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Abstract: This work describes a study using multi-view hyperspectral imagery to retrieve sediment

filling factor through inversion of a modified version of the Hapke radiative transfer model. We

collected multi-view hyperspectral imagery from a hyperspectral imaging system mounted atop

a telescopic mast from multiple locations and viewing angles of a salt panne on a barrier island

at the Virginia Coast Reserve Long-Term Ecological Research site. We also collected ground truth

data, including sediment bulk density and moisture content, within the common field of view of

the collected hyperspectral imagery. For samples below a density threshold for coherent effects,

originally predicted by Hapke, the retrieved sediment filling factor correlates well with directly

measured sediment bulk density (R2 = 0.85). The majority of collected samples satisfied this

condition. The onset of the threshold occurs at significantly higher filling factors than Hapke’s

predictions for dry sediments because the salt panne sediment has significant moisture content. We

applied our validated inversion model to successfully map sediment filling factor across the common

region of overlap of the multi-view hyperspectral imagery of the salt panne.

Keywords: hyperspectral; multi-view; radiative transfer; modified Hapke model; hemispherical

conical reflectance factor (HCRF); filling factor; bulk density; salt panne; coastal sediments

1. Introduction

Retrieval of properties of Earth sediments and planetary regoliths from spectral remote sensing

has been explored extensively [1–4]. Radiative transfer models have been a centerpiece of these

studies with the Hapke model [1] having been among the more frequently used models in past studies.

Hapke’s Isotropic Multiple Scattering Approximation (IMSA) [1] model and his later Modified IMSA

(MIMSA) [1,5] have been widely used, especially to model the interaction of light with granular

sediments [6–9]. Jacquemoud et al. [6] investigated laboratory spectral data for 26 different soil

samples of varying soil type by inverting an an early version of IMSA predating Hapke’s adjustment

of the model for the effects of porosity [10]. Their inversion of IMSA retrieved the single scattering

albedo, single scattering phase function parameters, and opposition effect width parameter using

spectral data from a multi-spectral sensor and spectrometer. In [7], Wu et al. inverted the MIMSA

model to retrieve parameters for four different types of desert environments using Multi-Angle

Imaging SpectroRadiometer (MISR) [11] data. Their modeling efforts also included Hapke’s correction

for macroscopic roughness [12]. Bachmann et al. [8] inverted laboratory hyperspectral goniometer

data of the Algodones Dunes to jointly retrieve sediment filling factor and single scattering albedo

and validated the results in the laboratory with direct measurements of sediment bulk density.
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This multi-stage optimization procedure also optimized other model parameters such as those

parameterizing the phase function, and opposition effect. Eon, Bachmann, and Gerace [9] built

on this approach extending it to multi-view hyperspectral imagery of the Algodones Dunes obtained

by the NASA G-LiHT hyperspectral imaging (HSI) system [13]. Since roughly one-third of of the

land surface on Earth is either desert or a similar arid environment [14], where granular sediments

predominate, radiative transfer models that describe surfaces with significant granular content can

play an important role in remote sensing analysis and in the inversion of surface parameters.

The IMSA model also has been used widely in astronomy, particularly for planetary studies [15–17]

as well in studies of asteroids and comets [18–21] associated with recent and future NASA and JAXA

probes [16,19,21]. Protopapa et al. [15], for example, applied the Hapke IMSA model to the inversion

of Linear Etalon Imaging Spectral Array (LEISA) spectral imagery of Pluto from the Ralph instrument

onboard the New Horizons probe [22] to retrieve abundances of H2O ice, tholin, and mixtures of CH4

ice and N2 ice. They made a number of simplifying assumptions in their model, using a single-lobe

Henyey–Greenstein phase function and fixing many of the free parameters of the Hapke model to

reasonable values obtained in previous studies. They also combined the IMSA model with an areal

linear mixture model and an equivalent slab model [1] that linked the single scattering albedo to

optical constants and average particle size, optimizing over the particle size and mixture fraction.

Ciarniello et al. [16] used a version of the IMSA model based on disk-integrated reflectance [1] to

analyze Visual and Infrared Mapping Spectrometer (VIMS) [23] hyperspectral data of Rhea from

the Cassini mission [24]. They optimized the parameters of the opposition effect scale and width

parameter, a two-parameter Henyey–Greenstein function, as well as Hapke’s surface roughness

correction [12] using a grid search. They likewise combined their model with an equivalent slab model

and a mixture model; however, they considered three different types of mixtures: areal, intimate,

and intraparticle, with best results obtained using the latter. Lederer et al. [18] used the Hapke

model to analyze disk-integrated reflectance of the asteroid Itokawa from ground-based multi-spectral

observations. Their model similarly focused on the phase function, opposition effect, and surface

roughness parameters. Since their study was published in the same year as Hapke’s improvement

to IMSA incorporating porosity explicitly [10], they only considered porosity in terms of the width

parameter of the opposition effect. In a study of an asteroid from multiple ground-based telescopes,

Ishiguro et al. [19] similarly used the IMSA in a comparative study of models for the phase function.

