
Perspectives on Integer Programming for Time-Dependent Models

Natashia L. Boland and Martin W.P. Savelsbergh

H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, USA

Abstract

Integer programs for solving time-dependent models – models in which decisions have to be
made about the times at which activities occur and/or resources are utilized – are pervasive
in industry, but are notoriously difficult to solve. In the last few years, interest in the role of
discretization in approaches to solve these problems has intensified. One novel paradigm, dy-
namic discretization discovery, has emerged with the potential to greatly enhance the practical
tractability of time-dependent models using integer programming technology. We introduce dy-
namic discretization discovery, illustrate its use on the traveling salesman problem with time
windows, highlight its core principles, and point to opportunities for further research. Relations
to other approaches for tackling time-dependent models are also discussed.

1 Introduction
In 2006, Martin Grötschel, then Secretary of the International Mathematical Union, wrote

“The development of linear programming is, in my opinion, the most important con-
tribution of the mathematics of the 20th century to the solution of practical problems
arising in industry and commerce. The subsequent progress in the applicability of integer
and combinatorial optimization begins, at present, to even surpass this impact.”

Grötschel’s conjecture was indeed right. Since 2006, the use of integer linear programming (IP)
has easily surpassed the use of linear programming in commercial software and now accounts for a
substantial majority of the use of all optimization software. A majority of finalists for the Edelman
prize (the most prestigious prize for the application of operations research and analytics) use IP as
core technology, in industries including health, energy, transportation, and logistics.

However, there are important classes of IPs, whose optimal solution could yield substantial
benefits, but which cannot be solved satisfactorily. One such class is the IPs that we address in this
paper: IPs that are characterized by being about time. In these problems, decisions have to be made
about the times at which activities occur and/or resources are utilized. We call the models of these
problems time-dependent (TD). They are pervasive in applications, since they occur whenever a
schedule of activities needs to be constructed.

A classic example is airline scheduling, in which activities (flights) and resources (airplanes and
crews) must be scheduled to meet the demand of potential passengers. A one or two minute change
in the official departure time of a flight can have a huge impact on the legal connections that are
possible for both crews and passengers. In the energy industry, the unit commitment problem, for
scheduling the generators of power in a day-ahead electricity market, is to decide, at each time,

1



the on-off states of the generators, and so is very much about time. In healthcare, surgery facilities
and expensive equipment need to be scheduled and coordinated to maximize patient care in an
environment with scarce resources. Timing and coordination are similarly critical in the design and
operation of air- and sea-lift networks for defense forces. Innovative logistics practices driven by
more demanding markets, such as same-day and next-hour delivery of online orders, are creating
a need for more precise TD models that can be solved efficiently. Fuel efficiency and greenhouse
gas emissions from delivery vehicles depend critically on their speed of travel. Traffic congestion
typically occurs at specific times of day, so the departure time of a trip can have a strong impact
on its fuel efficiency. Thus optimizing fuel efficiency also requires TD modeling.

Unfortunately, TD models are notoriously difficult to solve. Compact models that use continu-
ous variables to model time have weak linear programming (LP) relaxations. Their solution with
current IP solver technology is limited to only small instances. Extended formulations, with binary
variables indexed by time, have much stronger relaxations, but (tend to) have a huge number of
variables. Such formulations rely on a discretization of time, which introduces approximation. Fine
discretizations yield optimal, or near-optimal, solutions, but their IP formulations are prohibitively
large for current solvers. Thus, in practice, coarse discretizations are used. This can significantly
reduce the quality of solutions and may even cause infeasibility.

In the last few years, a novel paradigm, dynamic discretization discovery, has emerged as a way
to overcome some of these challenges and effectively and efficiently find optimal or near-optimal
solutions to TD models. Dynamic discretization discovery allows the solution of a TD model based
on a fine discretization without ever fully constructing it. The paradigm has three main
components:

• The design of time-indexed IP models, based on a partial discretization of time, that are
efficiently solvable in practice and that yield lower bounds, upper bounds, or exact solutions;

• The design of algorithms that dynamically discover partial discretizations, i.e., algorithms
that can “refine” a partial time discretization in order to strengthen the quality of a time-
indexed IP model; and

• The design of algorithms that efficiently solve time-indexed IP models.

The goal of this paper is to present perspectives on various aspects of time-dependent models
and to introduce the primary concepts underlying dynamic discretization discovery. The aim is
to provide food for thought and to offer readers an opportunity to learn what is, in our view, an
exciting area of research with a huge need and potential for further contributions.

The remainder of the paper is organized as follows. In Section 2, we introduce the key elements
and concepts of dynamic discretization discovery (DDD) via their application to a fundamental
problem, the traveling salesman problem with time windows, and to its generalization to arc travel
times that are time-dependent. In Section 3, we discuss general principles of DDD, in both theory
and algorithm design. Then, in Section 4, 5, and 6, we discuss alternative approaches and related
research. Finally, in Section 7, we present opportunities for further research.

2



2 Dynamic discretization discovery: a Traveling Salesman case
study

Time-indexed (TI) formulations require a discretization of time known to be fine enough to provide
a correct model. We refer to such a discretization as complete, and to the corresponding model as
a complete TI model. Its solution is continuous-time optimal.

2.1 Time-indexed formulations

To illustrate the relevant concepts, we consider the Traveling Salesman Problem with Time Windows
(TSPTW). Let D = (N0, A) be a complete directed graph with node set N0 = N ∪ {0} and arc set
A, where 0 denotes the depot node at which the tour starts and ends. Let the cost of traversing arc
a ∈ A be ca ∈ R and the time to traverse arc a ∈ A be τa ∈ Z>0. The time required to serve each
node is assumed to be included in the traversal time of each outgoing arc. Furthermore, each node
i ∈ N0 can only be visited during the interval [ei, li], where ei, li ∈ Z>0, ei ≤ li, and, without loss of
generality, we assume that ei ≥ e0 + τ0i and li ≤ l0 − τi0 for i ∈ N . The TSPTW seeks a minimum
cost tour starting and ending at 0, departing 0 at or after e0 and returning to 0 at or before l0,
visiting each node i ∈ N , and departing each node i ∈ N in its associated time window [ei, li].

Note that we have assumed that travel times and time window limits are integer. In this case, it
is obvious that there is an optimal solution in which all departures occur at integer times. Thus the
integer discretization is complete. This assumption simplifies our presentation of DDD concepts,
but is not needed to apply the DDD approach. In Section 3.1, we discuss necessary conditions, in
general.

A natural compact (nonlinear) formulation for the TSPTW is as follows:

min
∑
i

∑
j

cijyij∑
j∈δ+(i)

yij = 1, for all i ∈ N0 (1)

∑
j∈δ−(i)

yji −
∑

j∈δ+(i)
yij = 0 for all i ∈ N0 (2)

(tj − ti − τij)yij ≥ 0 for all i, j ∈ N0, j 6= 0 (3)
ei ≤ ti ≤ li for all i ∈ N0 (4)
yij ∈ {0, 1} for all i, j ∈ N0

ti ∈ R≥0 for all i ∈ N0

where binary variable yij indicates that arc (i, j) ∈ A is used in the tour, variable ti models the
departure time at node i and δ+(i) (respectively, δ−(i)) is used to denote the set of arcs leaving
(respectively, entering) node i ∈ N0. Constraints (1) and (2) force that every node is visited
exactly once and Constraints (3) and (4) ensure that each node is visited within its time window
and that travel times are properly accounted for. Nonlinear constraints (3) can be linearized in the
standard way and converted to “big-M” constraints, resulting in the following integer programming
formulation:

min
∑
i

∑
j

cijyij

3



∑
j∈δ+(i)

yij = 1, for all i ∈ N0 (5)

∑
j∈δ−(i)

yji −
∑

j∈δ+(i)
yij = 0 for all i ∈ N0 (6)

tj ≥ ti + τij −Mij(1− yij) for all i, j ∈ N0, j 6= 0 (7)
ei ≤ ti ≤ li for all i ∈ N0 (8)
yij ∈ {0, 1} for all i, j ∈ N0

ti ∈ R≥0 for all i ∈ N0

where Mij can be set to a sufficiently large value, e.g., Mij = `i + τij − ej will do. Due to the
presence of the big-M constraints, (7), the LP relaxation tends to be weak, which leads to large
search trees. Consequently, only small instances can be solved using this formulation.

Rather than incorporating times explicitly in the model, i.e., rather than using the variables
ti, Wang and Regan (2002) suggest to model times in the set of arcs. That is, time window and
travel time information is used to define the arcs connecting nodes. An over-constrained version is
proposed, which provides an upper bound, if feasible, and an under-constrained version is proposed,
which provides a lower bound. The over-constrained version arises when an arc (i, j) is included if
and only if li + τij ≤ lj . The under-constrained version arises when an arc (i, j) is included if and
only if ei + τij ≤ lj . Figures 1 and 2 illustrate these concepts, where the solid arcs indicate those
used to determine whether or not an arc (i, j) is included in the set of feasible arcs, and the dashed
arcs indicate why the resulting model is either over-constrained or under-constrained.

ei li

ej lj

Figure 1: Over-constrained: the model makes
the pessimistic assumption that the tour will
not depart from node i early enough to visit
node j in its time window, so arc (i, j) is not
included.

ei li

ej lj

Figure 2: Under-constrained: the model
makes the optimistic assumption that the
tour will depart from node i early enough to
visit node j in its time window, so arc (i, j)
is included.

