
Gesture Commands for Controlling High-Level UAV Behavior

John Akagi, Brady Moon, Xingguang Chen, Cameron K. Peterson

Abstract— In this paper, an accelerometer and gyroscope
are used to sense gesture commands, which are then classified
using a logistic regression model. Seven gestures were chosen
and mapped to specific behaviors that a fixed wing unmanned
air vehicle could accomplish. These behaviors specified various
searching, following, and tracking patterns that could be used in
a dynamic environment. The system was trained to recognize
the seven gestures and then tested in a hardware-in-the-loop
simulation. The system was able to identify all gestures with
an overall accuracy of 90% and with five of the seven gestures
being accurately identified at least 94% of the time. Each of the
behaviors associated with the gestures was tested in simulation
and the ability to dynamically switch between behaviors was
proven. The results show that the system can be used as a
natural interface to assist an operator in directing an unmanned
air vehicle’s behaviors.

I. INTRODUCTION

The usage and applications of Unmanned Aerial Vehicles

(UAVs) have grown immensely in recent years as a result of

decreasing prices and increasing controllability and versatil-

ity. However, UAV operation continues to require continual

monitoring, close attention, and training. As a result, UAV

operators are typically focused exclusively on manually

piloting their UAV and relaying necessary information from

the UAV to those around them. This research seeks to

reduce the complexity of UAV operations by developing

high-level algorithms that enable UAVs to autonomously

perform behaviors with minimal guidance from an operator.

Additionally, we seek to reduce the attention burden on a

UAV operator by developing an interface that is capable of

intuitively directing UAV actions with minimal interruption

to other tasks the operator may be performing.

Consider a UAV operator who is attempting to walk

through an area while avoiding hostile targets. Using the

traditional method of UAV operation, a two joystick con-

troller and image data being streamed from the UAV, the

operator can only focus on either flying the UAV or walking

through the area. Attempting to simultaneously walk while

flying the UAV can lead to suboptimal UAV behavior and a

distracted operator. This paper develops a method of reducing

the complexity required for operators to work together with

a UAV.

In addition to the concentration requirement mentioned

above, the traditional method of controlling UAVs with two

J. Akagi is with the Department of Mechanical Engineering, Brigham
Young University, akagi94@gmail.com

B. Moon is with the Department of Electrical and Computer Engineering,
Brigham Young University, bradygmoon@gmail.com

X. Chen is with the School of Electronics and Information Technology,
Sun Yat-sen University, chenxg8@mail2.sysu.edu.cn

C. Peterson is faculty in the Department of Electrical and Computer
Engineering, Brigham Young University, cammy.peterson@byu.edu

joysticks requires training and an understanding of UAV

dynamics. Both take time and resources to obtain. This has

led to investigations of more intuitive control interfaces.

Some of these interfaces have used verbal commands [1]–

[3], eye-tracking [4]–[6], and physical model manipulation

[7] to control UAVs.

This project uses gesture commands to send desired be-

havior objectives to a UAV. The use of gestures has been

shown in [8] and [9] to be an intuitive method that is easy

for human operators to understand. In both of those studies,

a human pilot and UAV worked together to imitate a vision-

based control scheme where a participant would gesture to

direct the UAV. The pilot would fly the UAV based on what

he felt the gesture represented. Although the participants

were aware the UAV was actually being manually controlled,

they reported that commanding the UAV in this manner was

natural and not physically or mentally demanding.

Actual implementation of gesture based controllers have

used various sensing instruments, namely on-board cameras,

off-board stereo vision, touchpads, electromyograph sensors,

and accelerometers. In [10] and [11], a camera on board

the UAV is used to detect human movements and respond

to commands. This approach is attractive since there is no

need for electronic communications between the operator and

UAV but is limited in range since the UAV needs to be able

to see the gestures.

In [12] and [13], a Leap Motion Controller was used to

detect an operator’s commands. The Leap Motion Controller

is a sensor that is able to detect 3 dimensional hand gestures

using stereo vision and IR LEDs [14]. This capability has

been used to build paths by selecting flight segments [12]

and to instruct a UAV to takeoff, land, or perform a flip [13].

The commercial availability of the Leap Motion Controller

offers a relatively quick and simple way to implement gesture

control, but its design makes it difficult to use when the

operator is walking.

