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Abstract

We develop asymptotic expressions for wave action density and action

flux, using an extension of Kirby & Chen (1989)’s perturbation solution

for weakly-sheared currents allowing for a basic flow with Froude number

F = U/
√
gh = O(1) but with weak vertical shear. The accuracy of the

expressions for action density and flux are established by comparison to

analytic results for a current with constant shear, and to numerical results

for a field case involving a buoyant ebb-tidal plume with strong vertical shear

and for a case involving a numerically determined profile for a wind-driven

current. We compare our results to those from recent work of Quinn et al.

(2017), and find unresolved discrepancies in that prior work. We provide

additional suggestions for efficiently implementing the required extensions

in coupled wave/circulation models using a Taylor series expansion based

on conditions at peak frequency and direction. These results generalize the

previous work of Banihashemi et al. (2017) to motions in two horizontal

dimensions, and cover the determination of the wave action.
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models, waves over sheared currents

1. Introduction1

Significant advances have been made in the numerical modeling of wave-2

current interaction in recent decades. An important component in these3

advances has been the recognition of wave action as the fundamental con-4

served quantity expressing the wave-averaged energy of a slowly-varying5

wave train. The simplest description is typically based on the underlying6

dynamics for monochromatic waves, governed by the wave action balance of7

Bretherton & Garrett (1968) and given by8

N,t +∇h ·F = 0 (1)

where subscripted commas denote partial differentiation. For the case of9

depth uniform mean current U, action density N = E/σ and action flux10

F = Ncga, where E is energy density, σ = ω − k · U =
√
gk tanh kh is11

intrinsic frequency, h and k = |k| are depth and wavenumber, and cga =12

ω,k = σ,k+U is the absolute group velocity vector in stationary coordinates.13

Phase-averaged spectral wave models typically calculate wave properties14

based on the linear theory for waves superposed on depth-uniform currents.15

However, currents in the field are occasionally strongly sheared over the16

vertical, leading to the need for a treatment of the rotationality or shear in17

the flow field. An approximate treatment for the effect of current shear may18

be based on a perturbation approach that has been developed through a19

sequence of papers (Stewart & Joy, 1974; Skop, 1987; Kirby & Chen, 1989;20
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Ellingsen & Li, 2017), with Kirby & Chen (1989, hereafter referred to as21

KC89) providing a solution to second order for the finite depth case for22

currents that are assumed to deviate only weakly from depth-uniformity.23

The main utility of the approximate solution has been the specifica-24

tion of a depth-weighted current Ũ, specified by Skop (1987) and KC89 and25

given by (12) below, as a representative depth-uniform current for determin-26

ing intrinsic frequency and action density in spectral wave models (van der27

Westhuysen & Lesser, 2007; Ardhuin et al., 2008). As pointed out in the28

original study of KC89 and recently elaborated on by Banihashemi et al.29

(2017, hereafter BKD17), the depth weighted current Ũ does not represent30

a consistent approximation for the current contribution to the group velocity31

cga at leading order. BKD17 demonstrate the inappropriateness of the use32

of the weighted current Ũ as the current speed in the expression for absolute33

group velocity, and establish the accuracy of the alternate value Û which fol-34

lows naturally from consideration of the dependence of Ũ on wavenumber k35

when differentiating the dispersion relation to get group velocity. The accu-36

racy of this result provides a target for determining appropriate expressions37

for the group velocity for use in estimating wave action flux.38

Models for spectral wave conditions more commonly solve forN (x, t, σ, θ)39

using a spectral action balance equation, which, for Cartesian coordinates,40

is given by (Hasselmann, 1973)41

N,t +∇h · (Ncga) + (cσN ),σ + (cθN ),θ =
S

σ
(2)

where the third and forth terms represent transport in spectral space (σ, θ).42
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Expressions for these propagation speeds are taken from linear wave the-43

ory (Whitham, 1974; Dingemans, 1997) for waves superimposed on depth-44

uniform currents. The right hand side of the equation represents source and45

sink terms associated with wave generation, dissipation and nonlinear wave-46

wave interactions. The introduction to each source term included in SWAN,47

for example, can be found in Booij et al. (1999). In applications using wave48

models which take as input a single Eulerian current vector at each grid49

point from the circulation model, this approach, based on a wavenumber-50

dependent current speed, is often simplified by using the current value at the51

peak wave frequency or wavenumber, Ũ(kp) (for example, Elias et al., 2012),52

or at some weighted-average wavenumber value. BKD17 further examine the53

effect of using either the correct or incorrect estimate of the current speed54

evaluated only at the spectral peak frequency. The study suggested an al-55

ternate strategy, involving a Taylor series expansion of the depth-weighted56

current about the peak frequency, which significantly extends the range of57

accuracy of current information available to the wave model with minimal58

additional transfer of data between wave and circulation models.59

In this study, the change in the estimate of action density and action flux60

due to current shear is investigated, using asymptotic approximations of the61

Voronovich (1976) action balance equation obtained using a strong-current62

extension of the KC89 perturbation solution. In section 2, the problem for a63

linear wave in a horizontally-uniform domain with arbitrary current U(z) is64

established. In section 3 and Appendix A, KC89’s perturbation solution for65

weakly-sheared currents is modified to allow for steady currents which are66

strong and oriented at arbitrary angles to the wave propagation direction.67
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Approximate expressions for the wave action density and action flux are then68

developed following a procedure described in Appendix B. The approach is69

similar to that of Quinn et al. (2017), although our results differ signifi-70

cantly. In section 4, we evaluate the approximations for the analytic case of71

a wave on a current with constant vorticity, and establish the consistency72

of the expressions for action and action flux derived from the perturbation73

solution of KC89. Section 5 considers an application to a field case involving74

a strongly sheared vertical profile measured in the Mouth of the Columbia75

River (Kilcher & Nash, 2010). In Section 6, we extend the proposed Taylor76

series expansion of the expressions for the wavenumber-dependent approxi-77

mations about the reference value at the peak frequency, originally presented78

in BKD17, to include wave directionality and the variation in intrinsic fre-79

quency appearing in the denominator of the action density. The differences80

between our results and those of Quinn et al. (2017) are discussed in section81

7, along with suggestions for further work. A Supplement provides a num-82

ber of plots comparing action density and flux estimates based on the usual83

depth-uniform current expressions and using the surface or depth-averaged84

currents as the representative values.85

2. General theory86

We consider the linearized problem for periodic surface waves in an in-87

compressible, inviscid fluid, with wave number k and phase velocity ca =88

(ω/k)k̂, propagating on a stream of velocity U(z) in finite water depth h.89

Here, ω denotes the absolute wave frequency in a stationary frame of ref-90

erence, which also fixes the value of U(z). A unit vector pointing in the91
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direction of wave propagation is defined as k̂ = k/k. The problem is formu-92

lated in terms of the vertical component of the wave orbital velocity, written93

in complex form as94

w(x, z, t) =
w(z)