Depending on the width of the time windows, the bound obtained from the lower bound model
may be weak and the upper bound model may not have a feasible solution. Therefore, Wang and
Regan (2002) propose to partition the time windows into subwindows. For a given ∆, a time window
is partitioned into d li−ei

∆ e equal size subwindows. The formulation is modified to reflect that only
one of the nodes associated with each of the subwindows has to be visited. It is easy to see that
the value of the lower model may improve and that the likelihood that the upper bound model
has a feasible solution increases when the time windows are partitioned into subwindows. Wang
and Regan (2009) prove the intuitive result that when ∆ goes to zero, and, thus, the number of
elements in the partition goes to infinity, the lower bound model produces an optimal solution as
all its solutions will be feasible. In fact, when the number of elements in the partition is sufficiently

4



large a complete TI model results.
This complete TI model can be seen as the problem of finding a minimum-cost path through a

time-expanded network, based on a complete discretization of time. Such a time-expanded network
has nodes (i, t) representing node i ∈ N at time t ∈ {ei, ei + 1, . . . , li} and nodes (0, e0) and (0, l0)
representing the tour start and end, respectively. It has arcs ((0, e0), (i, ei)) for i ∈ N , to model
the possibility that i is the first node in the tour, arcs ((i, t), (j,max{ej , t + τij})) for i, j ∈ N
and t = ei, . . . ,min{li, lj − τij}, to model travel from node i to j departing at time t, and arcs
((i, t), (0, l0)) for each t = ei, ei + 1, . . . , li to model the possibility that i is the last node in the
tour. Note that this network relies on the fact that travel times and time windows are specified as
integers and exploits the fact that, without loss of generality, it can be assumed that any waiting
occurs before the opening of the window at a node. (For a given instance, preprocessing can be
used to remove some nodes and arcs that cannot appear in a feasible, or in every optimal, solution.
For brevity, we will not discuss such preprocessing.)

Solving the TSPTW is equivalent to seeking a minimum cost path from (0, e0) to (0, l0) that
visits each node in N exactly once. An example time-expanded network and a feasible path can be
seen in Figure 3 for in instance of the TSPTW with N0 = {0, 1, 2, 3}, travel times τa = 1 for all
a ∈ A, and {e0, l0} = {1, 8}, {e1, l1} = {2, 6}, {e2, l2} = {3, 5}, and {e3, l3} = {5, 7}.

0:

1:

2:

3:

1 2 3 4 5 6 7 8

Figure 3: An example time-expanded network
and a feasible path (in bold). Each node (i, t) is
represented by t on the horizontal axis and i on
the vertical axis. Arcs into node 0 are omitted.

0:

1:

2:

3:

1 2 3 4 5 6 7 8

Figure 4: A relaxed network and a feasible path
(in bold). Arrows indicate arcs that are not for-
ward in time.

A similar model was introduced by Pessoa et al. (2010) for solving parallel identical machine
scheduling problems. Their arc time-indexed formulation has variables xtij that indicate whether
job i completes and job j starts at time t on the same machine. A path through the underlying
time-expanded network represents the schedule of one of the machines.

One of the reasons for considering IP formulations based on time-expanded networks is that they
are known to be strong, i.e., have tight LP relaxations. Our tests on a set of TSPTW benchmark
instances shows the LP gap to be less than 1.1% on average. Unfortunately, such time-expanded
networks are usually too large for the resulting integer program to be solved in an acceptable
run-time. Thus, specialized algorithms need to be developed for their solution. We focus on one
such class of algorithms: dynamic discretization discovery algorithms. However, before doing so, we
discuss some other benefits of IP formulations based on time-expanded networks.

It is easy to see that, in principle, time-dependent travel times, i.e., settings in which the travel
time on an arc depends on the time of travel, can easily be modeled in a time-expanded network.
The need to handle time-dependent travel times is increasingly important, as it allows modeling of

5



travel time patterns commonly encountered in practice, e.g., morning and evening rush hour traffic.
It also allows modeling of travel times on arcs that represent a scheduled service, such as a ferry.

In such cases, the time to traverse an arc (i, j) is not a constant value, τij , but is instead modeled
as a function, τij(t), of the departure time, t, at the tail node of the arc, node i. Such functions
are usually assumed to satisfy the first-in first-out property (FIFO), which implies that for travel
along an arc, departing later at its tail node can never lead to arriving earlier at its head node.

Provided that we assume node visit times must be integer, (which is now no longer without loss
of generality), the only change required to model the Time-Dependent Traveling Salesman Problem
with Time Windows (TD-TSPTW) is to use arcs ((i, t), (j,max{ej , t + τij(t)})), for i, j ∈ N and
t = ei, . . . ,min{li, lj − τ−1

ij (lj)}, to model travel from node i to j departing at time t, rather than
((i, t), (j,max{ej , t + τij})). Here we abuse notation in writing τ−1

ij (t) to denote the time needed
to traverse arc (i, j) as a function of the arrival time, t, at the head node of the arc, node j. Note
that τ−1 is not the inverse of τ , but rather τ−1

ij (t + τij(t)) = τij(t). (As an aside, we note that
the Time-Dependent Traveling Salesman Problem, as introduced by Picard and Queyranne (1978),
does not refer to time-dependent travel times, but to position-dependent costs – an unfortunate
misnomer.)

In Section 3.1, we discuss how complete TI models may still be derived for TD-TSPTW, without
the assumption of integer node visit times. Next, we introduce key concepts needed for the use of
dynamic discretization to solve the complete TI model for the TSPTW.

Partial Time Discretization

As mentioned above, IP formulations based on time-expanded networks are known to be strong, but
are often too large to be solved in an acceptable amount of time. Therefore, we consider partially
time-expanded networks rather than fully time-expanded networks.

A partially time-expanded network DT = (NT ,AT ) is derived from subsets of the time points
that could be modeled at each node. Specifically, we denote the collection of modeled time points
as T = {Ti}i∈N0 , with Ti = {ti1, . . . , tini

} ⊆ {ei, . . . , li} representing the time points modeled at node
i. Given T , the timed node set NT then has a node (i, t) for each i ∈ N0 and t ∈ Ti. (We assume
that T0 = {(0, e0), (0, l0)} always.)

The timed arc set of a partially time-expanded network consists of arcs of the form ((i, t), (j, t̄))
where (i, j) ∈ A, t ∈ Ti, and t̄ ∈ Tj . Note that arc ((i, t), (j, t̄)) does not have to satisfy t̄ = t + τij
(even if there is no waiting at j). In fact, the flexibility to introduce arcs ((i, t), (j, t̄)) with a
travel time that is different from the actual travel time τij is an essential feature of our partially
time-expanded networks, and provides a mechanism to control both the size of the time-expanded
network and the approximation properties of the IP model based on it.

For now, we leave DT unspecified, and give a general IP model based on the partially time-
expanded network. Let xa for arc a ∈ AT be a binary variable indicating whether the arc is used
(xa = 1) or not (xa = 0). Then we consider IP formulations, having the objective to minimize∑
a∈AT caxa, that require x to induce a path from (0, e0) to (0, l0) in DT that visits all nodes in N :

∑
t∈Ti

∑
a∈δ+((i,t))

xa = 1, for all i ∈ N0 (9)

∑
a∈δ−((i,t))

xa −
∑

a∈δ+((i,t))
xa = 0 for all (i, t) ∈ NT , (i, t) 6∈ {(0, e0), (0, l0)}, (10)

6



where δ−() and δ+() denote the set of timed arcs in AT coming into and going out of a timed
node. Constraints (9) force one unit of flow to leave each node. Constraints (10) are flow balance
constraints forcing the flow into a node at some time point to be equal to the flow out of the node
at that time point.

Observe that if the time discretization is complete, so Ti = {ei, ei + 1, . . . , li}, and AT consists
of all ((i, t), (j, t̄)) with t̄ = max{ej , t+ τij} for all i, j ∈ N and appropriate t, together with arcs to
and from the depot start and end nodes (as described earlier), then the time-expanded network is
acyclic and the above IP formulation is an exact formulation for the TSPTW.

IP Models Based on Partial Time Discretization

As shown by Wang and Regan (2002), by choosing NT and AT carefully, the IP with constraints
(9) and (10) may be guaranteed to provide either a lower or an upper bound on the optimal value
of the TSPTW.

