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Abstract— In this paper, an accelerometer and gyroscope
are used to sense gesture commands, which are then classi�ed
using a logistic regression model. Seven gestures were chosen
and mapped to speci�c behaviors that a �xed wing unmanned
air vehicle could accomplish. These behaviors speci�ed various
searching, following, and tracking patterns that could be used in
a dynamic environment. The system was trained to recognize
the seven gestures and then tested in a hardware-in-the-loop
simulation. The system was able to identify all gestures with
an overall accuracy of 90% and with �ve of the seven gestures
being accurately identi�ed at least 94% of the time. Each of the
behaviors associated with the gestures was tested in simulation
and the ability to dynamically switch between behaviors was
proven. The results show that the system can be used as a
natural interface to assist an operator in directing an unmanned
air vehicle's behaviors.

I. I NTRODUCTION

The usage and applications of Unmanned Aerial Vehicles
(UAVs) have grown immensely in recent years as a result of
decreasing prices and increasing controllability and versatil-
ity. However, UAV operation continues to require continual
monitoring, close attention, and training. As a result, UAV
operators are typically focused exclusively on manually
piloting their UAV and relaying necessary information from
the UAV to those around them. This research seeks to
reduce the complexity of UAV operations by developing
high-level algorithms that enable UAVs to autonomously
perform behaviors with minimal guidance from an operator.
Additionally, we seek to reduce the attention burden on a
UAV operator by developing an interface that is capable of
intuitively directing UAV actions with minimal interruption
to other tasks the operator may be performing.

Consider a UAV operator who is attempting to walk
through an area while avoiding hostile targets. Using the
traditional method of UAV operation, a two joystick con-
troller and image data being streamed from the UAV, the
operator can only focus on either �ying the UAV or walking
through the area. Attempting to simultaneously walk while
�ying the UAV can lead to suboptimal UAV behavior and a
distracted operator. This paper develops a method of reducing
the complexity required for operators to work together with
a UAV.

In addition to the concentration requirement mentioned
above, the traditional method of controlling UAVs with two
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joysticks requires training and an understanding of UAV
dynamics. Both take time and resources to obtain. This has
led to investigations of more intuitive control interfaces.
Some of these interfaces have used verbal commands [1]–
[3], eye-tracking [4]–[6], and physical model manipulation
[7] to control UAVs.

This project uses gesture commands to send desired be-
havior objectives to a UAV. The use of gestures has been
shown in [8] and [9] to be an intuitive method that is easy
for human operators to understand. In both of those studies,
a human pilot and UAV worked together to imitate a vision-
based control scheme where a participant would gesture to
direct the UAV. The pilot would �y the UAV based on what
he felt the gesture represented. Although the participants
were aware the UAV was actually being manually controlled,
they reported that commanding the UAV in this manner was
natural and not physically or mentally demanding.

Actual implementation of gesture based controllers have
used various sensing instruments, namely on-board cameras,
off-board stereo vision, touchpads, electromyograph sensors,
and accelerometers. In [10] and [11], a camera on board
the UAV is used to detect human movements and respond
to commands. This approach is attractive since there is no
need for electronic communications between the operator and
UAV but is limited in range since the UAV needs to be able
to see the gestures.

In [12] and [13], a Leap Motion Controller was used to
detect an operator's commands. The Leap Motion Controller
is a sensor that is able to detect 3 dimensional hand gestures
using stereo vision and IR LEDs [14]. This capability has
been used to build paths by selecting �ight segments [12]
and to instruct a UAV to takeoff, land, or perform a �ip [13].
The commercial availability of the Leap Motion Controller
offers a relatively quick and simple way to implement gesture
control, but its design makes it dif�cult to use when the
operator is walking.

A touchpad was also used to detect touch gestures consist-
ing of taps and swipes in [15]. This study had participants
control a UAV and a gimbaled camera using both the tra-
ditional two joystick method and touch gestures. The major
contribution of this study was the abstraction of the combined
UAV and camera dynamics. Instead of iteratively moving
the UAV and camera to reach the desired orientation, all
commands were interpreted as being relative to the camera
�eld of view and then automatically remapped to provide the
individual commands for the UAV and camera. The results
indicated that while both the joystick and touch gestures
methods were able to complete the assigned tasks, the touch
gesture method reduced the workload on the operator since
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they only needed to worry about the higher level task they
were supposed to accomplish.