Their approach used a single lobe Henyey–Greenstein function as well as the Hapke surface roughness

correction and opposition effect factors for disk-integrated reflectance. Their optimization found

comparable local minima for different roughness values due to the more limited nature of the input

data which were based solely on V band observations. Similar challenges appear in the study of

Li et al. [20], who used the Hapke model to study surface properties of Comet 9P/Tempel 1 from

High Resolution Instrument (HRI) and Medium Resolution Instrument (MRI) multispectral imagery

acquired during the Deep Impact Mission [25]. Due to the limited sampling of phase angle geometries

in their data, they fixed a number of the Hapke free parameters, varying only roughness and single

scattering albedo during optimization. A later study by Fink [21] extended this same work to derive

surface optical constants again using an equivalent slab model [1].

Inversion of surface properties has served as a central theme in application of the Hapke model

and variants. Hapke’s IMSA solution to the radiative transfer equation accounts for influences such

as macroscopic surface roughness [12,26], sediment filling factor (the fraction of volume occupied by

particles) [1,10], and grain size distribution [1,10,27], as well as intrinsic properties of materials such as

single scattering albedo [1]. Extensions of the Hapke model also have considered methods to include

the influence of pore water in sediment [28]. A central focus of this paper is the inversion of a variant of

the IMSA model to retrieve the sediment filling factor. In practical terms, the sediment filling factor is

directly proportional to a commonly used geotechnical property, the sediment bulk density, which is a

critical parameter in a variety of civil engineering applications as well as scientific analyses of sediments.

In the coastal zone, sediment bulk density is a contributing factor to models analyzing erosion and
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coastal change [29] and parameters such as bulk density, among others, contribute to sediment strength,

an important factor in assessment of substrate bearing strength [30]. As we discuss in more detail later

in this article, sediment filling factor, or equivalently porosity (the complementary void space in the

medium), contributes to the observed reflectance at the sensor. Indeed, in IMSA, Hapke derived an

explicit form of the radiative transfer equation and its solution that directly incorporates the effect of

the filling factor of the granular medium [1,10]. Porosity can have a significant effect on the reflectance

of granular materials as has been demonstrated both theoretically and empirically [1,10], although

there is some evidence to suggest that the degree of impact may depend on the material properties of

the sediment. In a limited test of three different mineral types, for example, Helfenstein and Shepard,

found preliminary evidence that minerals with very high albedo may show less effect than those with

a lower albedo [31]. However, in the general case, even modest changes in sediment density can have

a significant impact. In [32], for example, we analyzed sand sediments from a lacustrine evironment.

For these samples, a change in density of
∆ρ
ρ ∼ 4% resulted in a consistent change in reflectance of

∆r/r & 67%. For comparison, in this work, the change in bulk density from the largest to smallest

measured at our salt panne site spanned a range of
∆ρ
ρ ∼ 8%. In some of our other past work, we have

also observed similar effects on observed reflectance from changes in density (see, for example, Figure

9 in [33]).

In our earlier study with lacustrine sediments, we also took measurements of directional

reflectance and found that, for a progression of changes in sediment density prepared via air

pluviation [34] and covering a range of just ∼ 10%, we observed significant shifts in the angular

distribution of scattered light, which became progressively more forward scattering and less diffuse

with increasing density [32]. Theoretical predictions developed by Hapke for model grain size

distributions also predict [1] that the width of the opposition effect, the peak distribution around the

retro-reflectance direction, should be directly dependent on the product of the sediment filling factor φ

and another nonlinear but monotonically increasing function of the sediment filling factor K(φ) [33],

described in greater detail below.

Our recent work has investigated ways to improve both the optimization of the inversion of this

complex radiative transfer model as well as to develop incremental improvements [8,9] to overcome

limitations, such as the assumption of isotropic multiple scatter, which underlie Hapke’s Isotropic

Multiple Scattering Approximation (IMSA) [1,2].

In our earlier laboratory studies [8,9], we showed that our modified Hapke model solution could

more robustly be inverted to retrieve the sediment filling factor, especially in wavelength ranges, such

as the short-wave infra-red (SWIR) where signal-to-noise ratio (SNR) is typically lower [8]. Sediment

filling factor φ has been defined as the fractional volume occupied by particles [1,8–10,27]:

φ = ∑
i

nivi = NV, (1)

where ni is the number density of particles of type i per unit volume and vi the associated particle

volume, while N is the average number of particles per unit volume and V the average volume

occupied by a particle. The absence of particle material, known as the sediment porosity, P, the factor

so frequently described in the geophysical and geotechnical literature, represents the void space in the

material and is just the complement of the filling factor [1] defined in Equation (1):

P = 1 − φ (2)

Hapke showed that, to properly account for the effects of filling factor, the radiative transfer equation

must be modified to include a “porosity coefficient” K(φ) [1] (distinct from the porosity defined in

Equation (2)), which depends nonlinearly on the filling factor φ, and the approximate solutions to the
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radiative transfer equation developed by Hapke, therefore, also depend explictly on K(φ) [1,10]. An

approximate form of K(φ) derived by Hapke takes the form [1]:

K(φ) ≈ −
ln(1 − 1.209φ

2
3 )

1.209φ
2
3

(3)

The porosity coefficient K(φ) defined in Equation (3) appears explicitly in Hapke’s radiative transfer

equation and IMSA solution. The filling factor must, therefore, be regarded as a fundamental parameter

of such models.

