
Genie: A Generator of Natural Language
Semantic Parsers for Virtual Assistant Commands

Giovanni Campagna∗

Computer Science Department
Stanford University
Stanford, CA, USA

gcampagn@cs.stanford.edu

Silei Xu∗

Computer Science Department
Stanford University
Stanford, CA, USA

silei@cs.stanford.edu

Mehrad Moradshahi
Computer Science Department

Stanford University
Stanford, CA, USA

mehrad@cs.stanford.edu

Richard Socher
Salesforce, Inc.

Palo Alto, CA, USA
rsocher@salesforce.com

Monica S. Lam
Computer Science Department

Stanford University
Stanford, CA, USA

lam@cs.stanford.edu

Abstract

To understand diverse natural language commands, virtual
assistants today are trained with numerous labor-intensive,
manually annotated sentences. This paper presents amethod-
ology and the Genie toolkit that can handle new compound
commands with significantly less manual effort.

We advocate formalizing the capability of virtual assistants
with a Virtual Assistant Programming Language (VAPL) and
using a neural semantic parser to translate natural language
into VAPL code. Genie needs only a small realistic set of input
sentences for validating the neural model. Developers write
templates to synthesize data; Genie uses crowdsourced para-
phrases and data augmentation, along with the synthesized
data, to train a semantic parser.
We also propose design principles that make VAPL lan-

guages amenable to natural language translation. We apply
these principles to revise ThingTalk, the language used by
the Almond virtual assistant. We use Genie to build the
first semantic parser that can support compound virtual
assistants commands with unquoted free-form parameters.
Genie achieves a 62% accuracy on realistic user inputs. We
demonstrate Genie’s generality by showing a 19% and 31%
improvement over the previous state of the art on a music
skill, aggregate functions, and access control.

∗Equal contribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06.
https://doi.org/10.1145/3314221.3314594

CCS Concepts • Human-centered computing → Per-

sonal digital assistants; • Computing methodologies

→ Natural language processing; • Software and its engi-

neering→ Context specific languages.

Keywords virtual assistants, semantic parsing, training
data generation, data augmentation, data engineering

ACM Reference Format:

Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher,
and Monica S. Lam. 2019. Genie: A Generator of Natural Lan-
guage Semantic Parsers for Virtual Assistant Commands. In Pro-

ceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’19), June 22–26, 2019,

Phoenix, AZ, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3314221.3314594

Figure 1. An example of translating and executing com-
pound virtual assistant commands.

394

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

1 Introduction

Personal virtual assistants provide users with a natural lan-
guage interface to a wide variety of web services and IoT
devices. Not only must they understand primitive commands
across many domains, but they must also understand the
composition of these commands to perform entire tasks.
State-of-the-art virtual assistants are based on semantic pars-

ing, a machine learning algorithm that converts natural lan-
guage to a semantic representation in a formal language.
The breadth of the virtual assistant interface makes it par-
ticularly challenging to design the semantic representation.
Furthermore, there is no existing corpus of natural language
commands to train the neural model for new capabilities.
This paper advocates using a Virtual Assistant Programming

Language (VAPL) to capture the formal semantics of the vir-
tual assistant capability. We also present Genie, a toolkit for
creating a semantic parser for new virtual assistant capabili-
ties that can be used to bootstrap real data acquisition.

1.1 Virtual Assistant Programming Languages

Previous semantic parsing work, including commercial as-
sistants, typically translates natural language into an inter-
mediate representation that matches the semantics of the
sentences closely [4, 30, 33, 44, 51]. For example, the Alexa
Meaning Representation Language [30, 44] is associated with
a closed ontology of 20 domains, each manually tuned for
accuracy. Semantically equivalent sentences have different
representations, requiring complex and expensive manual
annotation by experts, who must know the details of the
formalism and associated ontology. The ontology also limits
the scope of the available commands, as every parameter
must be an entity in the ontology (a person, a location, etc.)
and cannot be free-form text.

Our approach is to represent the capability of the virtual as-
sistant fully and formally as a VAPL; we use a deep-learning
semantic parser to translate natural language into VAPL code,
which can directly be executed by the assistant. Thus, the
assistant’s full capability is exposed to the neural network,
eliminating the need and inefficiency of an intermediate rep-
resentation. The VAPL code can also be converted back into
a canonical natural language sentence to confirm the pro-
gram before execution. Furthermore, new capabilities can
be supported by extending the VAPL.

The ThingTalk language designed for the open-source Al-
mond virtual assistant is an example of a VAPL [8]. ThingTalk
has one construct which has three clauses: when some event
happens, get some data, and perform some action, each of
which can be predicated. This construct combines primitives
from the extensible runtime skill library, Thingpedia, cur-
rently consisting of over 250 APIs to Internet services and
IoT devices. Despite its lean syntax, ThingTalk is expres-
sive. It is a superset of what can be expressed with IFTTT,

which has crowdsourced more than 250,000 unique com-
pound commands [56]. Fig. 1 shows how a natural-language
sentence can be translated into a ThingTalk program, using
the services in Thingpedia.

However, the original ThingTalk was not amenable to nat-
ural language translation, and no usable semantic parser has
been developed. In attempting to create an effective semantic
parser for ThingTalk, we discovered important design princi-
ples for VAPL, such as matching the non-developers’ mental
model and keeping the semantics of components orthogo-
nal. Also, VAPL programs must have a (unique) canonical
form so the result of the neural network can be checked for
correctness easily. We applied these principles to overhaul
and extend the design of ThingTalk. Unless noted otherwise,
we use ThingTalk to refer to the new design in the rest of
the paper.

1.2 Training Data Acquisition

Virtual assistant development is labor-intensive, with Alexa
boasting a workforce of 10,000 employees [36]. Obtaining
training data for the semantic parser is one of the challeng-
ing tasks. How do we get training data before deployment?
How can we reduce the cost of annotating usage data? Wang
et al. [57] propose a solution to acquire training data for the
task of question answering over simple domains. They use a
syntax-driven approach to create a canonical sentence for
each formal program, ask crowdsourced workers to para-
phrase canonical sentences to make them more natural, then
use the paraphrases to train a machine learning model that
can match input sentences against possible canonical sen-
tences. Wang et al.’s approach designs each domain ontology
individually, and each domain is small enough that all possi-
ble logical forms can be enumerated up to a certain depth.

This approach was used in the original ThingTalk seman-
tic parser and has been shown to be inadequate [8]. It is
infeasible to collect paraphrases for all the sentences sup-
ported by a VAPL language. Virtual assistants have powerful
constructs to connect many diverse domains, and their ca-
pability scales superlinearly with the addition of APIs. Even
with our small Thingpedia, ThingTalk supports hundreds
of thousands of distinct programs. Also, it is not possible
to generate just one canonical natural language that can
be understood across different domains. Crowdworkers of-
ten paraphrase sentences incorrectly or just make minor
modifications to original sentences.

Our approach is to design a NL-template language to help
developers data-engineer a good training set. This language
lets developers capture common ways in which VAPL pro-
grams are expressed in natural language. The NL-templates
are used to synthesize pairs of natural language sentences
and their corresponding VAPL code. A sample of such sen-
tences is paraphrased by crowdsource workers to make them
more natural. The paraphrases further inform more useful
templates, which in turn derives more diverse sentences

395

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Formal Language Definition

Types &
Function Signatures

Primitive Templates
Construct Templates

Synthetic Sentence
Generation

Data Augmentation
& Parameter
Replacement

Neural Network
Model

Semantic
Parser

Parameter Value
Datasets

Crowdsourced
Paraphrasing

Figure 2. Overview of the Genie Semantic Parser Generator

for paraphrasing. This iterative process increases the cost-
effectiveness of paraphrasing.
Whereas the traditional approach is only to train with

paraphrase data, we are the first to add synthesized sentences
to the training set. It is infeasible to exhaustively paraphrase
all possible VAPL programs. The large set of synthesized,
albeit clunky, natural language commands are useful to teach
the neural model compositionality.

1.3 Contributions

The results of this paper include the following contributions:

1. We present the design principles for VAPLs that im-
prove the success of semantic parsing.We have applied
those principles to ThingTalk, and created a seman-
tic parser that achieves a 62% accuracy on data that
reflects realistic Almond usage, and 63% on manually
annotated IFTTT data. Our work is the first seman-
tic parser for a VAPL that is extensible and supports
free-form text parameters.

2. A novel NL-template language that lets developers di-
rect the synthesis of training data for semantic parsers
of VAPL languages.

3. The first toolkit, Genie, that can generate semantic
parsers for VAPL languages with the help of crowd-
sourced workers. As shown in Fig. 2, Genie accepts a
VAPL language and a set of NL-templates. Genie adds
synthesized data to paraphrased data in training, ex-
pands parameters, and pretrains a languagemodel. Our
neural model achieves an improvement in accuracy of
17% on IFTTT and 15% on realistic inputs, compared
to training with paraphrase data alone.

4. Demonstration of extensibility by using Genie to gen-
erate effective semantic parsers for a Spotify skill, ac-
cess control, and aggregate functions.

1.4 Paper Organization

The organization of the paper is as follows. Section 2 de-
scribes the VAPL principles, using ThingTalk as an example.
Section 3 introduces the Genie data acquisition pipeline, and
Section 4 describe the semantic parsing model used by Genie.
We present experimental results on understanding ThingTalk

commands in Section 5, and additional languages and case
studies in Section 6. We present related work in Section 7
and conclusion in Section 8.

2 Principles of VAPL Design

Here we discuss the design principles of Virtual Assistant
Programming Languages (VAPL) to make it amenable to
natural language translation, using ThinkTalk as an example.
These design principles can be summarized as (1) strong
fine-grained typing to guide parsing and dataset generation,
(2) a skill library with semantically orthogonal components
designed to reduce ambiguity, (3) matching the user’s mental
model to simplify the translation, and (4) canonicalization
of VAPL programs.