A touchpad was also used to detect touch gestures consist-

ing of taps and swipes in [15]. This study had participants

control a UAV and a gimbaled camera using both the tra-

ditional two joystick method and touch gestures. The major

contribution of this study was the abstraction of the combined

UAV and camera dynamics. Instead of iteratively moving

the UAV and camera to reach the desired orientation, all

commands were interpreted as being relative to the camera

field of view and then automatically remapped to provide the

individual commands for the UAV and camera. The results

indicated that while both the joystick and touch gestures

methods were able to complete the assigned tasks, the touch

gesture method reduced the workload on the operator since

2019 International Conference on Unmanned Aircraft Systems (ICUAS)
Atlanta, GA, USA, June 11-14, 2019

978-1-7281-0332-7/19/$31.00 ©2019 IEEE 1023



they only needed to worry about the higher level task they

were supposed to accomplish.

Electromyography (EMG) sensors that detect the electrical

impulses in muscles have also been used to control UAVs

via hand gestures in [16] and [17]. In [17], a controller is

implemented where the UAV can be commanded to takeoff,

land, move forward, backward, left, or right depending on

the hand gesture made. Additionally, magnetometer and

gyroscopic measurements are used to distinguish directions

and eliminate noise from non-gesture movements. A similar

command scheme is used in [16] except the user is control-

ling a group of robots by either directing a leader or issuing

instructions to the full group.

The final common method for detecting gestures is the

use of devices worn on a user’s body that measure motion.

In [18], a three-axis accelerometer is used to detect the

orientation of the user’s hand and command the UAV to

move forward, backward, left, or right depending on that

orientation. This device was primarily tested to assist users

with limited mobility who may be unable to properly operate

the joysticks of a typical controller. The accelerometers in

wearable smart devices were used in [19] to detect steps and

to give commands such as ”gain altitude”, ”lose altitude”,

and ”take a picture”.

While all of the alternative control schemes simplify

the training needed to operate a UAV, they still require

an operator’s undivided attention. Generally, the operator

provides low-level commands to the UAV such as move

forward, backward, turn, land or takeoff. These commands

all require that the UAV operator be aware of the location and

attitude of the UAV. Additionally, UAVs are unable to execute

their desired behavior without constant operator attention.

This paper examines a user protection mission where a

UAV is used to scout ahead, track discovered targets, circle

the operator at various distances, and search a bounded area

as directed by an operator. A gesture controller was designed

and prototyped which allows the operator to send these

high-level behaviors to the UAV without needing to divert

attention from their other tasks. As mentioned above, the

use of gestures to control UAVs has been shown to reduce

the strain on an operator. The contribution of this paper is to

show that UAV commands can be further abstracted to enable

the UAV to execute behaviors with minimal guidance.

We discuss the framework developed to test the ges-

ture controller and explain the gesture controller hardware,

simulation environment, UAV behaviors, and path planning

algorithm in Section II. Simulation results are shown in

Section III and conclusions are presented in Section IV.

II. METHODOLOGY

The detailed explanations of the gesture controller, UAV

behaviors, and simulation are described in the following

subsections.

A. Gesture Controller

A prototype gesture controller was designed and built

using an Arduino Nano and an MPU-9250, a 9-axis inertial

(a) Gesture controller as worn
while in use.

(b) Gesture controller hard-
ware.

Fig. 1: The gesture controller as worn when attached to

the glove. The Arduino board is the longer board closer to

the wrist, while the IMU is the shorter board closer to the

knuckles.

measurement unit (IMU) consisting of an accelerometer,

gyroscope, and compass. The electrical components were

placed on protoboard and attached to the back of a glove (see

Figure 1). As a result of the limited computing capabilities

of the Arduino Nano, it was used only to communicate

data from the IMU to the computer running the simulation.

The accelerometer and gyrosocope measurements for each of

their 3 axes were reported at a rate of approximately 100 Hz

using an I2C connection between the IMU and the Arduino

and serial communication over USB between the Arduino

and the desktop computer.

The gesture controller was used to collect data for 7

different hand and arm motions which are shown in Figure 2

and described as follows: 1) a sweeping side to side motion

in front of the operator with the palm facing down, 2) a

repeated chopping or pointing motion made with the palm

vertical, 3) a small counter-clockwise circle made with the

palm down, 4) a large counter-clockwise circle made with

the palm down, 5) a repeated waving motion in front of the

operator with the palm vertical, 6) an ‘X’ pattern traced in

the air in front of the operator, and 7) an up-down motion

or fist pump over the operator’s head. These gestures were

chosen because they are periodic and do not have determined

start or stop locations. This simplifies recognizing commands

since the operator does not need to coordinate the start of

the gesture with the moment the gesture controller starts

recording data. Additionally, the gestures are unique and can

express rough ideas such as direction, circling, and size. The

specific behaviors triggered by each gesture can be found in

Section II-B.

