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Abstract—Smoothed analysis is a powerful paradigm in
overcoming worst-case intractability in unsupervised learn-
ing and high-dimensional data analysis. While polynomial
time smoothed analysis guarantees have been obtained for
worst-case intractable problems like tensor decompositions
and learning mixtures of Gaussians, such guarantees have
been hard to obtain for several other important problems
in unsupervised learning. A core technical challenge in
analyzing algorithms is obtaining lower bounds on the
least singular value for random matrix ensembles with
dependent entries, that are given by low-degree polynomials
of a few base underlying random variables.

In this work, we address this challenge by obtaining
high-confidence lower bounds on the least singular value of
new classes of structured random matrix ensembles of the
above kind. We then use these bounds to design algorithms
with polynomial time smoothed analysis guarantees for
the following three important problems in unsupervised
learning:

o Robust subspace recovery, when the fraction of inliers
in the d-dimensional subspace T of the n-dimensional
Euclidean space is at least (d/n)' for any positive
integer t. This contrasts with the known worst-case
intractability when the fraction of inliers is at most
d/n, and the previous smoothed analysis result (Hardt
and Moitra, 2013).

o Learning overcomplete hidden markov models, where
the size of the state space is any polynomial in the
dimension of the observations. This gives the first
polynomial time guarantees for learning overcomplete
HMMs in the smoothed analysis model.

o Higher order tensor decompositions, where we gener-
alize and analyze the so-called FOOBI algorithm of
Cardoso to find order-t rank-one tensors in a sub-
space. This gives polynomially robust decomposition
algorithms for order-2t tensors with rank n'.

Index Terms—smoothed analysis; unsupervised learning;
tensor decomposition; subspace recovery; hidden markov
model; anti-concentration; beyond worst-case analysis

I. INTRODUCTION

Several basic computational problems in unsupervised
learning like learning probabilistic models, clustering

and representation learning are intractable in the worst-
case. Yet practitioners have had remarkable success
in designing heuristics that work well on real-world
instances. Bridging this disconnect between theory and
practice is a major challenge for many problems in un-
supervised learning and high-dimensional data analysis.

The paradigm of Smoothed Analysis [1] has proven
to be a promising avenue when the algorithm has
only a few isolated bad instances. Given any instance
from the whole problem space (potentially the worst
input), smoothed analysis gives good guarantees for
most instances in a small neighborhood around it; this
is formalized by small random perturbations of worst-
case inputs. This powerful beyond worst-case paradigm
has been used to analyze the simplex algorithm for
solving linear programs [1], linear binary optimization
problems like knapsack and bin packing [2], multi-
objective optimization [3], local max-cut [4], [5], and
supervised learning [6]. Smoothed analysis gives an
elegant way of interpolating between traditional average-
case analysis and worst-case analysis by varying the size
of the random perturbations.

In recent years, smoothed analysis has been par-
ticularly useful in unsupervised learning and high-
dimensional data analysis, where the hard instances often
correspond to adversarial degenerate configurations. For
instance, consider the problem of finding a low-rank
decomposition of an order-¢ tensor that can be expressed
as T =~ Zle a; ® a; ® -+ ® a;. It is NP-hard to
find a rank-k decomposition in the worst-case when the
rank k > 6n [7] (this setting where the rank & > n
is called the overcomplete setting). On the other hand,
when the factors of the tensor {a;};c) are perturbed
with some small amount of random Gaussian noise, there
exist polynomial time algorithms that can successfully
find a rank-k decomposition with high probability even
when the rank is k& = O(nl¢~1/2]) [8]. Similarly,
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parameter estimation for basic latent variable models like
mixtures of spherical Gaussians has exponential sample
complexity in the worst case [9]; yet, polynomial time
guarantees can be obtained using smoothed analysis,
where the parameters (e.g., means for Gaussians) are
randomly perturbed in high dimensions [8], [10]-[12].!
Smoothed analysis results have also been obtained for
other problems like overcomplete ICA [13], learning
mixtures of general Gaussians [12], fourth-order tensor
decompositions [14], and recovering assemblies of neu-
rons [15].