Electromyography (EMG) sensors that detect the electrical
impulses in muscles have also been used to control UAVs
via hand gestures in [16] and [17]. In [17], a controller is
implemented where the UAV can be commanded to takeoff,
land, move forward, backward, left, or right depending on
the hand gesture made. Additionally, magnetometer and
gyroscopic measurements are used to distinguish directions
and eliminate noise from non-gesture movements. A similar
command scheme is used in [16] except the user is control-
ling a group of robots by either directing a leader or issuing
instructions to the full group.

The �nal common method for detecting gestures is the
use of devices worn on a user's body that measure motion.
In [18], a three-axis accelerometer is used to detect the
orientation of the user's hand and command the UAV to
move forward, backward, left, or right depending on that
orientation. This device was primarily tested to assist users
with limited mobility who may be unable to properly operate
the joysticks of a typical controller. The accelerometers in
wearable smart devices were used in [19] to detect steps and
to give commands such as ”gain altitude”, ”lose altitude”,
and ”take a picture”.

While all of the alternative control schemes simplify
the training needed to operate a UAV, they still require
an operator's undivided attention. Generally, the operator
provides low-level commands to the UAV such as move
forward, backward, turn, land or takeoff. These commands
all require that the UAV operator be aware of the location and
attitude of the UAV. Additionally, UAVs are unable to execute
their desired behavior without constant operator attention.

This paper examines a user protection mission where a
UAV is used to scout ahead, track discovered targets, circle
the operator at various distances, and search a bounded area
as directed by an operator. A gesture controller was designed
and prototyped which allows the operator to send these
high-level behaviors to the UAV without needing to divert
attention from their other tasks. As mentioned above, the
use of gestures to control UAVs has been shown to reduce
the strain on an operator. The contribution of this paper is to
show that UAV commands can be further abstracted to enable
the UAV to execute behaviors with minimal guidance.

We discuss the framework developed to test the ges-
ture controller and explain the gesture controller hardware,
simulation environment, UAV behaviors, and path planning
algorithm in Section II. Simulation results are shown in
Section III and conclusions are presented in Section IV.

II. M ETHODOLOGY

The detailed explanations of the gesture controller, UAV
behaviors, and simulation are described in the following
subsections.

A. Gesture Controller

A prototype gesture controller was designed and built
using an Arduino Nano and an MPU-9250, a 9-axis inertial

(a) Gesture controller as worn
while in use.

(b) Gesture controller hard-
ware.

Fig. 1: The gesture controller as worn when attached to
the glove. The Arduino board is the longer board closer to
the wrist, while the IMU is the shorter board closer to the
knuckles.

measurement unit (IMU) consisting of an accelerometer,
gyroscope, and compass. The electrical components were
placed on protoboard and attached to the back of a glove (see
Figure 1). As a result of the limited computing capabilities
of the Arduino Nano, it was used only to communicate
data from the IMU to the computer running the simulation.
The accelerometer and gyrosocope measurements for each of
their 3 axes were reported at a rate of approximately 100 Hz
using an I2C connection between the IMU and the Arduino
and serial communication over USB between the Arduino
and the desktop computer.

The gesture controller was used to collect data for 7
different hand and arm motions which are shown in Figure 2
and described as follows: 1) a sweeping side to side motion
in front of the operator with the palm facing down, 2) a
repeated chopping or pointing motion made with the palm
vertical, 3) a small counter-clockwise circle made with the
palm down, 4) a large counter-clockwise circle made with
the palm down, 5) a repeated waving motion in front of the
operator with the palm vertical, 6) an `X' pattern traced in
the air in front of the operator, and 7) an up-down motion
or �st pump over the operator's head. These gestures were
chosen because they are periodic and do not have determined
start or stop locations. This simpli�es recognizing commands
since the operator does not need to coordinate the start of
the gesture with the moment the gesture controller starts
recording data. Additionally, the gestures are unique and can
express rough ideas such as direction, circling, and size. The
speci�c behaviors triggered by each gesture can be found in
Section II-B.