2
ei(k·x−ωt) + c.c. (3)

where c.c denotes the complex conjugate. The problem for the vertical95

structure of plane waves in a spatially uniform domain is then given by an96

extension of the Rayleigh equation to allow for an oblique angle between97

wave and current direction as well as possible rotation of the current vector98

over depth,99

σ(z)(w,zz − k2w) = σ,zz(z)w; −h ≤ z ≤ 0 (4a)

σ2(0)w,z(0)− [gk2 + σ(0)σ,z(0)]w(0) = 0 (4b)

w(−h) = 0 (4c)

where g is the gravitational constant. The quantity σ(z) = ω − k · U(z)100

represents a depth-varying relative frequency. We subsequently denote the101

values of current U(0) and intrinsic frequency σ(0) at the mean surface102

z = 0 by Us and σs, respectively. The amplitude of w may be related to103

surface displacement amplitude a through the kinematic surface boundary104

condition linearized w/r the fluctuating motion, given by105

η,t + Us · ∇hη = w(0) (5)
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with η given by106

η(x, t) =
a

2
ei(k·x−ωt) + c.c, (6)

leading to the relation w(0) = −iσsa. This result can be extended to cover107

the full water depth by introducing a dimensionless shape function f(z)108

according to109

w(z) = −iσsaf(z); f(−h) = 0, f(0) = 1 (7)

The form of (4a) is intended to indicate that the problem is simply110

solvable for the case of current profiles without curvature, or σ,zz = 0.111

The model (4a)-(4c) has been used in a number of studies of arbitrary or112

idealized velocity distributions; see reviews by Peregrine (1976), Jonsson113

(1990) and Thomas & Klopman (1997). For the general case of arbitrary114

U(z), Voronovich (1976) derived a conservation law, in the geometric optics115

approximation, for an adiabatic invariant corresponding to the wave action116

density, with N and F in (1) given by117

N = −ρ
4

∫ 0

−h

1

σ2k2
σ,zz|w|2dz + ρ

[(
g

2σ3
+

1

4σ2k2
σ,z

)
|w|2

]
z=0

(8a)

F =
ρ

4

∫ 0

−h

(
− U

σ2k2
σ,zz +

1

σk2
U,zz −

2k

k2

)
|w|2dz

+

{
ρ

[
U(

g

2σ3
+

1

4σ2k2
σ,z)−

1

4σk2
U,z +

gk

2σ2k2

]
|w|2|

}
z=0

.(8b)

These results may be written in more compact form using the substitution118
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(7), giving119

N =
E0

σs

[
1 +

σs
2gk2

(
σ,z(0)− σ2s

∫ 0

−h
σ−2σ,zzf

2dz

)]
(9a)

F =
E0

σs

[
Us + crs

(
1− σ2s

g

∫ 0

−h
f2dz

)
+

σs
2gk2

(
−A(0) + σ2s

∫ 0

−h
σ−2A,zf

2dz

)]
(9b)

where E0 = (1/2)ρga2 is the energy density for a wave on a depth-uniform120

current, crs = (σs/k)k̂ is the wave phase velocity relative to the surface121

current, and122

A(z) = σ(z)U′(z)− σ′(z)U(z) (10)

The adiabatic invariant N in (8a) or (9a) is not clearly in the form of123

wave energy divided by frequency, as expected from the work of Bretherton124

& Garrett (1968), but takes on this form in cases where analytic results for125

w̃ are available, such as the special case of waves on a current with constant126

vertical shear (Jonsson et al., 1978). Additionally, the flux vector F in (8b)127

or (9b) isn’t clearly in the form of action density times group velocity, Ncga,128

but can also be shown to be in this form for the constant shear case.129

Analytic solutions for progressive waves for the problem (4a)-(4c) are130

limited to the cases of currents with constant vertical shear, including the131

uniform-over-depth limit of zero shear. For more complex profiles, results132

may be obtained using perturbation solutions due to Stewart & Joy (1974)133

for deep water or Skop (1987) for finite depth, with solutions extended to134

second order by KC89. Shrira (1993) has further demonstrated how series135

solutions for deep water may be extended to high order. Ellingsen & Li136
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(2017) have extended the basis for perturbation solutions to include currents137

with constant shear in the leading order solution. Alternately, numerical138

solutions may be obtained using a variety of methods, including shooting139

methods (Fenton, 1973; Dong & Kirby, 2012) or an iterative approach to140

the boundary value problem described by Li & Ellingsen (2019), used below141

in Section 5.142

3. Approximate solution and analysis of action and action flux143

expressions144

KC89 considered the propagation of a wave train which was colinear with145

the mean current, and assumed that F = U/c � 1, where F represents a146

Froude number for the mean flow, U describes the current magnitude, and147

c is a reference phase speed, usually taken to be
√
gh. Here, we consider148

the case of arbitrary orientation of wave and current, and allow for strong149

currents F = O(1), in which case the current enters the wave dispersion150

relation at leading order. This generalization of the results of Skop (1987)151

and KC89 has also been described previously by Dong & Kirby (2012) and152

Ellingsen & Li (2017). The results are repeated here as a basis for discussion153

of the approximate forms for action density and flux. We also modify the154

treatment of the surface boundary condition for f(z) from prior studies in155

order to simplify numerical applications.156

3.1. Scaling framework and series solution157

An appropriate scaling of the problem and the resulting perturbation158

solution is described in Appendix A, and leads to a problem characterized159
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by parameters F (describing the strength of the current), ε (characterizing160

the magnitude of current shear), and µ (characterizing the ratio of water161

depth to wavelength). Here, we consider the case of µ, F = O(1) and ε� 1,162

which allows for the development of a formally ordered expansion in powers163

of ε. The solution to the resulting problem is carried out to O(ε) in Appendix164

A. In particular, the intrinsic frequency σ is approximated by165

σ(z) = ω − k ·U(z) = (ω − k · Ũ)− εk ·U1(z) = σ̃ + εσ1(z) (11)

where166

Ũ =
2k

sinh 2kh

∫ 0

−h
U(z) cosh 2k(h+ z)dz (12)

and U1(z) = U(z)− Ũ. The vertical velocity w is given to O(1) by167

w(z) = −iσ̃af0(z) (13)

with168

f0(z) =
sinh k(h+ z)

sinh kh
(14)

and the dispersion relation169

σ̃2 = gk tanh kh (15)

The leading-order correction to the vertical shape function f is given by170

f1(z) =
1

2σ̃
[I1(0)− I1(z)− (I2(0)/ tanh kh)] f0(z) +

I2(z)