The technical core of many of the above smoothed
analysis results involves analyzing the minimum singular
value of certain carefully constructed random matrices
with dependent entries. Let {a1, az, ..., ax} be random
(Gaussian) perturbations of the points {a1,...,a;} C
R™ (think of the average length of the perturbation to
be p = 1/poly(n)). Typically, these correspond to the
unknown parameters of the probabilistic model that we
are trying to learn. Proving polynomial smoothed com-
plexity bounds often boils down to proving an inverse
polynomial lower bound on the least singular value of
certain matrices (that depend on the algorithm), where
every entry is a multivariate polynomial involving some
of the perturbed vectors {ai,...,ar}. These bounds
need to hold with a sufficiently small failure probability
over the randomness in the perturbations.

Let us now consider some examples to give a flavor
of the statements that arise in applications.

e In learning mixtures of spherical Gaussians via
tensor decomposition, the key matrix that arises is
the “product of means” matrix, in which the number
of columns is k, the number of components in the
mixture, and the sth column is the flattened tensor
Zi?[, where @; is the mean of the ith component.
In the so-called FOOBI algorithm for tensor decom-
position (proposed by [16], which we will study
later), the complexity as well as correctness of the
algorithm depend on a special matrix ¢ being well
conditioned. ¢ has the following form: each column
corresponds to a pair of indices ¢, € [k], and the
(i,)th column is af* @ a$? — (a; ® a;)®*.

In learning hidden Markov models (HMMs), the
matrix of interest is one in which each column
is a sum of appropriate monomials of the form

'In many unsupervised learning problems, the random perturbation
to the parameters can not be simulated by perturbations to the input
(i.e., samples from the mixture). Hence unlike binary linear optimiza-
tion [2], such smoothed analysis settings in learning are not limited by
known NP-hardness and hardness of approximation results.
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a;, ® a4;, ® ... R a;,, where i1is ..., correspond
to length-{ paths in the graph being learned.

For many of the recent algorithms based on spectral
and tensor decomposition methods (e.g., ones in [17],
[18]), one can write down matrices whose condition
numbers determine the performance of the corresponding
algorithms (in terms of running time, error tolerance
etc.). While there is a general theory with broadly ap-
plicable techniques (sophisticated concentration bounds)
to derive high confidence upper bounds on the maxi-
mum singular value of such dependent random matrix
ensembles, there are comparatively fewer general tools
for establishing lower bounds on the minimum singular
value (this has more of an “anti-concentration” flavor),
except in a few special cases such as tensor decomposi-
tions (using ideas like partitioning co-ordinates).

The high level question that motivates this paper is the
following: can we obtain a general characterization of
when such matrices have a polynomial condition number
with high probability? For instance, in the first example,
we may expect that as long as k < ("+f_l), the matrix
has an inverse polynomial condition number (note that
this is < n’ due to the symmetries).

There are two general approaches to the question
above. The first is a characterization that follows from
results in algebraic geometry (see [17], [19]). These
results state that the matrix of polynomials either has
a sub-matrix whose determinant is the identically zero
polynomial, or that the matrix is generically full rank.
This means that the set of {a;} that result in the
matrix having o, = 0 has measure zero. However,
note that this characterization is far from being quan-
titative. For polynomial time algorithms, we typically
need oy > 1/poly(n) with high probability (this is
because polynomial sample complexity often requires
these algorithms to be robust to inverse polynomial er-
ror). A second approach is via known anti-concentration
inequalities for polynomials (such as the Carbery-Wright
inequality [20]). In certain settings, these can be used
to prove that each column must have at least a small
non-zero component orthogonal to the span of the other
columns (which would imply a lower bound on oy;y).
However, it is difficult to use this approach to obtain
strong enough probability guarantees for the condition
number.

Our main contributions are twofold. The first is to
prove lower bounds on the least singular value for some
broad classes of random matrix ensembles where the
entries are low-degree multivariate polynomials of the
entries of a given set of randomly perturbed vectors.



The technical difficulty arises due to the correlations in
the perturbations (as different matrix entries could be
polynomials of the same “base” variables). We note that
even in the absence of correlations, (i.e., if the entries
are perturbed independently), analyzing the least singular
value is non-trivial and has been studied extensively in
random matrix theory (see [21], [22]).

Our second contribution is to leverage these results
and prove new smoothed analysis guarantees for learning
overcomplete hidden markov models, and design algo-
rithms with improved bounds for overcomplete tensor
decompositions and for robust subspace recovery.

