nonlinear wave-
wave interactions. The introduction to each source term included in SWAN,
for example, can be found in Booij et al. (1999). In applications using wave
models which take as input a single Eulerian current vector at each grid
point from the circulation model, this approach, based on a wavenumber-
dependent current speed, is often simplified by using the current value at the
peak wave frequency or wavenumber, U (kP) (for example, Elias et al., 2012),
or at some weighted-average wavenumber value. BKD17 further examine the
effect of using either the correct or incorrect estimate of the current speed
evaluated only at the spectral peak frequency. The study suggested an al-
ternate strategy, involving a Taylor series expansion of the depth-weighted
current about the peak frequency, which significantly extends the range of
accuracy of current information available to the wave model with minimal
additional transfer of data between wave and circulation models.

In this study, the change in the estimate of action density and action flux
due to current shear is investigated, using asymptotic approximations of the
Voronovich (1976) action balance equation obtained using a strong-current
extension of the KC89 perturbation solution. In section 2, the problem for a
linear wave in a horizontally-uniform domain with arbitrary current U(z) is
established. In section 3 and Appendix A, KC89’s perturbation solution for
weakly-sheared currents is modified to allow for steady currents which are

strong and oriented at arbitrary angles to the wave propagation direction.
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Approximate expressions for the wave action density and action flux are then
developed following a procedure described in Appendix B. The approach is
similar to that of Quinn et al. (2017), although our results differ signifi-
cantly. In section 4, we evaluate the approximations for the analytic case of
a wave on a current with constant vorticity, and establish the consistency
of the expressions for action and action flux derived from the perturbation
solution of KC89. Section 5 considers an application to a field case involving
a strongly sheared vertical profile measured in the Mouth of the Columbia
River (Kilcher & Nash, 2010). In Section 6, we extend the proposed Taylor
series expansion of the expressions for the wavenumber-dependent approxi-
mations about the reference value at the peak frequency, originally presented
in BKD17, to include wave directionality and the variation in intrinsic fre-
quency appearing in the denominator of the action density. The differences
between our results and those of Quinn et al. (2017) are discussed in section
7, along with suggestions for further work. A Supplement provides a num-
ber of plots comparing action density and flux estimates based on the usual
depth-uniform current expressions and using the surface or depth-averaged

currents as the representative values.

2. General theory

We consider the linearized problem for periodic surface waves in an in-
compressible, inviscid fluid, with wave number k and phase velocity c, =
(w/k)k, propagating on a stream of velocity U(z) in finite water depth h.
Here, w denotes the absolute wave frequency in a stationary frame of ref-

erence, which also fixes the value of U(z). A unit vector pointing in the
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direction of wave propagation is defined as k= k/k. The problem is formu-
lated in terms of the vertical component of the wave orbital velocity, written

in complex form as

w(x,z,t) = w;z)ei(k'x_”t) + c.c. (3)

where c.c denotes the complex conjugate. The problem for the vertical
structure of plane waves in a spatially uniform domain is then given by an
extension of the Rayleigh equation to allow for an oblique angle between

wave and current direction as well as possible rotation of the current vector

over depth,
o(2)(w., — Kw) = o..(2)w; —h<z<0(4a)
o (0)w-(0) — [gk® + 0(0)0,-(0)]w(0) = 0 (4b)
w(=h) = 0 (4c)

where g is the gravitational constant. The quantity o(z) = w — k - U(z)
represents a depth-varying relative frequency. We subsequently denote the
values of current U(0) and intrinsic frequency o(0) at the mean surface
z = 0 by Uy and oy, respectively. The amplitude of w may be related to
surface displacement amplitude a through the kinematic surface boundary

condition linearized w/r the fluctuating motion, given by

i+ Us - Vi = w(0) ()
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with 7 given by

n(x,t) = gei(k'x_m) + c.c, (6)

leading to the relation w(0) = —iosa. This result can be extended to cover
the full water depth by introducing a dimensionless shape function f(z)

according to

w(z) = —iosaf(z);  f(=h)=0, [f(0)=1 (7)

The form of (4a) is intended to indicate that the problem is simply
solvable for the case of current profiles without curvature, or o ., = 0.
The model (4a)-(4c) has been used in a number of studies of arbitrary or
idealized velocity distributions; see reviews by Peregrine (1976), Jonsson
(1990) and Thomas & Klopman (1997). For the general case of arbitrary
U(z), Voronovich (1976) derived a conservation law, in the geometric optics
approximation, for an adiabatic invariant corresponding to the wave action

density, with A" and F in (1) given by

N p [0 1 2 g 1 2
= _Z hWU7ZZ|w‘ dz+p ﬁ‘i‘mg,z "w| 0 (8&)

0
p U 1 o%k\ |
F = Z /h <—O_2k20',zz + WU722 - ﬁ |w‘ dz

g 1 1 gk 2
* {p {U(%” + 402k20’z) a 40k2U’Z + 202k2:| [l 0 {8b)

These results may be written in more compact form using the substitution
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(7), giving

E s 0
N o= Uo[ .y <g7z(0) _o? /ha % ..f dz)] (92)
2 0
F = & |:Us+crs (1_08/ dez>
Os g9 J-n
Og 0 _
+2gk2 <—A(O) + o2 /ha 2A,Zf2dz>} (9b)

where Ey = (1/2)pga® is the energy density for a wave on a depth-uniform
current, ¢,s = (0s/k)k is the wave phase velocity relative to the surface
current, and

A(2) = 0(2)U'(2) — o'(2)U(2) (10)

The adiabatic invariant N in (8a) or (9a) is not clearly in the form of
wave energy divided by frequency, as expected from the work of Bretherton
& Garrett (1968), but takes on this form in cases where analytic results for
w are available, such as the special case of waves on a current with constant
vertical shear (Jonsson et al., 1978). Additionally, the flux vector F in (8b)
or (9b) isn’t clearly in the form of action density times group velocity, Ncgq,
but can also be shown to be in this form for the constant shear case.