2.1 Strong, Static Typing

To improve the compositionality of the semantic parser,
VAPLs should be statically typed. They should include fine-
grain domain-specific types and support definitions of cus-
tom types. The ThinkTalk type system includes the standard
types: strings, numbers, booleans, and enumerated types. It
also has native support for common object types used in IoT
devices and web services. Developers can also provide cus-
tom entity types, which are internally represented as opaque
identifiers but can be recalled by name in natural language.
Arrays are the only compound type supported.

To allow translation from natural language without con-
textual information, the VAPL also needs a rich language for
constants. For example, in ThingTalk, measures can be repre-
sented with any legal unit, and can be composed additively
(as in ł6 feet 3 inchesž, which is translated to 6ft+3in); this is
necessary because a neural semantic parser cannot perform
arithmetic to normalize the unit during the translation.

Arguments such as numbers, dates and times, in the input
sentence are identified and normalized using a rule-based
algorithm [15]; they are replaced as named constants of the
form łNUMBER_0ž, łDATE_1ž, etc. String and named entity
parameters instead are represented using multiple tokens,
one for each word in the string or entity name; this allows
the words to be copied from the input sentence individually.

396

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

Class c : class @cn [extends @cn]∗ { [qd]∗ [ad]∗ }

Class name cn: identifier
Query declaration qd: monitorable? list? query fn([pd]∗);
Action declaration ad: action fn([pd]∗);
Function name fn: identifier
Parameter declaration pd: [in req | in opt | out] pn : t
Parameter name pn: identifier
Parameter type t : String | Number | Boolean | Enum([v]+) |

Measure(u) | Date | PathName |

Entity(et) | Array(t) | . . .

Value v : literal
Unit u : bytes | KB | ms | s | m | km | . . .

Entity type et: literal

Figure 3. The formal grammar of classes in the skill library.

Named entities are normalizedwith a knowledge base lookup
after parsing.

2.2 Skill Library Design

The skill library defines the virtual assistant’s knowledge
of the Internet services and IoTs. As such, the design of the
representation as well as how information is organized are
very important. In the following, we describe a high-level
change we made to the original ThingTalk, then present the
new syntax of classes and the design rationale.

Orthogonality in Function Types. In the original Thing-
pedia library, there are three kinds of functions: triggers,
retrievals, and actions [8]. Triggers are callbacks or polling
functions that return results upon the arrival of some event,
retrievals return results, actions create side effects. Unfortu-
nately, the semantics of callbacks and queries are not easily
discernible by consumers. It is hard for users to understand
that łwhen Trump tweetsž and łget a Trump tweetž refer
to two different functions. Furthermore, when a device sup-
ports only a trigger and not a retrieval, or vice versa, it is not
apparent to the user which is allowed. The inconsistency in
functionality makes getting correct training and evaluation
data problematic.

In the new ThingTalk, we collapse the distinction between
triggers and retrievals into one class: queries, which can be
monitored as an event or used to get data. The runtime en-
sures that any supported retrieval can bemonitored as events,
and vice versa. Not only does this provide more functionality,
it also makes the language more regular and hence simpler
for the users, crowdsourced paraphrase providers, and the
neural model.

Skill Definition Syntax. For modularity, every VAPL
should include a skill library, a set of classes representing
the domains and operations supported. In ThingTalk, skills
are IoT devices or web services. The formal grammar of
ThingTalk classes is shown in Fig. 3.

Classes have functions, belonging to one of two kinds:
query functions retrieve data and have no side-effects; action
functions have side-effects but do not return data.

class @com.dropbox {
monitorable query get_space_usage(out used_space : Measure(byte),

out total_space : Measure(byte));
monitorable list query list_folder(in req folder_name : PathName,

in opt order_by : Enum,

out file_name : PathName,
out is_folder : Boolean,
out modified_time : Date,
out file_size : Measure(byte),
out full_path : PathName);

query open(in req file_name : PathName,
out download_url : URL);

action move(in req old_name : PathName,
in req new_name : PathName);

. . . }

Figure 4. The Dropbox class in the ThingTalk skill library.

A query function can bemonitorable, whichmeans that the
result returned can be monitored for changes. The result can
be polled, or the query function supports push notifications.
Queries that cannot be monitored include those that change
constantly, such as the retrieval of a random cat picture used
in Fig. 1. A query can return a single result or return a list of
results.

The function signature includes the class name, the func-
tion name, the type of the function, all the parameters and
their types. Data are passed in and out of the functions
through named parameters, which can be required or op-
tional. Action methods have only input parameters, while
query methods have both input and output parameters.
An example of a class, for the Dropbox service, is

shown in Fig. 4. It defines three queries: łget_space_usagež,
łlist_folderž, and łopenž, and an action łmovež. The first
two queries are monitorable; the third returns a randomized
download link for each invocation so it is not monitorable.

2.3 Constructs Matching the User’s Mental Model

VAPLs should be designed to reflect how users typically
specify commands. It is more natural for users to think about
data with certain characteristics, rather than execution paths.
For this reason, ThingTalk is data focused and not control-
flow focused. ThingTalk has a single construct:

s ⇒ q ⇒ a

The stream clause, s , specifies the evaluation of the program
as a continuous stream of events. The optional query clause,
q, specifies what data should be retrieved when the events
occur. The action clause,a, specifies what the program should
do. The formal grammar is shown in Fig. 5.
An example illustrating parameter passing is shown in

Fig. 1. The use of filters is demonstrated with the following
example that automatically retweets the tweets from PLDI:

monitor(@com.twitter.timeline() filter author = @PLDI)
⇒ @com.twitter.retweet(tweet_id = tweet_id)

The program uses the author output parameter of the func-
tion @com.twitter.timeline() to filter the set of tweets, and

397

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Program π : s [⇒ q]? ⇒ a;
Stream s : now | attimer time = v |

timer base = v interval = v |

monitor q | edge s on p

Query q: f [ip = v]∗ [ip = op]∗ | q filter p |

q join q
[

on [ip = op]+
]

?
Action a: f [ip = v]∗ [ip = op]∗ | notify

Function f : @cn.fn

Class name cn: identifier
Function name fn: identifier
Input parameter ip: pn : t
Output parameter op: pn : t
Parameter name pn: identifier
Parameter type t : the parameter type in Fig. 3
Predicate p : true | false | !p | p && p | p || p |

op operator v | f [ip = v]∗ { p }

Value v : literal | enum : identifier
Operator operator: == | > | < | contains | substr |

starts_with | ends_with | . . .

Figure 5. The formal grammar of ThingTalk.

passes the tweet_id output parameter to the input parameter
with the same name of @com.twitter.retweet().

Queries and Actions. To match the user’s mental model,
ThingTalk uses implicit, rather than explicit, looping con-
structs. The user is given the abstraction that they are de-
scribing operations on scalars. In reality, queries always re-
turn a list of results; functions returning a single result are
converted to return singleton lists. These lists are implicitly
traversed; each result can be used as an input parameter in
a subsequent function invocation.
The result of queries can be optionally filtered with a

boolean predicate using equality, comparions, string and
array containment operators, as well as predicated query
functions. For example, the following retrieves only łemails
from Alicež:

now ⇒ (@com.gmail.inbox()) filter sender = łAlicež ⇒ notify

We introduce the join operator for queries in ThingTalk to
support multiple retrievals in a program. When joining two
queries, parameters can be passed between the queries, and
the results are the cross product of the respective queries.
A program’s action can be either the builtin notify, which
presents the result to the user, or an action function defined
in the library.
For example, the following łtranslates the title of New

York Times articlesž:

now ⇒ @com.nytimes.get_front_page() join
@com.yandex.translate() on text = title ⇒ notify

Streams. Streams are a new concept we introduce to
ThingTalk. They generalize the trigger concept in the orig-
inal language to enable reacting to arbitrary changes in
the data accessible by the virtual assistant. A stream can
be (1) the degenerate stream łnowž, which triggers the pro-
gram once immediately, (2) a timer, or (3) a monitor of a
query, which triggers whenever the query result changes.

Any query that uses monitorable functions can be monitored,
including queries that use joins or filters.
We introduce a stream operator, edge filter, to watch for

changes in a stream. It triggers whenever a boolean predi-
cate on the values monitored transition from false to true;
the predicate is assumed to be previously false for the first
value in a stream. The program below notifies the users each
time the temperature drops below the 60 degrees Fahrenheit
theshold.

edge (monitor @weather.current()) on temperature < 60F

⇒ notify;

The edge filter operator allows us to convert all previous
trigger functions to the new language without losing func-
tionality.

Input and Output Parameters. To aid translation from
natural language, ThingTalk uses keyword parameters rather
than the more conventional positional parameters. With
keyword parameters, the semantic parser needs to learn
just the partial signature of the functions, and not even the
length of the signature. We annotate each parameter with
its type, with the goal to help the model distinguish between
parameters with the same name and to unify parameters
by type. For readability, type annotations are omitted from
the examples in this paper. To increase compositionality, we
encourage developers to use the same naming conventions
so the same parameter names are used for similar purposes.
When an output of a function is passed into another as

input, the former parameter name is simply assigned to the
latter. For example, in Fig. 1, the output parameter picture_url
of @com.thecatapi.get() is assigned to the input parameter
of @com.facebook.post_picture() with the same name. This
design avoids introducing new variables in the program
so the semantic parser only needs to learn each function’s
parameter names. If output parameters in two functions in
a program have the same name, we assume that the name
refers to the rightmost instance. Here we consciously trade-
off completeness for accuracy in the common case.