2kσ̃
f0,z(z) (16)
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where, in contrast to KC89 or Quinn et al. (2017), we retain the homoge-171

neous part of the solution for f1(z) in order to specify a boundary condition172

f1(0) = 0, as discussed in Appendix A. The integrals in (16) are given by173

I1(z) = sinh−1 kh

∫ z

−h
k̂ ·U,ξξ(ξ) sinh 2k(h+ ξ) dξ

I2(z) = sinh−1 kh

∫ z

−h
k̂ ·U,ξξ(ξ)(cosh 2k(h+ ξ)− 1) dξ (17)

The solution for w up to O(ε) is then given by174

w̃ = −iσsa[f0(z) + f1(z)] (18)

with σs = σ̃ + σ1(0) = σ̃ − k ·U1(0) = σ̃ − k · (Us − Ũ). For later use, the175

depth dependent intrinsic frequency σ(z) can also be written as176

σ(z) = σs − k · (U(z)−Us) (19)

3.2. Approximate expressions for action density and flux177

Results presented here favor a framework where quantities are defined178

primarily in a frame moving with the velocity Ũ, with associated intrinsic179

frequency σ̃. This choice is not unique, and is often replaced by represen-180

tations based on conditions at the water surface. A particular example is181

that of Quinn et al. (2017), who developed asymptotic expressions for N182

and F by starting from (8a) and (8b) and introducing expansions for w, σ183

(or phase speed C), and for the amplitude of their w relative to surface wave184

amplitude a.185
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Here, we pursue a different approach starting from (9a) and (9b), where186

the original expressions have been simplified using the transformation (7)187

and the known properties of the problem prior to expansion. This transfor-188

mation and the simplified expressions (9a) and (9b) are still an exact de-189

scription of the original problem. In order to assess the difference between190

the two choices of reference frames, we develop a generic approximation191

which specifies neither, and then specialize it to the two frames of interest.192

The basic development of the framework is described in Appendix B, and193

leads to (B.4) and (B.18) for action density N0 and flux F0 in which a final194

choice of reference frame velocity and leading order dispersion relation has195

not been made. As in Quinn et al. (2017), the choice of surface conditions as196

a reference leads to an expression for action density containing an O(ε) com-197

ponent, where ε here is basically similar to ε5 in Quinn et al. The expression198

is given here by (B.19) or199

N ∗ =
E0

σs

[
1 + ε

(σs − σ̃)

σs

]
(20)

This expression is similar in form to (4.2) in Quinn et al. (2017), but the O(ε)200

components in the two studies do not appear to have a close correspondence.201

This is discussed further in section 7.1. In contrast, the approximation202

resulting from the choice of the depth-weighted current reference frame gives203

the estimate (B.20) or204

Ñ =
E0

σ̃
+O(ε2) (21)

This result was suggested by KC89 based on an analysis of the constant205

shear case of Section 4, but was not formally established there as a general206
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result. We note that the two formulas (20) and (21) are asymptotically207

equivalent to within the accuracy of the approximation, which can easily be208

established by substituting between σs and σ̃. However, actual numerical209

values from the two expressions are seen to diverge in particular examples,210

as will be shown for a linear shear profile in section 4 and for a wind driven211

current in section 7.1.212

It is clear, from these results, that a formulation in terms of σ̃ and Ũ213

is a more compact version of the approximation. Similar treatment for the214

action flux (B.18) leads to the expressions215

F∗ =
E0

σs

[
Û + cgrs + ε

(
Us

σs
+

k̂

k
(1−G)

)
(σs − σ̃)

]
+O(ε2) (22)

and216

F̃ =
E0

σ̃

[
Û + c̃gr

]
+O(ε2) (23)

We note the striking result that both versions of the approximate action flux217

identify Û = Ũ + k̂(k · Ũ,k) as the correct current advection velocity. The218

appearance of Û results from the treatment of the integral of the product of219

the zeroth and first order shape functions f0 and f1; see (B.13) - (B.17). The220

current Û is the vector form of the advection velocity suggested by KC89221

and discussed recently by BKD17. This result may be obtained directly222
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from the definition of group velocity,223

cga = ω,k = (σ + k · Ũ),k

= k̂σ,k + Ũ + k̂
(
k · Ũ,k

)
= cgr + Û (24)

Unlike the expressions (20) and (21) for N , the expressions for F do224

not appear to be consistent with each other to the order of approximation225

considered. An attempt to rearrange (22) to the form of (23) to within226

cancellation of O(ε2) terms leads to the result227

F∗ =
E0

σ̃

[
Û + c̃gr + ε

k̂

k
(1−G)(σs − σ̃)

]
(25)

where the remaining term at O(ε) results from the treatment of the I4 inte-228

gral in (B.11) (or the first occurrence of (1 −G) in (B.18) ), where no O(ε)229

expansion term occurs in the surface-oriented expression, whereas the O(ε)230

expansion term occurring in the Ũ-oriented expression cancels the second231

(1−G) term contributed by the integral I5 in (B.17). A similar attempt to232

work from (23) to (22) also leaves an O(ε) residual which differs from the233

one in (22).234

The results (20) and (22) for N ∗ and F∗ are expected to be far accu-235

rate representations of action density and flux than simple constructs based236

on surface or depth-averaged currents, but the relative accuracy of the two237

asymptotic approaches remains to be examined. We will take up this ques-238

tion again in sections 4 and 7.1.239
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4. Waves on currents with constant shear240

In this section, we examine the accuracy of the asymptotic expressions241

for N and F for the case of waves on a current with constant vertical shear.242

This case has been studied extensively, with the basic solution described for243

collinear propagation in one horizontal dimension (Thompson, 1949) and244

subsequently extended to two horizontal dimensions for waves oblique to245

the current (Craik, 1968; Ellingsen, 2016, among others). Ellingsen (2016)246

provides a clear description of the influence of wave orbital motion on the247

vorticity field for the case of oblique waves. Jonsson et al. (1978) gave248

expressions for the action density and flux for the 1D case of co-linear wave249

and current; the extension to the general case is given below based on the250

theory of Voronovich (1976). In this section, we determine the accuracy251

of the approximate expressions in a space covering variations of kh, F , θ252

(representing the angle between the wave direction and the surface current),253

and a shear parameter α defined below. Consider a current profile with254

constant shear (and possible rotation) given by255

U(z) = Us + Ωz (26)

The current shear Ω does not have to be collinear with either Us or k (Figure256

1). In this case, the BVP (4a-4c) simplifies and is given by257

σ(w,zz − k2w) = 0; −h ≤ z ≤ 0

σ2sw,z(0)− (gk2 − σsk ·Ω)w(0) = 0 (27)

w(−h) = 0
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The possibility of σ(z) taking on a value of zero at a critical level is258

not typically of interest in surface wave dynamics; see also Ellingsen & Li259

(2017). The solution to (27) is given by260

w(z) = −iσsaf(z) (28)

u(z) = σsa

(
1

σ
(k̂(k̂ ·Ω)−Ω)f(z) +

k̂

k
f,z(z)