Because the filling factor and bulk density are directly proportional:

φ =
ρ

∑i fiρi
(4)

where ρ is the bulk density, which includes both sediment and void space of the sediment in gm/cm3,

and ρi is the mass density of particle type i and fi the fraction of particle type i, inversion of radiative

transfer models, such as those due to Hapke, provides information about this directly measurable

geotechnical parameter, the bulk density. If accurately retrieved from remote sensing imagery, therefore,

the filling factor will be linearly proportional to the measured bulk density in the field or laboratory

provided that the total density of particles is reasonably constant within a region of interest. In this

case, from Equation (4), the slope will be the inverse of the total particle density.

In past work, we have developed methods to invert both the Hapke model and a modified

form of the Hapke model that we developed [8,9] in order to specifically retrieve the sediment filling

factor from multi-view hyperspectral data. Initially, we had focused on laboratory studies, using

hyperspectral bi-conical reflectance factor (BCRF) [35–38] data derived from the Goniometer of the

Rochester Institute of Technology-Two (GRIT-T) [8,39] to demonstrate the feasibility of the approach.

Our method relied on the observation that single particle properties such as the single scattering phase

function are intrinsic properties of particles with a distribution depending only on the phase angle g,

i.e., the relative angle between illumination and observation direction [8]. BCRF measurements over the

full observation hemisphere with GRIT-T acquired at two different illumination geometries provided

the input data for a multi-stage optimization procedure, which ultimately ensured consistency of the

inverted phase function distribution in phase angle g between the measurements acquired at the two

illumination geometries [8]. A brief summary of our inversion approach appears in Section 2.

Our first application of our approach to inverting our modified form of the Hapke radiative

transfer solution used multi-view and multi-temporal imagery from NASA G-LiHT imagery acquired

in the Algodones Dunes. Compared to our earlier laboratory-focused study [8], a key innovation

of this study using G-LiHT [9] was a method that we developed to use remote sensing time series

imagery, the more typical situation encountered in practical remote sensing applications in which a full

sampling of the hemispherical conical reflectance factor (HCRF) [35–38] observation hemisphere is by

no means guaranteed, and the illumination geometry typically varies from one acquisition time to the

next. Specifically, we replaced the optimization that ensured a self-consistent single-scattering phase

function over two full BCRF scans in the earlier laboratory study [8] with an optimization that ensured

consistency of the single-scattering phase function between a spectral pixel and its neighbors [9]. Our

enhanced approach, which is applicable to any remote sensing time series, demonstrated a retrieval

of sediment filling factor that was consistent with nearby ground truth measurements [9]; however,

in that earlier study, the available ground truth was not directly within the overlapping field of view

of the multi-view, multi-temporal G-LiHT hyperspectral imagery used. In the present study, we

address this shortcoming using multi-view, multi-temporal hyperspectral imagery acquired from a

mast-mounted hyperspectral imaging (HSI) system [40] and contemporaneous ground truth collected

by us during a field campaign at the Virginia Coast Reserve (VCR) [41] Long Term Ecological Research

(LTER) [42] site in July 2018. In our present study, the ground truth that we collected provides a large
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number of validation points within the field of view, and we find good correlation in the retrieved

sediment filling factor with the directly measured field sediment bulk density.

In this paper, we review the theoretical basis of the Hapke radiative transfer model, the

modifications made by us to the model, as well as our inversion procedure (Section 2.2). In Section 2.3,

we describe the field campaign that provided the hyperspectral imagery and ground truth data

collected to support validation of our inversion procedure to retrieve sediment filling factor as well

as its relationship to the measured sediment density. Section 3 summarizes our inversion results

and accuracy using our validation data, Section 4 provides a discussion, and Section 5 discusses the

conclusions drawn.

2. Materials and Methods

2.1. Materials and Methods: Overview

In this section, we describe our approach to retrieving the sediment filling factor from multi-view

hyperspectral imagery. We begin by discussing the underlying theory of the Hapke radiative transfer

model and our approach to model inversion, which is based on an optimization scheme that we

developed and described previously in [8,9]. We then describe the field data collection campaign

conducted in a salt panne environment on a barrier island at the VCR LTER, including the hyperspectral

imaging system used to collect the imagery and the ground truth data used in validating the retrieval

of sediment filling factor from the multi-view hyperspectral imagery.