Analytic solutions for progressive waves for the problem (4a)-(4c) are
limited to the cases of currents with constant vertical shear, including the
uniform-over-depth limit of zero shear. For more complex profiles, results
may be obtained using perturbation solutions due to Stewart & Joy (1974)
for deep water or Skop (1987) for finite depth, with solutions extended to
second order by KC89. Shrira (1993) has further demonstrated how series

solutions for deep water may be extended to high order. Ellingsen & Li
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(2017) have extended the basis for perturbation solutions to include currents
with constant shear in the leading order solution. Alternately, numerical
solutions may be obtained using a variety of methods, including shooting
methods (Fenton, 1973; Dong & Kirby, 2012) or an iterative approach to
the boundary value problem described by Li & Ellingsen (2019), used below

in Section 5.

3. Approximate solution and analysis of action and action flux

expressions

KC89 considered the propagation of a wave train which was colinear with
the mean current, and assumed that F' = U/c < 1, where F' represents a
Froude number for the mean flow, U describes the current magnitude, and
c is a reference phase speed, usually taken to be \/gh. Here, we consider
the case of arbitrary orientation of wave and current, and allow for strong
currents F' = O(1), in which case the current enters the wave dispersion
relation at leading order. This generalization of the results of Skop (1987)
and KC89 has also been described previously by Dong & Kirby (2012) and
Ellingsen & Li (2017). The results are repeated here as a basis for discussion
of the approximate forms for action density and flux. We also modify the
treatment of the surface boundary condition for f(z) from prior studies in

order to simplify numerical applications.

8.1. Scaling framework and series solution

An appropriate scaling of the problem and the resulting perturbation

solution is described in Appendix A, and leads to a problem characterized
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by parameters F' (describing the strength of the current), e (characterizing
the magnitude of current shear), and p (characterizing the ratio of water
depth to wavelength). Here, we consider the case of p, FF = O(1) and € < 1,
which allows for the development of a formally ordered expansion in powers
of e. The solution to the resulting problem is carried out to O(¢€) in Appendix

A. In particular, the intrinsic frequency o is approximated by
0(z2)=w—k-U(z) = (w—k-U)—ek - Ui(z) =6 + e01(2) (11)

where

. 2k 0
U= m /;h U(Z) COSh Qk(h + Z)dZ (12)

and U;(z) = U(z) — U. The vertical velocity w is given to O(1) by

w(z) = —igafo(z) (13)
with
_ sinh k(h + 2)
Pol#) = —Gwrn 44
and the dispersion relation
&2 = gktanh kh (15)

The leading-order correction to the vertical shape function f is given by

1 Ir(2)

11(2) = 52 [10) = Ta(2) = (12(0)/ tanh K)] fo(2) + 2

fo(2)  (16)

T 2%

10
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where, in contrast to KC89 or Quinn et al. (2017), we retain the homoge-
neous part of the solution for fi(z) in order to specify a boundary condition

f1(0) = 0, as discussed in Appendix A. The integrals in (16) are given by

Ii(z) = sinh~'kh / ) k- U e(€) sinh 2k(h + €) d¢
—h

I(z) = sinh™! kh/ k- Uge(€)(cosh 2k(h + €) — 1) d¢ (17)
h
The solution for w up to O(e) is then given by

w = —iosalfo(2) + f1(2)] (18)

with 0y = 6 + 01(0) =& —k - Uy (0) = 6 — k - (U, — U). For later use, the

depth dependent intrinsic frequency o(z) can also be written as
o(z) =0s—k-(U(z) — Uy) (19)

3.2. Approximate expressions for action density and fluz

Results presented here favor a framework where quantities are defined
primarily in a frame moving with the velocity U, with associated intrinsic
frequency &. This choice is not unique, and is often replaced by represen-
tations based on conditions at the water surface. A particular example is
that of Quinn et al. (2017), who developed asymptotic expressions for N
and F by starting from (8a) and (8b) and introducing expansions for w, o
(or phase speed ('), and for the amplitude of their w relative to surface wave

amplitude a.

11
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Here, we pursue a different approach starting from (9a) and (9b), where
the original expressions have been simplified using the transformation (7)
and the known properties of the problem prior to expansion. This transfor-
mation and the simplified expressions (9a) and (9b) are still an exact de-
scription of the original problem. In order to assess the difference between
the two choices of reference frames, we develop a generic approximation
which specifies neither, and then specialize it to the two frames of interest.
The basic development of the framework is described in Appendix B, and
leads to (B.4) and (B.18) for action density Ny and flux Fy in which a final
choice of reference frame velocity and leading order dispersion relation has
not been made. As in Quinn et al. (2017), the choice of surface conditions as
a reference leads to an expression for action density containing an O(e) com-
ponent, where € here is basically similar to €5 in Quinn et al. The expression
is given here by (B.19) or

N* = Lo [1 + ew} (20)

Os Os

This expression is similar in form to (4.2) in Quinn et al. (2017), but the O(¢)
components in the two studies do not appear to have a close correspondence.
This is discussed further in section 7.1. In contrast, the approximation
resulting from the choice of the depth-weighted current reference frame gives
the estimate (B.20) or

=ty O(e?) (21)

o
This result was suggested by KC89 based on an analysis of the constant

shear case of Section 4, but was not formally established there as a general

12
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result. We note that the two formulas (20) and (21) are asymptotically
equivalent to within the accuracy of the approximation, which can easily be
established by substituting between o, and . However, actual numerical
values from the two expressions are seen to diverge in particular examples,
as will be shown for a linear shear profile in section 4 and for a wind driven
current in section 7.1.