To obtain a lower bound, the concept of a “short” arc is helpful: ((i, t), (j, t̄)) ∈ AT is short if t̄ ≤
max{ej , t+τij}. Three conditions, together, guarantee a lower bound from the IP: (i) (i, ei) ∈ NT for
all i ∈ N , (ii) for all (i, t) ∈ NT and all j ∈ N with t+τij ≤ lj , there exists t̄ with ((i, t), (j, t̄)) ∈ AT ,
and (iii) every arc in AT is short (Vu et al. 2018). We call a time-expanded network satisfying these
properties a relaxed (time-expanded) network. Note that if the time discretization at node j in
a relaxed network is quite coarse, it may be that t̄ is less than t, suggesting travel backwards in
time! Nevertheless, good lower bounds can result. It can be proved that the best such lower bound
is obtained by setting t̄ = max{t′ : t′ ≤ max{ej , t + τij}, (j, t′) ∈ NT }, and permitting no other
arc from (i, t) to j to be included in AT . We say a relaxed network created in this way has the
longest-arc property. Figure 4 shows a relaxed network for the instance used in Figure 3 where for
each node, i ∈ N , the time points are Ti = {ei, li}. Observe that all arcs are directed forwards in
time, except for the arc ((2, 3), (1, 2)) and the arc ((2, 5), (3, 5)).

A condition that guarantees an upper bound from the IP, provided the IP is feasible, is that all
arcs are “long”: ((i, t), (j, t̄)) ∈ AT is long if t̄ ≥ max{ej , t+ τij}. We call a time-expanded network
satisfying this properties a restricted (time-expanded) network.

2.2 Dynamic discretization discovery

The fundamental idea underlying the dynamic discretization discovery approach is to work with
a partial discretization so as to ensure that the resulting TI models can be solved efficiently, but
to guarantee that, upon termination of the algorithm, an optimal (continuous-time) solution is (or
can be) produced. That is, the idea is to solve a sequence of small IPs, rather than a single large
IP. A flow chart of the high-level structure of a dynamic discretization discovery algorithm is given
in Figure 5.

For TD problems, in general, a dynamic discretization discovery algorithm requires:

• a lower-bound IP model based on a partial discretization that is guaranteed to provide a
lower bound on the optimal value of the complete TI model;

• a mechanism that, given an optimal solution to a lower-bound IP model based on a partial
discretization, determines whether the solution is feasible and/or optimal for the complete TI
model; and

7



Discover new time points and
update partial discretization

Is upper bound solution optimal?
yes

Stop

Find upper bound: repair lower bound
solution or use a (different) IP based
on partial discretization

Find lower bound using a IP
based on partial discretization

no

Figure 5: Flow chart of a dynamic discretization
discovery algorithm.

• a mechanism that, given an optimal solution to a lower-bound IP model based on a partial
discretization that cannot be converted into a solution that is optimal to the complete TI
model, identifies time points that can be added to the partial discretization so that the current
optimal solution is no longer feasible for the lower-bound IP model based on the new, refined,
partial discretization.

Optionally, it may also use

• an upper-bound IP model based on a partial discretization that is guaranteed to provide an
upper bound on the optimal value of a complete TI model, if feasible; and/or

• a mechanism that, given an optimal solution to a lower-bound IP model based on a partial
discretization, seeks to “repair” it to improve its feasibility and/or objective value, giving an
upper bound on the optimal value of the complete TI model if feasibility is attained.

We have already described how to obtain a lower-bound IP model based on a partial discretiza-
tion for the TSPTW: use Constraints (9) and (10), defined over a relaxed (time-expanded) network,
together with integrality of the variables. The optimal solution to this IP will induce a simple path
in the relaxed network that starts and ends at the depot node. If all arcs ((i, t), (j, t)) in the relaxed
network have positive “length”, so t− t > 0, then the simple path must visit every node. Otherwise,
the IP solution may induce cycles in the relaxed network, which correspond to subtours. If the
IP solution does not induce any cycles, then the simple path it induces can easily be checked for
feasibility to the TSPTW: step through the node sequence in the path, setting the departure time
at each node as early as possible given the true travel times and time windows, and check that it is
no later than the end of the time window at the node. If feasibility to the TSPTW is confirmed by
this procedure, then the resulting tour must be optimal, since the costs of timed arcs in the relaxed
network is precisely their cost in the original network.

The remaining element essential to defining a DDD algorithm for the TSPTW is a mechanism
to refine the partial discretization whenever the lower-bound IP model’s optimal solution induces
cycles or induces a path that violates time window constraints. We discuss that next.

Note that we have already described an optional upper-bound IP model for the TSPTW: that
using Constraints (9) and (10), defined over a restricted (time-expanded) network, and integrality
of the variables.

8



Refining a Partial Time Discretization

Wang and Regan (2002) have shown that using finer and finer (regular) discretizations of time, i.e.,
partitioning the time windows into d li−ei

∆ e subwindows for smaller and smaller values of ∆, will
ultimately lead to a complete TI model. From a computational efficiency perspective, however, that
is not very satisfying, because it requires solving larger and larger IPs, in the end an IP over the full
time-expanded network. Therefore, we consider a different strategy for refining the discretization
of time.

Consider a solution to the lower-bound IP model that induces cycles. Each of these cycles
must use at least one timed arc with non-positive length. Since the true travel times are positive,
at least one timed arc in each cycle must be too short, meaning that t − t < τij for timed arc
((i, t), (j, t)) in the relaxed network. Similarly, in the case that the solution induces some subpath
(((i1, t1), (i2, t2)), . . . , ((ik−1, tk−1), (ik, tk))) in the relaxed network having ei1 +

∑k−1
h=1 τih,ih+1 > lik ,

it must be that at least one of the timed arcs ((ih, th), (ih+1, th+1)) is too short.

Thus, whenever the lower-bound IP model does not generate a feasible (and hence optimal)
TSPTW solution, its solution uses some timed arc that is too short. By refining the discretization
at the node at the head of that arc, the timed arc that is too short can be made to “disappear”,
i.e., not be present in the relaxed network associated with the refined partial discretization. If the
longest-arc property is enforced for the relaxed network constructed at each iteration, the timed
arc that is too short, ((i, t), (j, t)) say, can be removed simply by adding t̂ to Tj for any t̂ satisfying
t < t̂ ≤ t + τij . The effect will be to lengthen the timed arc, to ((i, t), (j, t̂)). The natural choice is
to take t̂ = t+ τij .

This represents the simplest example of partial time discretization refinement for dynamic dis-
cretization discovery. In other contexts, discovering time points to add maybe more involved. For
example, an LP had to be solved in the case of service network design (Boland et al. 2017). Fur-
thermore, it is often the case that there are many candidate time points to add, as there can be
many that will eliminate the current lower-bound IP solution, and any subset of these could be
added at each iteration. There might also be time points that seem likely to be needed and so could
be added, heuristically. How many and which time points to add in a refinement step affects the
efficiency of a dynamic discretization discovery algorithm. Effective implementation strategies for
dynamic discretization discovery algorithms are discussed further in Section 3.3.

That the dynamic discretization discovery algorithm for the TSPTW outlined above will termi-
nate in a finite number of iterations with an optimal solution as well as a proof that that solution
is optimal can be seen as follows. First, note that when the algorithm terminates, it does so with a
solution that is optimal, because it has been verified that the solution over the lower bound partially
time-expanded network remains feasible when true travel times are used. Second, observe that when
the algorithm does not terminate in an iteration, the partially time-expanded network is refined
by identifying an arc ((i, t), (j, t′)) with t′ < t+ τij , i.e., an arc that is too short, and adding timed
node (j, t + τij). Arcs are then added and removed to ensure that the network remains a relaxed
time-expanded network that satisfies the longest-arc property. For example, the arc ((i, t), (j, t′)) is
deleted and replaced by arc ((i, t), (j, t + τij)). Given that timed nodes are never removed, after a
finite number of iterations a complete TI model will have been generated. When that happens, an
optimal solution will be found in the next iteration and the algorithm will terminate.

9



3 General principles of dynamic discretization discovery

3.1 On the existence of a complete TI model

For DDD to be guaranteed to produce an optimal solution to the continuous time problem, it is
sufficient to know that a complete TI model exists for the problem. For some problem classes, the
existence of such a model is obvious; in others, it is not.

For the TSPTW with integer travel times and time window limits, the existence is obvious
(and, thus, it is also obvious for the TSPTW with rational travel times and time window limits
– using a simple scaling argument). A slightly different, and more general, argument proceeds as
follows. Any feasible solution to the TSPTW can be viewed as a path (0, π1, π2, . . . , πn, 0), with π
a permutation of the node set N , departing from the depot at time e0, and departing from each
node πi as early as possible, i.e., as soon as the salesman arrives from πi−1 if the salesman arrives
within the time window, or at the opening of the time window if the salesman arrives before the
opening of the time window. Now, because there are only finitely many feasible solutions, there
exists a TI model based on such earliest departure times at each node in the path for any possible
feasible solution. Such a TI model must be complete; a complete TI model must exist. Importantly,
this argument does not rely on integer, or even rational, travel times and time window limits. Such
a combinatorial argument may suffice in many settings to argue the existence of a complete TI
model.