2.2. Methods: Theory and Retrieval Methodology

The IMSA solution to the equation of radiative transfer equation was proposed by Hapke [1]. Our

approach to the inversion of a modified form of Hapke’s solution jointly retrieves the filling factor and

the single scattering albedo and relies on the key observation that the single scattering phase function,

p(g) is invariant to the absolute illumination geometry [8,9], with a geometric dependence only on the

phase angle g. Hapke’s IMSA solution to the radiative transfer equation has the form:

r(θi, θe, g, λ) = K(φ)
w(λ)

4

1

µi + µe

(

p(g)[1 + Bs0Bs(g, K(φ), λ)] +

[

H

(

µi

K(φ)

)

H

(

µe

K(φ)

)

− 1

])

× [1 + Bc0Bc(g, K(φ), λ)] (5)

where µi and µe represent the direction cosines for incident and scattered light, w(λ) is the single

scattering albedo, and K(φ) is the nonlinear porosity factor previously mentioned. Bs0 is a scale factor

for the shadow hiding opposition effect (SHOE), modeled by the function Bs(g, K(φ), λ) [1]. The

second term in Equation (5), H
(

µi

K(φ)

)

H
(

µe

K(φ)

)

− 1, is the isotropic multiple scattering component of

the original Hapke model, dependent on the Ambartsumian–Chandrasekhar H-functions [1]. Because

of the separation of terms that describe single- and multiple-scattering, the Hapke solution to the

radiative transfer equation can be reorganized to solve for the single scattering phase function and

other factors related to the SHOE in terms of a scaled version of the observed reflectance and the

multiple scattering term [8,9]:

p(g) [1 + Bs0Bs(g, K(φ), λ)] =
4

K(φ)w(λ)
(µi + µe)r(θi, θe, g, λ)−

[

H

(

µi

K(φ)

)

H

(

µe

K(φ)

)

− 1

]

(6)

Our multi-stage optimization procedure [8,9] makes an initial estimate of the best filling factor φ and

single scattering albedo w(λ) that satisfy Equation (6) and minimizes the difference over the two data

sets (illumination conditions):

min
φ,w(λ)

[

{p1(g) [1 + Bs0Bs,1(g, K(φ), λ)]− p2(g) [1 + Bs0Bs,2(g, K(φ), λ)]}2
]

. (7)
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To improve convergence and numerical stability, we also use regularization by adding additional

terms that penalize very large values of w(λ) and K(φ) [8]. To implement this, we add two terms

to Equation (7): αw2(λ) + βK2(φ), where α and β are constants [8]. When optimization is complete,

we then enter a second stage of optimization which compares the resulting estimated quantities

(p(g) [1 + Bs0Bs(g, K(φ), λ)])est with a forward model using a three-parameter Henyey–Greenstein

single scattering phase function in order to optimize the Henyey–Greenstein constants b1,b2, and c

and simultaneously optimize other free parameters such as Bs0 and the width parameter hs of the

SHOE distribution function Bs(g, K(φ), λ) ≈ 1
1+ 1

hs
tan(

g
2 )

(here g is the phase angle). This second stage

optimization procedure also yields a separate estimate of the isolated single scattering phase function

p(g)est. In this second-stage optimization step, we let hs take the form hs = ǫK(φ)φ with ǫ a free

parameter to be optimized; we have based this choice on the fact that, for most prototypical grain size

distributions that Hapke solved analytically [1], the form of hs is always proportional to K(φ)φ [8], as

noted earlier. With the phase function p(g)est , Bs0, hs, ǫ, and the three constants of the three-parameter

Henyey–Greenstein, b1, b2, and c, now fixed, our method then re-optimizes a modified version of

Equation (6) using this time for p(g) [1 + Bs0Bs(g, K(φ), λ)]:

p(g) [1 + Bs0Bs(g, K(φ), λ)] = 4
K(φ)w(λ)

(µi + µe)r(θi, θe, g, λ)− ηp(g)est

[

H
(

µi

K(φ)

)

H
(

µe

K(φ)

)

− 1
]

(8)

Equation (8) also includes an additional factor, ηp(g)est that we originally introduced to remove the

assumption of isotropic multiple scattering [8] with η serving as a scale parameter to be optimized.

Although not derived from first principles, the addition of this factor can be thought of as introducing

the directional dependence of single scattering at the last scattering event in the multiple scattering

pathway [8]. This final stage of optimization again uses the regularization terms discussed earlier and

now searches over a three-parameter space which re-optimizes the filling factor φ, the single scattering

albedo w(λ), as well as the new scale parameter η for Equation (8) again minimizing Equation (7). In

each stage of our multi-stage optimization procedure, we use the Nelder–Mead simplex optimization

method [43]. Further details of the overall approach can be found in [8,9].

It is important to emphasize that the two data sets reflected in the subscript indices of Equation (7)

for each optimization stage represent two data sets that are formed from: (1) all views of a given

hyperspectral pixel in a scene and (2) all views of the immediately neighboring hyperspectral pixels.

