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from Google Earth. Point clouds give a very 

detailed representation of both topography 

and infrastructure. Google Earth terrain 

data gives a general elevation and fills in any 
gaps missed in the point cloud. In the July 

2018 inspection at Pescara del Tronto, both 

terrain and point cloud (model from the 

October 2016 inspection) data were used. 

Potential Camera Point Identifica-

tion: Using the spatial data, potential camera 

positions are identified. First, a triangulated 
mesh is generated using the location data. 

For each face in the mesh, a potential posi-

Using multiple sUAVs for disaster reconnaissance provides advantages 

that will be illustrated using data collected in the city of Pescara del Tronto, 

Italy. This town was devastated by earthquakes in August and October 

2016. Pescara del Tronto was chosen because it was inspected with sUAVs 

on three different occasions. The first two inspections were performed after 
the August earthquake (moment magnitude (M) of 6.2) [7] and October 

earthquake (M 6.6) [8]. The third inspection was completed in July 2018 

to analyze the long term changes in structural decay and soil movement. 

The 3D models for each visit can be accessed at [9]. The Pescara del Tronto 

inspection site covers roughly 0.5 km2.

Figure 1 shows a portion of the 3D models of Pescara del Tronto generat-

ed from each of the three collection dates. These models show the immediate 

consequences of the earthquakes as well as the long-term effects that persist 
years afterwards. From the models it is evident that the second earthquake 
(occurring between the left and middle frames) caused most of the remain-

ing structures in this area to collapse, and the slope that is unprotected by the 

retaining wall to fail. The failing slope is highlighted by the red oval. Almost 

two years later this same hillside continues to slip. The black area on the slope 

face is a new mesh retaining cover being placed to prevent further failure.

This article outlines a methodology for performing disaster reconnaissance 

using multiple sUAVs. Data from actual flights performed by a single drone at 
Pescara del Tronto was used in simulations for multiple sUAVs. This provides 

comparison results of the multi-vehicle methodology directly with a single-

vehicle in-field test. In-field multi-vehicle tests will be conducted once further 
safety measures are factored into the algorithm, primarily collision avoidance. 

The simulations presented here provide substantial evidence of the benefits of 
using multiple sUAVs in inspections. These benefits reduce in-field time and 
set the stage for dynamic mission planning.

MULTI-VEHICLE DISASTER RECONNAISSANCE

T
he inspection workflow for multiple sUAVs, shown in Figure 2, has steps 

to: (a) incorporate location-specific data, (b) triangulate this data and 
identify surface normals, (c) use the surface normals to select optimal camera 

locations, (d) assign vehicle routes to the camera locations, (e) fly those 
routes, and (f) create 3D models using structure from motion (SfM): 

Location Data: Creating sUAV routes requires previously acquired 

geospatial data of the inspection location. This data is obtained from two 

sources: 3D point clouds of prior inspections and terrain data exported 

FIGURE 2  Workflow for disaster reconnais-
sance path planning using multiple sUAVs.

FIGURE 1  Changes with a landslide and infrastructure in Pescara del Tronto from August to 2016 to July 2018 as shown by 3D models.

(c) July 2018 return visit model.(b) October 2016 earthquake model with
failing slope indicated by red oval.

(a) August 2016 earthquake model.
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DYNAMIC TASKING WITH MARKET-BASED 
ASSIGNMENT ALGORITHM 

I
t is common to have pre-existing terrain 

data for inspection sites, but there are 

many instances when this data lacks infor-

mation about structures such as trees or 

buildings within the inspection areas. When 

this is the case, inspection points will not be 

optimally planned to image those structures, 

causing holes in the final 3D model. Our 
solution to this challenge is to perform an 

initial inspection at high altitude, produc-

ing a low-fidelity model of the region that 
captures the location and general shape of 

structures. The low-fidelity model is used 
to select optimized camera locations for 

producing a higher-fidelity 3D model. Cur-

rently, these steps occur over multiple site 

visits, with a single sUAV operating during 

both the low- and high-fidelity inspections. 
To improve this workflow, we are devel-

oping techniques for performing low- and 

high-fidelity inspections concurrently, with 
the low-fidelity vehicles informing the high-
fidelity vehicles of new inspection points. 
These dynamically-received inspection 

points must be assigned to and planned for 

in the routes of the high-fidelity sUAVs. The 
assignment and path planning occurs in a 

decentralized market-based planning algo-

FIGURE 4  Flight paths generated by the 
OR -Tools Vehicle Routing Solver for 10 
vehicles and 150 camera locations. Paths
can be flown concurrently or in sequence.

tion is selected at a user-specified distance normal to the face.
Optimized Point Selection: The subset of camera locations to be used 

are identified by selecting points with high coverage until at least 95% cover-

age is achieved. Higher-priority camera locations are those that view more 

area on the surface within a 45 degree view angle of the camera’s location. In 

Pescara del Tronto, 801 camera locations were selected from thousands of 

potential locations. The selected points are visible in Figure 3 as the black 

dots over a coarse elevation model of the inspected area.

Task Assignment and Path Planning: To plan paths for multiple 

sUAVs, two complementary approaches are used: a centralized vehicle rout-

ing problem solver (VRP) [10] and a decentralized market-based assignment 

algorithm. The centralized algorithm provides sUAV routes when all the 

inspection points are known a priori. The decentralized planner updates 

routes when additional inspection points are discovered while the sUAVs are 

in flight and will be discussed in detail in the next section. For both methods, 
since we are using quadrotor sUAVs and the vehicles must stabilize each time 

they take an image, the paths are computed as waypoint lists. 

