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RECONNAISSANCE
USING MULTIPLE SMALL

UNMANNED AERIAL
VEHICLES

mall rotorcraft unmanned air vehicles (SUAVs)

are valuable tools in solving geospatial inspection

challenges. One area where this is being widely

explored is disaster reconnaissance [1]. Using sUAVs

to collect images provides engineers and government

officials critical information about the conditions
before and after a disaster [2]. This is accomplished by
creating high-fidelity 3D models from the sUAV's imagery.
However, using an sUAV to perform inspections is @
challenging task due to constraints on the vehicle’s flight time,
computational power, and data storage capabilities [3]. The
approach presented in this article illustrates a method for
utilizing multiple sUAVs to inspect a disaster region and merge
the separate data into a single high-resolution 3D model.

Brigham Young University's (BYU) Research in Optimized

Aerial Monitoring (ROAM) Lab has been inspecting areas
affected by disasters with 3D models generated using
optimized autonomous aerial imaging. When these models
are high-fidelity, they can be used to inspect terrain
and infrastructure [4]. Current industry practices for
infrastructure and geospatial inspections create sub-optimal
models that frequently contain holes or warping, making them
difficult to effectively analyze [S]. ROAM's custom algorithm
selects optimal camera imaging positions to drastically
improve the gquality of the resulting 3D digital models [6].
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(a) August 2016 earthquake model.
failing slope indicated by red oval.

FIGURE 1 Changes with alandslide and infrastructure in Pescara del Tronto from August to 2016 to July 2018 as shown by 3D models.
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(b) October 2016 earthquake model with

(c) July 2018 return visit model.

Using multiple sUAVs for disaster reconnaissance provides advantages
that will be illustrated using data collected in the city of Pescara del Tronto,
Italy. This town was devastated by earthquakes in August and October
2016. Pescara del Tronto was chosen because it was inspected with sSUAVs
on three different occasions. The first two inspections were performed after
the August earthquake (moment magnitude (M) of 6.2) [7] and October
earthquake (M 6.6) [8]. The third inspection was completed in July 2018
to analyze the long term changes in structural decay and soil movement.
The 3D models for each visit can be accessed at [9]. The Pescara del Tronto
inspection site covers roughly 0.5 km?.

Figure 1 shows a portion of the 3D models of Pescara del Tronto generat-
ed from each of the three collection dates. These models show the immediate
consequences of the earthquakes as well as the long-term effects that persist
years afterwards. From the models it is evident that the second earthquake
(occurring between the left and middle frames) caused most of the remain-
ing structures in this area to collapse, and the slope that is unprotected by the
retaining wall to fail. The failing slope is highlighted by the red oval. Almost
two years later this same hillside continues to slip. The black area on the slope
face is a new mesh retaining cover being placed to prevent further failure.

This article outlines a methodology for performing disaster reconnaissance
using multiple sUAVs. Data from actual flights performed by a single drone at
Pescara del Tronto was used in simulations for multiple sSUAVs. This provides
comparison results of the multi-vehicle methodology directly with a single-
vehicle in-field test. In-field multi-vehicle tests will be conducted once further
safety measures are factored into the algorithm, primarily collision avoidance.
The simulations presented here provide substantial evidence of the benefits of
using multiple sUAVs in inspections. These benefits reduce in-field time and
set the stage for dynamic mission planning.

MULTI-VEHICLE DISASTER RECONNAISSANCE

he inspection workflow for multiple SUAVs, shown in Figure 2, has steps

to: (a) incorporate location-specific data, (b) triangulate this data and
identify surface normals, (c) use the surface normals to select optimal camera
locations, (d) assign vehicle routes to the camera locations, (e) fly those
routes, and (f) create 3D models using structure from motion (SfM):

Location Data: Creating sSUAV routes requires previously acquired

geospatial data of the inspection location. This data is obtained from two
sources: 3D point clouds of prior inspections and terrain data exported
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from Google Earth. Point clouds give a very
detailed representation of both topography
and infrastructure. Google Earth terrain
data gives a general elevation and fills in any
gaps missed in the point cloud. In the July
2018 inspection at Pescara del Tronto, both
terrain and point cloud (model from the
October 2016 inspection) data were used.
Potential Camera Point Identifica-
tion: Using the spatial data, potential camera
positions are identified. First, a triangulated
mesh is generated using the location data.
For each face in the mesh, a potential posi-

}
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FIGURE 2 Workflow for disaster reconnais-
sance path planning using multiple sUAVs.
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tion is selected at a user-specified distance normal to the face.