We used a logistic regression to identify the gestures based

on the frequency data calculated from the combined six axes

of the accelerometer and gyroscope. Data is collected from

all six axes and transmitted to the off board computer, via

the Arduino Nano, at a rate of 100 Hz. For training data, 3

minutes of data for each gesture was collected in 1 minute

periods with an author performing each gesture repeatedly.

The data was continually passed from the Arduino to an

offboard computer and recorded using MATLAB. The mean

µ and standard deviation σ were then found for each each

1024



(a) Sweeping mo-
tion

(b) Chopping or
pointing motion

(c) Small or large
circling motion

(d) ‘X’ pattern
(e) Up and down
motion or fist pump

(f) Waving motion

Fig. 2: The different gestures that were used with the gesture controller.

axis, and the data was normalized such that [20]

x′ =
x− µ

σ
. (1)

This mean and standard deviation was saved and used to nor-

malize the data for gesture prediction during the simulations.

The training data was then split into 1 second segments

with a rolling window so that each window was offset by one

sample. Using the rolling window allows the periodic nature

of the gestures to be leveraged and increases the training data

set. In the end, these 1 second raw data segments consisted of

100 raw acceleration and angular velocity data points along

the combined six axes.

Each axis of the raw data segment was transformed to

the frequency domain using a Fast Fourier Transform (FFT).

The amplitudes of all six axes were concatenated together

and comprised one set of data that was fed into the logistic

regression. From the generated data, 85% was used to train

the logistic regression and the remaining 15% was used to

validate the model.

B. Behavior Commands

As mentioned, each gesture is mapped to a unique behav-

ior or task that the UAV executes. The behaviors are 1) search

a wide area in front of the operator, 2) search a deep area

in front of the operator, 3) search in a small circle around

the operator, 4) search in a large circle around the operator,

5) search the entire area, 6) track targets, and 7) search the

entire area while tracking targets. Each of these behaviors

correspond to the respective gestures in Section II-A.

1) Search Behavior: The area search reward function

incentivizes UAVs to visit unexplored areas. The reward

function utilizes a grid pattern of i equally spaced grids, each

with a reward Jg . The reward corresponds to a probability

that the grid cell contains a target. When the center of a grid

cell falls within the sensing radius of the UAV, it is assumed

that the UAV was able to see the whole grid cell and detect

any targets that were within it. The UAV is rewarded by the

summation of all grid cell rewards seen during that timestep.

The grid cell values are updated as follows. If the grid cell

was seen during that timestep, then Ji = 0. If the grid cell

was not seen during that timestep, then the value is updated

such that [21]

Ji[n+ 1] = Jg − (Jg − Ji[n]) e
−tγ (2)

where n is the current timestep, n+ 1 is the next timestep,

t is the length of time since the the grid cell has been seen,

and γ is a constant that describes how fast the value of the

grid cell returns after being seen.

For the deep area search and wide area search behaviors,

the UAV is instructed to only search the grid cells whose

centers lie within a certain triangular area in front of the

operator. The area is defined by an angle θ and a distance r

such that the points of the triangle are the operator’s location,

a point r meters in front and θ degrees to the left, and a

point r meters in front and θ degrees to the right of the

operator. These search areas are both relative to the heading

of the operator and so will translate and rotate as the operator

changes location and orientation.

If the UAV is outside of this area when commanded to

do a deep or wide area search, or if the operator turns such

that the UAV is no longer in the area, the UAV uses a PID

controller to fly towards the midpoint of the search area.

Once the UAV’s position is within the search area, it stops

using the PID controller and returns to maximizing the search

reward.

2) Loiter Behavior: The two loiter behaviors have the

UAV continually circle around the location of the operator.

The operator’s location is assumed to be measured by GPS

and transmitted to the UAV such that it always knows the

operator’s current position. Given the location of the operator

c, the location of the UAV p, the current heading of the UAV

χ, the desired loiter radius ρ, and the distance between the

operator and UAV d, the desired course heading for the UAV

can be calculated [22] as

χC = φ+ λ

[

π

2
+ tan−1

(

korbit

(

d− ρ

ρ

))]

, (3)

where

φ = arctan 2 (pe − ce, pn − cn) + 2πm,

with m ∈ N such that −π ≤ φ− χ ≤ π.