II. OUR RESULTS AND TECHNIQUES
A. Lower bounds on the Least Singular Value.

The first setting we consider is a simple yet natural
one. Suppose we have k independently perturbed vectors
ai,...,a, and suppose we have a matrix in which each
column is a fixed polynomial function of precisely one of
the variables. We give a sufficient condition under which
o (kth largest singular value, or the least singular value
here since there are only k£ columns) of this matrix is at
least inverse polynomial with high probability.

Theorem IL.1. Let { € Z, be a constant and let
f:R® — R™ be a map defined by m homogeneous
polynomials { f; Y., of degree (. Suppose that

fi(z) > Ui(j1, - -

J=(j1,-...je)€[n]*
et e

L JO)TG Xy Ty

and let U € Rmx(n+5_l) denote the matrix of coeffi-
cients, with it row U; corresponding to f;. For vectors
ai,as,...,a; € R", let My(a1,as,...,ax) denote the
m x k matrix whose (i, j)th entry is f;(a;). Then for
any set of vectors {a;}*_,, with probability at least
1 — kexp (— Q¢(6n)),

p

(,

n

(1) )Z
. Uk+6("+f_1)(U)7
v (D

where a; represents a random perturbation of a; with
independent Gaussian noise N (0, p?/n)".

o (MG, ...y ) =

To obtain a non-trivial bound, note that we need
O'k+5(n+f—l)(U) > 0. Qualitatively, o1 (U) being > 0
is unavoidable. But more interestingly, we will see that
the second term is also necessary. In particular, we
demonstrate that Q(dn*) non-trivial singular values are
necessary for the required concentration bounds even
when £ = 1 (see Proposition IV.13 for details). In
this sense, Theorem II.1 gives an almost tight condition
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for the least singular value of the above random matrix
ensemble to be non-negligible.

For an illustration of Theorem II.1, consider the simple
vector-valued polynomial function f(z) = 2®¢ € R"
(the associated matrix U essentially just corresponds
to the identity matrix, with some repeated rows). If
ay,...,ar € R™ are randomly perturbed vectors, the
above theorem shows that the least singular value of
the matrix My(ay,...,ax) is inverse polynomial with
exponentially small failure probability, as long as k <
(1 — o(1))("*"") (earlier results only establish this
when k is smaller by a exp(¢) factor, because of par-
titioning co-ordinates). In fact, the above example will
be crucial to derive improved smoothed polynomial time
guarantees for robust subspace recovery even in the
presence of errors (Theorem VI.1).

The next setting we consider is one where the jth
column of M does not depend solely on a;, but
on a small subset of the columns in {ai,...,ax} in
a structured form. Specifically, in the random matrix
ensembles that we consider, each of the R columns
of the matrix depends on a few of the vectors in
ai,...,ar as a “monomial” in terms of tensor products
i.e., each column is of the form u; ® us ® --+ ® uy
where u1,us,...,up € {a1,...,ax}. To describe our
result here, we need some notation. For two monomials
U ®---®uy and v1 @ - - vy, we say that they disagree
in s positions if u; # v; for exactly s different ¢ € [£].
For a fixed column j € [R],s € {0,1,...,¢}, let Ay(5)
represent the number of other columns whose monomial
disagrees with that of column j in exactly s positions,
and let A, = max;¢c(r) As(j). (Note that Ag = 0 and
Ay < R by default).

Theorem IL.2. Let {ay,...,ar} C R™ be a set of p-
perturbed vectors, let { € 7y be a constant, and let
M € R"*E pe q matrix whose columns My,...,Mg
are tensor monomials in {a;};c(r). Let Ay be as above

for s=1,... L If
¢ N f—s ¢
S (3) ()

for some ¢ € (0,1), then or(M) > Qu(1) - (p/n)*/VR
with probability at least 1 —exp (—Q¢(1—c)n+log R).

n

<
-\

2

The above statement will be useful in obtaining
smoothed polynomial time guarantees for learning over-
complete hidden markov models (Theorem I1.6), and for
higher order generalizations of the FOOBI algorithm
of [16] that gives improved tensor decomposition al-
gorithms up to rank k& = nlf/2) for order ¢ tensors