)
(29)

p(z) =
ρσsa

k

(
(k̂ ·Ω)f(z) +

σ

k
f,z(z)

)
(30)

with vertical shape function261

f(z) =
sinh k(h+ z)

sinh kh
(31)

and with dispersion relation262

σ2s = (gk − σsk̂ ·Ω) tanh kh (32)

Constant current shear affects the vertical structure of wave orbital velocity263

and wave pressure by modifying the dispersion relation and twisting wave264

horizontal velocity in the current shear direction. Absolute and relative265

phase speed vectors are related by266

ca = crs + k̂(k̂ ·Us) (33)

where ca = cak̂ = (ω/k)k̂ and crs = crsk̂ = (σs/k)k̂, with subscripts s267

denoting values at the SWL z = 0. From (32), an expression for crs is given268
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by269

crs =
1

2k

[
±(4gk tanh kh+ (k̂ ·Ω tanh kh)2)1/2 − k̂ ·Ω tanh kh

]
(34)

Inserting the wave solutions in (9a) and (9b) gives exact expressions for the270

action density and flux, given by271

N =
E0

σs

(
1− k̂ ·Ωcrs

2g

)
(35)

and272

F = Ncga; cga = Us + cgrs (36)

The relative group velocity cgrs is given by273

cgrs = σs,k =
k̂[g(1 +G)crs] + [k̂(k̂ ·Ω)(1−G)−Ω]c2rs

2g − (k̂ ·Ω)crs
(37)

Turning to the perturbation solution of Section 3, we obtain results to274

O(ε) in the Ũ reference frame and compare them to the full solution to275

determine their range of validity. The weighted current Ũ is given by276

Ũ = Us −Ω
tanh kh

2k
(38)

and the corresponding flux advection velocity Û is then given by277

Û = Ũ + k̂(k · Ũ,k) = Us −
tanh kh

2k

(
Ω− k̂(k̂·Ω)(1−G)

)
(39)

with action Ñ and action flux F̃ determined by (21) and (23).278
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The % error 100(1 − Ñ/N ) for the first order perturbation approxima-279

tion of the action density (21) compared to the exact result from (35) is280

shown in Figure 2 for 0.1 < kh < 10, −π/2 < θ < π /2, relative angle β = 0281

and for different choices of current strength and shear. Additional results for282

β = π/4 and π/2 are provided as Figures C1 and C2 in the Supplement, Ap-283

pendix C. (Angles θ and β represent the orientation of k and Ω relative to the284

surface current Us, as indicated in Figure 1. Current strength is represented285

through a Froude number based on surface current speed, F = |Us|/
√
gh,286

while shear is represented by dimensionless parameter α = h|Ω|/|Us|.287

The results show a considerably improved accuracy in the predicted288

action density, compared to values constructed using other common ap-289

proaches, such as using the surface velocity Us, with N given by Ns =290

E0/σs; Figures C3 - C5 in Supplement) or depth-averaged velocity U, with291

N given by N = E0/σ, σ = ω − k · U; Figures C6 - C8 in Supplement).292

Opposing currents require a more complex calculation of blocking condi-293

tions; this limit is not crucial to the development here and deserves it’s own294

treatment in connection with wave propagation near buoyant plumes and295

other frontal features; see BKD17 for examples of the relative magnitudes296

of errors in those cases.297

An extensive comparison of the correct and approximate action flux ve-298

locities for the 1D case has been discussed in BKD17. Figure 3 shows the299

composite error of |F̃ | as a function of kh and θ for β = 0 using the first300

order perturbation approximation, with additional results for β = π/4 and301

π/2 in Figures C9 and C10 in the Supplement. Results for the same range302

of parameters using the surface and depth-average current values are shown303
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in Figures C11 - C16 in the Supplement.304

As mentioned is section 3.2, the relative accuracy of the two asymptotic305

approaches in the frame of reference based on the surface current and the306

depth weighted current remains to be examined. Figure 4 and 5 provide a307

simple comparison of equations (20) vs (21), and (22) vs (23). The compar-308

ison is done for a linear shear profile with variation of α, F and kh, with309

θ = 0 and β = 0. The gain in accuracy provided by the estimates Ñ and310

F̃ is shown, in spite of the two expressions being asymptotically equivalent311

within the accuracy of the approximation.312

5. Columbia River velocity profile313

In this section, we compare the action densities obtained from different314

approximations using a measured current profile from the Mouth of the315

Columbia River (MCR), where fresh riverine water meets salty seawater and316

the current becomes strongly sheared due to stratification and tidal effects.317

Here, we select a sample velocity profile collected by a pole-mounted ADCP318

during the RISE project (Kilcher & Nash, 2010). The profile, shown in319

Figure 6, was also used in BKD17, and represents a maximum ebb condition320

for the time frame covered by the file. The water depth is h = 25m, the321

normalized shear parameter for this current profile is α ∼ 8, which indicates322

a strongly sheared current, while the Froude number is F ∼ 0.15. The323

current profile is assumed to be unidirectional.324

We consider the case of waves propagating landward against the oppos-325

ing current. We follow a general procedure of fitting polynomials to either326

measured profiles or profiles taken from gridded model results in order to327
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establish a basis for computing weighted current values. Expressions below328

are based on the form329

U(z) = |Us|
N∑
n=0

an(
z

h
)n (40)

with current speed referenced to the surface value Us and with dimensionless330

an’s. (Note that a0 = 1 due to the normalization by the surface current331

velocity, while a1 = Ωsh/Us ∼ α, where Ωs is the current shear at the332

surface.) Calculations here are carried out using N = 6, with the fitted333

profile for the demonstration case also shown in Figure 6. For the given334

profile the coefficients in (40) are then given by335

U(z) = −2.28
(

1 + 8.22
z

h
+ 40.26(

z

h
)2 + 120.52(

z

h
)3

+197.04(
z

h
)4 + 160.36(

z

h
)5 + 50.85(

z

h
)6
)

(41)

In the absence of an analytic solution, a numerical method is used to336

solve the Rayleigh equation. In BKD17 the procedure used by Dong &337

Kirby (2012) was considered to solve the boundary value problem. The ver-338

tical velocity w(z) was found by solving a Riccati equation using a shooting339

method due to Fenton (1973), also discussed in KC89. Here, we use the340

Direct Integration Method (DIM) presented by Li & Ellingsen (2019) which341

is faster and easier to parallelize than the shooting method. The method342
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starts by rewriting (4a) - (4c) with the substitution (7) as343