The parameters λ and korbit are used to define the loiter

circle and transition to into a circular orbit. A value of λ =
1 indicates the UAV will circle in a clockwise orbit while

a value of λ = −1 indicates it will circle in a counter-

clockwise orbit. The value korbit > 0 defines the rate at

which the UAV will transition from a straight line path to

1025



a circular orbit as the UAV approaches the desired loiter

location. Finally, the radius ρ is set before the simulations

begins and is constant throughout the duration.

3) Target Tracking: When target positions fall within the

sensing radius of the UAV, the UAV is able to obtain noisy

range and bearing measurements that describe the target’s

location relative to the UAV.

The state for target m at time step n is given by xm[n] =
[Nm[n], Em[n], Ṅm[n], Ėm[n]]T with estimated state values

denoted by x̂m[n] where N and E are the north and east

positions, respectively. In this simulation, we assume that

each target obeys a nearly-constant velocity model and

update our estimated position of targets with an extended

Kalman filter. To calculate the total information gained by

the UAV, the information matrix I = P−1, where P is the

target’s error covariance, is calculated before and after the

estimated target position is updated. The total information

gained for each target is then [21], [23]

JT = ln |I[n]| − ln |I[n− 1]|. (4)

4) Combined Searching and Tracking: The combined

searching and tracking behavior follows the same principles

referred to in Sections II-B.1 and II-B.3 where reward is

gained for grid cells and targets seen. The only difference is

that in the combined version, the rewards for each of these

individual behaviors are directly added. This incentivizes the

UAV to search out as much area as possible while still

keeping the target within its sensing radius. Additionally,

if the uncertainty in the target’s position is low enough,

the UAV may stop observing the target to instead check

areas where additional, unseen targets may be located. The

behavior is primarily influenced by setting the the max grid

cell value, Jg , prior to the mission beginning where a higher

value prioritizes the search behavior.

C. Simulation

The simulated environment consists of targets, grid cells,

an operator, and a fixed wing UAV. The targets are modeled

on vehicles travelling on real world road networks. The road

networks were based on maps from OpenStreetMap [24]

and used with Simulation of Urban Mobility (SUMO) [25]

to create realistic driving patterns. The actual positions and

headings of each target are indicated by a red ‘x’ and arrow,

respectively.

The grid cells indicate discrete areas where targets have

a possibility of existing. As mentioned, grid cells start will

a certain value that correlates to a probability that a vehicle

exists inside the cell. When the UAV is able to see the center

of a grid cell its reward value drops to zero. If a grid cell has

not been seen by a UAV the cell value gradually increases

according to Equation 2.

The operator’s position and heading are indicated by a

black ‘x’ and arrow, respectively. Both these values are

assumed to be measured by GPS and communicated to

the UAV so that it always knows the operator’s current

position. The operator is assumed to be a person walking at

approximately 1 m/s and is not constrained to a road network.

Fig. 3: A representation of the constant data in the sim-

ulation. The underlying road network can be see as well

as the target paths (red), the operator path (black), and the

boundaries (dashed blue).

The UAV position and heading are indicated by a small

blue circle and arrow, respectively. Additionally, a large,

dashed circle indicates the sensor footprint. It is assumed

that the UAV is able to measure all targets and grid cells

that fall within its footprint It is assumed thet the UAV flies

at a constant altitude.

Depending on the behavior assigned to the UAV, there are

two possible control schemes for determining its path. The

first method is an orbit following path as described in Section

II-B.2. This method is used for the two loiter behaviors and

defines a course heading that points towards the center of

the loiter when the UAV is far from the desired location,

and is tangental to the desired loiter when the UAV is close

to the desired location. A PID controller is used to adjust the

roll angle so that the UAV heading matches the calculated

heading.

The second method is a rollout method based on a

receding horizon control. In this method, the possible UAV

bank angles are discretized into three potential options: a

full left bank, a full right bank, or no bank. The rollout

policy works by initializing a set number of paths using an

exhaustive search consisting of all possible combinations of

left, right, and no turns. Once the desired number of paths are

initialized, each path expands out to the time horizon using

an exhaustive search algorithm where the three possible next

steps are simulated and the step that is predicted to give the

highest reward from the search and/or tracking behaviors is

chosen. Once all paths have been expanded out to the time

horizon, the path with the highest expected overall gain is

chosen and the UAV begins travelling down that path.