It is clear, from these results, that a formulation in terms of & and U
is a more compact version of the approximation. Similar treatment for the

action flux (B.18) leads to the expressions

By [ - U, k -
7o U+cm+e<+<1—G>> (0,=3)| +0()  (22)
Os Os k
and
- Ey[e - )
F = = [U+ cgr] + O(€e%) (23)

We note the striking result that both versions of the approximate action flux
identify U = U + k(k - U ) as the correct current advection velocity. The
appearance of U results from the treatment of the integral of the product of
the zeroth and first order shape functions fy and fi; see (B.13) - (B.17). The
current U is the vector form of the advection velocity suggested by KC89

and discussed recently by BKD17. This result may be obtained directly

13
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from the definition of group velocity,

Cga = w,k:(O'-f-k'fj)’k
= lA{U,k—l—fj—i-lA{(k‘fJ’k)

= ¢+ U (24)

Unlike the expressions (20) and (21) for N, the expressions for F do
not appear to be consistent with each other to the order of approximation
considered. An attempt to rearrange (22) to the form of (23) to within

cancellation of O(€?) terms leads to the result

Froo ﬂ+agr+e%(1—c;)(o—s—5) (25)
where the remaining term at O(e) results from the treatment of the I inte-
gral in (B.11) (or the first occurrence of (1 — G) in (B.18) ), where no O(e)
expansion term occurs in the surface-oriented expression, whereas the O(e)
expansion term occurring in the U-oriented expression cancels the second
(1 — G) term contributed by the integral I5 in (B.17). A similar attempt to
work from (23) to (22) also leaves an O(e) residual which differs from the
one in (22).

The results (20) and (22) for N* and F* are expected to be far accu-
rate representations of action density and flux than simple constructs based
on surface or depth-averaged currents, but the relative accuracy of the two

asymptotic approaches remains to be examined. We will take up this ques-

tion again in sections 4 and 7.1.

14



240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

4. Waves on currents with constant shear

In this section, we examine the accuracy of the asymptotic expressions
for N and F for the case of waves on a current with constant vertical shear.
This case has been studied extensively, with the basic solution described for
collinear propagation in one horizontal dimension (Thompson, 1949) and
subsequently extended to two horizontal dimensions for waves oblique to
the current (Craik, 1968; Ellingsen, 2016, among others). Ellingsen (2016)
provides a clear description of the influence of wave orbital motion on the
vorticity field for the case of oblique waves. Jonsson et al. (1978) gave
expressions for the action density and flux for the 1D case of co-linear wave
and current; the extension to the general case is given below based on the
theory of Voronovich (1976). In this section, we determine the accuracy
of the approximate expressions in a space covering variations of kh, F', 6
(representing the angle between the wave direction and the surface current),
and a shear parameter « defined below. Consider a current profile with

constant shear (and possible rotation) given by

U(z) = U, + Q2 (26)

The current shear €2 does not have to be collinear with either U or k (Figure

1). In this case, the BVP (4a-4c) simplifies and is given by

o(wz, — kzw) = 0 —h<2<0
02w ,(0) — (gk* — o5k - Qw(0) = 0 (27)
w(=h) = 0

15
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The possibility of o(z) taking on a value of zero at a critical level is
not typically of interest in surface wave dynamics; see also Ellingsen & Li

(2017). The solution to (27) is given by

w(z) = —iosaf(z) ) (28)
u(z) = o (ia%a% n)—n>f<z>+‘,jf,z<z>) (29)
p(z) = P (k- @)f() + T14(2) (30)

with vertical shape function

_ sinhk(h + 2)
1) ==

and with dispersion relation

o? = (gk — 0.k - Q) tanh kh (32)

Constant current shear affects the vertical structure of wave orbital velocity
and wave pressure by modifying the dispersion relation and twisting wave
horizontal velocity in the current shear direction. Absolute and relative

phase speed vectors are related by
Ca = Cps + k(k - Uy) (33)

where ¢, = cok = (w/k)k and ¢, = ¢,k = (04/k)k, with subscripts s

denoting values at the SWL z = 0. From (32), an expression for ¢, is given

16
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1 A )
rs = o [i(élgk tanh kh + (k- Qtanh kh)2)Y2 — k- Qtanhkh|  (34)

Inserting the wave solutions in (9a) and (9b) gives exact expressions for the

action density and flux, given by

N—EO<1_k’QC“> (35)

Os 29

and

F = Ncga; cga = Us + ¢y (36)
The relative group velocity ¢y, is given by

R[g(l + G)Crs] + [R(}A{ ) Q)(l — G) — Q]Czs (37)
29 — (k- Q)cps

Cgrs = Osk =

Turning to the perturbation solution of Section 3, we obtain results to
O(e) in the U reference frame and compare them to the full solution to

determine their range of validity. The weighted current U is given by

tanh kh
2k

U=U,-Q (38)

and the corresponding flux advection velocity U is then given by

- tanh kh
(k‘U,lc) _US_T

o

U=U+ (n ~ (k)1 - G)) (39)
with action N and action flux F determined by (21) and (23).