Optimized Point Selection: The subset of camera locations to be used
are identified by selecting points with high coverage until at least 95% cover-
age is achieved. Higher-priority camera locations are those that view more
area on the surface within a 45 degree view angle of the camera’s location. In
Pescara del Tronto, 801 camera locations were selected from thousands of
potential locations. The selected points are visible in Figure 3 as the black
dots over a coarse elevation model of the inspected area.

FIGURE 3
The selected
optimal
camera
locations

for Pescara
del Tronto in
July 2018.
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Task Assignment and Path Planning: To plan paths for multiple
sUAVs, two complementary approaches are used: a centralized vehicle rout-
ing problem solver (VRP) [10] and a decentralized market-based assignment
algorithm. The centralized algorithm provides sSUAV routes when all the
inspection points are known a priori. The decentralized planner updates
routes when additional inspection points are discovered while the SUAVs are
in flight and will be discussed in detail in the next section. For both methods,
since we are using quadrotor sUAVs and the vehicles must stabilize each time
they take an image, the paths are computed as waypoint lists.

The VRP is a generalization of the traveling salesman problem that consid-
ers multiple salesmen. It has been well-researched with effective open-source
solutions. We use Google’s Operations Research Tools (OR-Tools) [10] to run
on 150 camera locations randomly selected from the 801 points in the Pescara
del Tronto dataset. A maximum flight distance of 1500 meters was used to
ensure the flight paths were feasible. The pathways for ten sUAVs flying way-
points allocated by the OR-Tools solver are shown in Figure 4. Examination
of these shows that the vehicles visit different numbers of camera locations.
A comparison of distance traveled, points visited, and flight time for these
pathways is given in Figure 5. Each vehicle has a different total workload, in-
dicated by percentage of total estimated flight time, but all of the flight times
are within 6% of each other.

Figure 6 illustrates the potential reduction in flight time by showing the
simulated total flight time for all of the Pescara del Tronto camera locations,
given different numbers of SUAVs. The operation crew in Pescara del Tronto
spent an estimated 140 minutes with their single sUAV flying, which can be
reduced significantly with the addition of multiple sUAVs flying concurrently.

3D Models: Once imagery is collected of a region, the photographs
are used to build a 3D model of the area using SfM [11]. SfM is a
photogrammetric modeling method that stitches together two-
dimensional images into a three-dimensional object. The SfM algorithm
identifies the same points in multiple images and calculates the distance
that point moved between photos. With these distances, the software
generates a 3D mesh and overlays the images to create a life-like 3D model
of the region imaged.

DYNAMICTASKING WITH MARKET-BASED
ASSIGNMENT ALGORITHM

t is common to have pre-existing terrain

data for inspection sites, but there are
many instances when this data lacks infor-
mation about structures such as trees or
buildings within the inspection areas. When
this is the case, inspection points will not be
optimally planned to image those structures,
causing holes in the final 3D model. Our
solution to this challenge is to perform an
initial inspection at high altitude, produc-
ing a low-fidelity model of the region that
captures the location and general shape of
structures. The low-fidelity model is used
to select optimized camera locations for
producing a higher-fidelity 3D model. Cur-
rently, these steps occur over multiple site
visits, with a single sUAV operating during
both the low- and high-fidelity inspections.