We apply this process to each pixel of the scene. This is the same method that we developed in our

previous study using hyperspectral imagery of the Algodones Dunes [9], where we first extended

our laboratory-based inversion of hyperspectral goniometer data [8] to multi-view hyperspectral

imagery. In the present work, for the first time, we directly compare the filling factor inversion with in

situ ground truth measurements of sediment bulk density within the field-of-view of the multi-view

hyperspectral imagery.

2.3. Methods: Field Survey

2.3.1. Methods: Experimental Design and Instrumentation

In July 2018, we undertook a field campaign on Hog Island, VA, USA at the VCR LTER. The

campaign focused on hyperspectral imaging of both salt marsh vegetation and sediments as well as

ground truth data collection. We dedicated one phase of the campaign to the acquisition of coordinated

multi-view hyperspectral imagery and ground truth data within the field of view of the imagery in

order to evaluate the accuracy of the inversion methodology described in Section 2.2. Since our focus

in this phase of the campaign, therefore, was on validating our ability to accurately retrieve sediment

filling factor, we selected a site where there would be minimal variation in other underlying variables

such as moisture content, surface roughness, and composition. In a laboratory setting, we have far

greater control of these other sources of variation in the sediment. In this field setting, the salt panne
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Table 1. The moisture content and bulk density data collected during the 2018 field survey.

Sample Name Moisture Content (%) Dry Bulk Density (g/cm3)

P1 20.3426 ± 0.0002 1.736 ± 0.022
P2 20.7889 ± 0.0002 1.733 ± 0.022
P3 23.1396 ± 0.0002 1.754 ± 0.022
P4 21.2676 ± 0.0002 1.703 ± 0.022
P5 22.2659 ± 0.0002 1.682 ± 0.022
P6 21.3305 ± 0.0002 1.707 ± 0.022
P7 19.4197 ± 0.0002 1.713 ± 0.022
P8 19.6637 ± 0.0002 1.784 ± 0.023
P9 18.6726 ± 0.0002 1.778 ± 0.023
P10 21.3106 ± 0.0002 1.674 ± 0.021
P11 21.0081 ± 0.0002 1.655 ± 0.021
P12 19.3036 ± 0.0002 1.671 ± 0.021

Table 1 summarizes the dry bulk density measurements along with the soil moisture content (SMC)

collected at the salt panne site during the field campaign. Following ASTM standard D2216-10 [48], we

determined SMC by comparing the wet sample weight of sediment samples acquired at each test site

to the dry weight of the sample after drying. The dry bulk density and moisture content ground truth

measurements in Table 1 are based on a cylindrical core sample of diameter d = 2.5 cm extracted

to a depth of h = 10 cm. To obtain dry bulk density, we take the ratio of the mass of the sample

after drying in an oven at 60 degrees Celsius for 24 hr, mdry, to the known volume, vc = π d2

4 h, of

the core sample: ρ =
mdry

vc
. mdry is the difference between mtot,dry, which is the combined mass of

the sample plus a laboratory sample holder, and msh, which is the mass of the empty sample holder:

mdry = mtot,dry − msh. From this, the dry bulk density is:

ρ =
mdry

vc
=

mtot,dry − msh

vc
. (9)

Our ground–based system acquired hyperspectral imagery at four different locations around the

salt panne, and at five different heights (2 m to 6 m at approximately 1 m increments). Red-Green-Blue

(RGB) images derived from the hyperspectral imagery of the salt panne appear in Figure 2, which

shows the twenty hyperspectral scenes collected in this manner and used in this study. The captured

hyperspectral imagery had a ground sampling distance (GSD) ranging between 0.5 to 20 cm. The HSI

system was characterized in our lab at RIT using a LabSphere Helios Integrating Sphere (LabSphere,

North Sutton, NH, USA), which is coupled to an on-board calibrated spectrometer to determine a

calibration of the Headwall system to convert the raw digital numbers (DN) to spectral radiance

(Wm−2nm−1sr−1) [40]. The placement of Spectralon R© (LabSphere, North Sutton, NH, USA) panels

within the scene enabled the conversion of the imagery into surface reflectance. Using a Garmin RTK

GPS TRM55971 (Garmin International, Inc., Olathe, KS, USA), we also conducted GPS surveys of

fiducials within the scene, which allowed us to geo-register the images, and also measure the view

geometries of the sensor.
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Because of the high-precision of the scale (low uncertainties in the mass), the second quadrature

term

(

σ2
mtot,dry

+σ2
msh

m2
dry

)2

in Equation (11) is negligible, meaning that for all of the sites the uncertainty

in the bulk density is
σρ

ρ ≈ σvc
vc

≈ 1.28%. Across all of the samples in Table 1, therefore, the absolute

uncertainties in dry bulk density range from 0.021–0.023
g

cm3 .

Due to the high precision of the scale that we used, uncertainty in the soil moisture content is low.