We used a logistic regression to identify the gestures based
on the frequency data calculated from the combined six axes
of the accelerometer and gyroscope. Data is collected from
all six axes and transmitted to the off board computer, via
the Arduino Nano, at a rate of 100 Hz. For training data, 3
minutes of data for each gesture was collected in 1 minute
periods with an author performing each gesture repeatedly.
The data was continually passed from the Arduino to an
offboard computer and recorded using MATLAB. The mean
� and standard deviation� were then found for each each
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(a) Sweeping mo-
tion

(b) Chopping or
pointing motion

(c) Small or large
circling motion (d) `X' pattern (e) Up and down

motion or �st pump (f) Waving motion

Fig. 2: The different gestures that were used with the gesture controller.

axis, and the data was normalized such that [20]

x0 =
x � �

�
: (1)

This mean and standard deviation was saved and used to nor-
malize the data for gesture prediction during the simulations.

The training data was then split into 1 second segments
with a rolling window so that each window was offset by one
sample. Using the rolling window allows the periodic nature
of the gestures to be leveraged and increases the training data
set. In the end, these 1 second raw data segments consisted of
100 raw acceleration and angular velocity data points along
the combined six axes.

Each axis of the raw data segment was transformed to
the frequency domain using a Fast Fourier Transform (FFT).
The amplitudes of all six axes were concatenated together
and comprised one set of data that was fed into the logistic
regression. From the generated data, 85% was used to train
the logistic regression and the remaining 15% was used to
validate the model.

B. Behavior Commands

As mentioned, each gesture is mapped to a unique behav-
ior or task that the UAV executes. The behaviors are 1) search
a wide area in front of the operator, 2) search a deep area
in front of the operator, 3) search in a small circle around
the operator, 4) search in a large circle around the operator,
5) search the entire area, 6) track targets, and 7) search the
entire area while tracking targets. Each of these behaviors
correspond to the respective gestures in Section II-A.

1) Search Behavior:The area search reward function
incentivizes UAVs to visit unexplored areas. The reward
function utilizes a grid pattern ofi equally spaced grids, each
with a rewardJg. The reward corresponds to a probability
that the grid cell contains a target. When the center of a grid
cell falls within the sensing radius of the UAV, it is assumed
that the UAV was able to see the whole grid cell and detect
any targets that were within it. The UAV is rewarded by the
summation of all grid cell rewards seen during that timestep.

The grid cell values are updated as follows. If the grid cell
was seen during that timestep, thenJ i = 0 . If the grid cell
was not seen during that timestep, then the value is updated
such that [21]

J i [n + 1] = Jg � (Jg � J i [n]) e� t
 (2)

wheren is the current timestep,n + 1 is the next timestep,
t is the length of time since the the grid cell has been seen,
and 
 is a constant that describes how fast the value of the
grid cell returns after being seen.

For the deep area search and wide area search behaviors,
the UAV is instructed to only search the grid cells whose
centers lie within a certain triangular area in front of the
operator. The area is de�ned by an angle� and a distancer
such that the points of the triangle are the operator's location,
a point r meters in front and� degrees to the left, and a
point r meters in front and� degrees to the right of the
operator. These search areas are both relative to the heading
of the operator and so will translate and rotate as the operator
changes location and orientation.

If the UAV is outside of this area when commanded to
do a deep or wide area search, or if the operator turns such
that the UAV is no longer in the area, the UAV uses a PID
controller to �y towards the midpoint of the search area.
Once the UAV's position is within the search area, it stops
using the PID controller and returns to maximizing the search
reward.