Next, consider the TD-TSPTW. With time-dependent travel times, different objective functions
can be considered for the TD-TSPTW. The three natural objectives are (1) to minimize the return
time to the depot, (2) to minimize the time away from the depot, i.e., the duration of the tour, and
(3) to minimize the travel time, i.e., ignoring any waiting time. The three objectives differ in terms
of the “contribution” of waiting time in an optimal tour. Given that the arc travel time functions
satisfy the FIFO property, when the goal is to return to the depot as early as possible, it is never
beneficial to wait unnecessarily at any location (because of the time windows at locations, it may
be necessary to wait until the opening of a window). When the goal is to minimize the duration,
the only location where it may be beneficial to wait is the depot itself, i.e., it may be possible to
reduce waiting at other locations by departing later from the depot. When the goal is to minimize
travel time, it may be beneficial to wait at any location.

When the objective is to return to the depot as early as possible, and it is never beneficial to
wait unnecessarily at any location, the combinatorial argument presented above suffices to argue
the existence of a complete TI model. However, when (unnecessary) waiting may be beneficial, the
argument has to be more involved as it is no longer obvious that the number of feasible solutions
is finite. Furthermore, additional properties of the arc travel time functions may be needed. The
assumption that the arc travel time functions are piecewise linear is particularly useful, and is
commonly made. When the objective is to minimize the duration, for example, the existence of a
time-expanded network in which a minimum-cost path from (0, e0) to (0, l0) visiting each node in
N exactly once corresponds to a continuous-time optimal solution is based on the observation that
there is a finite number of paths, that each arc travel time function consists of a finite number of
linear pieces and so has a finite number of breakpoints, and that there exists an optimal path that
departs from at least one node at a breakpoint.

This was shown formally for the Time-Dependent Shortest Path Problem (TD-SPP) by Foschini
et al. (2014), who consider the problem of finding the minimum duration path when arc travel times
are piecewise linear functions satisfying the FIFO property. The intuition behind their result is that

10



if a time-dependent source-sink path does not depart at a breakpoint from at least one node in
the path, then the path travel time function, formed by function composition of the arc travel time
functions along the path to give the travel time on the path as a function of the departure time at
the source, is locally linear (diffentiable) at the path’s source departure time. Thus, by changing the
departure time at every node by a small amount, either forward or backward in time, an improved
path is obtained, or a path with the desired property is obtained, i.e., that it departs at a breakpoint
from at least one node in the path. This result is extended to the case of the minimum travel time
objective in He et al. (2019).

Another setting in which the existence of a complete TI model is not straightforward is the
continuous time inventory routing problem (Lagos et al. 2018). For ease of exposition, assume that
two customers with storage capacity C1 and C2, product usage rate u1 and u2, and initial inventory
I0

1 and I0
2 , respectively, need to be supplied from a depot with unlimited product supply using

vehicles of capacity Q during a planning period [0, T ], and that the travel times between the depot
and the two customers are τ01 and τ02 and the travel time between the two customer is τ12. The
goal is to minimize the transportation cost, which is assumed to be a linear function of the travel
time, ensuring that the customers do not run out of product during the planning period. Consider
an instance with storage capacities C1 = 7 and C2 = 5, usage rates u1 = u2 = 2, initial inventories
I0

1 = 3 and I0
2 = 5. The vehicle capacity is Q = 12. The travel times and costs are identical and

symmetric: τ01 = c01 = τ12 = c12 = τ02 = c02 = 1. The time horizon is H = 5. The optimal solution
has a single route of cost 3, visiting Customer 1 at time 1.5, delivering 7 units of product, and
visiting Customer 2 at time 2.5, delivering 5 units. This solution is optimal because any feasible
solution must visit each customer at least once, and the cheapest way to do this is with a single
route. There cannot be an optimal solution in which the deliveries take place only at integer times,
since Customer 1 must have a delivery on or before time 1.5, when it runs out of product, and at
time 1, Customer 1 only has capacity for 6 units of product. If the remaining 1 unit it requires is
to be delivered without incurring extra cost, the vehicle must wait at Customer 1 until time 2 to
deliver this unit, at which time it is too late to reach Customer 2 by time 2.5, when Customer 2
runs out of product. Thus the solution with delivery to Customer 1 and time 1.5 and Customer 2
and time 2.5 is the unique optimal solution.

1

2
C2 = 5
u2 = 2
I02 = 5

c01 = 1

c12 = 1c02 = 1

C1 = 7
u1 = 2
I01 = 3

Q = 12
H = 5

1 2 3 4 5

1

2

3

4

5

6

7

8

customer 2

1 2 3 4 5

1

2

3

4

5

6

7

8

customer 1

Time

In
v
e
n
to

ry

Figure 6: Instance with integer data for which the optimal solution has non-integer delivery times.

In this setting, the fact that a complete TI model exists when all instance data are rational relies
on the fact that given an optimal set of routes, a linear program can be defined that determines

11



the optimal vehicle departure, customer visit, and return times. The existence now follows from
linear programming theory, because a linear program with rational data will have an optimal
rational extreme point. The fact that there must exist time-expanded network based on a rational
discretization of time in which the optimal solution can be represented, and, thus, found, however,
does not mean that we know how to choose the discretization. We only know it exists, which is
sufficient to guarantee that a dynamic discretization discovery algorithm will find a continuous time
optimal solution.

Existence of a complete TI model has also been explored in the context of a “network scheduling”
problem that marries max flow with scheduling: the problem is to schedule arc shutdowns in an
arc-capacitated network so as to maximize the total flow over time (Boland et al. 2015). Some arcs
have associated shutdown jobs, each with release date, deadline and processing time. A job, once
started, cannot be interrupted, and its effect is to change capacity of its associated arc to zero. The
problem is to determine a feasible schedule of start times for all shutdown jobs so that the integral
of the max flow problem in the network over all times in a given time horizon is maximized. When
flow cannot be stored at nodes, Boland et al. (2015) give combinatorial arguments to show that a
complete TI model exists. They observe that if all job data is integer then the integer discretization
supports a complete TI model. By contrast, when flow can be stored at nodes having a given storage
capacity, even when all job data and node storage capacities are integer there may not exist any
optimal solution that has integer job start times. However, the existence of a rational solution,
and hence a complete TI model, is proved by Boland et al. (2015), using the linear programming
argument.

3.2 General principles in the construction of a lower-bound IP model

Like integer programming in general, constructing an IP model based on a partial discretization of
time so as to give a lower bound on the continuous-time optimal value may be an art as much as
it is a science. However, some principles can be a useful guide in this endeavor.

From a high level perspective, the principle of “optimism” is key. Any modeling effort involves
assumptions, and if an IP is carefully designed to embed only optimistic assumptions, erring on the
side of including solutions that may not, in continuous time, be feasible, and erring on the side of
underestimating continuous-time costs, then the result will be sure to yield a lower bound.

As an example, consider the case of service network design, in which each commodity has a
time window: the commodity becomes available for pick-up at its origin at the start of the time
window and must be delivered to its destination by the end. When using a partial discretization, to
obtain a lower bound, if the start of a commodity’s time window lies between two consecutive time
points at its origin, then the commodity should be modeled as becoming available at the earlier of
the two time points; if the end of its time window lies between two consecutive time points at its
destination, then it should be modeled as due only at the later of the two times. The “error” in
this modeling ensures that no time-feasible path for the commodity is excluded by the model, at
the cost of permitting some paths that may not be feasible.

Next, consider the time-dependent shortest path problem with a minimum travel time objective.
In this setting, the cost of a timed arc departing node i at a time, t, in the partial discretization
should represent the least travel time on that arc if departing at any time in the interval from t to
the next time at i in the discretization. If the least travel time for one arc occurs at a time later
than the least travel time for the next arc in a path, then both travel times cannot, in any properly
timed solution, occur in the same path. The “error” in this modeling approach ensures that the

12



cost of any path is no greater than its true travel time.
This example highlights another useful concept: that of time intervals. Instead of interpreting

a variable associated with a time point in a discretization as a decision about an activity to occur
at that time, it is helpful – for ensuring a lower bound – to interpret such a variable as modeling an
activity to occur at some time in the interval [t, t+), where t and t+ are two consecutive times in the
discretization. For example, consider a TSPTW model in which xi,j,t represents a departure along
arc (i, j) ∈ A at some time in the interval [t, t+), where t and t+ are two consecutive times in Ti.
This variable should be included in the model if and only if there exists s ∈ [t, t+) with s ∈ [ei, `i)
and s+ τij ≤ `j , i.e., if and only if, based on the time windows for i and j and the travel time from
i to j, it is possible to travel on the arc (i, j) departing from i at some time in the interval [t, t+)
and arrive at j before the end of its time window.