17



279

280

281

282

283

284

285

286

287

288

289

290

201

292

294

295

296

297

298

299

300

301

303

The % error 100(1 — N'/N) for the first order perturbation approxima-
tion of the action density (21) compared to the exact result from (35) is
shown in Figure 2 for 0.1 < kh < 10, —7/2 < 6 < 7 /2, relative angle 8 =0
and for different choices of current strength and shear. Additional results for
B = m/4 and 7/2 are provided as Figures C1 and C2 in the Supplement, Ap-
pendix C. (Angles 6 and [ represent the orientation of k and €2 relative to the
surface current Us, as indicated in Figure 1. Current strength is represented
through a Froude number based on surface current speed, F = |Ug|/\/gh,
while shear is represented by dimensionless parameter o = h|Q|/|Us|.

The results show a considerably improved accuracy in the predicted
action density, compared to values constructed using other common ap-
proaches, such as using the surface velocity U, with A given by N, =
Ey/os; Figures C3 - C5 in Supplement) or depth-averaged velocity U, with
N given by N = Ey/o, @ = w — k - U; Figures C6 - C8 in Supplement).
Opposing currents require a more complex calculation of blocking condi-
tions; this limit is not crucial to the development here and deserves it’s own
treatment in connection with wave propagation near buoyant plumes and
other frontal features; see BKD17 for examples of the relative magnitudes
of errors in those cases.

An extensive comparison of the correct and approximate action flux ve-
locities for the 1D case has been discussed in BKD17. Figure 3 shows the
composite error of |F| as a function of kh and 6 for f = 0 using the first
order perturbation approximation, with additional results for 8 = 7/4 and
7/2 in Figures C9 and C10 in the Supplement. Results for the same range

of parameters using the surface and depth-average current values are shown

18
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in Figures C11 - C16 in the Supplement.

As mentioned is section 3.2, the relative accuracy of the two asymptotic
approaches in the frame of reference based on the surface current and the
depth weighted current remains to be examined. Figure 4 and 5 provide a
simple comparison of equations (20) vs (21), and (22) vs (23). The compar-
ison is done for a linear shear profile with variation of «, F' and kh, with
9 =0 and 8 = 0. The gain in accuracy provided by the estimates A" and
F is shown, in spite of the two expressions being asymptotically equivalent

within the accuracy of the approximation.

5. Columbia River velocity profile

In this section, we compare the action densities obtained from different
approximations using a measured current profile from the Mouth of the
Columbia River (MCR), where fresh riverine water meets salty seawater and
the current becomes strongly sheared due to stratification and tidal effects.
Here, we select a sample velocity profile collected by a pole-mounted ADCP
during the RISE project (Kilcher & Nash, 2010). The profile, shown in
Figure 6, was also used in BKD17, and represents a maximum ebb condition
for the time frame covered by the file. The water depth is h = 25m, the
normalized shear parameter for this current profile is o ~ 8, which indicates
a strongly sheared current, while the Froude number is F' ~ 0.15. The
current profile is assumed to be unidirectional.

We consider the case of waves propagating landward against the oppos-
ing current. We follow a general procedure of fitting polynomials to either

measured profiles or profiles taken from gridded model results in order to

19



328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

establish a basis for computing weighted current values. Expressions below

are based on the form

N
U(z) = U Y an(0)" (40)
n=0

with current speed referenced to the surface value Uy and with dimensionless
ap’s. (Note that ap = 1 due to the normalization by the surface current
velocity, while a; = Q3h/Us ~ «, where Qg is the current shear at the
surface.) Calculations here are carried out using N = 6, with the fitted

profile for the demonstration case also shown in Figure 6. For the given

profile the coefficients in (40) are then given by

U(z) = —228 (1 + 8.22% + 40.26(%)2 + 120.52(%)3

+197.04(%)4 + 160.36(%)5 + 50.85(%)6) (41)

In the absence of an analytic solution, a numerical method is used to
solve the Rayleigh equation. In BKD17 the procedure used by Dong &
Kirby (2012) was considered to solve the boundary value problem. The ver-
tical velocity w(z) was found by solving a Riccati equation using a shooting
method due to Fenton (1973), also discussed in KC89. Here, we use the
Direct Integration Method (DIM) presented by Li & Ellingsen (2019) which

is faster and easier to parallelize than the shooting method. The method
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starts by rewriting (4a) - (4c) with the substitution (7) as

(f7zz_k2f) = kZ’IZJ—Z(j)ka, —-h<2z<0 (423’)

2, — crsle(crs) — > =0 (42b)

where ¢, is the relative wave phase speed at the surface and

k - U_(0) tanh kh

Ic(crs) = 12
0 k-U_,(2)f(2)sinh k(z + h)
Hers /_h k(k - AU — kc,s) cosh kh dz (43a)
g
c’ = - tanh kh (43b)
f(z) = w(z)/w(0) (43c)
AU = U(z)—U; (43d)

The DIM method treats equations (42a) and (42b) as two coupled equations
with f and c¢,s as the unknowns, and then obtains the numerical solution
to the set of equations. The results are used in (8a) and (8b) to obtain
numerical values for wave action density and flux, which are taken to be the
reference ”exact” solutions.