We determine soil moisture content by comparing the mass of the wet sample, mwet, to the dry mass of

the sample:

SMC =
mwet − mdry

mdry
=

mtot,wet − mtot,dry

mtot,dry − msh
(12)

In Equation (12), analogous to dry mass, the wet mass is the difference between the combined mass of

the sample holder and wet sample and the mass of the sample holder: mwet = mtot,wet − msh. From

this, we see that the uncertainty in SMC is:

σSMC

SMC
=

1

SMC

√

√

√

√

(

∂SMC

∂mtot,wet

)2

σ2
mtot,wet

+

(

∂SMC

∂mtot,dry

)2

σ2
mtot,dry

(

∂SMC

∂msh

)2

σ2
msh

=

√

√

√

√

(

σmtot,wet

mwet − mdry

)2

+

(

σmtot,dry
mwet

mdry(mwet − mdry)

)2

+

(

σmsh

mdry

)2

(13)

Since the uncertainties in the masses are all the same in Equation (13) ( σmtot,wet = σmtot,wet = σmsh
=

σm = 0.0001), we found that the uncertainties in the soil moisture content were small with the range of

values being σSMC
SMC ∼ 8.05 − 9.91 × 10−6, leading to σSMC = 0.0002 for all measurements in Table 1.

Sources of uncertainty in the retrieved filling factor stem from several sources. As noted earlier, in

prior work, we characterized the signal-to-noise ratio (SNR) and Noise Equivalent Spectral Radiance

(NESR) of our hyperspectral imaging system using our state-of-the-art LabSphere Helios integrating

sphere (see Figure 2 of [40]). In that analysis, we determined that peak SNR near full-daylight

illumination levels is ∼ 175. SNR declines considerably at the ends of the wavelength range. For

example, we found that at the smallest wavelengths near 0.4 µm, the SNR drops to ∼ 70. These

variations in SNR have an impact on our error budget in the results that we present in Section 3,

specifically because our inversion methodology described in Section 2.2 incorporates all of the available

wavelengths. Thus, in Section 3, in our statistical results comparing the retrieved fill factor against

ground truth measurements of sediment bulk density, the error bars in our regression represent more

than one source of uncertainty, including the noise of our hyperspectral imaging system. The purpose

of including all wavelengths is two-fold. Firstly, there is no a priori reason to prefer one individual

band over the others. More importantly, from an optimization perspective, we use a specific constraint

that penalizes differences in the retrieved values of filling factor across wavelength [8,9]. The advantage

of enforcing this constraint is that it uses the additional information available across all of the bands to

limit the possible values of retrieved filling factors that could be minima obtainable by the optimization

procedure, that is, the physical parameters such as filling factor that do not depend on wavelength

should be consistent across all wavelengths. The disadvantage of using all of the wavelengths in our

retrieval process, including those at the ends of the wavelength range, is the additional noise that this

contributes to the overall optimization process since SNR is lower at the ends of the wavelength range.

Beyond system noise, an additional source of uncertainty in our retrievals, contributing to the

errors bars in our regression in Section 3, results from the intrinsic limitations of the model itself.

The original Hapke model, IMSA, as its name implies, makes the fundamental approximation of

isotropic multiple scattering. In our modified version of the Hapke model [8,9], we have included

an additional factor ηp(g)est to be optimized which, as noted in Section 2.2, introduces anisotropy

into the solution [8]. As noted earlier in Section 2.2, the additional factor ηp(g)est is not derived

from first-principles. Hapke’s alternative strategy for describing anisotropic multiple scattering, the
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MIMSA model later developed by him [1,5], took the approach of more accurately representing

the phase function in terms of a Legendre polynomial expansion that must be fit in the multiple

scattering terms of the radiative transfer equation and solution; however, even this approach involved

approximation of radiometric quantities over the lower and upper scattering hemispheres in the spirit

of a two-stream model.

In the present work, our approach also assumes that we could ignore surface roughness in our

model. Since our study site, the salt panne, was a relatively flat and smooth surface, we chose not to

include Hapke’s correction for surface roughness [12] in our model. In addition, limitations of the

Hapke surface roughness correction have been identified in recent studies by us and others [26,49].

In [26], for example, we showed that the Hapke model does not faithfully reproduce the effects of

sub-centimeter scale roughness, especially in the forward scattering direction. For the salt panne,

including Hapke’s correction for macroscopic roughness, therefore, might introduce additional

systematic error. On the other hand, omitting a correction for macroscopic roughness also potentially

introduces a source of uncertainty since sub-centimeter scale roughness may not be accounted for,

and this may contribute, therefore, to the size of the error bars in our regression. In the salt panne,

roughness variations are small in scale and relate to factors such as small balls of sand resulting from

crabs feeding on the surface and some variations in surface composition associated with proximity to

a nearby tidal creek.

Another factor that contributes to the error budget in our regression in Section 3 is the number

of points sampled on the observation hemisphere. Although our regression validation results in

Section 3 demonstrate that we have developed a reasonably good model for retrieving sediment filling

factor, the number of samples over the observation hemisphere and the range of phase angles covered

determine how accurately the final solution can characterize parameters of the model. Beyond the

geophysical variable of filling factor, parameters such as those parameterizing the Henyey–Greenstein

phase function will be more accurate with greater sampling over phase angle.