2.4 Canonicalization of Programs

As described in Section 1, canonicalization is key to train-
ing a neural semantic parser. We use semantic-preserving
transformation rules to give ThingTalk programs a canonical
form. For example, query joins without parameter passing
are a commutative operation, and are canonicalized by or-
dering the operands lexically. Nested applications of the
filter operator are canonicalized to a single filter with the
&& connective. Boolean predicates are simplified to elimi-
nate redundant expressions, converted to conjunctive normal

form and then canonicalized by sorting the parameters and
operators. Each clause is also automatically moved to the
left-most function that includes all the output parameters.
Input parameters are listed in alphabetical order, which helps

398

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

the neural model learn a global order that is the same across
all functions.

3 Genie Data Acquisition System

The success of machine learning depends on a high-quality
training set; it must represent real, correctly labeled, inputs.
To address the difficulty in getting a training set for a new
language, Genie gives developers (1) a novel language-based
tool to synthesize data, (2) a crowdsourcing framework to
collect paraphrases, (3) a large corpus of values for parame-
ters in programs, and (4) a training strategy that combines
synthesized and paraphrase data.

3.1 Data Synthesis

As a programming language, ThingTalk may seem to have
a small number of components: queries, streams, actions,
filters, and parameters. However, it has a library of skills
belonging to many domains, each using different terminol-
ogy. Consider the function łlist_folderž in Dropbox, which
returns a modified time. If we want to ask for łmy Drop-
box files that changed this weekž, we can add the filter
modified_time > start_of_week. An automatically gener-
ated sentencewould read: łmyDropbox files havingmodified
time after a week agož. Such a sentence is hard for crowd-
source workers to understand. If they do not understand it,
they cannot paraphrase it.

Similarly, even though ThingTalk has only one construct,
there are various ways of expressing it. Here are two com-
mon ways to describe event-driven operations: łwhen it
rains, remind me to bring an umbrellaž, or łremind me to
bring an umbrella when it rainsž. Here are two ways to com-
pose functions: łset my profile at Twitter with my profile at
Facebookž or łget my profile from Facebook and use that as
a profile at Twitterž.

We have created aNL-template language so developers can
generate variety when synthesizing data. We hypothesize
that we can exploit compositionality in natural language to
factor data synthesis into primitive templates for skills and
construct templates for the language. From a few templates
per skill and a few templates per construct component, we
hope to generate a representative set of synthesized sen-
tences that are understandable.

Primitive Templates. Genie allows the skill developer to
provide a list of primitive templates, each of which consists
of code using that skill, a natural language utterance describ-
ing it, and the natural language grammar category of the
utterance. The templates define how the function should
be invoked, and how parameters are passed and used. The
syntax is as follows:

cat := u → λ([pn : t]∗) → [s | q | a]

This syntax declares that the utterance u, belonging to the
grammar category cat (verb phrase, noun phrase, or when
phrase), maps to stream s , query q or action a. The utterance

Table 1. Examples of developer-supplied primitive templates
for the @com.dropbox.list_folder and @com.dropbox.open
functions in the Thingpedia library, with their grammar
category. np, wp, and vp refer to noun phrase, when phrase

and verb phrase, respectively.

Natural language Cat. ThingTalk Code

my Dropbox files np @com.dropbox.list_folder()
my Dropbox files that
changed most recently

np @com.dropbox.list_folder(order_by
= modified_time_decreasing)

my Dropbox files that
changed this week

np @com.dropbox.list_folder(order_by =

modified_time_decreasing) filter

modified_time > start_of_week

files in my Dropbox
folder $x

np λ(x : PathName) →
@com.dropbox.list_folder(folder_name

= x)

when I modify a file in
Dropbox

wp monitor @com.dropbox.list_folder()

when I create a file in
Dropbox

wp monitor @com.dropbox.list_folder()
on new file_name

the download URL of $x np

λ(x : PathName) →

@com.dropbox.open(file_name = x)

a temporary link to $x np

open $x vp

download $x vp

may include placeholders, prefixed with $, which are used
as parameters, pn of type t , in the stream, query or action.
Examples of primitive templates for functions

@com.dropbox.list_folder and @com.dropbox.open
are shown in Table 1. Multiple templates can be provided
for the same function, as different combinations of input
and output parameters can provide different semantics, and
functions can be filtered and monitored as well.

Note that the function@com.dropbox.open is a query, not
an action, because it returns a result (the download link); the
example shows that utterances for queries can be both noun
phrases (łthe download URLž) and verb phrases (łopenž).
The ability to map the same program fragment to different
grammar categories is new in Genie, and differs from the
knowledge base representation previously used by Wang
et al. [57]. Other examples of verb phrases for queries are
łtranslate $xž (same as łthe translation of $xž) and łdescribe
$xž (same as łthe description of $xž).
While designing primitive templates, it is important to

choose grammar categories that compose naturally. The orig-
inal design of ThingTalk exclusively used verb phrases for
queries; we switched to mostly noun phrases as they can
be substituted as input parameters (e.g., ła cat picturež can
be substituted for parameter $x in łpost $x on Twitterž and
łpost $x on Facebookž).

Construct Templates. To combine the primitives into full
programs, the language designer also provides a set of con-
struct templates, mapping natural language compositional

399

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

constructs to formal language operators. A construct tem-
plate has the form:

lhs := [literal | vn : rhs]+ → sf

which says that a derivation of non-terminal category lhs can
be constructed by combining the literals and variables vn of
non-terminal category rhs, and then applying the semantic
function sf to compute the formal language representation.
For example, the following two construct templates define
the two common ways to express łwhen - dož commands:

command := s : wp ‘,’ a : vp → return s ⇒ a;
command := a : vp s : wp → return s ⇒ a;

Together with the following two primitive templates:
wp := ‘when I modify a file in Dropbox’ →

monitor @com.dropbox.list_folder()
vp := ‘send a Slack message’ → @com.slack.send()

Genie would generate the commands łwhen I modify a file in
Dropbox, send a Slack messagež and łsend a Slack message
when I modify a file in Dropboxž.

Semantic functions allow developers to write arbitrary
code that computes the formal representation of the gen-
erated natural language. The following performs type-
checking, ensuring that only monitorable queries are moni-
tored.

wp := ‘when’ q : np ‘change’ → {

if q.is_monitorable
return monitor q

else

return ⊥

}

For another example, the following checks that the argu-
ment is a list, so as to be compatible with the semantics of
the verb łenumeratež:

command := ‘enumerate’ q : np → {

if q.is_list
return now ⇒ q ⇒ notify

else

return ⊥

}

Each template can also optionally be annotated with a
boolean flag, which allows the developer to define different
subsets of rules for different purposes (such as training or
paraphrasing).

Synthesis by Sampling Previous work byWang et al. [57]
recursively enumerates all possible derivations, up to a cer-
tain depth of the derivation tree. Such an approach is unsuit-
able for ThingTalk, because the number of derivations grows
exponentially with increasing depth and library size. Instead,
Genie uses a randomized synthesis algorithm, which consid-
ers only a subset of derivations produced by each construct
template. The desired size is configurable, and the number of
derivations decreases exponentially with increasing depth.
The large number of low-depth programs provide breadth,
and the relatively smaller number of high-depth programs

add variance to the synthesized set and expand the set of
recognized programs. Developers using Genie can control
the sampling strategy by splitting or combining construct
templates, using intermediate derivations. For example, the
following template:

np := q : np ‘having’ p : pred → return q filter p

command := ‘get’ q : np ‘and then’ a : vp
→ return now ⇒ q ⇒ a

can be combined in a single template that omits the interme-
diate noun phrase derivation:

command := ‘get’ q : np ‘having’ p : pred ‘and then’ a : vp
→ return now ⇒ q filter p ⇒ a

(pred is the grammar category of boolean predicates.)
The combined template has lower depth, so more sentences
would be sampled from it. Conversely, if a single template is
split into two or more templates, the number of sentences
using the construct becomes lower.

3.2 Paraphrase Data

Sentences synthesized from templates are not representative
of real human input, thus we ask crowdsource workers to
rephrase them in more natural sentences. However, manual
paraphrasing is not only expensive, but it is also error-prone,
especially when the synthesized commands are complex and
do not make sense to humans. Thus, Genie lets the developer
decide which synthesized sentences to paraphrase. Genie
also has a crowdsourcing framework designed to improve
the quality of paraphrasing.

Choosing Sentences to Paraphrase. Developers can con-
trol the subset of templates to paraphrase as well as their
sampling rates. It is advisable to obtain some paraphrases
for every primitive, but combinations of functions need not
be sampled evenly, since coverage is provided by including
the synthesized data in training. Our priority is to choose
sentences that workers can understand and can provide a
high-quality paraphrase.
Developers can provide lists of easy-to-understand and

hard-to-understand functions. We can maximize the success
of paraphrasing, while providing some coverage, by creat-
ing compound sentences that combine the easy functions
with difficult ones. We avoid combining unrelated functions
because they confuse workers.
Developers can also specify input parameter values to

make the synthesized sentences easier to understand. String
parameters are quoted, Twitter usernames have @-signs,
etc, so workers can identify them as such and copy them in
the paraphrased sentences properly. (Note that quotes are
removed before they are used for training).

Crowdsourcing. Genie also automates the process of crowd-
sourcing paraphrases. Based on the selected set of synthe-
sized sentences to paraphrase, Genie produces a file that can

400

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

be used to create a batch of crowdsource tasks on the Ama-
zon Mechanical Turk platform. To increase variety, Genie
prepares the crowdsource tasks so that multiple workers see
the same synthesized sentence, and each worker is asked to
provide two paraphrases for each sentence. We found that
people will only make the most obvious change if asked to
provide one paraphrase, and they have a hard time writing
three different paraphrases.
Due to ambiguity in natural language and workers not

reading instructions and performing minimal work etc., the
answers provided can be wrong. Genie uses heuristics to
discard obvious mistakes, and asks workers to check the
correctness of remaining answers.