2) Loiter Behavior: The two loiter behaviors have the
UAV continually circle around the location of the operator.
The operator's location is assumed to be measured by GPS
and transmitted to the UAV such that it always knows the
operator's current position. Given the location of the operator
c, the location of the UAVp, the current heading of the UAV
� , the desired loiter radius� , and the distance between the
operator and UAVd, the desired course heading for the UAV
can be calculated [22] as

� C = � + �
�

�
2

+ tan � 1
�

korbit

�
d � �

�

���
; (3)

where

� = arctan 2 ( pe � ce; pn � cn ) + 2 �m;

with m 2 N such that� � � � � � � �:
The parameters� and korbit are used to de�ne the loiter

circle and transition to into a circular orbit. A value of� =
1 indicates the UAV will circle in a clockwise orbit while
a value of � = � 1 indicates it will circle in a counter-
clockwise orbit. The valuekorbit > 0 de�nes the rate at
which the UAV will transition from a straight line path to
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a circular orbit as the UAV approaches the desired loiter
location. Finally, the radius� is set before the simulations
begins and is constant throughout the duration.

3) Target Tracking:When target positions fall within the
sensing radius of the UAV, the UAV is able to obtain noisy
range and bearing measurements that describe the target's
location relative to the UAV.

The state for targetm at time stepn is given byxm [n] =
[Nm [n]; Em [n]; _Nm [n]; _Em [n]]T with estimated state values
denoted byx̂m [n] where N and E are the north and east
positions, respectively. In this simulation, we assume that
each target obeys a nearly-constant velocity model and
update our estimated position of targets with an extended
Kalman �lter. To calculate the total information gained by
the UAV, the information matrixI = P � 1, whereP is the
target's error covariance, is calculated before and after the
estimated target position is updated. The total information
gained for each target is then [21], [23]

JT = ln jI [n]j � ln jI [n � 1]j: (4)

4) Combined Searching and Tracking:The combined
searching and tracking behavior follows the same principles
referred to in Sections II-B.1 and II-B.3 where reward is
gained for grid cells and targets seen. The only difference is
that in the combined version, the rewards for each of these
individual behaviors are directly added. This incentivizes the
UAV to search out as much area as possible while still
keeping the target within its sensing radius. Additionally,
if the uncertainty in the target's position is low enough,
the UAV may stop observing the target to instead check
areas where additional, unseen targets may be located. The
behavior is primarily in�uenced by setting the the max grid
cell value,Jg, prior to the mission beginning where a higher
value prioritizes the search behavior.

C. Simulation

The simulated environment consists of targets, grid cells,
an operator, and a �xed wing UAV. The targets are modeled
on vehicles travelling on real world road networks. The road
networks were based on maps from OpenStreetMap [24]
and used with Simulation of Urban Mobility (SUMO) [25]
to create realistic driving patterns. The actual positions and
headings of each target are indicated by a red `x' and arrow,
respectively.

The grid cells indicate discrete areas where targets have
a possibility of existing. As mentioned, grid cells start will
a certain value that correlates to a probability that a vehicle
exists inside the cell. When the UAV is able to see the center
of a grid cell its reward value drops to zero. If a grid cell has
not been seen by a UAV the cell value gradually increases
according to Equation 2.

The operator's position and heading are indicated by a
black `x' and arrow, respectively. Both these values are
assumed to be measured by GPS and communicated to
the UAV so that it always knows the operator's current
position. The operator is assumed to be a person walking at
approximately 1 m/s and is not constrained to a road network.

Fig. 3: A representation of the constant data in the sim-
ulation. The underlying road network can be see as well
as the target paths (red), the operator path (black), and the
boundaries (dashed blue).

The UAV position and heading are indicated by a small
blue circle and arrow, respectively. Additionally, a large,
dashed circle indicates the sensor footprint. It is assumed
that the UAV is able to measure all targets and grid cells
that fall within its footprint It is assumed thet the UAV �ies
at a constant altitude.

Depending on the behavior assigned to the UAV, there are
two possible control schemes for determining its path. The
�rst method is an orbit following path as described in Section
II-B.2. This method is used for the two loiter behaviors and
de�nes a course heading that points towards the center of
the loiter when the UAV is far from the desired location,
and is tangental to the desired loiter when the UAV is close
to the desired location. A PID controller is used to adjust the
roll angle so that the UAV heading matches the calculated
heading.