3. Results

3.1. Spectral Analysis

The key to our overall approach is the representation of the angular dependence of spectral

reflectance obtainable from multi-view hyperspectral imagery. Figure 3 illustrates the spectral library

and polar plots representing their angular distribution for four different locations around the salt

panne. The angular plots show that the HCRF [35–38] has been sampled across the twenty scenes

shown in Figure 2. The spectral library plots show the reflectance in the visible and near–infrared

(400–1000 nm) wavelength region for different solar and view geometries used in imaging with our

mast-based HSI system. The spectral libraries for the sediment, which is a mixture of sand, silt, and

clay, are consistent with observations from our previous studies, with the reflectance increasing with

wavelength in the VIS–NIR region of the electromagnetic spectrum. The overall amplitude/magnitude

of the reflectance values are slightly lower than our previous experiments [8,9] due to significant

soil moisture content in our area of study, the salt panne. The high water content within the ROI is

illustrated in the SMC values shown in Table 1, with the average SMC being approximately 20%. The

varying view geometries described in Section 2.3.2 along with the varying solar illumination geometry

ensured that the hyperspectral imagery of our ROI covered a wide range of phase angles from 30 deg

to 130 deg. Thus, both forward scattering and backward scattering of the target pixels were sampled

throughout all pixels in our ROI.

Figure 3 also shows the corresponding polar plots of the sampled HCRF at wavelengths 807 nm

and 551 nm, respectively. The plots are a composite of 10–14 different looks from the HSI sensor for

four of the positions shown in Figure 1, positions P2, P5, P7, and P11. In addition to showing the

spectral reflectance curves, the top row of Figure 3 also color-codes the reflectance curves by phase

angle, showing that a large fraction of the views were in the backscatter direction (phase angle < 90◦),
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retrieved results for the filling factor across wavelength toward a common value [8,9], there is still

some residual variance with wavelength when the optimization is completed. The inversion of the

Hapke model shows moderately good correlation between the retrieved filling factor and measured

density, with an R2 value of 0.85. The R2 value was calculated by ignoring the last two density points

(1.778 and 1.784 g/cm3). The low values in retrieved filling factor at these two high densities can be

attributed to the onset of “coherent effects”, originally predicted by Hapke [1,10], within the sediment

where the model is no longer valid. According to Hapke, the coherent effect arises when the separation

between sediment particles is comparable to the wavelength, occurring when particles are closely

packed [1,10] and coming into contact. When this occurs, groups of particles that are clustered begin

to act like larger single particles which would have larger void space if the medium were composed of

such larger single particles. Hapke’s predicted threshold for the onset of coherent effects depends on

the ratio of the wavelength to the average particle diameter λ
D according to [1,10]:

φ >

π
6

(

1 + λ
D

)3
. (14)

Given typical grain size distributions observed at the VCR LTER during past experiments [30,50], in a

salt panne region such as ours in the present study at the VCR LTER, a reasonable estimate for average

grain size would be ∼ 100 µm. This, combined with the wavelength range of our Headwall imaging

system, 0.4–1.0 µm, would ordinarily imply a threshold for coherent effects, in the range ∼ 0.508–0.517,

depending on wavelength. This range is significantly lower than the retrieved values seen in Figure 4;

however, the presence of relatively high moisture content that we recorded in the salt panne (Table 1)

violates the conditions under which the threshold in Equation (14) was derived: Hapke’s derivation

assumed the space between particles was a void [1,10]. Thus, while it is still reasonable to anticipate a

threshold for coherent effects, the presence of water in the pore space likely implies a higher filling

factor than that described in Equation (14). Not surprisingly, due to the high moisture content in the

salt panne, the filling factor values in general were also higher compared to those observed in our

previous studies in a desert environment, the Algodones Dunes [9].

Figure 4 also displays the averaged SSA (shown in red) for all twelve ground points, and the

standard deviation of the SSA estimates is shown in gray for each wavelength. The SSA is generally

dependent on the optical properties of the medium. The derived SSA values from the panne were

significantly lower than those that we have seen in our previous studies [8,9]. Both the high values of

the filling factor and low value of the SSA can be attributed to the high presence of water within the

salt panne.
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4. Discussion

In most past studies, inversion of the large set of free parameters in the Hapke IMSA model

used either laboratory observations and validation data [6,51–53], astronomical observational data

from ground-based systems, or probes [15,16,18,19,21] for which direct corroborating ground truth

is difficult to obtain, or combinations of these two types of data [2,54,55]. Even when the input data

have been Earth remote sensing imagery, typically the Hapke model has been fit to the remote sensing

imagery data, and it is an error in the reconstruction of the original spectral reflectance of the remote

sensing imagery from the optimized Hapke parameters that has served as validation rather than direct

comparison to physical measurements on the ground [7]. What sets our particular study apart is

the fact that this is the first analysis, to our knowledge, in which sediment bulk density measured in

situ in a field setting has been compared directly to sediment filling factor obtained from inversion

of the Hapke model using input hyperspectral imagery of the validation locations. Even our own

past analyses using this inversion scheme had used either inputs from laboratory-based hyperspectral