3.3 Parameter Replacement & Data Augmentation

During training, it is important that the model sees many
different combinations of parameter values, so as not to
overfit on specific values present in the training set. Genie
has a built-in database containing 49 different parameter
lists and gazettes of named entities, including corpora of
YouTube video titles and channel names, Twitter and Insta-
gram hashtags, song titles, people names, country names,
currencies, etc. These corpora were collected from vari-
ous resources on the Web and from previous academic ef-
forts [1, 11, 14, 17, 19, 22, 31, 32, 41, 49, 62]. Genie also in-
cludes corpora of English text, both completely free-form,
and specific to messages, social media captions and news
articles. This allows Genie to understand parameter values
outside a closed knowledge base and provides a fallback
for generic parameters. Overall, Genie’s database includes
over 7.8 million distinct parameter values, of which 3 million
are for free-form text parameters. Genie expands the syn-
thesized and paraphrase dataset by substituting parameters
from user-supplied lists or its parameter databases. Finally,
Genie also applies standard data augmentation techniques
based on PPDB [18] to the paraphrases.

3.4 Combining Synthesized and Paraphrase Data

Synthesized data are not only used to obtain paraphrases,
but are also used as training data. Synthesized data provides
variance in the space of programs, and enables the model
to learn type-based compositionality, while paraphrase data
provides linguistic variety.

Developers can generate different sets of synthesized data
according to the understandability of the functions or the
presence of certain programming language features, such
as compound commands, filters, timers, etc. They can also
control the size of each group by controlling the number of
instantiations of each sentence with different parameters.

4 Neural Semantic Parsing Model

Genie’s semantic parser is based on Multi-Task Question
Answering Network (MQAN), a previously-proposed model

Figure 6.Model architecture of Genie’s semantic parser.

architecture that was found effective on a variety of NLP
tasks [39] such as Machine Translation, Summarization, Se-
mantic Parsing, etc. MQAN frames all NLP tasks as contex-
tual question-answering. A single model can be trained on
multiple tasks (multi-task training [10]), and MQAN uses the
question to switch between tasks. In our semantic parsing
task, the context is the natural language input from the user,
and the answer is the corresponding program. The question
is fixed because Genie does not use multi-task training, and
has a single input sentence.

4.1 Model Description

In MQAN both the encoder and decoder use a deep stack
of recurrent, attentive and feed-forward layers to construct
their input representations. In the encoder, each context and
question are first embedded by concatenating word and char-
acter embeddings, and then fed to the encoder to construct
the context and questions representations. The decoder uses
a mixed pointer-generator architecture to predict the target
program one token at a time; at each step, the decoder pre-
dicts a probability of either copying a token from the context
or question, or generating one from a vocabulary, and then
computes a distribution over input words and a distribution
over vocabulary words. Two learnable scalar switches are
then used to weight each distribution; the output is the token
with the highest probability, which is then fed to the next
step of the decoder, auto-regressively. The model is trained
using token-level cross-entropy loss. We refer the readers to
the original paper [39] for more details.

4.2 ThingTalk Language Model

Genie applies a pre-trained recurrent language model
(LM) [40, 48] to encode the answer (ThingTalk program)
before feeding it to MQAN. The high-level model architec-
ture is shown in Fig. 6. Previous work has shown that using
supervised [38, 48] and unsupervised [45] pre-trained lan-
guage models as word embedding can be effective, because
it captures meanings and relations in context, and exposes
the model to words and concepts outside the current task.

401

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

The ThingTalk LM is trained on a large set of synthesized
programs. This exposes the model to a much larger space of
programs than the paraphrase set, without disrupting the
balance of paraphrases and synthesized data in training.

4.3 Hyperparameters and Training Details

Genie uses the implementation of MQAN provided by de-
caNLP [39], an open-source library. Preprocessing for to-
kenization and argument identification was performed us-
ing the CoreNLP library [37], and input words are embed-
ded using pre-trained 300-dimensional GloVe [43] and 100-
dimensional character n-gram embeddings [21]. The de-
coder embedding uses 1-layer LSTM language model, pro-
vided by the floyhub open source library [16], and is pre-
trained on a synthesized set containing 20,168,672 programs.
Dropout [50] is applied between all layers. Hyperparameters
were tuned on the validation set, which is also used for early
stopping. All our models are trained to perform the same
number of parameter updates (100,000), using the Adam op-
timizer [28]. Training takes about 10 hours on a single GPU
machine (Nvidia V100).

5 Experimentation

This section evaluates the performance of Genie on
ThingTalk. Previous neural models trained on paraphrase
data have only been evaluated with paraphrase data [57].
However, getting good accuracy on paraphrase data does
not necessarily mean good accuracy on real data. Because
acquiring real data is prohibitively expensive, our strategy
is to create a high-quality training set based on synthesis
and paraphrasing, and to validate and test our model with a
small set of realistic data that mimics the real user input.
In the following, we first describe our datasets. We eval-

uate the model on paraphrases whose programs are not
represented in training. This measures the model’s compo-
sitionality, which is important since real user input is un-
likely to match any of the synthesized programs, due to the
large program space. Next, we evaluate Genie on the realistic
data. We compare Genie’s training strategy against models
trained with either just synthesized or paraphrase data, and
perform an ablation study on language and model features.
Finally, we analyze the errors and discuss the limitations of
the methodology.

Our experiments are performed on the set of Thingpedia
skills available at the beginning of the study, which consists
of 131 functions, 178 distinct parameters, and 44 skills. Our
evaluation metric is program accuracy, which considers the
result to be correct only if the output has the correct func-
tions, parameters, joins, and filters. This is equivalent to hav-
ing the output match the canonicalized generated program
exactly. To account for ambiguity, we manually annotate
each sentence in the test sets with all programs that provide

a valid interpretation. The Genie toolkit and our datasets are
available for download from our GitHub page1.

5.1 Evaluation Data

We used three methods to gather data that mimics real usage:
from the developers, from users shown a cheatsheat contain-
ing functions in Thingpedia, and IFTTT users. Because of
the cost in acquiring such data, we managed to gather only
1820 sentences, partitioned into a 1480-sentence validation
set and a 340-sentence test set.

Developer Data Almond has an online training interface
that lets developers and contributors of Thingpedia write
and annotate sentences. 1024 sentences are collected from
this interface from various developers, including the authors.
In addition, we manually write and annotate 157 sentences
that we find useful for our own use. In total, we collect 1174
sentences, corresponding to 642 programs, which we refer
to as the developer data.

Cheatsheet Data Users are expected to discover Almond’s
functionality by scanning a cheatsheet containing phrases
referring to all supported functions [8]. We collect the next
set of data from crowdsource workers by first showing them
phrases of 15 randomly sampled skills. We then remove the
cheatsheet and ask them to write compound commands that
they would find useful, using the services they just saw. We
annotate those sentences that can be implemented with the
functions in Thingpedia. By removing the cheatsheet before
writing commands, we prevent workers from copying the
sentences verbatim and thus obtainmore diverse and realistic
sentences. Through this technique, we collect 435 sentences,
corresponding to 342 distinct programs.

IFTTTData We use IFTTT as a totally independent source
of sentences for test data. IFTTT allows users to construct
applets, a subset of the ThingTalk grammar, using a graphical
user interface. Each applet comes with a natural language de-
scription. We collect descriptions of the most popular applets
supported by Thingpedia and manually annotate them.

Because descriptions are not commands, they are often in-
complete; e.g. virtual assistants are not expected to interpret
a description like łIG to FBž to mean posting an Instagram
photo on Facebook. We adapt the complete descriptions us-
ing the rules shown in Table 2. In total, we collect 211 IFTTT
sentences, corresponding to 154 programs.

We create a 1480-sentence validation set, consisting of the
entire developer data, 208 sentences from cheatsheet and 98
from IFTTT. The remaining 227 cheatsheet sentences and 113
IFTTT sentences are used as our test set; this set provides the
final metric to evaluate the quality of the ThingTalk parser
that Genie produces.

1https://github.com/stanford-oval/genie-toolkit

402

https://github.com/stanford-oval/genie-toolkit

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

Table 2. IFTTT dataset cleanup rules.

Modification Example (before) Example (after)

Replace second-person pronouns to first-person Blink your light Blink my light
Replace placeholders with specific values ... set the temperature to ___° ... set the temperature to 25 C
Append the device name if ambiguous otherwise Let the team know when it rains Let the team know when it rains on Slack
Remove UI-related explanation Make your Hue Lights color loop with this button Make your Hue Lights color loop
Replace under-specified parameters with real values Message my partner when I leave work Message John when I leave work

Figure 7. Characteristics of the ThingTalk training set (com-
bining paraphrases and synthesized data).

5.2 Evaluation

Limitation of Paraphrase Tests Previous paraphrase-
based semantic parsers are evaluated only with paraphrases
similar to the training data [57]. Furthermore, previous work
synthesizes programs with just one construct template and
one primitive template per function. Using this methodol-
ogy on the original ThingTalk, a dataset of 8,195 paraphrase
sentences was collected. After applying Genie’s data aug-
mentation on this dataset, the model achieves 95% accuracy.
However, if we test the model on paraphrases of compound
programs whose function combinations differ from those
in training, the accuracy drops to 48%. This suggests that
the dataset is too small to teach the model compositionality,
even for paraphrases of synthesized data. The accuracy drops
to around 40% with the realistic validation set. This result
shows that a high accuracy on a paraphrase test that matches
programs in training is a poor indication of the quality of the
model. More importantly, we could not improve the result
by collecting more paraphrases using this methodology, as
the new paraphrases do not introduce much variation.