(Theorem I1.7). In both these applications, the matrix
of interest (call it M’) is not a monomial matrix per
se, but we express its columns as linear combinations
of columns of an appropriate monomial matrix M.
Specifically, it turns out that M’ = M P, and P has full
column rank (in a robust sense). For example, in the case
of overcomplete HMMs, each column of M’ is a sum of
monomial terms of the form a;, ®a;, ®...®a;,, where
1119 . . . g correspond to length-¢ paths in the graph being
learned. Each term corresponding to a length-¢ path only
shares dependencies with other paths that share a vertex.

a) Failure probability.: The theorems above em-
phasize the dependence on the failure probability. We
ensure that the claimed lower bounds on o,,;, hold with
a sufficiently small failure probability, say n~—«()
even exponentially small (over the randomness in the
perturbations). This is important because in smoothed
analysis applications, the failure probability essentially
describes the fraction of points around any given point
that are bad for the algorithm. In many of these applica-
tions, the time/sample complexity, or the amount of error
tolerance (as in the robust subspace recovery application
we will see) has an inverse polynomial dependence
on the minimum singular value. Hence, if we have a
guarantee that o,;, > ~ with probability > 1 —~1/2 (as
is common if we apply methods such as the Carbery-
Wright inequality), we have that the probability of the
running time exceeds 7' (upon perturbation) is < 1/ VT.
Such a guarantee does not suffice to show that the
expected running time is polynomial (also called poly-
nomial smoothed complexity).

1) Techniques: Theorem II.1 crucially relies on the
following theorem, which may also be of independent
interest.

Informal Theorem IL.3. Let V; be the space of all
symmetric order € tensors in R™"*™* " *" and let S C V
be an arbitrary subspace of dimension (1 — 0) ("+/}_£),
for some 0 < § < 1. Let H§ represents the projection
matrix onto the subspace of Vy orthogonal to S. Then
for any vector x and its p-perturbation T, we have that
[TLEZ%¢||2 > 1/poly,(n,1/p) with probability at least
1 —exp (— Q(dn)).

The proofs of the theorems above use as a black-
box the smoothed analysis result of Bhaskara et al. [8]
and the improvements in Anari et al. [15] which shows
minimum singular value bounds (with exponentially
small failure probability) for tensor products of vectors
that have been independently perturbed Given ¢ X k
randomly perturbed vectors {a 2 j € [f,i € [K]},
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existing results [8], [15] analyze the minimum singular
value of a rnatrlx M where the ith column (i € [k]) is
given by a a ®a(2) ®-- ®a(£) However this setting does
not sufﬁce for proving Theorem II.1, Theorem II.2, or
the different applications presented here because existing
results assume the following two conditions:

1) The perturbations to the ¢ factors of the ith col-
umn i.e., agl), e ,al(.e) are independent. For proving
Theorem II.1 (and for Theorem II.5) we need to
analyze symmetric tensor products of the form x®€
where the perturbations across the factors are the
same.

Each column of M depends on a disjoint set of vec-
tors a, 1), e 5@)’ i.e., any vector a(J) is involved
in only one column. For proving Theorem I1.2 (and
later in Theorems II.6 and I1.7) however, the same
perturbed vector may appear in several columns of
M.

Our main tool for proving Theorem II.1, and Theo-
rem II.2 are various decoupling techniques to overcome
the dependencies that exists in the randomness for differ-
ent terms. Decoupling inequalities [23] are often used to
prove concentration bounds (bounds on the upper tail)
for polynomials of random variables. However, in our
case they will be used to establish lower bounds on the
minimum singular values. This has an anti-concentration
flavor, since we are giving an upper bound on the
“small ball probability” i.e., the probability that the
minimum singular value is close to a small ball around
0. For Theorem II.1 (and Theorem II.3) which handles
symmetric tensor products, we use a combination of
asymmetric decoupling along with a positive correlation
inequality for polynomials that is inspired by the work
of Lovett [24].

We remark that one approach towards proving lower
bounds on the least singular value for the random matrix
ensembles that we are interested in, is through a direct
application of anti-concentration inequalities for low-
degree polynomials like the Carbery-Wright inequality
(see [11] for smoothed analysis bounds using this ap-
proach). Typically this yields an ¢ = 1/poly(n) lower
bound on oy, with probability e/t (where (¢ is the
degree). As we observed above, this cannot lead to
polynomial smoothed complexity for many problems.