To obtain a lower bound model based on variables modeling decisions about an activity to occur
at some time in an interval, the cost of such a variable can be taken to be the minimum cost for
the activity it represents over any time in the interval. Constraints can be constructed so as permit
anything that might occur. For example, for the TSPTW, for a given pair (j, t) with t ∈ Tj , we
may define δ+(j, t) to be the set of triples (j, i, t) for which xj,i,t is included in the model. Similarly,
we may define δ−(j, t) to be the set of triples (i, j, s) for which xi,j,s is included in the model, also
having s+ τij < t+ and either t ≤ ej or s+ + τij ≥ t (where s+ is next in Ti after s). In other words,
(i, j, s) ∈ δ−(j, t) if and only if xi,j,s is defined and there exists s′ ∈ [s, s+) and t′ ∈ [max{ej , t}, t+)
with t′ ≥ s′+ τij . Thus (i, j, s) ∈ δ−(j, t) implies that it is possible, based on the time windows for i
and j and the travel time from i to j, to travel on the arc (i, j) departing from i at some time in the
interval [s, s+) and then to depart j at some time in the interval [t, t+). Now (the more important
side of) the flow balance constraints in the lower-bound model will be∑

(j,i,t)∈δ+(j,t)
xj,i,t −

∑
(i,j,s)∈δ−(j,t)

xi,j,s ≤ 0, ∀j ∈ N, ∀t ∈ Tj . (11)

This interval interpretation of variables was found to have distinct advantages in the use of
dynamic discretization discovery for service network design (Marshall et al. 2018). It was also central
to the approach of He et al. (2019) for time-dependent shortest path problems, and advantageous
in constructing dual-bound IP models1 for machine scheduling problems (Boland et al. 2015).

A more general way to view the interval-based approach is as variable aggregation. In the
TSPTW, for example, suppose binary variable f ti,j represents travel on arc (i, j) departing at time
t for t in a full discretization, T ∗ = {T ∗i }i∈N0 . So the f ti,j variables form the basis for a complete TI
model. Now, for any two consecutive time points, t, t+ ∈ Ti in a partial discretization, T = {Ti}i∈N0 ,
define

xti,j :=
∑

t′∈T ∗i :t≤t′<t+
f t
′
i,j .

Then, since
∑
t∈T ∗i

f ti,j ≤ 1 is implied in the complete TI model, it must be that xti,j is binary and
equals 1 if and only if the tour uses arc (i, j) departing at some time in [t, t+), which is precisely
the interval approach described above.

We show how to derive the constraints of the lower-bound IP model by means of a small example.
Consider the partial network shown in Figure 7 with nodes a, b, c, d ∈ N and arcs (a, c), (b, c), (c, d) ∈

1For minimization problems, dual bounds are lower bounds, which is the prevalent dual bound considered in this
paper. However, the problem studied by Boland et al. (2015) has a maximization objective, so its dual bounds are
upper bounds.

13



A, where we assume that these are the only arcs incident to node c, and (relevant) travel times
τac = 1 and τbc = 2. Furthermore, let the time windows of node a, b, c, and d be [1, ·], [1, ·], [3, ·], and

a

b

c d

Figure 7: Partial network.

b

c

a
1 3 6 7

Figure 8: Partial partially time-expanded network.

[1, ·], respectively, where · indicates that the end of the time window is far enough in the future so
as not to be relevant for the example. Let the time points in the partially time-expanded network
for nodes a, b, and c be Ta = {1, 7, . . .}, Tb = {1, 3, 6, . . .}, and Tc = {3, 6, . . .}, as shown in Figure
8. The relevant aggregated variables are

x1
ac = f1

ac + f2
ac + f3

ac + f4
ac + f5

ac + f6
ac,

x1
bc = f1

bc + f2
bc,

x3
bc = f3

bc + f4
bc + f5

bc, and
x3
cd = f3

cd + f4
cd + f5

cd.

The complete TI model has the following flow balance constraints for nodes (c, 3), (c, 4) and (c, 5):
f3
cd = f1

ac + f2
ac + f1

bc,

f4
cd = f3

ac + f2
bc, and

f5
cd = f4

ac + f3
bc.

Aggregating these constraints, i.e., aggregating the constraints in the interval [3, 6) at node c, gives

f3
cd + f4

cd + f5
cd = f1

ac + f2
ac + f3

ac + f4
ac + f1

bc + f2
bc + f3

bc,

which can be relaxed to

f3
cd + f4

cd + f5
cd ≤ f1

ac + f2
ac + f3

ac + f4
ac + f5

ac + f6
ac + f1

bc + f2
bc + f3

bc + f4
bc + f5

bc,

which is equivalent to
x3
cd ≤ x1

ac + x1
bc + x3

bc.

This is the constraint of the form (11) for (c, 3) in the lower-bound IP model (associated with
the partially time-expanded network). That is, by aggregating variables and constraints over the
intervals, we can obtain the (interval-based) lower-bound IP model.

For a general complete TI model, say one having

• variables fi,t (a vector of variables) for each i and each t ∈ T ∗i ,

• objective minimize
∑
i

∑
t∈T ∗i

(ci,t)T fi,t, where each ci,t is a vector, and

• constraints
∑
i

∑
t∈T ∗i

Ai,tfi,t ≥ b, where each Ai,t is a matrix and b is a vector,

14



we may construct a lower-bound model based on a partial discretization, T , as follows. Define
variables xi,t :=

∑
t′∈T ∗i :t≤t′<t+ fi,t′ for each i and t ∈ Ti. Here, again, we use the notation t+ to

denote the next element after t in Ti. Now for simplicity, assume all variables are nonnegative. For
every i, t ∈ Ti, and variable index j, set ci,tj := mint′∈T ∗i :t≤t′<t+ c

i,t
j and Ai,tj,k := maxt′∈T ∗i :t≤t′<t+ A

i,t′

j,k

for all constraints k. Then the model with

• objective minimize
∑
i

∑
t∈Ti

(ci,t)Txi,t, and

• constraints
∑
i

∑
t∈Ti

A
i,txi,t ≥ b

will yield a lower bound. We have, so far, omitted the constraint aggregation step that we used
in for the TSPTW example to ensure that the left-hand side of the constraint included the whole
set of f variables aggregated to form an x variable. Unfortunately, without that step, the model
is likely to be very weak, due to cases of t′ ∈ [t, t+) with Ai,t

′

j,k < A
i,t
j,k having a “large” difference

between the right and left sides. Constraint aggregation is needed to “even up” the coefficients of
f variables that are to be aggregated to a form single x variable. There is no clear best strategy,
or mechanism, to automating such constraint aggregation, so this general principle has, at present,
limited applicability; it seems that, for now, arriving at constraints for a lower-bound model will
be an art more than it will be a science.

Finally, we observe that even if a complete TI model is not known to exist, the interval-based
modeling principle can still be applied. For example, in the continuous-time inventory routing prob-
lem (Lagos et al. 2018), the delivery quantity variable for a customer and time interval represents
the total quantity delivered to the customer over the interval, implicitly integrating a delivery
quantity “variable” that is a continuous function of time.

3.3 Algorithm engineering

Even though the underlying ideas of a dynamic discretization discovery algorithm are natural and
intuitive, developing an effective and efficient implementation involves a certain amount of algorithm
engineering. As mentioned above, the idea underlying a dynamic discretization discovery algorithm
idea is to solve a sequence of small IPs, rather than a single large IP. This is effective if (1) the
number of IPs solved is not too large, and (2) the IPs that are solved in reasonable amount of time.
Algorithm engineering mostly focuses on finding a proper balance between the two.

Adding multiple time points when refining the partially time-expanded network Time points are
added to the partially time-expanded network to “fix” a problem, e.g., in the TSPTW, the use
of (existence of) an arc that is too short. On the one hand, fixing multiple problems at once may
reduce the number of iterations. On the other hand, adding multiple time points when refining the
partially time-expanded network increases the size of IPs that need to be solved. Furthermore, by
fixing one problem, it is possible that other problems disappear naturally. Therefore, care has to
be taken when developing strategies for adding multiple time points when refining the partially
time-expanded network. Depending on the problem, it may be possible to recognize that two fixes
are “independent”, i.e., that fixing one will not fix the other. In that case, it is likely that fixing
both of them at the same time is beneficial. In the TSPTW, for example, if the solution consists
of a path and multiple cycles, it is likely that trying to fix all the cycles will reduce the number of
iterations.

Again, depending on the problem, it may be possible to fix a problem in different ways, i.e.,
by adding a different number of time points when refining the partially time-expanded network.

15



In that case, it is likely that choosing the fix that requires the fewest time points to be added is
preferable.