Training Data Acquisition Templates help in improving
the training data by allowing more varied sentences to be
collected. Our ThingTalk modification which combines trig-
gers and retrievals as queries is also important; queries can
be expressed as noun phrases, which can be inserted easily in
richer construct templates. We wrote 35 construct templates
for primitive commands, 42 for compound commands, and
68 for filters and parameters. In addition, we also wrote 1119
primitive templates, which is 8.5 templates per function on
average.

Figure 8. Accuracy of the Genie model trained on just syn-
thesized data, just paraphrase data, or with the Genie train-
ing strategy. Error bars indicate the range of results over 3
independently trained models.

Using the new templates, we synthesize 1,724,553 sen-
tences, corresponding to 77,716 distinct programs, using a
target size of 100,000 samples per grammar rule and a max-
imum depth of 5. With these settings, the synthesis takes
about 25 minutes and uses around 23GBs of memory. The
synthesized set is then sampled and paraphrased into 24,451
paraphrased sentences. After PPDB augmentation and pa-
rameter expansion, the training set contains 3,649,222 sen-
tences. Paraphrases with string parameters are expanded
30 times, other paraphrases 10 times, synthesized primitive
commands 4 times, and other synthesized sentences only
once. Overall, paraphrases comprise 19% of the training set.
The characteristic of this combined dataset is shown in Fig. 7;
primitive commands are commands that use one function,
while compound commands use two. The training set con-
tains 680,408 distinct programs, which include 4,710 unique
combinations of Thingpedia functions.
Sentences in the synthesized set use 770 distinct words;

this number increases to 2,104 after paraphrasing and to
208,429 after PPDB augmentation and parameter expansion.
On average, each paraphrase introduces 38% new words and
65% new bigrams to a synthesized sentence.

Evaluation on Paraphrases with Untrained Programs

Our paraphrase test set contains 1,274 sentences, correspond-
ing to 600 programs and 149 pairs of functions. All test sen-
tences are compound commands that use function combina-
tions not appearing in training.We show in Fig. 8 the average,

403

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

minimum, and maximum of program accuracy obtained with
3 different training runs. On the paraphrase test set, Genie
obtains an average program accuracy of 87%, showing that
Genie can generalize to compound paraphrase commands
for programs not seen in training. This improvement in gen-
eralization is due to both the increased size and variance in
the training set.

Evaluation on Test Data For the validation data de-
scribed in Section 5.1, Genie achieves an average of 68%
program accuracy. Of the 1480 sentences in the validation
set, 272 sentences map to programs not in training; the rest
uses different string parameters to programs that appear in
the training set. Genie’s accuracy is 30% for the former and
77% for the latter. This suggests that we need to improve on
Genie’s compositionality for sentences in the wild.

When applied to the test data, Genie achieves full program
accuracy of 62% on cheatsheet data and 63% IFTTT com-
mands, respectively. The difference in accuracy between the
paraphrase test data and the realistic test sets underscores
the limitation of paraphrase testing. Previous work on IFTTT
to parse the high-level natural language descriptions of the
rules can only achieve a 3% program accuracy [46].

5.3 Synthesized and Paraphrase Training Strategy

The traditional methodology is to train with just paraphrased
sentences. As shown in Fig. 8, training on paraphrase data
alone delivers a program accuracy of 82% on the paraphrase
test, 55% on the validation set, 46% on cheatsheet test data,
and 49% on IFTTT test data. This suggests that the smaller
size of the paraphrase set, even after data augmentation,
causes the model to overfit. Adding synthesized data to train-
ing improves the accuracy across the board, and especially
for the validation and real data test sets.
On the other hand, training with synthesized data alone

delivers a program accuracy of 48% on the paraphrase test,
56% on the validation set, 53% on cheatsheet test data, and
51% on IFTTT test data. When compared to paraphrase data
training, it performs poorly on the paraphrase test, but per-
forms better on the cheatsheet and IFTTT test data.
The combinination of using synthesized and paraphrase

data works best. The synthesized data teaches the neural
model many combinations not seen in the paraphrases, and
the paraphrases teach the model natural language usage.
Thus, synthesized data os not just useful as inputs to para-
phrasing, but can expand the training dataset effectively and
inexpensively.

5.4 Evaluation of VAPL and Model Features

Here we perform an ablation study, where we remove a
feature at a time from the design of Genie or ThingTalk to
evaluate its impact. We report, in Table 3, results on three
datasets: the paraphrase test set, the validation set, and those
programs in the validation set that have new combinations

Table 3. Accuracy results for the ablation study.
Each ł−ž row removes one feature independently.

Model Paraphrase Validation New Program

Genie 87.1 ± 1.8 67.9 ± 0.7 29.9 ± 3.2
− canonicalization 80.0 ± 1.3 63.2 ± 0.9 21.9 ± 0.9
− keyword param. 84.0 ± 0.6 66.6 ± 0.3 25.0 ± 2.0
− type annotations 86.9 ± 3.6 67.5 ± 0.6 31.0 ± 1.1

− param. expansion 78.3 ± 4.8 66.3 ± 0.4 30.5 ± 1.3
− decoder LM 88.7 ± 1.0 66.8 ± 0.8 27.3 ± 1.7

of functions, filters, and parameters not seen in training. We
report the average across three training runs, along with the
error representing the half range of results obtained.

Canonicalization We evaluate canonicalization by train-
ing a model where keyword parameters are shuffled inde-
pendently on each training example. (Note that programs
are canonicalized during evaluation). Canonicalization is the
most important VAPL feature, improving the accuracy by 5
to 8% across the three datasets.

Keyword Parameters Replacing keyword parameter with
positional parameters decreases performance by 3% on para-
phrases and 5% on new programs in the validation set. This
suggests that keyword parameters improve generalization
to new programs.

Type Annotations Type annotations are found to have
no measurable effect on the accuracy, as the differences are
within the margin of error. We postulate that keyword pa-
rameters are an effective substitute for type annotations, as
they convey not just the type information but the semantics
of the data as well.

Parameter Expansion Removing parameter expansion
means that every sentence now appears only once in the
training set. This decreases performance by 9% on para-
phrases due to overfitting. It has little effect on the validation
set because only a small set of parameters are used.

Pretrained Decoder Language Model We compare our
full model against one that uses a randomly initialized and
jointly trained embedding matrix for the program tokens.
Our proposal to augment the MQANmodel with a pretrained
language model improves the performance on new programs
by 3%, because themodel is exposed tomore programs during
pretraining. It lowers the performance for the paraphrase set
slightly, however, because the basic model fits the paraphrase
distribution well.

5.5 Discussion

Error analysis on the validation set reveals that Genie pro-
duces a syntactically correct and type-correct program for
96% of the inputs, indicating that the model can learn syntax

404

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

Figure 9. Accuracy of the three case studies on cheatsheet
test data. Baseline refers to a model trained with no syn-
thesized data, no PPDB augmentation, and no parameter
expansion. Error bars indicate the range of results over 3
independently trained models.

and type information well. Genie identifies correctly whether
the input is a primitive or a compound with 91% accuracy,
and can identify the correct skills for 87% of the inputs. 82%
of the generated programs use the correct functions; the lat-
ter metric corresponds to the function accuracy introduced
in previous work on IFTTT [46]. Finally, less than 1% of
the inputs have the correct functions, parameter names, and
filters but copy the wrong parameter value from the input.
As observed on the validation set, the main source of

errors is due to the difficulty of generalizing to programs
not seen in training. Because the model can generalize well
on paraphrases, we believe this is not just a property of the
neural model. Real natural language can involve vocabulary
that is inherently not compositional, such as “autoreply” or
“forward”; some of that vocabulary can also be specific to a
particular domain, like “retweet”. It is necessary to learn the
vocabulary from real data. The semantic parser generated
by Genie may be used as beta software to get real user input,
from which more templates can be derived.

6 Case Studies of Genie

We now apply Genie to three use cases: a sophisticated mu-
sic playing skill, an access control language modeled after
ThingTalk, and an extension to ThingTalk for aggregates. We
compare the Genie results with a Baseline modeled after the
Wang et al. methodology [57]: training only with paraphrase
data, no data augmentation, and no parameter expansion.

6.1 A Comprehensive Spotify Skill

The Spotify skill in Almond [29] allows users to combine
15 queries and 17 actions in Spotify in creative ways. For
example, users can “add all songs faster than 500 bpm to the
playlist dance dance revolution”, or “wake me up at 8 am by
playing wake me up inside by evanescence”.

Policy π̂ : ˆpσ : [now ⇒ q̂ ⇒ notify | now ⇒ â]

Query q̂: f filter p

Action â: f filter p

Source predicate ˆpσ : true | false | !p | p && p | p || p |

σ operator v

Figure 10. The formal grammar of the primitive subset of
TACL. Rules that are identical to ThingTalk are omitted.

This skill illustrates the importance of Genie’s ability to
handle quote-free sentences. In the original ThingTalk, a pre-
processor replaces all the arguments, which must be quoted,
with a PARAM token. This would have replaced “play ‘shake
it off’ ” and “play ‘Taylor Swift’ ” with the same input “play
PARAM‘”. However, these two sentences correspond to differ-
ent API calls in Spotify because the former plays a given song
and the latter plays songs by a given artist. Genie accepts
the sentences without quotes and uses machine learning
to distinguish between songs and artists. Unlike in previ-
ous experiments, since the parameter value is meaningful
in identifying the function, we use multiple instances of the
same sentence with different parameters in the test sets.

The skill developers wrote 187 templates (5.8 per function
on average) and collected 1,553 paraphrases. After parameter
expansion, we obtain a dataset with 165,778 synthesized
sentences and 217,258 paraphrases.