The second method is a rollout method based on a
receding horizon control. In this method, the possible UAV
bank angles are discretized into three potential options: a
full left bank, a full right bank, or no bank. The rollout
policy works by initializing a set number of paths using an
exhaustive search consisting of all possible combinations of
left, right, and no turns. Once the desired number of paths are
initialized, each path expands out to the time horizon using
an exhaustive search algorithm where the three possible next
steps are simulated and the step that is predicted to give the
highest reward from the search and/or tracking behaviors is
chosen. Once all paths have been expanded out to the time
horizon, the path with the highest expected overall gain is
chosen and the UAV begins travelling down that path.
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TABLE I: A confusion matrix showing the number of performed gestures and the number of gestures identi�ed by the
logistic regression model. Although the Small Circle gesture proved dif�cult for the model to identify, the remainder of the
results show good performance.

Actual Gestures
Sweep Point Small Circle Large Circle Wave X Pattern Fist Pump

Predicted Gestures

Sweep 43 1
Point 1 50 11 1
Small Circle 28
Large Circle 2 11 47
Wave 50
X Pattern 4 1 47
Fist Pump 3 50

When the simulation is running, the gesture controller
only transmits data when instructed to do so in order
to reduce computation requirements and avoid unintended
gesture commands. When the operator wants to change the
behavior assigned to the UAV, a keypress triggers a �ag
that alerts the MATLAB code to listen for data from the
Arduino and interpret the gesture. The data is recorded,
normalized, transformed to the frequency domain, interpreted
using the logistic regression model, and the UAV task is
updated according to the classi�ed gesture.

III. S IMULATION RESULTS

In this section, we discuss the results obtained by testing
the gesture controller accuracy and by running hardware-in-
the-loop simulations to verify the individual UAV behaviors.
Finally, the results of a simulation where varying behaviors
were commanded is discussed. The parameters used in each
simulation are listed in Table II.

TABLE II: A list of the parameters used for each behavior.
The target tracking behavior has no con�gurable parameters.

Behavior Parameter Value

Wide Search r (Search Depth) 800 m
� (Search Angle) 60°

Deep Search r (Search Depth) 100 0m
� (Search Angle) 45°

Small Loiter � (Radius) 100 m
� (Direction) 1 (Clockwise)

Large Loiter � (Radius) 800 m
� (Direction) 1 (Clockwise )

Full Area Search Jg (Grid Value) 40

 (Growth Rate) 1/5000

Combined Search and Track Jg (Grid Value) 40

 (Growth Rate) 1/5000

A. Gesture Testing

When in use during the hardware-in-the-loop simulations,
120 samples or 1.2 seconds of data are collected from the
each axis of the accelerometer and gyroscope while the
gesture is being performed. The data is then divided into
segments 100 samples long using a rolling window with each
segment offset by �ve samples. The data was normalized
using the mean� and standard deviation� of each sensor
axis, which were calculated and recorded during the training
phase. Each individual axis of each segment was transformed
into the frequency domain using an FFT and the amplitudes
of these transformations were all concatenated together. With

the offset and rolling window, a total of �ve vectors were
created. Each of these were evaluated using the logistic
regression model and the gesture that was identi�ed the most
from the �ve data sets was chosen. The use of �ve data sets
creates redundancy to reduce the impact of noise while only
slightly increasing the time needed to input a gesture.

The training and veri�cation data showed a high degree
of accuracy when training the model, 99.87% and 99.85%
respectively. Additionally, testing was done to validate that
gestures could be performed, measured, and identi�ed live
with high accuracy. In order to test this, a single gesture was
performed repeatedly while the 1.2 seconds of data were
gathered. The predicted gesture for each of the 5 data sets
was recorded as well as the actual gesture that was being
performed. This process was repeated for each of the 7
gestures to conclude one round of data collection. Overall,
this process was repeated 10 times so that each of the 7
gestures were classi�ed 50 times. The actual and predicted
gestures were then compiled into a confusion matrix (Table
I) to determine the accuracy of the gesture controller and the
similarity of the various gestures.