The accuracy of the first order perturbation approximation of the wave
action density N and wave action flux F relative to the numerical solution
obtained from the DIM is shown in Figure 7. The results are plotted against
a parameter kzg instead of kh where zg is specifically defined assuming a
linear profile down from the surface until the current falls to zero at depth

zp. In this case the zp would be zg = Us/UL(0) ~ 3m.
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Similar to the linear shear case, the results show improved accuracy in
the estimate of action density compared to the common approaches using
depth averaged or surface current values, displayed as Figures C17 - C20 in

the Supplement.

6. Taylor series expansion of N'(k) and F(k) about kP.

The use of the first order correction to the group velocity U and the more
simplified procedure of using a single value U (kP) instead of the frequency
dependent form has been investigated in BKD17 for the case of co-linear
waves and current. BKD17 suggested an alternate strategy, involving a
Taylor series expansion about the peak frequency, which should significantly
extend the range of accuracy of current information available to the wave
model with minimal additional data transfer between wave and circulation
models. Writing the components of the effective advection velocity as U=

(Ui, U ), the Taylor expansion in component form is given by

Uri(k) = Uy(k") + (k - k) +O0(lk — k7| (44)

)Gl

where subscript T' denotes the value obtained from the truncated series.

Using the relation between Uand U gives

o0 _ 00, 0 ky 00,
ok ak ko ok
AaU, kl U ~ a?fj
ik () ik 28]
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The Taylor series expansion in component form is then given by

. - K 0U kP oU;
Uri(k) = U;(kP) + "’ (k- —%) Wt (k — kp)—ak |
kP ou
v _ Py, T
* k (k —k7) ok lkp
kP kP 02U
v, _ P p.—___—
+ T (k — k") (k 2 kp) (46)

The same approach is used to calculate the intrinsic frequency relative

to the value at the peak wave number as

&T(k):w—k-fjkp—f-(k—kp)(k-ﬁ,k kp) (47)

where we take advantage of the fact that the local value of w is known for
each frequency component.

Returning to the case of a current with constant shear, we show results
for the accuracy of the action density N for three peak wave numbers corre-
sponding to kPh = 1,2 and 3 in Figures 8-10, with the peak direction 6P = 0,
the current non-rotational over depth (8 = 0) and a range of directions of
+7/3. Figures C21 - C23 in the Supplement compare the action flux ap-
proximation ]E'p for the same cases. Corresponding results for action density
N for the MCR current profile are provided in Figure 11 for kyh = 1,2
and the directional spreading of 7/5, while the comparison for the action
flux Fyp is shown in Figures C24 and C25 in the Supplement.

Overall, it is seen that the Taylor series approach provides a robust es-
timate for action density and action flux, using only information about the

depth-weighted current velocity at the spectral peak frequency. These ex-
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pressions should be relatively simple to implement in spectral wave models,
but implementation would require the calculation of U(k,), U (k,) and
INJ,kk (kp) in the circulation model using the 3D velocity field available there,
and the passage of the three vector quantities at each grid point, rather than

the passage of as single current velocity vector as presently implemented.

7. Discussion and Conclusions

7.1. Comparison to results of Quinn et al. (2017)

Despite the similarity in approach to developing approximations for ac-
tion density and flux in this study and that of Quinn et al. (2017), the results
are significantly different, as revealed in a comparison of the two results for
the analytic case of a current with constant shear. For this case, U” = 0
simplifies the result for action density (4.2) in Quinn et al.. Their general

result for action density is given by
Eqy

1
NOT = D(1+eRy); Ry = —2Ipsinhkh — o <
Os 0

2

g ) (9

we see that Zo = 0 from (4.4). Both terms 275(0)/sinh 2kh, evaluated
directly and c¢; in the bracketed expression in R; are equivalent to an ex-
pression k- U as used here

For z = 0, it is also apparent that the first term in parentheses is the
projection of the weighted average velocity, k- U, which follows directly from
the definition (12) here and the expression for 73 as given in Quinn et al.’s
(4.4). The evaluation of ¢; from (C.7) is more ambiguous. If 7 is interpreted

as usual as the starting point for the definition of U after two integrations,
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then ¢; also is equal to k - U. This would then give an expression for A/ in

our notation as

2k - T
1- ~U+O(62)
g

vt — Fo

Os

(49)

On the other hand, if the expression is taken literally for the constant shear
case under development, then ¢; evaluates to ¢; = k - (U — (c2/2¢)U .(0)),
which referring to (38), is again the depth-weighted current for this special
case, giving the expression (49) again. It is clear that this expression cannot
be correct, as N9!7 would have to reduce to Ey /s in the limit of a depth-
uniform current, where U = U,. We are thus not able to explain the
discrepancies between our results written in terms of surface values, and the
expressions provided by Quinn et al. (2017).

In contrast, the result obtained in the present study can be written as

~  F
N =2211—

Os

(U =TU) +0(e?) (50)

Al

Quinn et al. go on to suggest (below their (4.4) ) that using the surface
current in the estimate of action instead of depth-averaged current would
be a reasonable no-cost extension in existing models. This suggestion corre-
sponds to the results for Ny and Fg shown in the Supplement, Appendix C.
From the results there, it is clear that the increase in accuracy afforded by
using surface current instead of depth average current is apparent only for
relatively short waves, whereas the proper use of the perturbation solution,
or expansions based on that solution, is advantageous at all water depths.