We evaluate on two test sets: a paraphrase set of 684 para-
phrase sentences, and a cheatsheet test set of 128 commands;
the latter set contains 95 primitive commands and 33 com-
pound commands. We also keep 675 paraphrases in the vali-
dation set, and train the model with the rest of the data.

On paraphrases, Genie achieves a 98% program accuracy,
while the Baseline model achieves 86%. On cheatsheet data,
Genie achieves 82% accuracy, an improvement of 31% over
the Baseline model (Fig. 9). Parameter expansion is mainly
responsible for the improvement because it is critical to
identify the song or artist in the sentences.

6.2 ThingTalk Access Control Language

We next use Genie for TACL, an access control policy lan-
guage that lets users describe who, what, when, where, and
how their data can be shared [9]. A policy consists of the
person requesting access and a ThingTalk command. For
example, the policy “my secretary is allowed to see my work
emails” is expressed as:

σ = “secretary” : now
⇒ @com.gmail.inbox filter labels contains “work”
⇒ notify

The previously reported semantic parser handles only
primitive TACL policies, whose formal grammar is shown
in Fig. 10. All parameters are expected to be quoted, which
renders the model impractical with spoken commands. An
accuracy of 74% was achieved on a dataset consisting of 4,742
paraphrased policy commands; the number includes both
training and test.

405

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Our first experiment reuses the same dataset above, but
with quotes removed. From 6 construct templates, Genie
synthesizes 432,511 policies, and combines them with the
existing dataset to form a total training set of 543,566 poli-
cies, after augmentation. We split the dataset into 526,322
sentences for training, 701 for validation, and 702 for testing;
the test consists exclusively of paraphrases unique to the
whole set, even when ignoring the parameter values. On this
set, Genie achieves a high accuracy of 96%.
For a more realistic evalution, we create a test set of 132

policy sentences, collected using the cheatsheet technique.
We reuse the same cheatsheet as the main ThingTalk ex-
periment; instructions are modified to elicit access control
policies rather than commands. On this set, Genie achieves
an accuracy of 82%, with a 25% improvement over the Base-
line model. This shows that the data augmentation technique
in Genie is effective in improving the accuracy, even if the
paraphrase portion of the training set is relatively small. The
high accuracy is likely due to the limited scope of policy
sentences: the number of meaningful primitive policies is
relatively small compared to the full Thingpedia.

6.3 Adding Aggregation to ThingTalk

One of our goals in building Genie is to grow virtual as-
sistants’ ability to understand more commands. Our final
case study adds aggregation to ThingTalk, i.e. finding min,
max, sum, average, etc. Our new language TT+A extends
ThingTalk with the following grammar:

Query q: agg [max | min | sum | avg] pn of (q) |

agg count of (q)

Users can compute aggregations over results of queries,
such as łfind the total size of a folderž, which translates to

now ⇒ agg sum file_size of (@com.dropbox.list_folder())
⇒ notify

While this query can be used as a clause in a compound
command, we only test the neural network with aggregation
on primitive queries. We wrote 6 templates for this language.
The ThingTalk skill library currently has 4 query func-

tions that return lists of numeric results, and 20 more that
returns lists in general (on which the count operator can be
applied). We synthesize 82,875 sentences and collect 2,421
paraphrases of aggregation commands. For training, we add
to the full ThingTalk dataset 270,035 aggregation sentences:
23,611 are expanded paraphrases and the rest are synthesized.
The accuracy on the paraphrase test set is close to 100% for
both Genie and the Baseline; this is due to the limited set of
possible aggregation commands and the fact that programs
in the paraphrase test set also appear in the training set.
We then test on a small set of 64 aggregation commands,

obtained using the cheatsheet method. In this experiment,
the cheatsheet is restricted to only queries where aggregation
is possible. We note that the cheatsheet, in particular, does
not show the output parameters of each API, so crowdsource

workers guess which parameters are available to aggregate
based on their knowledge of the function; this choice makes
the data collection more challenging, but improves the real-
ism of inputs because workers are less biased. On this set,
Genie achieves a program accuracy of 67% without any it-
eration on templates (Fig. 9), an improvement of 19% over
the Baseline. This accuracy is in line with the general re-
sult on ThingTalk commands, and suggests that Genie can
support extending the language ability of virtual assistants
effectively.

7 Related Work

Alexa The Alexa assistant is based on the Alexa Mean-
ing Representation Language (AMRL) [30], a language they
designed to support semantic parsing of Alexa commands.

AMRL models natural language closely: for example, the
sentence łfind the sharks game and find me a restaurant
near itž would have a different representation than łfind me
a restaurant near the sharks gamež [30]. In ThingTalk, both
sentences would have the same executable representation,
which enables paraphrasers to switch from one to the other.

AMRL has been developed on a closed ontology of 93
actions and 60 intents, using a dataset of sentences manu-
ally annotated by experts (not released publicly). The best
accuracy reported on this dataset is 77% [44].
AMRL is not available to third-party developers. Third-

party skills have access to a joint intent-classification and
slot-tagging model [20], which is equivalent to a single
ThingTalk action. Free-form text parameters are further lim-
ited to one per sentence and must use a templatized carrier
phrase. The full power of ThingTalk and Genie is instead
available to all contributors to the library.

IFTTT If-This-Then-That [23] is a service that allows
users to combine services into trigger-action rules. Previ-
ous work [46] attempted to translate the English description
of IFTTT rules into executable code. Their method, and suc-
cessive work using the IFTTT dataset [2, 5, 15, 35, 63, 64],
showed moderate success in identifying the correct func-
tions on a filtered set of unambiguous sentences but failed
to identify the full programs with parameters. They found
that the descriptions are too high-level and are not precise
commands. For this reason, the IFTTT dataset is unsuitable
to train a semantic parser for a virtual assistant.

Data Acquisition and Augmentation Wang et al. pro-
pose to use paraphrasing technique to acquire data for seman-
tic parsing; they sample canonical sentences from a grammar,
crowdsource paraphrases them and then use the paraphrases
as training data [57]. Su et al. [52] explore different sampling
methods to acquire paraphrases for Web API. They focus on
2 APIs; our work explores a more general setting of 44 skills.

Previous work [25] has proposed the use of a grammar of
natural language for data augmentation. Their work supports

406

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

data augmentation with power close to Genie’s parameter ex-
pansion, but it does so with a grammar that is automatically
inferred from natural language. Hence, their work requires
an initial dataset to infer the grammar, and cannot be used
to bootstrap a new formal language from scratch.

A different line of work by Kang et al. [65] also considered
the use of generativemodels to expand the training set; this is
shown to increase accuracy. Kang et al. focus on joint intent
recognition and slot filling. It is not clear how well their
technique would generalize to the more complex problem of
semantic parsing.

Semantic Parsing Genie’s model is based upon previous
work in semantic parsing, which was used for queries [6, 24,
42, 54, 57, 58, 60, 61, 66ś69], instructions to robotic agents [12,
26, 27, 59], and trading card games [34, 47, 64].

Full SQL does not admit a canonical form, because query
equivalence is undecidable [13, 55], so previous work on data-
base queries have targeted restricted but useful subsets [69].
ThingTalk instead is designed to have a canonical form.

The state-of-the-art algorithm is sequence-to-sequence
with attention [3, 15, 53], optionally extended with a copying
mechanism [25], grammar structure [47, 64], and tree-based
decoding [2]. In our experiments, we found that the use of
grammar structure provided no additional benefit.

8 Conclusion

Virtual assistants can greatly simplify and enhance our lives.
Yet, building a virtual assistant that supports novel capa-
bilities is challenging because of a lack of annotated natu-
ral language training data. Commercial efforts use formal
representations motivated by natural languages and labor-
intensive manual annotation [30]. This is not scalable to the
expected growth of virtual assistants.
We advocate using a formal VAPL language to represent

the capability of a virtual assistant and use a neural semantic
parser to directly translate user input into executable code.
A previous attempt of this approach failed to create a good
parser [8]. This paper shows it is necessary to design the
VAPL language in tandem with a more sophisticated data
acquisition methodology.

We propose a methodology and a toolkit, Genie, to create
semantic parsers for new virtual assistant capabilities. Devel-
opers only need to acquire a small set of manually annotated
realistic data to use as validation. They can get a high-quality
training set by writing construct and primitive templates.
Genie uses the templates to synthesize data, crowdsources
paraphrases for a sample, and augments the data with large
parameter datasets. Developers can refine the templates it-
eratively to improve the quality of the training set and the
resulting model.
We identify generally-applicable design principles that

make VAPL languages amenable to natural language transla-
tion. By applying Genie to our revised ThingTalk language,

we obtain an accuracy of 62% on realistic data. Our work is
the first virtual assistant to support compound commands
with unquoted free-form parameters. Previous work either
required quotes [8] or obtained only 3% accuracy [46].
Finally, we show that Genie can be applied to three use

cases in different domains; our methodology improves the
accuracy between 19% and 33% compared to the previous
state of the art. This suggests that Genie can be used to
bootstrap new virtual assistant capabilities in a cost-effective
manner.
Genie is developed as a part of the open-source Almond

project [7]. Genie, our data sets, and our neural semantic
parser, which we call LUInet (Linguistic User Interface net-
work), are all freely available. Developers can use Genie to
create cost-effective semantic parsers for their own domains.
By collecting contributions in VAPL constructs, Thingpedia
entries, and natural language sentences from developers in
different domains, we can potentially grow LUInet to be the
best and publicly available parser for virtual assistants.