1026



TABLE I: A confusion matrix showing the number of performed gestures and the number of gestures identified by the

logistic regression model. Although the Small Circle gesture proved difficult for the model to identify, the remainder of the

results show good performance.

Actual Gestures
Sweep Point Small Circle Large Circle Wave X Pattern Fist Pump

Predicted Gestures

Sweep 43 1
Point 1 50 11 1
Small Circle 28
Large Circle 2 11 47
Wave 50
X Pattern 4 1 47
Fist Pump 3 50

When the simulation is running, the gesture controller

only transmits data when instructed to do so in order

to reduce computation requirements and avoid unintended

gesture commands. When the operator wants to change the

behavior assigned to the UAV, a keypress triggers a flag

that alerts the MATLAB code to listen for data from the

Arduino and interpret the gesture. The data is recorded,

normalized, transformed to the frequency domain, interpreted

using the logistic regression model, and the UAV task is

updated according to the classified gesture.

III. SIMULATION RESULTS

In this section, we discuss the results obtained by testing

the gesture controller accuracy and by running hardware-in-

the-loop simulations to verify the individual UAV behaviors.

Finally, the results of a simulation where varying behaviors

were commanded is discussed. The parameters used in each

simulation are listed in Table II.

TABLE II: A list of the parameters used for each behavior.

The target tracking behavior has no configurable parameters.

Behavior Parameter Value

Wide Search
r (Search Depth) 800 m
θ (Search Angle) 60°

Deep Search
r (Search Depth) 100 0m
θ (Search Angle) 45°

Small Loiter
ρ (Radius) 100 m
λ (Direction) 1 (Clockwise)

Large Loiter
ρ (Radius) 800 m
λ (Direction) 1 (Clockwise )

Full Area Search
Jg (Grid Value) 40
γ (Growth Rate) 1/5000

Combined Search and Track
Jg (Grid Value) 40
γ (Growth Rate) 1/5000

A. Gesture Testing

When in use during the hardware-in-the-loop simulations,

120 samples or 1.2 seconds of data are collected from the

each axis of the accelerometer and gyroscope while the

gesture is being performed. The data is then divided into

segments 100 samples long using a rolling window with each

segment offset by five samples. The data was normalized

using the mean µ and standard deviation σ of each sensor

axis, which were calculated and recorded during the training

phase. Each individual axis of each segment was transformed

into the frequency domain using an FFT and the amplitudes

of these transformations were all concatenated together. With

the offset and rolling window, a total of five vectors were

created. Each of these were evaluated using the logistic

regression model and the gesture that was identified the most

from the five data sets was chosen. The use of five data sets

creates redundancy to reduce the impact of noise while only

slightly increasing the time needed to input a gesture.

The training and verification data showed a high degree

of accuracy when training the model, 99.87% and 99.85%

respectively. Additionally, testing was done to validate that

gestures could be performed, measured, and identified live

with high accuracy. In order to test this, a single gesture was

performed repeatedly while the 1.2 seconds of data were

gathered. The predicted gesture for each of the 5 data sets

was recorded as well as the actual gesture that was being

performed. This process was repeated for each of the 7

gestures to conclude one round of data collection. Overall,

this process was repeated 10 times so that each of the 7

gestures were classified 50 times. The actual and predicted

gestures were then compiled into a confusion matrix (Table

I) to determine the accuracy of the gesture controller and the

similarity of the various gestures.

Overall, the gesture controller was able to correctly iden-

tify the gestures with good accuracy. The one gesture of

note is the Small Circle gesture which was only correctly

identified 56% of the time. 22% of the time, the gesture

was misinterpreted as the Large Circle gestures which is

understandable given that the gestures have the same basic

pattern. The other 22% of the time, the gesture was mistaken

to be the Point gesture, although the similarities with the

Point gesture are less clear. The inclusion of both the Small

Circle and Large Circle gestures were to test the ability of

the gesture controller to additionally measure a parameter

of the gesture being performed, in this case the radius of

the circle. These results show that measuring parameters is

possible but a more sophisticated model, such as a Recursive

Neural Network, is likely needed in order to achieve high

accuracy.

For the remainder of the gestures, the accuracy is high

enough for practical use. Additionally, because enough data

is gathered to perform 5 predictions, a level of protection is

added against false identifications. As long as there are no

more than 2 incorrect predictions, the gesture controller will

still be able to, overall, correctly identify the gesture. These

results show that the gesture controller is able to identify

the main gestures although more advanced models would be

1027



useful to identify small differences in gestures.