To improve this workflow, we are devel-
oping techniques for performing low- and
high-fidelity inspections concurrently, with
the low-fidelity vehicles informing the high-
fidelity vehicles of new inspection points.
These dynamically-received inspection
points must be assigned to and planned for
in the routes of the high-fidelity sSUAVs. The
assignment and path planning occurs in a
decentralized market-based planning algo-
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FIGURE 4 Flight paths generated by the
OR -Tools Vehicle Routing Solver for 10
vehicles and 150 camera locations. Paths
can be flown concurrently or in sequence.
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FIGURE 5 Distribution of actual work among 10 vehicles, flying the paths
shown in Fig. 4. Values are shown as a percentage of the total for all of
the agents. For a perfect solution, the optimal workload for 10 vehicles
would be 10% for each vehicle. This is indicated by the dashed black line.
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FIGURE 6 Total
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the 801 camera
locations in Fig. 3.
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rithm, as described in the next subsection. To simulate a typical flight of the
high-fidelity vehicles, we use the OR-Tools VRP solver to generate an initial
set of paths, then allocate additional points using a market algorithm.

Market Algorithm

A market algorithm is an approach to allocating tasks between independently
acting agents (modeled after economic markets) where agents make bids on
tasks based on their own value for that task [12]. There are several advantages
to using a market-based algorithm, due to the fact that each agent acts
individually based on its own knowledge and a small amount of information
is shared between agents. These advantages include: ease of decentralizing
the computation, bids customized to the capabilities of individual agents,
and the ability to operate with a low communication bandwidth. Simple
market-based algorithms can result in highly non-optimal solutions of the
NP-Complete problem. However, advanced implementations are near the
optimality of other VRP solvers [13].

In our implementation, we form an auction-style market, where each
task is bid upon by all agents (each agent represents a specific sSUAV) and
all agents are trying to obtain tasks without overspending. The algorithm
receives as inputs a set of agents A and a list P of points (p;) to allocate to A.
Each agent has a constant spending limit, keeps track of the total amount it
has spent, and maintains a list W of points (w,) it has won, with the list being
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sorted in the flight path order. Iterating through P, bids are solicited for every
point p; from all of the agents in A. To make a bid on p,, the agent searches
through Wto find the point w, having the lowest cost with respect to p;. It
then finds the additional cost of travelling to p, and returns it as a bid.

Figure 7 shows simulation results of using the market algorithm to
allocate an additional 50 camera locations to agents with existing flight
paths. The solid lines are the initial flight paths and the dashed lines are the
updated paths after the market algorithm executed. It can be seen that logical
allocation of points occurs. This algorithm is a proof of concept that can be
incorporated into a distributed framework to allow agents in communication
with each other to auction dynamically-received camera positions.

CONCLUSIONS AND FUTURE WORK

nspecting disaster areas with SUAVs provides a safe and accurate method

for assessing damage. The sUAVs perform autonomous aerial imaging,
optimized for photogrammetry, to construct high-fidelity 3D models. These
high-fidelity models enable decision makers who can then predict and
prevent further damage. With current practices, inspections are completed
with a single aerial vehicle. This article provides methods for obtaining
routes for multiple sUAVs. The routes may be planned a priori (using a
centralized algorithm) when pre-existing data is available or dynamically
(using a decentralized, market-based algorithm) when new inspection points
are discovered. Multi-vehicle inspection decreases the time needed to collect
data while the information gained increases. Additionally, in-field safety
is improved as the demand for analysts to venture into high-risk areas is
reduced by sending sUAVs instead.

As development of this work flow continues, we will perform in-
field testing of multi-vehicle flights. A necessary step prior to flight
experimentation is to ensure collision avoidance among the vehicles.
Vehicle routes will be evaluated and adjusted to ensure that SUAVs will
maintain a user-specified separation distance. Hardware will also be
incorporated into the sSUAVs to provide communication among the vehicles,
enabling execution of the dynamic market-based planner. After this is
accomplished, all the components necessary to enter an unknown territory
and construct flight paths dynamically will be present. M
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