Acknowledgments

We thank Rakesh Ramesh for his contributions to a previous
version of Genie, and Hemanth Kini and Gabby Wright for
their Spotify skill. Finally, we thank the anonymous review-
ers and the shepherd for their suggestions.
This work is supported in part by the National Science

Foundation under Grant No. 1900638 and the Stanford Mo-
biSocial Laboratory, sponsored by AVG, Google, HTC, Hi-
tachi, ING Direct, Nokia, Samsung, Sony Ericsson, and UST
Global.

References
[1] Tiago A. Almeida, José María G. Hidalgo, and Akebo Yamakami. 2011.

Contributions to the study of SMS spam filtering. In Proceedings of

the 11th ACM symposium on Document engineering - DocEng '11. ACM
Press. https://doi.org/10.1145/2034691.2034742

[2] David Alvarez-Melis and Tommi S Jaakkola. 2017. Tree-structured
decoding with doubly-recurrent neural networks. In Proceedings of the

5th International Conference on Learning Representations (ICLR-2017).
[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural

machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473 (2014).

[4] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira
Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer,
and Nathan Schneider. 2013. Abstract meaning representation for
sembanking. In Proceedings of the 7th Linguistic Annotation Workshop

and Interoperability with Discourse. 178ś186.
[5] I. Beltagy and Chris Quirk. 2016. Improved Semantic Parsers For If-

Then Statements. In Proceedings of the 54th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics. https://doi.org/10.18653/v1/p16-
1069

[6] Jonathan Berant and Percy Liang. 2014. Semantic Parsing via Para-
phrasing. In Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics. https://doi.org/10.3115/v1/p14-1133

407

https://doi.org/10.1145/2034691.2034742
https://doi.org/10.18653/v1/p16-1069
https://doi.org/10.18653/v1/p16-1069
https://doi.org/10.3115/v1/p14-1133

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

[7] Giovanni Campagna, Michael Fischer, Mehrad Moradshahi, Silei Xu,
Jackie Yang, Richard Yang, andMonica S. Lam. 2019. Almond: The Stan-
ford Open Virtual Assistant Project. https://almond.stanford.edu.

[8] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael Fischer, and
Monica S. Lam. 2017. Almond: The Architecture of an Open, Crowd-
sourced, Privacy-Preserving, Programmable Virtual Assistant. In Pro-

ceedings of the 26th International Conference on World Wide Web -

WWW ’17. ACM Press, New York, New York, USA, 341ś350. https:

//doi.org/10.1145/3038912.3052562

[9] Giovanni Campagna, Silei Xu, Rakesh Ramesh, Michael Fischer, and
Monica S. Lam. 2018. Controlling Fine-Grain Sharing in Natural Lan-
guage with a Virtual Assistant. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies 2, 3 (sep 2018), 1ś28.
https://doi.org/10.1145/3264905

[10] Rich Caruana. 1998. Multitask Learning. (1998), 95ś133. https:

//doi.org/10.1007/978-1-4615-5529-25
[11] Ciprian Chelba, TomasMikolov, Mike Schuster, Qi Ge, Thorsten Brants,

and Phillipp Koehn. 2013. One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling. CoRR abs/1312.3005 (2013).
arXiv:1312.3005 http://arxiv.org/abs/1312.3005

[12] David L Chen and Raymond J Mooney. 2011. Learning to Interpret Nat-
ural Language Navigation Instructions from Observations. In Proceed-

ings of the 25th AAAI Conference on Artificial Intelligence (AAAI-2011).
859ś865.

[13] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung.
2017. Cosette: An Automated Prover for SQL.. In CIDR.

[14] Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning
Repository. http://archive.ics.uci.edu/ml

[15] Li Dong and Mirella Lapata. 2016. Language to Logical Form with
Neural Attention. In Proceedings of the 54th Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics. https://doi.org/10.18653/v1/p16-
1004

[16] Floydhub. 2019. Word Language Model
. https://github.com/floydhub/word-language-model.

[17] Winthrop Nelson Francis. 1965. A Standard Corpus of Edited

Present-Day American English. Vol. 26. JSTOR. 267 pages. https:

//doi.org/10.2307/373638

[18] Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch.
2013. PPDB: The Paraphrase Database. In Proceedings of NAACL-HLT.
Association for Computational Linguistics, Atlanta, Georgia, 758ś764.
http://cs.jhu.edu/~ccb/publications/ppdb.pdf

[19] Fabio Gasparetti. 2016. Modeling user interests from web browsing
activities. Data Mining and Knowledge Discovery 31, 2 (nov 2016),
502ś547. https://doi.org/10.1007/s10618-016-0482-x

[20] Anuj Kumar Goyal, Angeliki Metallinou, and Spyros Matsoukas. 2018.
Fast and Scalable Expansion of Natural Language Understanding
Functionality for Intelligent Agents. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 3 (In-

dustry Papers). Association for Computational Linguistics. https:

//doi.org/10.18653/v1/n18-3018

[21] Kazuma Hashimoto, caiming xiong, Yoshimasa Tsuruoka, and Richard
Socher. 2017. A Joint Many-TaskModel: Growing a Neural Network for
Multiple NLP Tasks. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing. Association for Computa-
tional Linguistics. https://doi.org/10.18653/v1/d17-1206

[22] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Es-
peholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching
machines to read and comprehend. In Advances in Neural Information

Processing Systems. 1693ś1701.
[23] If This Then That 2011. If This Then That. http://ifttt.com.
[24] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy,

and Luke Zettlemoyer. 2017. Learning a Neural Semantic Parser from

User Feedback. In Proceedings of the 55th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics. https://doi.org/10.18653/v1/p17-

1089

[25] Robin Jia and Percy Liang. 2016. Data Recombination for Neural Seman-
tic Parsing. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics. https://doi.org/10.18653/v1/p16-1002

[26] Rohit J. Kate and Raymond J. Mooney. 2006. Using string-kernels
for learning semantic parsers. In Proceedings of the 21st International

Conference on Computational Linguistics and the 44th annual meeting

of the ACL - ACL '06. Association for Computational Linguistics. https:
//doi.org/10.3115/1220175.1220290

[27] Rohit J Kate, Yuk Wah Wong, and Raymond J Mooney. 2005. Learning
to transform natural to formal languages. In Proceedings of the 20th

national conference on Artificial intelligence-Volume 3. AAAI Press,
1062ś1068.

[28] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[29] Hemanth Kini and GabbyWright. 2018. Thingpedia Spotify Skill. https:
//almond.stanford.edu/thingpedia/devices/by-id/com.spotify.

[30] Thomas Kollar, Danielle Berry, Lauren Stuart, Karolina Owczarzak,
Tagyoung Chung, Lambert Mathias, Michael Kayser, Bradford Snow,
and Spyros Matsoukas. 2018. The Alexa Meaning Representation
Language. In Proceedings of the 2018 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 3 (Industry Papers). Association for
Computational Linguistics. https://doi.org/10.18653/v1/n18-3022

[31] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon.
2010. What is Twitter, a social network or a news media?.
In WWW ’10: Proceedings of the 19th international conference on

World wide web. ACM, New York, NY, USA, 591ś600. https:

//doi.org/10.1145/1772690.1772751

[32] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-
tracking and the dynamics of the news cycle. In Proceedings

of the 15th ACM SIGKDD international conference on Knowledge

discovery and data mining - KDD '09. ACM Press. https:

//doi.org/10.1145/1557019.1557077

[33] Percy Liang. 2013. Lambda Dependency-Based Compositional
Semantics. CoRR abs/1309.4408 (2013). arXiv:1309.4408 http:

//arxiv.org/abs/1309.4408

[34] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiský, Fumin Wang, and Andrew Senior. 2016. La-
tent Predictor Networks for Code Generation. (2016). https:

//doi.org/10.18653/v1/p16-1057

[35] Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng Chen, and Dawn
Song. 2016. Latent Attention For If-Then Program Synthesis. In Ad-

vances in Neural Information Processing Systems. 4574ś4582.
[36] Douglas MacMillan. 2018. Amazon Says It Has Over 10,000 Employees

Working on Alexa, Echo. https://www.wsj.com/articles/amazon-

says-it-has-over-10-000-employees-working-on-alexa-echo-

1542138284. The Wall Street Journal (2018).
[37] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,

Steven Bethard, and David McClosky. 2014. The Stanford CoreNLP
Natural Language Processing Toolkit. In Proceedings of 52nd An-

nual Meeting of the Association for Computational Linguistics: System

Demonstrations. Association for Computational Linguistics. https:

//doi.org/10.3115/v1/p14-5010

[38] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.
2017. Learned in translation: Contextualized word vectors. InAdvances
in Neural Information Processing Systems. 6294ś6305.

[39] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard
Socher. 2018. The Natural Language Decathlon: Multitask Learning as
Question Answering. arXiv preprint arXiv:1806.08730 (2018).

408

https://almond.stanford.edu
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3264905
https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.1007/978-1-4615-5529-2_5
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://archive.ics.uci.edu/ml
https://doi.org/10.18653/v1/p16-1004
https://doi.org/10.18653/v1/p16-1004
https://github.com/floydhub/word-language-model
https://doi.org/10.2307/373638
https://doi.org/10.2307/373638
http://cs.jhu.edu/~ccb/publications/ppdb.pdf
https://doi.org/10.1007/s10618-016-0482-x
https://doi.org/10.18653/v1/n18-3018
https://doi.org/10.18653/v1/n18-3018
https://doi.org/10.18653/v1/d17-1206
http://ifttt.com
https://doi.org/10.18653/v1/p17-1089
https://doi.org/10.18653/v1/p17-1089
https://doi.org/10.18653/v1/p16-1002
https://doi.org/10.3115/1220175.1220290
https://doi.org/10.3115/1220175.1220290
https://almond.stanford.edu/thingpedia/devices/by-id/com.spotify
https://almond.stanford.edu/thingpedia/devices/by-id/com.spotify
https://doi.org/10.18653/v1/n18-3022
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1557019.1557077
https://doi.org/10.1145/1557019.1557077
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1309.4408
http://arxiv.org/abs/1309.4408
https://doi.org/10.18653/v1/p16-1057
https://doi.org/10.18653/v1/p16-1057
https://www.wsj.com/articles/amazon-says-it-has-over-10-000-employees-working-on-alexa-echo-1542138284
https://www.wsj.com/articles/amazon-says-it-has-over-10-000-employees-working-on-alexa-echo-1542138284
https://www.wsj.com/articles/amazon-says-it-has-over-10-000-employees-working-on-alexa-echo-1542138284
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.3115/v1/p14-5010

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA G. Campagna, S. Xu, M. Moradshahi, R. Socher, and M. S. Lam

[40] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and
Sanjeev Khudanpur. 2010. Recurrent neural network based language
model. In Eleventh annual conference of the international speech com-

munication association.
[41] Cesc Chunseong Park, Byeongchang Kim, and Gunhee Kim. 2017.