In order to examine the relative predictions of the asymptotic forms

(20) + (22) vs. (21) + (23), and to establish a basis for comparing our error
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estimates to a case examined by Quinn et al. (2017), we have repeated their
analysis of a current profile given by Wu & Tsanis (1995) and presented in

their Section 5 and Figures 1-4. The current profile is given by

z z
U = Au, In(1 + — Bu,In(1 — 51
(2) = AucIn(1+ =) + Bu, In(1 = ———) (51)
in which
A = 42 , B—_ a1
P12 — q1p2 P12 — q1p2

a1 = (I4+2z/h)In(14+h/z5) —1; q2=2/hIn(l+h/z)—1

p1o= vzs/h; P2 = Y2/ 2% (52)

where z;, and z, are characteristic viscous sublayer thicknesses at the bottom
and surface respectively, and « is a constant to characterize the intensity of
the turbulence. The origin of the z-coordinate is located at the bottom for
this velocity profile and the direction is upward. A lengthscale §; is taken to
be the depth at which the current velocity falls to zero, and is used as the
basis for a relative wavelength parameter kds used in plots presented below
and by Quinn et al..

Figure 12 shows errors for action density A" and flux F using the asymp-
totic expressions (21) and (23) with variation of kds and Froude number
Us/co. The axis has been modified to be in the same format as Quinn
et al. (2017) figure 2 for comparison, however our Froude number is for
a larger range 0 < Ug/cy < 1, while they have only provided results for

0 < Us/cy < 0.3. Profile parameters are given by zs = 2.2 x 1074h,

26



448

449

450

451

452

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

zp = 1.4 x 1074 h, v = 0.35 and h = 100m. The thickness of the up-
per layer is s = 0.34 h in this case. Comparison between the results and
the plots presented in their figure 2(a) and 2(d) demonstrate the accuracy
gain in our approximation. Corresponding plots for our estimates N* and
c;, = F* /N* based on (20) and (22) are provided in Figure 13, and show a
marked decrease in accuracy compared to the values N and Cyq = F //\7 in
spite of the demonstrated asymptotic equivalence of N and N*, with errors
based on N and F being up to 100 times smaller. We also note that our es-
timates for N* and F* in the frame of reference based on the surface current

is by far more accurate than the results shown in Quinn et al. (2017).

7.2. Conclusions

The results here clearly show that leading order asymptotic expressions
for action density and flux are both more compact and more accurate nu-
merically when written in terms of a depth-weighted current U and corre-
sponding intrinsic frequency 6. The asymptotic expressions written in the

form of (21) and (23), repeated here as
7 _ Lo 2. F((7 4z 2
N = ?—FO(E )i F(U+égr) + O(€) (53)

defer the appearance of terms which are not in the standard form for action
and flux to second order in the small parameter e characterizing the weak
shear in the depth-varying current profile. They provide a relatively more
accurate estimate of the quantities in question than corresponding asymp-
totic forms (21) and (23) based on surface current Us when compared to

"exact” values obtained analytically or numerically, as shown for the an-
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alytic example of a current with constant shear in section 4, and for the
strongly sheared profile of Wu & Tsanis (1995) in section 7.1.

We have further extended the suggestion of BKD17 to represent current
information using a Taylor expansion around the peak wavenumber in a
modeled spectrum, with extensions covering the specification of action, flux
and intrinsic frequency as well as an extension to a general 2D horizontal
setting. These results provide an avenue for calculating wave action and
action flux in spectral wave models, using a compact set of information
about the current field evaluated at the spectral peak wavenumber. The
coupling would require that the wave model accept the values ﬁ,ﬁ and
ﬂ,k at each grid point, and corresponding changes would need to be made
to the specification of action density and group velocity as a function of
frequency and direction within the wave model formulation. These are not
huge changes, and hopefully can be implemented in the near future. The
corresponding effects on model source terms, such as the representation of

nonlinear interactions, is still an open area for research.

Appendix A. Scaling and perturbation solution for the strong cur-

rent, weak shear case

The theoretical development in KC89 and BKD17 is based on a frame-
work that assumes that the steady current is small compared to wave phase
speed, with current shear and profile curvature comparably small. Here,
we provide a scaling analysis and perturbation solution that generalizes the
problem to the case of a strong depth-uniform current component and ar-

bitrary current orientation in horizontal coordinates, but with deviations
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from depth-uniformity assumed to be weak. Conceptually, the approach
is to write the mean current vector U(z) as Uy + Uj(z), where the sec-
ond component carries the information about weak shear and rotation over
depth. We do not make an a priori choice of how to make this split into two
components, and, as will be seen below, the solution itself suggests that Uy
be chosen so as to have a weighted depth-average value of 0 when weighted
according to the KC89 procedure.

To develop the non-dimensional form of (4a) - (4c), we introduce the
scales wg for frequency or inverse time, kg for wavenumber or inverse hori-
zontal distance, and scale vertical coordinate z by uniform depth h. Vertical
velocity is scaled by its value at the free surface (determined by the kine-

matic boundary condition) as

w(z) = —iosaf(z) (A.1)

where o is intrinsic frequency at z = 0, a is surface wave amplitude, and

f(2) is a dimensionless shape function. Intrinsic frequency o is given by

o(z) = w—k-Uiz)=w-k-Uy—k-Ui(z)

= o9+ 01(2) (A.2)

We define a reference phase speed ¢y = wg/ko and use ¢ = v/gh, which fixes
the relationship between wy and kg. For the monochromatic case studied
here, we identify wy with w. Finally, we scale strong depth uniform current