(f,zz − k2f) =
σ,zz(z)

k ·∆U− kcrs
f ; −h ≤ z ≤ 0 (42a)

c2rs − crsIc(crs)− c02 = 0 (42b)

where crs is the relative wave phase speed at the surface and344

Ic(crs) =
k ·U,z(0) tanh kh

k2

+crs

∫ 0

−h

k ·U,z(z)f(z) sinh k(z + h)

k(k ·∆U− kcrs) cosh kh
dz (43a)

c0
2 =

g

k
tanh kh (43b)

f(z) = w(z)/w(0) (43c)

∆U = U(z)−Us (43d)

The DIM method treats equations (42a) and (42b) as two coupled equations345

with f and crs as the unknowns, and then obtains the numerical solution346

to the set of equations. The results are used in (8a) and (8b) to obtain347

numerical values for wave action density and flux, which are taken to be the348

reference ”exact” solutions.349

The accuracy of the first order perturbation approximation of the wave350

action density Ñ and wave action flux F̃ relative to the numerical solution351

obtained from the DIM is shown in Figure 7. The results are plotted against352

a parameter kz0 instead of kh where z0 is specifically defined assuming a353

linear profile down from the surface until the current falls to zero at depth354

z0. In this case the z0 would be z0 = Us/U
′
s(0) ∼ 3m.355
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Similar to the linear shear case, the results show improved accuracy in356

the estimate of action density compared to the common approaches using357

depth averaged or surface current values, displayed as Figures C17 - C20 in358

the Supplement.359

6. Taylor series expansion of Ñ (k) and F̃(k) about kp.360

The use of the first order correction to the group velocity Û and the more361

simplified procedure of using a single value Û(kp) instead of the frequency362

dependent form has been investigated in BKD17 for the case of co-linear363

waves and current. BKD17 suggested an alternate strategy, involving a364

Taylor series expansion about the peak frequency, which should significantly365

extend the range of accuracy of current information available to the wave366

model with minimal additional data transfer between wave and circulation367

models. Writing the components of the effective advection velocity as Û =368

(Ûi, Ûj), the Taylor expansion in component form is given by369

ÛT i(k) = Ûi(k
p) + (k− kp) · ∂Ûi

∂k

∣∣
kp

+O(|k− kp|2) (44)

where subscript T denotes the value obtained from the truncated series.370

Using the relation between Û and Ũ gives371

∂Ûi
∂k

=
∂Ũi
∂k

+
∂

∂k
(
ki
k

k·∂Ũ

∂k
)

= k̂
∂Ũi
∂k

+
ki
k

(
∂Ũ

∂k

)
+ k̂

[
ki
k

(k · ∂
2Ũ

∂k2
)

]
(45)
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The Taylor series expansion in component form is then given by372

ÛT i(k) = Ũi(k
p) +

kpi
k

(k · ∂Ũ

∂k
)
∣∣∣
kp

+
kp

k
·(k− kp)

∂Ũi
∂k

∣∣
kp

+
kpi
k

(k− kp) · ∂Ũ

∂k

∣∣∣
kp

+
kpi
k

kp

k
· (k− kp)

(
kp·∂

2Ũ

∂k2

∣∣∣
kp

)
(46)

The same approach is used to calculate the intrinsic frequency relative373

to the value at the peak wave number as374

σ̃T (k) = ω − k · Ũ
∣∣∣
kp
− kp

k
· (k− kp)(k · Ũ,k

∣∣∣
kp

) (47)

where we take advantage of the fact that the local value of ω is known for375

each frequency component.376

Returning to the case of a current with constant shear, we show results377

for the accuracy of the action density ÑT for three peak wave numbers corre-378

sponding to kph = 1, 2 and 3 in Figures 8-10, with the peak direction θp = 0,379

the current non-rotational over depth (β = 0) and a range of directions of380

±π/3. Figures C21 - C23 in the Supplement compare the action flux ap-381

proximation F̃p for the same cases. Corresponding results for action density382

Ñ for the MCR current profile are provided in Figure 11 for kph = 1 , 2383

and the directional spreading of π/5, while the comparison for the action384

flux F̃T is shown in Figures C24 and C25 in the Supplement.385

Overall, it is seen that the Taylor series approach provides a robust es-386

timate for action density and action flux, using only information about the387

depth-weighted current velocity at the spectral peak frequency. These ex-388
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pressions should be relatively simple to implement in spectral wave models,389

but implementation would require the calculation of Ũ(kp), Ũ,k(kp) and390

Ũ,kk(kp) in the circulation model using the 3D velocity field available there,391

and the passage of the three vector quantities at each grid point, rather than392

the passage of as single current velocity vector as presently implemented.393

7. Discussion and Conclusions394

7.1. Comparison to results of Quinn et al. (2017)395

Despite the similarity in approach to developing approximations for ac-396

tion density and flux in this study and that of Quinn et al. (2017), the results397

are significantly different, as revealed in a comparison of the two results for398

the analytic case of a current with constant shear. For this case, U′′ = 0399

simplifies the result for action density (4.2) in Quinn et al.. Their general400

result for action density is given by401

NQ17 =
E0

σs
(1+ ε5R1); R1 = −2I2 sinh kh− 1

c0

(
2

sinh 2kh
I3 + c1

)
(48)

we see that I2 = 0 from (4.4). Both terms 2I3(0)/ sinh 2kh, evaluated402

directly and c1 in the bracketed expression in R1 are equivalent to an ex-403

pression k̂ · Ũ as used here404

For z = 0, it is also apparent that the first term in parentheses is the405

projection of the weighted average velocity, k̂·Ũ, which follows directly from406

the definition (12) here and the expression for I3 as given in Quinn et al.’s407

(4.4). The evaluation of c1 from (C.7) is more ambiguous. If I1 is interpreted408

as usual as the starting point for the definition of Ũ after two integrations,409
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then c1 also is equal to k̂ · Ũ. This would then give an expression for N in410

our notation as411

NQ17 =
E0

σs

[
1− 2k · Ũ

σ̃
+O(ε2)

]
(49)

On the other hand, if the expression is taken literally for the constant shear412

case under development, then c1 evaluates to c1 = k̂ · (Us − (c20/2g)U,z(0)),413

which referring to (38), is again the depth-weighted current for this special414

case, giving the expression (49) again. It is clear that this expression cannot415

be correct, as NQ17 would have to reduce to E0/σs in the limit of a depth-416

uniform current, where Ũ = Us. We are thus not able to explain the417

discrepancies between our results written in terms of surface values, and the418

expressions provided by Quinn et al. (2017).419

In contrast, the result obtained in the present study can be written as420

Ñ =
E0

σs

[
1− k

σ̃
· (Us − Ũ) +O(ε2)

]
(50)