Adding cuts rather than refining the partially time-expanded network In certain situations, it may
be advantageous to eliminating solutions by adding cuts rather than adding time points. Consider
the situation illustrated in Figure 9 with two nodes i and j and a travel time of 1 between nodes
i and j. In the left-most diagram, the dashed arc represents an arc that is too short and creates

i

j

Figure 9: Cycle.

a cycle. That cycle can be removed by adding a time point, as shown in the center diagram, but
that creates another cycle. That cycle, in turn, can be removed by adding another time point, as
shown in the right most diagram, but that creates another cycle, and so on. This, of course, can be
anticipated and many time points can be added at once, but it is better to add a constraint that
eliminates these cycles. Specifically, the following constraint eliminates all timed copies of a cycle
C ∑

(i,j)∈C×C

∑
t,t′:((i,t),(j,t′))∈AT

x((i,t),(j,t′)) ≤ |C| − 1.

Adding cuts to strengthen the IP model The enormous power of modern (commercial) IP solvers
is due, in part, because of their ability to automatically generate cuts to strengthen an IP model.
However, a modeler’s understanding of the problem at hand may often allow the modeler to develop
valid inequalities that cannot be automatically detected and adding these may often result in
reduced computation times.

Dynamically updating the optimality tolerance of the IP model In practice, it is often the case
that for the first several iterations of a dynamic discretization discovery algorithm there is a large
gap between the upper and lower bounds. Thus there is little benefit to using a small optimality
tolerance in the IP solver when finding the next lower bound. Instead of having a fixed tolerance
across all iterations, it often is more efficient to adapt the tolerance as the algorithm progresses.

Updating the IP model in memory Rather than regenerating the IP model in each iteration of
the algorithm (after the partially time-expanded network has been refined, it is more efficient to
update the IP model in memory, i.e., reusing variables and constraints as much as possible (e.g.,
relabel variables instead of deleting and adding variables). This also provides the IP solver with
the opportunity to perform a warm start at the next iteration.

Marshall et al. (2018) provide an example of the potential benefits of algorithm engineering. In
addition to introducing an interval-based view, rather than a time point-based view, of dynamic
discretization discovery, the authors explore, in the context of the continuous-time service network
design problem, various techniques to enhance the efficiency of their implementation of a dynamic
discretization discovery algorithm. The combined benefit of these techniques is that high-quality
or optimal solutions are often found earlier in the search and proving optimality can often be done

16



orders of magnitude faster, compared to the original dynamic discretization discovery algorithm
introduced by Boland et al. (2017).

Table 1 shows results for the dynamic discretization discovery algorithm of Boland et al. (2017)
(DDD) and the interval-based dynamic discretization discovery algorithm of Marshall et al. (2018)
(DDDI) on five instances of the continuous-time service network design problem which were created
using data from a large less-than-truckload carrier in the United States, restricted to the states
listed. These were the most challenging instances presented in Boland et al. (2017), with |N |
denoting the number of nodes in the physical network, |A| denoting the number of arcs in the
physical network, and |K| denoting the number of commodities that need to be routed through
the network. Note that computation was limited to 2 hours. The gap reported represents the
integrality gap at termination (where the goal was to solve the instances to within 1% of optimality).
The results clearly show that DDDI outperforms DDD and the full discretization (FD) for these
instances. Not only does DDDI find high quality solutions quickly, it is also able to prove quickly
that these solution are of high quality. Even though DDD is also able to find high-quality solutions,
it is unable to prove that they are of high-quality.

FD DDD DDDI
States |N | |A| |K| Time (s) Value Gap (%) Time (s) Value Gap (%) Time (s) Value Gap (%)
ID,MT,OR,WA 10 54 224 213 1,503,240 0.94 30 1,507,222 0.92 5 1,510,629 0.93
CO,ID,MT,OR,WA 14 81 341 7,200 1,780,041 3.63 7,200 1,757,287 1.68 78 1,757,395 0.69
CO,ID,MT,OR,WA,NV 16 109 469 7,200 2,939,430 25.28 7,200 2,291,691 2.74 803 2,273,707 0.65
CO,ID,MT,OR,WA,UT 15 104 458 7,200 2,805,518 19.71 7,200 2,325,602 1.45 223 2,320,710 0.78
ID,MT,OR,WA,NV,UT 13 97 429 7,200 3,130,964 23.78 7,200 2,501,827 3.00 137 2,493,752 0.89

Table 1: Performance of DDD and DDDI on instances derived from a U.S. less-than-truckload
carrier

In the case study used to introduce the key elements and concepts of dynamic discretization
discovery algorithms, i.e., the TSPTW, we mentioned that an advantage of using a TI model is
that it is (relatively) easy to incorporate time-dependent travel times. This has been explored in Vu
et al. (2018) and the dynamic discretization discovery algorithm developed and presented is superior
to existing algorithms for solving instances of the TD-TSPTW, e.g., those presented in Arigliano
et al. (2018) and Montero et al. (2017). Table 2 compares its performance to the performance of
the branch-and-cut algorithm of Montero et al. (2017), denoted by TTBF-BC, on a set of standard
benchmark instances, where “Inst” represents the number of instances in a class, “Slv” records the
number of instances solved, and “Time” records the time needed to solve those instances (reported
in seconds and averaged over the instances solved).

TTBF-BC DDD
Instance set Traffic Inst Slv Time Inst Slv Time

pattern

Set 1 A 478 470 31.99 478 478 12.91
B 474 470 20.44 474 474 8.79

Set w100 A 108 107 100.13 480 480 1.31
B 108 107 93.10 480 480 1.14

Table 2: Performance on Arigliano et al. (2018) instances.

We see that the dynamic discretization discovery algorithm (DDD) solves all instances of Set
1, where as TTBF-BC struggles with a few of them, and that DDD is faster. Furthermore, DDD

17



solves all w100 instances and in far less time (where the solve times reported for DDD for w100
instances includes solve times for instances that TTBF-BC was unable to solve).

4 Exact models based on a partial discretization of time
Rather that using a partial discretization of time to construct a model that provides a lower or upper
bound, another stream of research focuses on exact IP models based on a partial discretization of
time. These ideas have primarily been explored in the context of lot sizing models Belvaux and
Wolsey (2000, 2001). In this context, the interval of time between two consecutive time points in
a discretization is referred to as a bucket. A distinction is made between (i) big bucket models, in
which a relatively small number of buckets is needed, but many events can occur within a time
interval, leading to difficulties in modeling, and (ii) small bucket models, in which modeling in detail
what happens within, or between, time intervals, is easy, but which require a relatively large number
of buckets. Bucket models, so far, have received little attention outside of lot sizing. The idea has
been applied in the context of machine scheduling by Boland et al. (2016), who develop a small
bucket model, and Baptiste and Sadykov (2009), who develop a big bucket model Baptiste and
Sadykov (2009), which exploits special properties of the particular scheduling problem to overcome
the modeling difficulty. These two bucket models consistently enable larger instances to be solved
than is possible with other models.

To illustrate how a bucket model based on a partial discretization of time can be constructed,
we again consider the TSPTW. Take a relaxed network, DT , with the additional property that AT
contains arc ((i, t), (j, t̄)) whenever it is possible to depart at some time in the bucket with lower
end point t at node i and arrive at some time in the bucket with lower end point t̄ at node j. In
this case, we say that DT is a bucket network. We then introduce semi-continuous variables da,
modeling the departure time at the tail of a ∈ AT , if a is used in the tour, and da = 0 otherwise,
and add the constraints∑

a∈δ−((i,t))
(da + τaxa) =

∑
a∈δ+((i,t))

da, ∀(i, t) ∈ NT , i 6= 0, t 6= ei (12)

∑
a∈δ−((i,ei))

(da + τaxa) ≤
∑

a∈δ+((i,ei))
da, ∀(i, t) ∈ NT , i 6= 0, (13)

Maxa ≤ da ≤Maxa ∀a ∈ AT . (14)

Here τa = τij for a = ((i, t), (j, t̄)) ∈ AT , and Ma and Ma are given by

Ma = max{t, t̄− 1− τij} and Ma = min{t′ − 1, t̄′ − 1− τij}. (15)

Together, Constraints (9), (10) and (12)–(14) define an exact model. The strength of the model is
dependent on the big-M constraints, (14): the “tighter” the values of Ma and Ma, the stronger the
model is likely to be. Clearly, if a partial discretization is refined, so that t′ − t and t̄′ − t̄ decrease,
the model strengthens. In the extreme case, t′ − t = 1 and t̄′ − t̄ = 1 and Constraints (14) become
da = txa.

An alternative way to construct an exact IP model based on a partial discretization of time is to
start from an IP based on a relaxed network, whose solution may contain subtours or time window-
infeasible subpaths, and then “correct it” by the addition of new variables and/or inequalities. One
particular approach is to “intersect” the partially time-expanded network formulation, based on xa

18



variables for a ∈ AT , with another, valid, TSPTW formulation that includes binary variables yij
for each (i, j) ∈ A to indicate if arc (i, j) is used or not, via

yij =
∑

((i,t),(j,t̄))∈AT

xa.

The conjunction of the valid and lower bound IP models can be interpreted as an extended for-
mulation of the former. This is the approach taken by Dash et al. (2012), where the partially
time-expanded network is obtained with an iterative LP-based heuristic, and the extended formu-
lation is solved using branch-and-cut.