BCRF measurements obtained from goniometer systems [39] with carefully controlled densities [8,9]

or had been based on field hyperspectral imagery, but without ground truth directly within the field of

view of the hyperspectral imaging system, but instead only in close proximity to the hyperspectral

scenes [9]. While the latter retrieval was consistent with nearby ground truth [9], it was nevertheless

not a direct test from ground truth. In this work, for the first time, we undertook a direct test of the

ability to invert sediment filling factor from a modified version of the Hapke model with direct ground

truth within the field of view to assess accuracy of the approach. The relatively good fit to the data (R2

= 0.85) and significance (p value = 0.0001) of the regression between our retrieved sediment filling

factor and the ground truth sediment bulk density suggest a good relationship between the two. As

discussed earlier in Section 2.4, limiting factors in the regression include the fact that the retrieved

filling factor is based on all of the available wavelengths in the hyperspectral data, which improves the

optimization procedure [8,9], but leads to an overall greater level of noise since SNR falls dramatically

towards the end of the wavelength range of our hyperspectral imaging system [40].

This work focused on the extraction of geophysical parameters, filling factor (decreasing porosity),

and the single scattering albedo, through the inversion of a modified Hapke model [8,9] from imagery

collected using a mast-based HSI system [40]. The area of study was a salt panne environment

located in Hog Island, Virginia, USA, a barrier island in the VCR LTER [41,42]. In our past work [9],

we had applied this inversion methodology to retrieve filling factor from imagery collected in a

desert environment, the Algodones Dunes. The salt panne and the dunes are two exceedingly

different environments. The dunes consisted of soil mainly composed of quartz, feldspar, and rock

fragments [56]. On the other hand, the sediments within the salt panne consist mostly of sand, silt,

and clay, with the highest percentage being sand. The average grain size distribution of the desert

sediment was considerably larger than that of the salt panne in the present study. In addition, the

amount of moisture was drastically higher in the salt panne compared to the dunes. The desert soil

had almost no moisture at the surface, while the SMC for the salt panne was on average 20%. The

smaller grain size distribution alongside the higher moisture level led to the sediments being more

compact in the salt panne than in the dunes, resulting in a lower porosity or equivalently a higher

filling factor. The higher SMC values of the salt panne in the present study are also reflected in the

lower retrieved SSA of the salt panne sediments than that observed in our previous retrievals from

both lab hyperspectral data and field hyperspectral imagery of the dune sediments [8,9].

The retrieved filling factor from our results in Figure 4 increases with density, except for the two

highest density points, where we see the retrieved filling factor value drop drastically. This drop

occurs because of the predicted effects of coherency [1,10]. Radiative transfer models, such as the one

developed by Hapke [1], typically predict a correlation between reflectance and density, provided

the material does not exhibit any “coherent effects” [1,10,33]. We start to see the effects of coherency

when the separation between particles and wavelength are similar in size [1,10], i.e., as the particles

begin to come into contact and form clusters resembling single larger particles. A medium with single



Remote Sens. 2020, 12, 422 16 of 19

larger particles has bigger voids meaning lower filling factor. The correlation between the density and

reflectance ceases to exist at the onset of coherent effects [1,10,33]. In this study, we observed the effects

of coherency at the highest field densities that we measured, (the two largest densities), as seen in our

results in Figure 4, where sediments were much more closely packed, and, as Hapke predicted [1], the

scattering from local groups of particles coming into contact begins to resemble the scattering of larger

single particles, resulting in the retrieval of lower filling factor values, since, as just noted, larger single

particles with bigger voids would have lower filling factor.

Below the onset of coherent effects, we found a good correlation between the retrieved filling

factor from the HSI imagery and the measured bulk density from the field (R2 = 0.85), corroborating

validation studies from our previous experiments in desert sediments [8,9]. These validation studies in

our previous experiments were done by performing controlled laboratory measurements, however,

not under the field conditions of the dunes since that earlier study did not have ground truth directly

within the overlap zone of airborne hyperspectral imagery acquired at that site [9]. The experiments

detailed in this study validate that this inversion methodology using our modified version of Hapke’s

radiative transfer model can be applied, with confidence, to retrieve the filling factor from angular

dependent data derived from remotely sensed HSI imagery.

5. Conclusions

We successfully validated our retrieval approach to retrieving sediment filling factor [8,9] for

the first time with ground truth data obtained within the field of view of overlapping multi-view

hyperspectral imagery. While this illustrates that the approach can be used successfully in realistic

field settings, additional testing will be necessary over a wider variety of conditions in future work.

Other sources of variation in the natural setting, such as macroscopic surface roughness, and variations

in grain size distributions and composition, which can be addressed within the context of the Hapke

model, must also be considered to ensure broad applicability. Similarly, soil moisture content must be

successfully tested within the Hapke model framework, perhaps along the lines already proposed by

Yang [28] or through an alternative method yet to be determined.
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