Quinn et al. go on to suggest (below their (4.4) ) that using the surface421

current in the estimate of action instead of depth-averaged current would422

be a reasonable no-cost extension in existing models. This suggestion corre-423

sponds to the results for Ns and Fs shown in the Supplement, Appendix C.424

From the results there, it is clear that the increase in accuracy afforded by425

using surface current instead of depth average current is apparent only for426

relatively short waves, whereas the proper use of the perturbation solution,427

or expansions based on that solution, is advantageous at all water depths.428

In order to examine the relative predictions of the asymptotic forms429

(20) + (22) vs. (21) + (23), and to establish a basis for comparing our error430

25



estimates to a case examined by Quinn et al. (2017), we have repeated their431

analysis of a current profile given by Wu & Tsanis (1995) and presented in432

their Section 5 and Figures 1-4. The current profile is given by433

U(z) = Au∗ ln(1 +
z

zs
) +Bu∗ ln(1− z

zb + h
) (51)

in which434

A =
q2

p1q2 − q1p2
; B = − q1

p1q2 − q1p2
q1 = (1 + zs/h) ln(1 + h/zs)− 1; q2 = zs/h ln(1 + h/zb)− 1

p1 = γzs/h; p2 = γzs/zb (52)

where zb and zs are characteristic viscous sublayer thicknesses at the bottom435

and surface respectively, and γ is a constant to characterize the intensity of436

the turbulence. The origin of the z-coordinate is located at the bottom for437

this velocity profile and the direction is upward. A lengthscale δs is taken to438

be the depth at which the current velocity falls to zero, and is used as the439

basis for a relative wavelength parameter kδs used in plots presented below440

and by Quinn et al..441

Figure 12 shows errors for action density Ñ and flux F̃ using the asymp-442

totic expressions (21) and (23) with variation of kδs and Froude number443

Us/c0. The axis has been modified to be in the same format as Quinn444

et al. (2017) figure 2 for comparison, however our Froude number is for445

a larger range 0 < Us/c0 < 1, while they have only provided results for446

0 < Us/c0 < 0.3. Profile parameters are given by zs = 2.2 × 10−4h,447
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zb = 1.4 × 10−4h, γ = 0.35 and h = 100m. The thickness of the up-448

per layer is δs = 0.34h in this case. Comparison between the results and449

the plots presented in their figure 2(a) and 2(d) demonstrate the accuracy450

gain in our approximation. Corresponding plots for our estimates N ∗ and451

c∗ga = F∗ /N ∗ based on (20) and (22) are provided in Figure 13, and show a452

marked decrease in accuracy compared to the values Ñ and c̃ga = F̃ /Ñ in453

spite of the demonstrated asymptotic equivalence of Ñ and N ∗, with errors454

based on Ñ and F̃ being up to 100 times smaller. We also note that our es-455

timates for N ∗ and F∗ in the frame of reference based on the surface current456

is by far more accurate than the results shown in Quinn et al. (2017).457

7.2. Conclusions458

The results here clearly show that leading order asymptotic expressions459

for action density and flux are both more compact and more accurate nu-460

merically when written in terms of a depth-weighted current Ũ and corre-461

sponding intrinsic frequency σ̃. The asymptotic expressions written in the462

form of (21) and (23), repeated here as463

Ñ =
E0

σ̃
+O(ε2); F̃(Û + c̃gr) +O(ε2) (53)

defer the appearance of terms which are not in the standard form for action464

and flux to second order in the small parameter ε characterizing the weak465

shear in the depth-varying current profile. They provide a relatively more466

accurate estimate of the quantities in question than corresponding asymp-467

totic forms (21) and (23) based on surface current Us when compared to468

”exact” values obtained analytically or numerically, as shown for the an-469
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alytic example of a current with constant shear in section 4, and for the470

strongly sheared profile of Wu & Tsanis (1995) in section 7.1.471

We have further extended the suggestion of BKD17 to represent current472

information using a Taylor expansion around the peak wavenumber in a473

modeled spectrum, with extensions covering the specification of action, flux474

and intrinsic frequency as well as an extension to a general 2D horizontal475

setting. These results provide an avenue for calculating wave action and476

action flux in spectral wave models, using a compact set of information477

about the current field evaluated at the spectral peak wavenumber. The478

coupling would require that the wave model accept the values Ũ, Û and479

Û,k at each grid point, and corresponding changes would need to be made480

to the specification of action density and group velocity as a function of481

frequency and direction within the wave model formulation. These are not482

huge changes, and hopefully can be implemented in the near future. The483

corresponding effects on model source terms, such as the representation of484

nonlinear interactions, is still an open area for research.485

Appendix A. Scaling and perturbation solution for the strong cur-486

rent, weak shear case487

The theoretical development in KC89 and BKD17 is based on a frame-488

work that assumes that the steady current is small compared to wave phase489

speed, with current shear and profile curvature comparably small. Here,490

we provide a scaling analysis and perturbation solution that generalizes the491

problem to the case of a strong depth-uniform current component and ar-492

bitrary current orientation in horizontal coordinates, but with deviations493
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from depth-uniformity assumed to be weak. Conceptually, the approach494

is to write the mean current vector U(z) as U0 + U1(z), where the sec-495

ond component carries the information about weak shear and rotation over496

depth. We do not make an a priori choice of how to make this split into two497

components, and, as will be seen below, the solution itself suggests that U1498

be chosen so as to have a weighted depth-average value of 0 when weighted499

according to the KC89 procedure.500

To develop the non-dimensional form of (4a) - (4c), we introduce the501

scales ω0 for frequency or inverse time, k0 for wavenumber or inverse hori-502

zontal distance, and scale vertical coordinate z by uniform depth h. Vertical503

velocity is scaled by its value at the free surface (determined by the kine-504

matic boundary condition) as505

w(z) = −iσsaf(z) (A.1)

where σs is intrinsic frequency at z = 0, a is surface wave amplitude, and506

f(z) is a dimensionless shape function. Intrinsic frequency σ is given by507

σ(z) = ω − k ·U(z) = ω − k ·U0 − k ·U1(z)

= σ0 + σ1(z) (A.2)

We define a reference phase speed c0 = ω0/k0 and use c0 =
√
gh, which fixes508

the relationship between ω0 and k0. For the monochromatic case studied509

here, we identify ω0 with ω. Finally, we scale strong depth uniform current510

U0 by U and weak current U1 by hΩ, where Ω represents the strength of511
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current shear or rotation over depth. Referring to (4a) - (4c), we intro-512

duce dimensionless parameters σ′ = σ/ω0 and k′ = k/k0. The resulting513

dimensionless problem (with primes dropped) is then given by514

σ(z)(f,zz − k2µ2f) = εσ1,zzf ; −1 ≤ z ≤ 0

σ2sf,z(0) = k2 + εσsσ1,z(0) (A.3)

f(0) = 1; f(−1) = 0

with515

σ(z) = σ0 + εσ1(z) = (1− Fk ·U0) + ε(−k ·U1(z)) (A.4)