Overall, the gesture controller was able to correctly iden-
tify the gestures with good accuracy. The one gesture of
note is the Small Circle gesture which was only correctly
identi�ed 56% of the time. 22% of the time, the gesture
was misinterpreted as the Large Circle gestures which is
understandable given that the gestures have the same basic
pattern. The other 22% of the time, the gesture was mistaken
to be the Point gesture, although the similarities with the
Point gesture are less clear. The inclusion of both the Small
Circle and Large Circle gestures were to test the ability of
the gesture controller to additionally measure a parameter
of the gesture being performed, in this case the radius of
the circle. These results show that measuring parameters is
possible but a more sophisticated model, such as a Recursive
Neural Network, is likely needed in order to achieve high
accuracy.

For the remainder of the gestures, the accuracy is high
enough for practical use. Additionally, because enough data
is gathered to perform 5 predictions, a level of protection is
added against false identi�cations. As long as there are no
more than 2 incorrect predictions, the gesture controller will
still be able to, overall, correctly identify the gesture. These
results show that the gesture controller is able to identify
the main gestures although more advanced models would be
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useful to identify small differences in gestures.

B. Behavior Testing

There were 7 different simulations run to test the gesture
controller and each individual behavior. All simulations were
run on the same map, for a simulation time of 300 seconds,
with the starting positions of the targets, UAV, and operator
being the same. Additionally, the paths of the targets and
operator did not change between the simulations (as shown
in Figure 3). The starting location of the operator and UAV
were such that they were both in close proximity to each
other and to one of the targets so that the track target behavior
could be performed without needing the UAV to �rst happen
across a target.

For these simulations, the UAV was initialized with the
small loiter behavior prior to the simulation being run.
Approximately 30 seconds into each simulation, one of the 7
behaviors was then commanded using the gesture controller
and the UAV performed that behavior for the duration of the
run. The paths of the targets, operator, and UAV for each
simulations are shown in Figure 4. Note that the �gures have
been cropped to better show the movement of the UAV.

1) Wide Search:The �rst behavior, a wide search of the
area in front of the operator, was commanded using a side to
side sweeping gesture with the operator's palm facing down.
The wide search involved an area de�ned as extending 800
m in front of the operator and sweeping out 60° to either side
(see Section II-B.1). When this behavior was being executed,
the UAV stayed in an area almost directly in the center of
the search area and did not search the far left or far right
(see Figure 4a). As a result of the discretization of the search
area, the grid cells to be searched (highlighted in green) do
not perfectly match the de�ned search area. This incentivized
the UAV to stay centered.

2) Deep Search:The second behavior, a deep search of
the area in front of the operator, was commanded by using
the pointing or chopping gesture and resulted in the UAV
searching an area farther away from the operator (see Figure
4b). This area was de�ned as extending to a point 1000 m
in front of the operator and sweeping 45° to either side. As
with the wide area search, the areas that are considered to
be in front of the operator are highlighted in green. Both the
deep search and the wide search behaviors were successful
in keeping the UAV within the designated area. However, in
future work, methods to improve the coverage within that
area will be explored.

A potential problem comes from the fact that relatively
small changes in the heading of the operator can cause
large changes in the de�ned search area boundaries. As the
UAV moves away from the operator's location, a change in
the operator's heading is more likely to move the search
boundaries such that the UAV is outside the prescribed
region. Although the UAV automatically �ies toward the
center of the prescribed area, this results in time spent outside
the designated area. For example, note that in Figure 4b, the
UAV ends the simulation on the border of the de�ned search
area. This is because the UAV was searching the right side of

the prescribed area when the operator began a left turn. The
UAV is then outside the boundary and immediately begins to
turn to return to the boundary. Overall, the impact of this is
minor, but the behavior could be modi�ed to better account
for and predict operator motion.

3) Protect Behavior:The next two behaviors are a small
loiter and large loiter around the operator. These behaviors
represent the operator keeping the UAV close to their position
or searching out an area centered around their position.
The small search (see Figure 4c) was de�ned as a circle
with radius of 100 m with a clockwise motion. The large
search (see Figure 4d) was 800 m with a clockwise motion.
Overall, the behaviors performed as expected with the UAV
recalculating the desired orbit based on the changing operator
positions. The orbits appear as elongated circles due to the
continuous operator movement. It is assumed that the speed
of the UAV is greater than the speed of the operator to ensure
the UAV can sucessfully orbit its operator.