5 Implicit Dynamic Discretization Via Lagrangian Relaxation and
Dynamic Programming

An alternative approach to solving a complete TI model starts by considering how to solve its LP
relaxation. To illustrate, consider the LP relaxation of the complete TI model for TSPTW formed
from Constraints (9) and (10), together with non-negativity of the variables, where T is taken to be
the full discretization. Solving this LP directly will be impossible when the number of time points
in the full discretization is large. Thus alternative techniques are required.

One such technique is to form the Lagrangian relaxation of the constraints that require each
node to be visited, Constraints (9), (except for the case i = 0), and then solve the corresponding
Lagrangian dual problem, either exactly or approximately. The Lagrangian relaxation subproblem
is to find a shortest path from (0, e0) to (0, `0) in the fully time-expanded network, where the length
of arc ((i, t), (j, t)) (i 6= 0) is ci,j − λi, for λi the Lagrange multiplier of the node visit requirement
constraint for i. The Lagrangian dual variables are unrestricted in sign, and are likely to create
negative arc lengths: to reduce violation of node i’s visit requirement constraint, we can expect the
Lagrangian dual solution method to encourage λi to increase beyond ci,j for some j.

This Lagrangian relaxation subproblem can readily be solved by dynamic programming tech-
niques, without the need to explicitly create the full time-expanded network. It has the form of a
resource-constrained shortest path problem, for which there are highly effective exact and heuristic
methods available (see Pugliese and Guerriero (2013); also see the work of Irnich and Desaulniers
(2005) and Irnich (2008)). The dynamic program will create node labels of the form (i, t, r), where r
is the length of the shortest path from 0 to i arriving at a time no later than t. Only nondominated
labels are retained by the algorithm; in practice, the set of labels for each node i is expected to be
sparse relative to the full discretization. Note that for positive travel times, the dynamic program
must terminate finitely, and the path it generates in the fully time-expanded network will be simple
(elementary). However, it may visit multiple copies of the same underlying node; the path induced
in the original network may include cycles.

This approach is taken by Mahmoudi and Zhou (2016) (within a more complex vehicle pick-up
and delivery context), where the Lagrangian dual problem is solved heuristically by subgradient
optimization. It is also used for solving parallel machine scheduling problems by Pessoa et al.
(2010), who solve the Lagrangian dual to optimality via its equivalent primal, column generation,
reformulation. For the TSPTW, the lower bounding procedure of Baldacci et al. (2012) also uses
a column generation reformulation to solve a Lagrangian dual problem like that described above,
but strengthens the subproblem to (partially) eliminate cycles.

19



A strong attraction for this approach is that it implicitly solves the LP relaxation of the com-
plete TI model, which enables reduced cost variable fixing to be applied. In the case of the TSPTW,
the LP dual variables needed for reduced cost variable fixing come from the Lagrange multipliers,
the λi, for the Constraints (9), and from the dynamic programming labels, (i, t, ri,t), for Con-
straints (10). The value ri,t is, in effect, the dual multiplier for the flow balance constraint for (i, t),
so the reduced cost of the variable x((i,t),(j,t)) is ci,j − λi − (rj,t − ri,t). Importantly, if s and s+

are chronologically consecutive in the list of labels generated by the dynamic program for node i
and t, t+ are consecutive in the labels for node j, then ci,j − λi − (rj,t − ri,s) is the reduced cost
of x((i,s′),(j,t′)) for any s′ = s, . . . , s+ − 1 with t′ = s′ + τij ∈ [t, t+). Thus the logic of reduced cost
variable fixing may be used to infer time intervals over which an arc need not be considered.

This kind of reduced cost variable fixing was used to great effect by both Pessoa et al. (2010)
and Baldacci et al. (2012), building on foundations in the work of Irnich et al. (2010).

Solving the LP relaxation does not, of course, solve the complete TI model as an IP; integrality is
still required. In the case that column generation is used to solve the primal form of the Lagrangian
dual problem, as in the paper of Pessoa et al. (2010), branch-and-price is the natural approach to
obtaining integrality. Baldacci et al. (2012) use dynamic programming in which a state consists
of a set of nodes, a final node visited in a time-feasible Hamiltonian path on the set, and a time
at which the final node is reached. Essential to the computational success of this method is their
lower-bounding procedure, described above, which is used to fathom states.

6 Related research

Time-expanded networks are an example of so-called layered graphs. Layered graphs enumerate
(possibly after discretizing) the possible values of one or more characteristics of a problem and
embed these values in the definition of the nodes of a graph. The model proposed by Picard and
Queyranne (1978) for the time-dependent traveling salesman problem, mentioned earlier, uses a
layered graph in which the position of the city in a tour is enumerated, i.e., a node of the form (i, k)
represents visiting city i as the kth city in the tour. This allows modeling of “time dependent” costs,
i.e., a cost for going from city i to city j that depends on the position of i in the tour. In capacitated
routing problems, it is possible to enumerate the values of the load of a vehicle when it visits a
location, i.e., a node of the form (i, q) represents visiting a location i with the load of the vehicle
upon arrival at the location being q (for an example, see Gouveia and Ruthmair (2015)). Gouveia
et al. (2019) provide an insightful and comprehensive survey of layered graph formulations for
modeling and solving combinatorial optimization problems. Riedler et al. (2018) discuss refinement
strategies for layered graphs and use, as we have done, the TSPTW as an illustrative example.

Clautiaux et al. (2017) present an iterative aggregation and disaggregation algorithm for prob-
lems that can be formulated as a circulation model with side constraints. Their starting point is
similar to ours. They consider network flow model in which the number of nodes is large as the
models are “characterized by nodes that correspond to values in a given scale”. A discretization of
time is a natural example of “values in a given scale”, but the concept, as is the case with layered
graphs, is more general. An aggregation occurs when certain values from an ordered set representing
the values of a scale are removed and a disaggregation occurs when certain values are added to an
ordered set representing the values of a scale. A distinction is made between conservative aggre-
gation (over-constrained in the terminology of Wang and Regan (2002)) and heuristic aggregation
(under-constrained in the terminology of Wang and Regan (2002)). Whereas dynamic discretization

20



discovery focuses on refinement, i.e., disaggregation, the algorithm of Clautiaux et al. (2017) relies
heavily on both aggregation and disaggregation. It is observed that checking the feasibility of a
solution in the aggregated network is NP-hard.

The concept of partially time-expanded networks and dynamically refining partially time-
expanded networks is also present in the work of Fischer and Helmberg (2014), who focus on
discrete optimization problems in which the progress of objects over time is modeled by shortest
path problems in time-expanded networks.

Discretization of time has been examined in depth in the study of flows over time and related
problems Anderson et al. (1982), Philpott (1990), Philpott and Craddock (1995), Skutella (2009). It
has been shown that a number of problems in continuous time, but not all, can be solved by discretiz-
ing time. Results are primarily theoretical in nature and it is observed that the pseudo-polynomial
size of time-discretized formulations is likely to pose significant challenges computationally.

Other than the papers already mentioned in previous sections, there has been much prior work
on the TSPTW, e.g., Christofides et al. (1981), Baker (1983), Savelsbergh (1985), Langevin et al.
(1993), Pesant et al. (1998), Ascheuer et al. (2001), Focacci et al. (2002), and Kara and Derya
(2015), and some prior work on the time-dependent TSP, e.g., Abeledo et al. (2013) and the time-
dependent TSPTW, e.g., Albiach et al. (2008).

7 Research opportunities

The opportunities for further research on time-dependent integer programs are many, and we men-
tion only a few here.

Dynamic discretization discovery is essentially a dual method. Are there primal variants, in
which either infeasibility of an upper-bound IP model or suboptimality of its solution can be
detected, and new time points determined whose addition would “cut off” the current, primal,
solution?

Algorithm engineering can greatly enhance the computational performance of a dynamic dis-
cretization discovery algorithm. For example, in case of the TSPTW, the choice to add cutting
planes rather than time points to eliminate (short) cycles in solutions to the lower-bound model
was critical to its success. When is it best to cut and when is it best to refine the time discretiza-
tion? How do the roles of cuts and time points interplay? There is, of course, a third way to address
infeasibility in a lower bound solution: branch. Can effective branching rules be developed to com-
plement the use of cutting planes and time discretization refinement in dynamic discretization
discovery algorithms?

In dynamic discretization discovery algorithms, similar IPs are solved repeatedly. When time
discretization refinement is viewed as variable disaggregation, it is clear that valid inequalities
for one IP can readily be transferred to the next. Preprocessing information is also likely to be
transferable, especially variable fixing or strengthened variable bounds. Can IP solver technology
be developed to accommodate and exploit variable mapping information provided by users when
they are solving IPs sequentially?

The implicit solution of a Lagrangian relaxation of a complete TI model via dynamic program-
ming seems to be a particularly powerful idea. However, all the approaches developed along these
lines, to date, use a Lagrangian relaxation subproblem that is a shortest path problem in the full
time-expanded network. How far can this be generalized? How to do this, for example, when travel
times are time-dependent? Are there other problems, with quite different structure, to which similar

21



concepts might apply? And how can this idea be exploited and/or integrated with the dynamic
discretization discovery framework?