B. Behavior Testing

There were 7 different simulations run to test the gesture

controller and each individual behavior. All simulations were

run on the same map, for a simulation time of 300 seconds,

with the starting positions of the targets, UAV, and operator

being the same. Additionally, the paths of the targets and

operator did not change between the simulations (as shown

in Figure 3). The starting location of the operator and UAV

were such that they were both in close proximity to each

other and to one of the targets so that the track target behavior

could be performed without needing the UAV to first happen

across a target.

For these simulations, the UAV was initialized with the

small loiter behavior prior to the simulation being run.

Approximately 30 seconds into each simulation, one of the 7

behaviors was then commanded using the gesture controller

and the UAV performed that behavior for the duration of the

run. The paths of the targets, operator, and UAV for each

simulations are shown in Figure 4. Note that the figures have

been cropped to better show the movement of the UAV.

1) Wide Search: The first behavior, a wide search of the

area in front of the operator, was commanded using a side to

side sweeping gesture with the operator’s palm facing down.

The wide search involved an area defined as extending 800

m in front of the operator and sweeping out 60° to either side

(see Section II-B.1). When this behavior was being executed,

the UAV stayed in an area almost directly in the center of

the search area and did not search the far left or far right

(see Figure 4a). As a result of the discretization of the search

area, the grid cells to be searched (highlighted in green) do

not perfectly match the defined search area. This incentivized

the UAV to stay centered.

2) Deep Search: The second behavior, a deep search of

the area in front of the operator, was commanded by using

the pointing or chopping gesture and resulted in the UAV

searching an area farther away from the operator (see Figure

4b). This area was defined as extending to a point 1000 m

in front of the operator and sweeping 45° to either side. As

with the wide area search, the areas that are considered to

be in front of the operator are highlighted in green. Both the

deep search and the wide search behaviors were successful

in keeping the UAV within the designated area. However, in

future work, methods to improve the coverage within that

area will be explored.

A potential problem comes from the fact that relatively

small changes in the heading of the operator can cause

large changes in the defined search area boundaries. As the

UAV moves away from the operator’s location, a change in

the operator’s heading is more likely to move the search

boundaries such that the UAV is outside the prescribed

region. Although the UAV automatically flies toward the

center of the prescribed area, this results in time spent outside

the designated area. For example, note that in Figure 4b, the

UAV ends the simulation on the border of the defined search

area. This is because the UAV was searching the right side of

the prescribed area when the operator began a left turn. The

UAV is then outside the boundary and immediately begins to

turn to return to the boundary. Overall, the impact of this is

minor, but the behavior could be modified to better account

for and predict operator motion.

3) Protect Behavior: The next two behaviors are a small

loiter and large loiter around the operator. These behaviors

represent the operator keeping the UAV close to their position

or searching out an area centered around their position.

The small search (see Figure 4c) was defined as a circle

with radius of 100 m with a clockwise motion. The large

search (see Figure 4d) was 800 m with a clockwise motion.

Overall, the behaviors performed as expected with the UAV

recalculating the desired orbit based on the changing operator

positions. The orbits appear as elongated circles due to the

continuous operator movement. It is assumed that the speed

of the UAV is greater than the speed of the operator to ensure

the UAV can sucessfully orbit its operator.

4) Full Area Search: The full area search behavior (Figure

4e) was commanded by the ‘X’ pattern and resulted in the

UAV flying a pattern similar to an outward spiral. It should

be noted that the pattern was not programmed and simply is

the result of the UAV attempting to maximize the number

of new grid cells that it can observe (see Section II-B.1). As

a result, the overall path is similar to a spiral but the UAV

tends to zig-zag in order to observe grid cells that are just

out of sight on the left and right. As with the wide and deep

area searches, the behavior of the full area search can be

influenced by changing the sizes of the grids as well as the

rate that the individual grid cell rewards increase (see Table

II).

5) Target Tracking: The target tracking behavior was

commanded with the up down gesture. As can be seen in

Figure 4f, the UAV wtays as close to the target as possible.

Since the UAV speed is higher than the target speed, the

UAV is forced to make a series of loops and circles to stay

in close proximity to the target. The behavior for tracking

a single target could be changed to a simple loiter about

the estimated target position. However, this would force the

UAV to focus on a single target, while the tracking behavior

as implemented allows the UAV to optimize its position when

tracking multiple targets.