4) Full Area Search:The full area search behavior (Figure
4e) was commanded by the `X' pattern and resulted in the
UAV �ying a pattern similar to an outward spiral. It should
be noted that the pattern was not programmed and simply is
the result of the UAV attempting to maximize the number
of new grid cells that it can observe (see Section II-B.1). As
a result, the overall path is similar to a spiral but the UAV
tends to zig-zag in order to observe grid cells that are just
out of sight on the left and right. As with the wide and deep
area searches, the behavior of the full area search can be
in�uenced by changing the sizes of the grids as well as the
rate that the individual grid cell rewards increase (see Table
II).

5) Target Tracking: The target tracking behavior was
commanded with the up down gesture. As can be seen in
Figure 4f, the UAV wtays as close to the target as possible.
Since the UAV speed is higher than the target speed, the
UAV is forced to make a series of loops and circles to stay
in close proximity to the target. The behavior for tracking
a single target could be changed to a simple loiter about
the estimated target position. However, this would force the
UAV to focus on a single target, while the tracking behavior
as implemented allows the UAV to optimize its position when
tracking multiple targets.

6) Combined Search and Track:The combined search and
track behavior was commanded using the wave gesture and
can be seen in Figure 4g. The UAV begins by primarily
tracking the target and then, when the attitude of the target
is suf�ciently known, switches to primarily searching out
new areas. The balance between tracking and searching is
determined by the maximum value the UAV can get for
seeing each grid cell (see Table II).

C. Multiple Behavior

A �nal simulation (Figure 4h) involved multiple behaviors
being commanded depending on feedback from the UAV.
As with the other simulations, the UAV started with a small
loiter behavior commanded. Approximately 30 seconds into
the simulation, the large loiter behavior was commanded
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(a) The UAV was assigned to search a wide
area directly in front of the operator. The
areas to search during the �nal simulation
step are highlighted in green.

(b) The UAV was assigned to search a deep
area in front of the operator. The areas to
search during the �nal simulation step are
highlighted in green.

(c) The UAV was assigned to loiter around
the operator at a distance of 100 m.

(d) The UAV was assigned to loiter around
the operator at a distance of 800 m.

(e) The UAV was assigned to search the
entire area.

(f) The UAV was assigned to follow known
targets.

(g) The UAV was assigned to bal-
ance searching new areas and following
known targets. Note how the UAV initially
tracks the vehicle but eventually prioritizes
searching.

(h) The UAV behaviors were changed in
response to the environment. The UAV
performs a large loiter, is switched to target
tracking, and then is switched to a small
loiter.

Fig. 4: Cropped images showing the path of the UAV as it executed the various behaviors in simulations
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with the gesture controller. While executing this behavior,
the UAV saw a target and was commanded by the operator to
track it. Eventually, the small loiter behavior was commanded
again and the UAV returned to the operator.

These behaviors were chosen because they represent a
series of behaviors an actual operator may desire. Starting
with little to no information about their environment, an
operator could command a large loiter behavior to get a
rough idea about their surroundings and see if there are
any targets close by. Upon being alerted by the UAV that
there was a target nearby the operator could command the
UAV to track the target in order to better observe the target.
Once suf�cient information has been gathered, the operator
may have the UAV return to them so that it is available to
investigate another area or target.

IV. CONCLUSION

We have shown that accelerometer and gyroscope mea-
surements can be used with a logistic regression model
in order to identify a variety of gestures. These gestures
were then mapped to individual behaviors that an operator
might desire a UAV to perform, such as searching a speci�c
area or following targets. The gesture controller was used
in combination with a simulated environment to show that
an operator could command multiple behaviors using only
periodic gestures. The operator was able to react to the sim-
ulation and use the gestures to switch behaviors dynamically.

Since the controller has been proven in a hardware-in-
the-loop simulation, the next step will be to implement the
system in an outdoor �ight experiment.
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