Uy by U and weak current U; by hf2, where 2 represents the strength of
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current shear or rotation over depth. Referring to (4a) - (4c), we intro-
duce dimensionless parameters ¢ = o/wy and k' = k/ky. The resulting

dimensionless problem (with primes dropped) is then given by

U(z)(f,zz - k2M2f) = eal,zzfQ -1<2<0

o2f.(0) = k*+eos01.(0) (A.3)

f0) =1 f(=1)=0

with

0(z) =00+ e€01(2) = (1 — Fk-Up) + e(—=k - Uy(2)) (A4)

Dimensionless parameters are u = koh = O(1),F = U/c¢y = O(1), and
€ = puf2/wy < 1, where pu is the usual dispersion parameter resulting from
scaling depth by h and horizontal distance by kj ! F is a Froude number,
and € < 1 is a small parameter characterizing current shear. (The alternate
approach employed by Ellingsen & Li (2017), where shear is allowed to be
strong but curvature weak, would employ the regime F,e = O(1), with a
new small parameter required to characterize the weak curvature.)
Following KC89, we next solve the system (A.3) using a regular pertur-

bation expansion
N

fz) =Y " fal2). (A.5)

n=0
with f,(—1) = 0. In contrast to KC89, we take fp(0) = 1 to satisfy the entire
surface boundary condition for f, giving homogeneous conditions f,(0) =0

for n > 0. Introducing (A.4) and (A.5) in (A.3) and sorting by powers of e
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gives the governing equations and surface boundary conditions

g0 (fn,zz - k?ZMan) = Hn(Z)

Ugfn,z(o) = Sn

At n =0, we have Hy =0, Sy = 1, and we get the solution

_ sinh pk(1 + 2)

fo(z) sinh pk
with
o ktanhpk
op = ——"
1

(A.8)

(A.9)

which is the usual solution for waves on a depth uniform current. For higher

orders n > 1, use of Green’s law for fy and f, leads to a solvability condition

0
-1

(A.10)

At n =1, the leading order at which current shear has an effect, we have

0122 01.(0)  2k%201(0
Hy(z) = =2 fo(2);  S1=— ©_ 3}( )
oo oo oy

Using (A.11) in (A.10) leads, after cancellations, to the identity

-1

31
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/ o1(z) cosh2uk(1+2)dz = —k- / Uy (z) cosh2uk(1+2)dz =
-1

(A.11)
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But U; = (U — Uy) /e, which, when substituted in (A.12), gives the result

2uk

Up= U= 2Kk
0 sinh 2pk

/0 U(z) cosh 2pk(1 + 2)dz (A.13)
-1

where U is the depth-weighted current from KC89, extended to allow for
F = O(1) and arbitrary direction relative to the wave direction. We thus
have the leading order expression for intrinsic frequency g = & = 1 —Fk-U,

with leading order dispersion relation

h
52 — ktanhuk (A.14)
1
The expression for phase speed ¢, in a fixed frame is given by
w 0 =
a=—=—-+U 2 Al
€= T i + U+ 0(€) (A.15)

with no further correction to phase speed at O(e). Equations (A.6) - (A.7)
may then be solved for fi(z) following the procedure in KC89, giving the

result

fM::M+;ﬂm@m@ﬂma

1 z
+h—wﬁgﬁmwﬂmm> (A.16)

with the coefficients A; and B; of the homogeneous solution resolved by
applying the boundary conditions f;(0) = f1(—1) = 0. Dimensional forms

of the results are given in Section 3.1.
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Appendix B. Approximations for weak current shear

Starting with the expressions (9a) and (9b) for action density and flux,
we develop expansions in powers of € consistent with the approach in Ap-
pendix A. In (9a) and (9b), explicit appearances of o5 and Uy occur due to
the satisfaction of the surface boundary condition and the transformation
(7). We assume these should be common to all versions of the expansion that
follows. Subsequently, we express f(z) as in (A.5) and use (14) and (16).
We then introduce an arbitrary version of the depth uniform current and
resulting intrinsic frequency, Uy and og, as representations of the leading

order solution,

U(z) = Up + €U (2)

o(z) =00+ €01(2) (B.1)

where g = w—k-Up and 01 = —k-U; = —k-(U—-Uy), and with associated
dispersion relation

02 = gktanh kh (B.2)

After some simplification of the resulting forms of A/ and F, we obtain
approximate forms consistent with the present derivation through the choice
U, = U and o9 = ¢. We also develop an alternate version based on the
choice Uy = Uy and o0¢p = o0,, which leads to expressions for action and
flux defined in terms of surface variables, as in Quinn et al. (2017). It was
our initial expectation that this procedure should reproduce the results in

Quinn et al. (2017), which are described as being based on the approximate

33



566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

wave-current formulation here and in KC89, but we have not been able to
reproduce the results given by Quinn et al. (2017), as discussed in Section
7.1.

Substituting the expressions (B.1) and the expansion for f(z) into the
formulae (9a) and (9b) and retaining terms to O(e) leads to the generic
version of the expansion, where any remaining occurrences of frequency or
current are expressed in terms of oy and Uy. During this process, expres-
sions occurring in terms of O(€) may be manipulated by choosing oy = o,
or ¢ freely, since transformations between these quantities would occur at
O(€?). In contrast, occurrences of g in O(1) terms must retain the im-
plied ambiguity, as it’s resolution would occur within the accuracy of the
approximation.