Attend to You: Personalized Image Captioning with Context Se-
quence Memory Networks. In 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). IEEE. https:

//doi.org/10.1109/cvpr.2017.681

[42] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic
Parsing on Semi-Structured Tables. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume

1: Long Papers). Association for Computational Linguistics. https:

//doi.org/10.3115/v1/p15-1142

[43] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014.
Glove: Global Vectors for Word Representation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Association for Computational Linguistics, 1532ś1543. https:
//doi.org/10.3115/v1/d14-1162

[44] Vittorio Perera, Tagyoung Chung, Thomas Kollar, and Emma Strubell.
2018. Multi-task learning for parsing the alexa meaning representation
language. In American Association for Artificial Intelligence (AAAI).
181ś224.

[45] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextual-
ized Word Representations. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long Papers). Associa-
tion for Computational Linguistics. https://doi.org/10.18653/v1/n18-
1202

[46] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language
to Code: Learning Semantic Parsers for If-This-Then-That Recipes.
In Proceedings of the 53rd Annual Meeting of the Association for Com-

putational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers). Association for
Computational Linguistics. https://doi.org/10.3115/v1/p15-1085

[47] Maxim Rabinovich, Mitchell Stern, and Dan Klein. 2017. Abstract
Syntax Networks for Code Generation and Semantic Parsing. In Pro-

ceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 1139ś1149. https://doi.org/10.18653/v1/p17-1105

[48] Prajit Ramachandran, Peter Liu, and Quoc Le. 2017. Unsupervised
Pretraining for Sequence to Sequence Learning. (2017). https:

//doi.org/10.18653/v1/d17-1039

[49] Jitesh Shetty and Jafar Adibi. 2004. The Enron email dataset data-
base schema and brief statistical report. Information sciences institute

technical report, University of Southern California 4, 1 (2004), 120ś128.
[50] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent
neural networks from overfitting. Journal of Machine Learning Research

15, 1 (2014), 1929ś1958.
[51] Mark Steedman and Jason Baldridge. 2011. Combinatory Categorial

Grammar. In Non-Transformational Syntax. Wiley-Blackwell, 181ś224.
https://doi.org/10.1002/9781444395037.ch5

[52] Yu Su, Ahmed Hassan Awadallah, Madian Khabsa, Patrick Pantel,
Michael Gamon, and Mark Encarnacion. 2017. Building Natural Lan-
guage Interfaces to Web APIs. In Proceedings of the 2017 ACM on

Conference on Information and Knowledge Management - CIKM '17.
ACM Press. https://doi.org/10.1145/3132847.3133009

[53] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to
sequence learning with neural networks. In Advances in neural infor-

mation processing systems. 3104ś3112.

[54] Lappoon R. Tang and Raymond J. Mooney. 2001. UsingMultiple Clause
Constructors in Inductive Logic Programming for Semantic Parsing.
In Machine Learning: ECML 2001. Springer Berlin Heidelberg, 466ś477.
https://doi.org/10.1007/3-540-44795-440

[55] Boris A. Trakhtenbrot. 1950. Impossibility of an algorithm for the
decision problem in finite classes. Doklady Akademii Nauk SSSR 70
(1950), 569ś572. https://doi.org/10.1090/trans2/023/01

[56] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah
Mennicken, Noah Picard, Diane Schulze, and Michael L. Littman. 2016.
Trigger-Action Programming in the Wild: An Analysis of 200,000
IFTTT Recipes. In Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems - CHI '16. ACM Press, 3227ś3231. https:

//doi.org/10.1145/2858036.2858556

[57] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a
Semantic Parser Overnight. In Proceedings of the 53rd Annual Meet-

ing of the Association for Computational Linguistics and the 7th Inter-

national Joint Conference on Natural Language Processing (Volume 1:

Long Papers). Association for Computational Linguistics, 1332ś1342.
https://doi.org/10.3115/v1/p15-1129

[58] Yuk Wah Wong and Raymond Mooney. 2007. Learning synchronous
grammars for semantic parsing with lambda calculus. In Proceedings of

the 45th Annual Meeting of the Association of Computational Linguistics.
960ś967.

[59] Yuk Wah Wong and Raymond J. Mooney. 2006. Learning for se-
mantic parsing with statistical machine translation. In Proceedings

of the main conference on Human Language Technology Conference of

the North American Chapter of the Association of Computational Lin-

guistics. Association for Computational Linguistics, 439ś446. https:

//doi.org/10.3115/1220835.1220891

[60] Chunyang Xiao, Marc Dymetman, and Claire Gardent. 2016. Sequence-
based Structured Prediction for Semantic Parsing. In Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Association for Computational Linguistics,
1341ś1350. https://doi.org/10.18653/v1/p16-1127

[61] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating
structured queries from natural language without reinforcement learn-
ing. arXiv preprint arXiv:1711.04436 (2017).

[62] Jaewon Yang and Jure Leskovec. 2011. Patterns of Temporal Variation
in Online Media. In Proceedings of the Fourth ACM International Con-

ference on Web Search and Data Mining (WSDM ’11). ACM, New York,
NY, USA, 177ś186. https://doi.org/10.1145/1935826.1935863

[63] Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian Sadler, and Huan Sun. 2018.
Interactive Semantic Parsing for If-Then Recipes via Hierarchical Re-
inforcement Learning. arXiv e-prints, Article arXiv:1808.06740 (Aug
2018), arXiv:1808.06740 pages. arXiv:cs.CL/1808.06740

[64] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model
for General-Purpose Code Generation. In Proceedings of the 55th An-

nual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), Vol. 1. 440ś450.
[65] Kang Min Yoo, Youhyun Shin, and Sang-goo Lee. 2018. Data Aug-

mentation for Spoken Language Understanding via Joint Variational
Generation. CoRR abs/1809.02305 (2018). arXiv:1809.02305 http:

//arxiv.org/abs/1809.02305

[66] John M Zelle and Raymond J Mooney. 1994. Inducing deterministic
Prolog parsers from treebanks: A machine learning approach. In AAAI.
748ś753.

[67] John M Zelle and Raymond J Mooney. 1996. Learning to parse data-
base queries using inductive logic programming. In Proceedings of the

thirteenth national conference on Artificial intelligence-Volume 2. AAAI
Press, 1050ś1055.

[68] Luke S Zettlemoyer and Michael Collins. 2005. Learning to map
sentences to logical form: structured classification with probabilistic
categorial grammars. In Proceedings of the Twenty-First Conference on

Uncertainty in Artificial Intelligence. AUAI Press, 658ś666.

409

https://doi.org/10.1109/cvpr.2017.681
https://doi.org/10.1109/cvpr.2017.681
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.3115/v1/p15-1085
https://doi.org/10.18653/v1/p17-1105
https://doi.org/10.18653/v1/d17-1039
https://doi.org/10.18653/v1/d17-1039
https://doi.org/10.1002/9781444395037.ch5
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.1090/trans2/023/01
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.3115/v1/p15-1129
https://doi.org/10.3115/1220835.1220891
https://doi.org/10.3115/1220835.1220891
https://doi.org/10.18653/v1/p16-1127
https://doi.org/10.1145/1935826.1935863
http://arxiv.org/abs/cs.CL/1808.06740
http://arxiv.org/abs/1809.02305
http://arxiv.org/abs/1809.02305
http://arxiv.org/abs/1809.02305

Genie: A Generator of NL Semantic Parsers for VA Commands PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

[69] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL:
Generating Structured Queries from Natural Language using Rein-
forcement Learning. arXiv preprint arXiv:1709.00103 (2017).

410

	Abstract
	1 Introduction
	1.1 Virtual Assistant Programming Languages
	1.2 Training Data Acquisition
	1.3 Contributions
	1.4 Paper Organization

	2 Principles of VAPL Design
	2.1 Strong, Static Typing
	2.2 Skill Library Design
	2.3 Constructs Matching the User's Mental Model
	2.4 Canonicalization of Programs

	3 Genie Data Acquisition System
	3.1 Data Synthesis
	3.2 Paraphrase Data
	3.3 Parameter Replacement & Data Augmentation
	3.4 Combining Synthesized and Paraphrase Data

	4 Neural Semantic Parsing Model
	4.1 Model Description
	4.2 ThingTalk Language Model
	4.3 Hyperparameters and Training Details

	5 Experimentation
	5.1 Evaluation Data
	5.2 Evaluation
	5.3 Synthesized and Paraphrase Training Strategy
	5.4 Evaluation of VAPL and Model Features
	5.5 Discussion

	6 Case Studies of Genie
	6.1 A Comprehensive Spotify Skill
	6.2 ThingTalk Access Control Language
	6.3 Adding Aggregation to ThingTalk

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