6) Combined Search and Track: The combined search and

track behavior was commanded using the wave gesture and

can be seen in Figure 4g. The UAV begins by primarily

tracking the target and then, when the attitude of the target

is sufficiently known, switches to primarily searching out

new areas. The balance between tracking and searching is

determined by the maximum value the UAV can get for

seeing each grid cell (see Table II).

C. Multiple Behavior

A final simulation (Figure 4h) involved multiple behaviors

being commanded depending on feedback from the UAV.

As with the other simulations, the UAV started with a small

loiter behavior commanded. Approximately 30 seconds into

the simulation, the large loiter behavior was commanded

1028



(a) The UAV was assigned to search a wide
area directly in front of the operator. The
areas to search during the final simulation
step are highlighted in green.

(b) The UAV was assigned to search a deep
area in front of the operator. The areas to
search during the final simulation step are
highlighted in green.

(c) The UAV was assigned to loiter around
the operator at a distance of 100 m.

(d) The UAV was assigned to loiter around
the operator at a distance of 800 m.

(e) The UAV was assigned to search the
entire area.

(f) The UAV was assigned to follow known
targets.

(g) The UAV was assigned to bal-
ance searching new areas and following
known targets. Note how the UAV initially
tracks the vehicle but eventually prioritizes
searching.

(h) The UAV behaviors were changed in
response to the environment. The UAV
performs a large loiter, is switched to target
tracking, and then is switched to a small
loiter.

Fig. 4: Cropped images showing the path of the UAV as it executed the various behaviors in simulations

1029



with the gesture controller. While executing this behavior,

the UAV saw a target and was commanded by the operator to

track it. Eventually, the small loiter behavior was commanded

again and the UAV returned to the operator.

These behaviors were chosen because they represent a

series of behaviors an actual operator may desire. Starting

with little to no information about their environment, an

operator could command a large loiter behavior to get a

rough idea about their surroundings and see if there are

any targets close by. Upon being alerted by the UAV that

there was a target nearby the operator could command the

UAV to track the target in order to better observe the target.

Once sufficient information has been gathered, the operator

may have the UAV return to them so that it is available to

investigate another area or target.

IV. CONCLUSION

We have shown that accelerometer and gyroscope mea-

surements can be used with a logistic regression model

in order to identify a variety of gestures. These gestures

were then mapped to individual behaviors that an operator

might desire a UAV to perform, such as searching a specific

area or following targets. The gesture controller was used

in combination with a simulated environment to show that

an operator could command multiple behaviors using only

periodic gestures. The operator was able to react to the sim-

ulation and use the gestures to switch behaviors dynamically.

Since the controller has been proven in a hardware-in-

the-loop simulation, the next step will be to implement the

system in an outdoor flight experiment.

ACKNOWLEDGEMENTS

This work was funded by a BYU undergraduate research

grant through the Office of Research & Creative Activities

(ORCA) and by the Center for Unmanned Aircraft Systems

(C-UAS), a National Science Foundation Industry/University

Cooperative Research Center (I/UCRC) under NSF award

No. IIP-1650547 along with significant contributions from

C-UAS industry members.

REFERENCES

[1] A. C. Trujillo, J. Puig-Navarro, S. B. Mehdi, and A. K. McQuarry,
“Using natural language to enable mission managers to control mul-
tiple heterogeneous uavs,” in Advances in Human Factors in Robots

and Unmanned Systems, pp. 267–280, Springer, 2017.
[2] M. Landau and S. van Delden, “A system architecture for hands-free

uav drone control using intuitive voice commands,” in Proceedings of

the Companion of the 2017 ACM/IEEE International Conference on

Human-Robot Interaction, pp. 181–182, ACM, 2017.
[3] M. Chandarana, E. L. Meszaros, A. Trujillo, and B. D. Allen, “’fly

like this’: Natural language interface for uav mission planning,” 2017.
[4] J. M. Ettikkalayil, “Design, implementation, and performance study

of an open source eye-control system to pilot a parrot ar. drone
quadrocopter,” 2013.

[5] J. P. Hansen, A. Alapetite, I. S. MacKenzie, and E. Møllenbach, “The
use of gaze to control drones,” in Proceedings of the Symposium on

Eye Tracking Research and Applications, pp. 27–34, ACM, 2014.
[6] M. Yu, Y. Lin, D. Schmidt, X. Wang, and Y. Wang, “Human-robot

interaction based on gaze gestures for the drone teleoperation,” Journal

of Eye Movement Research, vol. 7, no. 4, pp. 1–14, 2014.