To conclude, we mention an aspect that is particularly intriguing. The contribution of delay-
ing an activity to the problem objective appears to have a big impact on the design of effective
discretization discovery algorithms. In the case of service network design, if a storage cost is in-
curred when a commodity waits at an intermediate node to be consolidated with other commodities
on a later, outgoing, arc, then it is not at all clear how to design a finitely terminating dynamic
discretization discovery algorithm. A similar issue arises in the case of continuous time inventory
routing problems, where delaying a delivery allows more inventory to be consumed at the customer,
making space for a larger quantity to be delivered on a vehicle trip, possibly reducing the number of
trips that need to be made. In the case of time-dependent shortest path problems, when waiting can
be advantageous to the objective, deep insight about the structure of optimal solutions is needed
to permit finite dynamic discretization discovery algorithms to be designed. Without such insight,
researchers have so far resorted to methods that are only convergent, using predefined tolerances
to test for feasibility and/or optimality, in practice. New understanding and new ideas are needed
to address this issue.

Acknowledgment
This material is based upon work supported by the National Science Foundation under Grant No.
1662848.

References
H. Abeledo, R. Fukasawa, A. Pessao, and E. Uchoa. The time dependent traveling salesman problem:

polyhedra and algorithm. Mathematical Programming Computation, 5:27–55, 2013.
J. Albiach, J. Sanchis, and D. Soler. An asymmetric TSP with time windows and with time-dependent travel

times and costs: An exact solution through a graph transformation. European Journal of Operations
Research, 189:789–802, 2008.

E. Anderson, P. Nash, and A. Philpott. A class of continuous network flow problems. Mathematics of
Operations Research, 7:501–514, 1982.

A. Arigliano, G. Ghiani, A. Grieco, E. Guerriero, and I. Plana. Time-dependent asymmetric traveling sales-
man problem with time windows: Properties and an exact algorithm. Discrete Applied Mathematics,
2018. doi: https://doi.org/10.1016/j.dam.2018.09.017. In press.

N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the asymmetric travelling salesman problem with time
windows by branch-and-cut. Math. Program., 90(3):475–506, 2001.

E. K. Baker. Technical note – An exact algorithm for the time-constrained traveling salesman problem.
Operations Research, 31(5):938–945, 1983.

R. Baldacci, A. Mingozzi, and R. Roberti. New state-space relaxations for solving the traveling salesman
problem with time windows. INFORMS Journal on Computing, 24:356–371, 2012.

P. Baptiste and R. Sadykov. On scheduling a single machine to minimize a piecewise linear objective function:
a compact ip formulation. Naval Research Logistics, 56:487–502, 2009.

G. Belvaux and L. Wolsey. bc–prod: A specialized branch-and-cut system for lot-sizing problems. Manage-
ment Science, 46:724–738, 2000.

G. Belvaux and L. Wolsey. Modelling practical lot-sizing problems as mixed-integer programs. Management
Science, 47:993–1007, 2001.

22



N. Boland, T. Kalinowski, and S. Kaur. Scheduling network maintenance jobs with release dates and deadlines
to maximize total flow over time: Bounds and solution strategies. Computers & Operations Research,
64:113–129, 2015.

N. Boland, R. Clement, and H. Waterer. A bucket indexed formulation for nonpreemptive single machine
scheduling problems. INFORMS Journal on Computing, 28:14–30, 2016.

N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The continuous time service network design problem.
Operations Research, 65:1303–1321, 2017.

N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the computation of bounds
to routing problems. Networks, 11(2):145–164, 1981.

F. Clautiaux, S. Hanafi, R. Macedo, M.-E. Voge, and C. Alves. Iterative aggregation and disaggregation
algorithm for pseudo-polynomial network flow models with side constraints. European Journal of
Operational Research, 258:467 – 477, 2017.

S. Dash, O. Günlük, A. Lodi, and A. Tramontani. A time bucket formulation for the travelling salesman
problem with time windows. INFORMS Journal on Computing, 24:132–147, 2012.

F. Fischer and C. Helmberg. Dynamic graph generation for the shortest path problem in time-expanded
networks. Math. Program. Ser. A, 143:1–16, 2014.

F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the TSPTW. INFORMS Journal on
Computing, 14(4):403–417, 2002.

L. Foschini, J. Hershberger, and S. Suri. On the complexity of time-dependent shortest paths. Algorithmica,
68(4):1075–1097, 2014.

L. Gouveia and M. Ruthmair. Load-dependent and precedence-based models for pickup and delivery prob-
lems. Computers & Operations Research, 63:56 – 71, 2015.

L. Gouveia, M. Leitner, and M. Ruthmair. Layered graph approaches for combinatorial optimization prob-
lems. Computers & Operations Research, 102:22 – 38, 2019.

E. He, N. Boland, G. Nemhauser, and M. Savelsbergh. Dynamic discretization discovery algorithms for
time-dependent shortest path problems. Optimization Online 2019-7082, 2019.

S. Irnich. Resource extension functions: Properties, inversion, and generalization to segments. OR Spectrum,
30(1):113–148, 2008.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In Column generation, pages
33–65. Springer, 2005.

S. Irnich, G. Desaulniers, J. Desrosiers, and A. Hadjar. Path-reduced costs for eliminating arcs in routing
and scheduling. INFORMS Journal on Computing, 22(2):297–313, 2010.

I. Kara and T. Derya. Formulations for minimizing tour duration of the traveling salesman problem with
time windows. Procedia Economics and Finance, 26:1026 – 1034, 2015.

F. Lagos, N. Boland, and M. Savelsbergh. The continuous time inventory routing problem. Optimization
Online 2018-6439, 2018.

A. Langevin, M. Desrochers, J. Desrosiers, S. Gélinas, and F. Soumis. A two-commodity flow formulation
for the traveling salesman and the makespan problems with time windows. Networks, 23(7):631–640,
1993.

M. Mahmoudi and X. Zhou. Finding optimal solutions for vehicle routing problem with pickup and delivery
services with time windows: A dynamic programming approach based on state-space-time network
representations. Transportation Research Part B: Methodological, 89:19–42, 2016.

L. Marshall, N. Boland, M. Hewitt, and M. Savelsbergh. Interval-based dynamic discretization discovery for
solving the continuous-time service network design problem. Optimization Online 2018-6883, 2018.

A. Montero, I. Méndez-Dıaz, and J. Miranda-Bront. An integer programming approach for the time-
dependent traveling salesman problem with time windows. Computers & Operations Research, 88:
280–289, 2017.

23



G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic programming algorithm for
the traveling salesman problem with time windows. Transportation Science, 32(1):12–29, 1998.

A. Pessoa, E. Uchoa, M. Poggi de Aragao, and R. Rodrigues. Exact algorithm over an arc-time indexed
formulation for parallel machine scheduling problems. Mathematical Programming Computation, 2:
259–290, 2010.

A. Philpott and M. Craddock. An adaptive discretization algorithm for a class of continuous knapsack
problems. Networks, 26:1–11, 1995.

A. B. Philpott. Continuous-time flows in networks. Mathematics of Operations Research, 15:640–661, 1990.
J.-C. Picard and M. Queyranne. The time-dependent traveling salesman problem and its application to the

tardiness problem in one-machine scheduling. Operations Research, 26:86–110, 1978.
L. D. P. Pugliese and F. Guerriero. A survey of resource constrained shortest path problems: Exact solution

approaches. Networks, 62(3):183–200, 2013.
M. Riedler, M. Ruthmair, and G. Raidl. Strategies for iteratively refining layered graph models. Researchgate

328314707, 2018.
M. Savelsbergh. Local search in routing problems with time windows. Annals of Operations Research, 4(1):

285–305, 1985.
M. Skutella. An introduction to network flows over time. In Research Trends in Combinatorial Optimization,

pages 451–482. Springer-Verlag, 2009.
D. M. Vu, N. Boland, M. Hewitt, and M. Savelsbergh. Solving time dependent traveling salesman problems

with time windows. Optimization Online 2018-6640, 2018. To appear in Transportation Science.
X. Wang and A. Regan. Local truckload pickup and delivery with hard time window constraints. Trans-

portation Research B, 36:97–112, 2002.
X. Wang and A. Regan. On the convergence of a new time window discretization method for the traveling

salesman problem with time window constraints. Computers and Industrial Engineering, 56:161–164,
2009.

24


	Introduction
	Dynamic discretization discovery: a Traveling Salesman case study
	Time-indexed formulations
	Dynamic discretization discovery

	General principles of dynamic discretization discovery
	On the existence of a complete TI model
	General principles in the construction of a lower-bound IP model
	Algorithm engineering

	Exact models based on a partial discretization of time
	Implicit Dynamic Discretization Via Lagrangian Relaxation and Dynamic Programming
	Related research
	Research opportunities