Proceeding with (9a) for the action density, we note that the integral
term is of O(e), since 0" = eo! for any choice of reference frame. Recognizing
that os/09 = 1+ O(e) for any choice of reference frame making o small, we

obtain the approximate expression

N 1+ e 28 0 ’ 2 O( B.3
o [ g (0= [ onsetiz) | w0 w3

The expression in the interior parentheses may be integrated immediately,

and we obtain the approximation

Ny=2 [1 +e 2oy — 5)} +0(&) (B.4)

)

where the single appearance of oy results from a resolution of the combina-
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tion gk tanh kh.

Turning to the expression for action flux (9b), we note that the first
integral term involving f? occurs at leading order, and thus the ambiguity of
the value of oy must be retained there. We proceed as before by substituting
the expansions (B.1). The expression A(z) may be expanded as A = Ay +
€A1 + O(€?), and we find that Ag = 0 and

A1(2> = UOUl,z — U()ULz (B.5)
so that the integral involving A . is reduced to

0 2 0
2 -2 27, _ Is 2 2
O /_h(f A,Zf dz = Em /;h A]_yzfodz + O(E ) (B6)

The entire bracketed expression involving A in (9b) is then evaluated as

0
k
—A0+/A22d]_—1 B.7
6[ 10+ | Arafodz| = —e o b (B.7)
where
0
13:/ A (z)sinh 2k(h + z)dz (B.8)
—h
The integral of f? is expanded to give
0
/ f2dz = I 4 2el5 + O(€?) (B.9)
—h
with
0 0
142/ fidz; 152/ fofidz (B.10)
—h —h
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and with f; given by (16). The resulting expression for the approximation

Fo is then
EO 02 Eo 20’2 Os
Fo=—|U 1- -1 —e— s — 75 1
°T o, [ S+Cm< g 4)} ‘o [Cm g ot o2 sinh 2kh >
(B.11)

Integrals I3 and I are given to the required order by

Is = sinh2kh O'Q(US — fj) + Uo(& — O'S)
2kh

g
L = L1-0; G=-—- B.12
! 203( ) sinh 2kh (B.12)

The expression for Iy is complex, and is given after some initial effort by

1 G cosh? kh
Is = I5(0) — I B.13
° 7 45 sinh® kh o 20—k (B.13)
where (from (17) )
I5(0) = 2sinh® kh(k - U ,(0)) + 2sinh 2kh(os — &) (B.14)
and
0 A~
Iy = / k-U_,.(2)(h+ z)sinh 2k(h + z)dz (B.15)
—h

An expression for Ig is obtained by first expressing U in terms of U .. using
two integrations by parts, differentiating the resulting expression with re-

spect to wavenumber k, and taking the dot product with the unit wavenum-
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ber k to obtain (after rearrangement)

~ - 1
Is = sinh 2kh |k - Uy + hk - Uz (0) + (1 — G) + 2G cosh? kh) (o5 — &)
(B.16)
Using (B.14) and (B.16) in (B.13) leads to a relatively compact expression

for I5 given by

1 - 1 -

Using the results for I3, I4 and I5 in (B.11) leads finally to
1 (o 2

Us+cs|1l—=z(— ] 1-G)
2 \ og

3/\ ~
Lo | 2k (k Tt 11— C)(os - 5))

os | 00§

E
Fo = =2

Os

% (ou(U, 0) 4 0 - as>Uo)] (B.18)

From this point, the resolution of the expressions for Ny and Fy involves
the choice of op. Following the procedure of referencing all quantities to

surface conditions leads to an expression for Ny given by

N* = Ny(os) = Lo [1 + 6(030—5)] + 0(€?) (B.19)

S

This result is similar in form to that in Quinn et al. (2017), equation (4.2),
but there is no clear relation between the residual O(e) terms in the two
results, as discussed further in Section 7.1.

Taking the alternate approach of referencing quantities to the frame
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moving with speed U leads to the expression

. _EO

N = Ny(5) + O(€?) (B.20)

5
where all information about the approximation within the order of accuracy

is contained in the simple ratio of Ey and &.

The same process applied to Fy in (B.18) leads to the expressions

E 2 s o IA{ ~
Fr = 70 U+ cgs+e <U5 <” ") + (1= G)(os - a)> +0(e?)
(B.21)
and
- By )
F=2 [U+ cgr] +0(e?) (B.22)

where cg,s and €4, are relative group velocities (defined in the usual sense
for a depth uniform current) relative to the surface and depth weighted
velocities respectively.
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Figure 1: Definition sketch for linear shear current. The angle between the surface velocity
and wave direction is 6 while the angle between the surface current and current vertical

shear is 8
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and 6, first order perturbation approximation, 5 = 0.
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Figure 6: Columbia River current profile during ebb tide. The solid line is measured data
(Kilcher & Nash, 2010) and the dashed line is a 6th order polynomial fit to the data.

0.5 0.5
0.4 04— 0.4
30— ] 02 —
0.3 01/0.2/ 037 425 /_6(7’551
& 0.2 ——o2 0.3 04— . 0.2 05 A /12/5;
> 0.1 > 0.1 |
E) >
P9 % & 0 3
&0l \ & 01 \
0.2 02— 08— 02 i
-0.3 01— 0:1 1 -0.3 T 025
-0.4 -0.4
-0. -0.5
005 0.1 015 02 025 03 035 0.05 0.1 0.15 02 025 03 035
kzy kzo

Figure 7: % error in wave action density 100(1 — N/N) (left) and wave action flux
100(1 — |F|/|F|) (right): MCR current profile with variation of kzo and 6, first order
perturbation approximations (21) and (23).
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