The VRP is a generalization of the traveling salesman problem that consid-

ers multiple salesmen. It has been well-researched with effective open-source 
solutions. We use Google’s Operations Research Tools (OR-Tools) [10] to run 

on 150 camera locations randomly selected from the 801 points in the Pescara 

del Tronto dataset. A maximum flight distance of 1500 meters was used to 
ensure the flight paths were feasible. The pathways for ten sUAVs flying way-

points allocated by the OR-Tools solver are shown in Figure 4. Examination 

of these shows that the vehicles visit different numbers of camera locations. 
A comparison of distance traveled, points visited, and flight time for these 
pathways is given in Figure 5. Each vehicle has a different total workload, in-

dicated by percentage of total estimated flight time, but all of the flight times 
are within 6% of each other. 

 Figure 6 illustrates the potential reduction in flight time by showing the 
simulated total flight time for all of the Pescara del Tronto camera locations, 
given different numbers of sUAVs. The operation crew in Pescara del Tronto 
spent an estimated 140 minutes with their single sUAV flying, which can be 
reduced significantly with the addition of multiple sUAVs flying concurrently. 

3D Models: Once imagery is collected of a region, the photographs 

are used to build a 3D model of the area using SfM [11]. SfM is a 

photogrammetric modeling method that stitches together two-

dimensional images into a three-dimensional object. The SfM algorithm 

identifies the same points in multiple images and calculates the distance 
that point moved between photos. With these distances, the software 

generates a 3D mesh and overlays the images to create a life-like 3D model 

of the region imaged. 
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FIGURE 3
The selected 
optimal 
camera 
locations 
for Pescara 
del Tronto in 
July 2018.
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rithm, as described in the next subsection. To simulate a typical flight of the 
high-fidelity vehicles, we use the OR-Tools VRP solver to generate an initial 
set of paths, then allocate additional points using a market algorithm. 

Market Algorithm 

A market algorithm is an approach to allocating tasks between independently 

acting agents (modeled after economic markets) where agents make bids on 

tasks based on their own value for that task [12]. There are several advantages 

to using a market-based algorithm, due to the fact that each agent acts 

individually based on its own knowledge and a small amount of information 

is shared between agents. These advantages include: ease of decentralizing 

the computation, bids customized to the capabilities of individual agents, 

and the ability to operate with a low communication bandwidth. Simple 

market-based algorithms can result in highly non-optimal solutions of the 

NP-Complete problem. However, advanced implementations are near the 

optimality of other VRP solvers [13]. 

In our implementation, we form an auction-style market, where each 

task is bid upon by all agents (each agent represents a specific sUAV) and 
all agents are trying to obtain tasks without overspending. The algorithm 

receives as inputs a set of agents A and a list P of points (pi) to allocate to A. 

Each agent has a constant spending limit, keeps track of the total amount it 

has spent, and maintains a list W of points (wk) it has won, with the list being 
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FIGURE 5 Distribution of actual work among 10 vehicles, flying the paths 
shown in Fig. 4. Values are shown as a percentage of the total for all of 
the agents. For a perfect solution, the optimal workload for 10 vehicles 
would be 10% for each vehicle. This is indicated by the dashed black line.

FIGURE 6  Total 
inspection time, 
given the number 
of sUAVs flying 
concurrently, for 
the 801 camera 
locations in Fig. 3.
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sorted in the flight path order. Iterating through P, bids are solicited for every 

point pi from all of the agents in A. To make a bid on pi, the agent searches 

through W to find the point wk having the lowest cost with respect to pi. It 

then finds the additional cost of travelling to pi and returns it as a bid. 

Figure 7 shows simulation results of using the market algorithm to 

allocate an additional 50 camera locations to agents with existing flight 
paths. The solid lines are the initial flight paths and the dashed lines are the 
updated paths after the market algorithm executed. It can be seen that logical 

allocation of points occurs. This algorithm is a proof of concept that can be 

incorporated into a distributed framework to allow agents in communication 

with each other to auction dynamically-received camera positions.

CONCLUSIONS AND FUTURE WORK

I
nspecting disaster areas with sUAVs provides a safe and accurate method 

for assessing damage. The sUAVs perform autonomous aerial imaging, 

optimized for photogrammetry, to construct high-fidelity 3D models. These 
high-fidelity models enable decision makers who can then predict and 
prevent further damage. With current practices, inspections are completed 

with a single aerial vehicle. This article provides methods for obtaining 

routes for multiple sUAVs. The routes may be planned a priori (using a 

centralized algorithm) when pre-existing data is available or dynamically 

(using a decentralized, market-based algorithm) when new inspection points 

are discovered. Multi-vehicle inspection decreases the time needed to collect 

data while the information gained increases. Additionally, in-field safety 
is improved as the demand for analysts to venture into high-risk areas is 

reduced by sending sUAVs instead. 

As development of this work flow continues, we will perform in-
field testing of multi-vehicle flights. A necessary step prior to flight 
experimentation is to ensure collision avoidance among the vehicles. 

Vehicle routes will be evaluated and adjusted to ensure that sUAVs will 

maintain a user-specified separation distance. Hardware will also be 
incorporated into the sUAVs to provide communication among the vehicles, 

enabling execution of the dynamic market-based planner. After this is 

accomplished, all the components necessary to enter an unknown territory 

and construct flight paths dynamically will be present. n
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FIGURE 7  Two views of flight paths from 
Fig. 4 augmented by an additional 50 
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locations (diamonds), resulting in the new 
dashed line flight paths, were distributed to 
the vehicles using a market-based algorithm.
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