[7] M. Quigley, M. A. Goodrich, and R. W. Beard, “Semi-
autonomous human-uav interfaces for fixed-wing mini-uavs,” in 2004

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2457–2462, IEEE,
2004.

[8] J. R. Cauchard, K. Y. Zhai, J. A. Landay, et al., “Drone & me:
an exploration into natural human-drone interaction,” in Proceedings

of the 2015 ACM international joint conference on pervasive and

ubiquitous computing, pp. 361–365, ACM, 2015.
[9] W. S. Ng and E. Sharlin, “Collocated interaction with flying robots,”

in RO-MAN, 2011 IEEE, pp. 143–149, IEEE, 2011.
[10] J. Nagi, A. Giusti, G. A. Di Caro, and L. M. Gambardella, “Human

control of uavs using face pose estimates and hand gestures,” in
Proceedings of the 2014 ACM/IEEE international conference on

Human-robot interaction, pp. 252–253, ACM, 2014.
[11] J. Nagi, A. Giusti, L. M. Gambardella, and G. A. Di Caro, “Human-

swarm interaction using spatial gestures,” in Intelligent Robots and

Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
pp. 3834–3841, IEEE, 2014.

[12] M. Chandarana, A. Trujillo, K. Shimada, and B. D. Allen, “A natural
interaction interface for uavs using intuitive gesture recognition,”
in Advances in Human Factors in Robots and Unmanned Systems,
pp. 387–398, Springer, 2017.

[13] A. Sarkar, K. A. Patel, R. G. Ram, and G. K. Capoor, “Gesture control
of drone using a motion controller,” in Industrial Informatics and

Computer Systems (CIICS), 2016 International Conference on, pp. 1–
5, IEEE, 2016.

[14] A. Colgan, “How does the leap motion controller work.”
http://blog.leapmotion.com/hardware-to-software-how-does-the-
leap-motion-controller-work/, 2014.

[15] H. Kang, H. Li, J. Zhang, X. Lu, and B. Benes, “Flycam: Multitouch
gesture controlled drone gimbal photography,” IEEE Robotics and

Automation Letters, vol. 3, no. 4, pp. 3717–3724, 2018.
[16] S. Nagavalli, M. Chandarana, K. Sycara, and M. Lewis, “Multi-

operator gesture control of robotic swarms using wearable devices,”
in Tenth International Conference on Advances in Computer-Human

Interactions (ACHI), 2017.
[17] Z. Li, Y. Chen, and W. Tan, “Dronemyo: Proactive control of un-

manned aerial vehicle based on wearable devices,” in International

Symposium on Smart Graphics, pp. 211–214, Springer, 2015.
[18] L. A. Sandru, M. F. Crainic, D. Savu, C. Moldovan, V. Dolga, and

S. Preitl, “Automatic control of a quadcopter, ar. drone, using a smart
glove,” in Proceedings of the 4th International Conference on Control,

Mechatronics and Automation, pp. 92–98, ACM, 2016.
[19] Y. Lu, F. Han, L. Xie, Y. Yin, C. Shi, and S. Lu, “I am the uav: A wear-

able approach for manipulation of unmanned aerial vehicle,” in Smart

Computing (SMARTCOMP), 2017 IEEE International Conference on,
pp. 1–3, IEEE, 2017.

[20] T. Jayalakshmi and A. Santhakumaran, “Statistical normalization and
back propagation for classification,” International Journal of Computer

Theory and Engineering, vol. 3, no. 1, pp. 1793–8201, 2011.
[21] A. J. Newman, S. R. Martin, J. T. DeSena, J. C. Clarke, J. W.

McDerment, W. O. Preissler, and C. K. Peterson, “Receding Horizon
Controller using Particle Swarm Optimization for Closed Loop Ground
Target Surveillance and Tracking,” Signal Processing, Sensor Fusion,

and Target Recogniton, vol. 7336, no. 1, pp. 73360M–1–73360M–12,
2009.

[22] R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and

practice. Princeton university press, 2012.
[23] A. Sinha, T. Kirubarajan, and Y. Bar-Shalom, “Autonomous surveil-

lance by multiple cooperative uavs,” in Signal and Data Processing

of Small Targets 2005, vol. 5913, p. 59131V, International Society for
Optics and Photonics, 2005.

[24] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org .” https://www.openstreetmap.org,
2017.

[25] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE In-

ternational Conference on Intelligent Transportation Systems, IEEE,
2018.

1030