Dimensionless parameters are µ = k0h = O(1), F = U/c0 = O(1), and516

ε = µΩ/ω0 � 1, where µ is the usual dispersion parameter resulting from517

scaling depth by h and horizontal distance by k−10 , F is a Froude number,518

and ε� 1 is a small parameter characterizing current shear. (The alternate519

approach employed by Ellingsen & Li (2017), where shear is allowed to be520

strong but curvature weak, would employ the regime F, ε = O(1), with a521

new small parameter required to characterize the weak curvature.)522

Following KC89, we next solve the system (A.3) using a regular pertur-523

bation expansion524

f(z) =

N∑
n=0

εnfn(z). (A.5)

with fn(−1) = 0. In contrast to KC89, we take f0(0) = 1 to satisfy the entire525

surface boundary condition for f , giving homogeneous conditions fn(0) = 0526

for n > 0. Introducing (A.4) and (A.5) in (A.3) and sorting by powers of ε527
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gives the governing equations and surface boundary conditions528

σ0
(
fn,zz − k2µ2fn

)
= Hn(z) (A.6)

σ20fn,z(0) = Sn (A.7)

At n = 0, we have H0 = 0, S0 = 1, and we get the solution529

f0(z) =
sinhµk(1 + z)

sinhµk
(A.8)

with530

σ20 =
k tanhµk

µ
(A.9)

which is the usual solution for waves on a depth uniform current. For higher531

orders n ≥ 1, use of Green’s law for f0 and fn leads to a solvability condition532

∫ 0

−1
f0Hndz = Sn (A.10)

At n = 1, the leading order at which current shear has an effect, we have533

H1(z) =
σ1,zz
σ0

f0(z); S1 =
σ1,z(0)

σ0
− 2k2σ1(0)

σ30
(A.11)

Using (A.11) in (A.10) leads, after cancellations, to the identity534

∫ 0

−1
σ1(z) cosh 2µk(1 + z)dz = −k ·

∫ 0

−1
U1(z) cosh 2µk(1 + z)dz = 0 (A.12)
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But U1 = (U−U0)/ε, which, when substituted in (A.12), gives the result535

U0 = Ũ =
2µk

sinh 2µk

∫ 0

−1
U(z) cosh 2µk(1 + z)dz (A.13)

where Ũ is the depth-weighted current from KC89, extended to allow for536

F = O(1) and arbitrary direction relative to the wave direction. We thus537

have the leading order expression for intrinsic frequency σ0 = σ̃ = 1−Fk·Ũ,538

with leading order dispersion relation539

σ̃2 =
k tanhµk

µ
(A.14)

The expression for phase speed ca in a fixed frame is given by540

ca =
ω

k
=
σ̃

k
+ Ũ +O(ε2) (A.15)

with no further correction to phase speed at O(ε). Equations (A.6) - (A.7)541

may then be solved for f1(z) following the procedure in KC89, giving the542

result543

f1(z) =

[
A1 +

1

µk

∫ z

−1
H1(ξ)f0,ξ(ξ) dξ

]
f0(z)

+

[
B1 −

1

µk

∫ z

−1
H1(ξ)f0(ξ) dξ

]
f0,z(z) (A.16)

with the coefficients A1 and B1 of the homogeneous solution resolved by544

applying the boundary conditions f1(0) = f1(−1) = 0. Dimensional forms545

of the results are given in Section 3.1.546
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Appendix B. Approximations for weak current shear547

Starting with the expressions (9a) and (9b) for action density and flux,548

we develop expansions in powers of ε consistent with the approach in Ap-549

pendix A. In (9a) and (9b), explicit appearances of σs and Us occur due to550

the satisfaction of the surface boundary condition and the transformation551

(7). We assume these should be common to all versions of the expansion that552

follows. Subsequently, we express f(z) as in (A.5) and use (14) and (16).553

We then introduce an arbitrary version of the depth uniform current and554

resulting intrinsic frequency, U0 and σ0, as representations of the leading555

order solution,556

U(z) = U0 + εU1(z)

σ(z) = σ0 + εσ1(z) (B.1)

where σ0 = ω−k·U0 and σ1 = −k·U1 = −k·(U−U0), and with associated557

dispersion relation558

σ20 = gk tanh kh (B.2)

After some simplification of the resulting forms of N and F , we obtain559

approximate forms consistent with the present derivation through the choice560

U0 = Ũ and σ0 = σ̃. We also develop an alternate version based on the561

choice U0 = Us and σ0 = σs, which leads to expressions for action and562

flux defined in terms of surface variables, as in Quinn et al. (2017). It was563

our initial expectation that this procedure should reproduce the results in564

Quinn et al. (2017), which are described as being based on the approximate565
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wave-current formulation here and in KC89, but we have not been able to566

reproduce the results given by Quinn et al. (2017), as discussed in Section567

7.1.568

Substituting the expressions (B.1) and the expansion for f(z) into the569

formulae (9a) and (9b) and retaining terms to O(ε) leads to the generic570

version of the expansion, where any remaining occurrences of frequency or571

current are expressed in terms of σ0 and U0. During this process, expres-572

sions occurring in terms of O(ε) may be manipulated by choosing σ0 = σs573

or σ̃ freely, since transformations between these quantities would occur at574

O(ε2). In contrast, occurrences of σ0 in O(1) terms must retain the im-575

plied ambiguity, as it’s resolution would occur within the accuracy of the576

approximation.577

Proceeding with (9a) for the action density, we note that the integral578

term is of O(ε), since σ′′ = εσ′′1 for any choice of reference frame. Recognizing579

that σs/σ0 = 1 +O(ε) for any choice of reference frame making σ1 small, we580

obtain the approximate expression581

N =
E0

σs

[
1 + ε

σs
2gk2

(
σ1,z(0)−

∫ 0

−h
σ1,zzf

2
0dz

)]
+O(ε2) (B.3)

The expression in the interior parentheses may be integrated immediately,582

and we obtain the approximation583

N0 =
E0

σs

[
1 + ε

σs
σ20

(σs − σ̃)

]
+O(ε2) (B.4)

where the single appearance of σ0 results from a resolution of the combina-584
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tion gk tanh kh.585

Turning to the expression for action flux (9b), we note that the first586

integral term involving f2 occurs at leading order, and thus the ambiguity of587

the value of σ0 must be retained there. We proceed as before by substituting588

the expansions (B.1). The expression A(z) may be expanded as A = A0 +589

εA1 +O(ε2), and we find that A0 = 0 and590

A1(z) = σ0U1,z −U0σ1,z (B.5)

so that the integral involving A,z is reduced to591

σ2s

∫ 0

−h
σ−2A,zf

2dz = ε
σ2s

σ2s +O(ε)

∫ 0

−h
A1,zf

2
0dz +O(ε2) (B.6)

The entire bracketed expression involving A in (9b) is then evaluated as592

ε

[
−A1(0) +

∫ 0

−h
A1,zf

2
0dz

]
= −ε k

sinh2 kh
I3 (B.7)

where593

I3 =

∫ 0

−h
A1(z) sinh 2k(h+ z)dz (B.8)

The integral of f2 is expanded to give594

∫ 0

−h
f2dz = I4 + 2εI5 +O(ε2) (B.9)

with595

I4 =

∫ 0

−h
f20dz; I5 =

∫ 0

−h
f0f1dz (B.10)

35



and with f1 given by (16). The resulting expression for the approximation596

F0 is then597

F0 =
E0

σs

[
Us + crs

(
1− σ2s

g
I4

)]
− εE0

σs

[
crs

2σ2s
g
I5 +

σs
σ20 sinh 2kh

I3

]
(B.11)

Integrals I3 and I4 are given to the required order by598

I3 = sinh 2kh
[
σ0(Us − Ũ) + U0(σ̃ − σs)

]
I4 =

g

2σ20
(1−G); G =

2kh

sinh 2kh
(B.12)

The expression for I5 is complex, and is given after some initial effort by599

I5 =
1

4σ̃ sinh2 kh

[
G cosh2 kh

k
I2(0)− I6

]
(B.13)

where (from (17) )600

I2(0) = 2 sinh2 kh(k̂ ·U,z(0)) + 2 sinh 2kh(σs − σ̃) (B.14)

and601

I6 =

∫ 0

−h
k̂ ·U,zz(z)(h+ z) sinh 2k(h+ z)dz (B.15)

An expression for I6 is obtained by first expressing Ũ in terms of U,zz using602

two integrations by parts, differentiating the resulting expression with re-603

spect to wavenumber k, and taking the dot product with the unit wavenum-604
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ber k̂ to obtain (after rearrangement)605

I6 = sinh 2kh

[
k · Ũ,k + hk̂ ·U1,z(0) +

1

k

(
(1−G) + 2G cosh2 kh

)
(σs − σ̃)

]
(B.16)

Using (B.14) and (B.16) in (B.13) leads to a relatively compact expression606

for I5 given by607

I5 = − 1

2σ̃ tanh kh

[
k · Ũ,k +

1

k
(1−G)(σs − σ̃)

]
(B.17)

Using the results for I3, I4 and I5 in (B.11) leads finally to608

F0 =
E0

σs

[
Us + crs

(
1− 1

2

(
σs
σ0

)2

(1−G)

)]

+ε
E0

σs

[
σ3s k̂

σ̃σ20

(
k · Ũ,k +

1

k
(1−G)(σs − σ̃)

)
−σs
σ20

(
σ0(Us − Ũ) + (σ̃ − σs)U0

)]
(B.18)

From this point, the resolution of the expressions for N0 and F0 involves609

the choice of σ0. Following the procedure of referencing all quantities to610

surface conditions leads to an expression for N0 given by611

N ∗ = N0(σs) =
E0

σs

[
1 + ε

(σs − σ̃)

σs

]
+O(ε2) (B.19)

This result is similar in form to that in Quinn et al. (2017), equation (4.2),612

but there is no clear relation between the residual O(ε) terms in the two613

results, as discussed further in Section 7.1.614

Taking the alternate approach of referencing quantities to the frame615
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moving with speed Ũ leads to the expression616

Ñ = N0(σ̃) =
E0

σ̃
+O(ε2) (B.20)

where all information about the approximation within the order of accuracy617

is contained in the simple ratio of E0 and σ̃.618

The same process applied to F0 in (B.18) leads to the expressions619

F∗ =
E0

σs

[
Û + cgrs + ε

(
Us

(
σs − σ̃
σs

)
+

k̂

k
(1−G)(σs − σ̃)

)]
+O(ε2)

(B.21)

and620

F̃ =
E0

σ̃

[
Û + c̃gr

]
+O(ε2) (B.22)

where cgrs and c̃gr are relative group velocities (defined in the usual sense621

for a depth uniform current) relative to the surface and depth weighted622

velocities respectively.623
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Figure 1: Definition sketch for linear shear current. The angle between the surface velocity
and wave direction is θ while the angle between the surface current and current vertical
shear is β
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Figure 2: % error in wave action density 100(1−Ñ/N ): linear shear with variation of kh
and θ, first order perturbation approximation, β = 0.
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Figure 3: % error in wave action flux 100(1 − |F̃ |/|F |): linear shear with variation of kh
and θ, first order perturbation approximation, β = 0.
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Figure 4: Comparison of action density estimates: linear shear with variation of kh, with
θ = 0 and β = 0. Dashed dotted lines indicate Ñ/N using the asymptotic expression
(21) in the frame of reference based on the depth weighted current, dashed lines indicate
N ∗/N using the asymptotic expression (20) in the frame of reference based on the surface
current.
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Figure 5: Comparison of action flux: linear shear with variation of kh with θ = 0 and
β = 0. Dashed dotted lines indicate F̃/F using the asymptotic expression (23) in the
frame of reference based on the depth weighted current, dashed lines indicate F∗/F using
the asymptotic expression (22) in the frame of reference based on the surface current.
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Figure 6: Columbia River current profile during ebb tide. The solid line is measured data
(Kilcher & Nash, 2010) and the dashed line is a 6th order polynomial fit to the data.

Figure 7: % error in wave action density 100(1 − Ñ/N ) (left) and wave action flux
100(1 − |F̃ |/|F |) (right): MCR current profile with variation of kz0 and θ, first order
perturbation approximations (21) and (23).
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Figure 8: % error 100(1−ÑT /N ) in wave action density ÑT for the Taylor series expansion
about the peak wavenumber kp with k∗ = k/kp: Constant shear current, kph = 1, β = 0.
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Figure 9: As in Figure 8: Constant shear current, kph = 2, β = 0.
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Figure 10: As in Figure 8: Constant shear current, kph = 3, β = 0.

Figure 11: As in Figure 8: MCR current profile, kph = 1 (left) and kph = 2 (right), β = 0.

50



Figure 12: % error in estimates in action density Ñ (left) and group velocity c̃ga (right),
estimates for the case of Wu & Tsanis (1995) profile using the asymptotic expressions (21)
and (23) in the frame of reference based on the depth-weighted current Ũ.

Figure 13: % error in estimates of action density N ∗ (left) and group velocity c∗ga (right),
estimates for the case of Wu & Tsanis (1995) profile using the asymptotic expressions (20)
and (22) in the frame of reference based on the surface current.
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