Interestingly we prove along the way, a vector-valued
version of the Carbery-Wright anti-concentration in-
equality [20], [25] (this essentially corresponds to the
special case of Theorem II.1 when k£ = 1). In what
follows, we will represent a homogenous degree ¢ mul-
tivariate polynomial g; : R — R using the symmetric

2)



tensor M; of order ¢ such that g;(x) = (M;,z%")
(please see Section III for the formal notation).

Informal Theorem IL4. Ler ¢,6 € (0,1), n > 0,
and let g : R™ — R™ be a vector-valued degree ¢
homogenous polynomial of n variables given by g(z) =
(g1(2), ..., gm(x)) such that the matrix M € Rmxn,
with the ith row being formed by the co-efficients of the
polynomial g;, has o5,c(M) > n. Then for any fixed
u € Rt €R™, and x ~ N(0,p*/n)"™ we have

¢
P |[lg(u+ ) — tlla < Q(en) - (%)} < gHn) - (3)

See Theorem IV.2 for a more formal statement. The
main feature of the above result is that while we lose in
the “small ball” probability with the degree ¢, we gain
an m*(1) factor in the exponent on account of having a
vector valued function. The interesting setting of param-
eters is when £ = O(1), p = 1/poly(n), e = poly,(p/n)
and 6 = n—°("). We remark that the requirement of dn’
non-trivial singular values is necessary, as described in
Proposition 1V.13.

The second issue mentioned earlier about [8], [15] is
that in many applications each column depends on many
of the same underlying few “base” vectors. Theorem I1.2
identifies a simple condition in terms of the amount
of overlap between different columns that allows us to
prove robust linear independence for very different set-
tings like learning overcomplete HMMs and higher order
versions of the FOOBI algorithm. Here the decoupling
is achieved by building on the ideas in [14], by carefully
defining appropriate subspaces where we can apply the
existing results on decoupled tensor products [8], [15].

We now describe how the above results give new
smoothed analysis results for three different problems
in unsupervised learning.

B. Robust Subspace Recovery

Robust subspace recovery is a basic problem in
unsupervised learning where we are given m points
Z1y..., Ty, € R”, an « € (0,1) fraction of which lie
on (or close to) a d-dimensional subspace T'. When can
we find the subspace 7', and hence the “inliers”, that
belong to this subspace? This problem is closely related
to designing a robust estimator for subspace recovery: a
[B-robust estimator for subspace recovery approximately
recovers the subspace even when a [ fraction of the
points are corrupted arbitrarily (think of 8 = 1—«). The
largest value of 3 that an estimator tolerates is called
the breakdown point of the estimator. This problem
has attracted significant attention in the robust statistics
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community [26]-[28], yet many of these estimators are
not computationally efficient in high dimensions. On
the other hand, the singular value decomposition is not
robust to outliers. Hardt and Moitra [29] gave the first
algorithm for this problem that is both computation-
ally efficient and robust. Their algorithm successfully
estimates the subspace 7' when « > d/n, assuming a
certain non-degeneracy condition about both the inliers
and outliers.> This algorithm is also robust to some
small amount of noise in each point i.e., the inliers need
not lie exactly on the subspace T'. They complemented
their result with a computational hardness in the worst-
case (based on the Small Set Expansion hypothesis) for
finding the subspace when o < d/n.

We give a simple algorithm that for any constants
¢>1,8 > 0 runs in poly(mn’) time and in a smoothed
analysis setting, provably recovers the subspace 1" with
high probability, when o > (1 + 6)(d/n)’. Note that
this is significantly smaller than the bound of (d/n)
from [29] when ¢ > 1. For instance in the setting
when d = (1 — n)n for some constant > 0 (say
1n = 1/2), our algorithms recovers the subspace when
the fraction of inliers is any constant « > 0 by choosing
¢ = O(log(a)/log(1l — 7)), while the previous result
requires that at least « > 1 — n of the points are
inliers. On the other hand, when d/n = n=%1) the
algorithm can tolerate any inverse polynomially small
«, in polynomial time. In our smoothed analysis setting,
each point is given a small random perturbation — each
outlier is perturbed with a n-variate Gaussian N (0, p?)™
(think of p = 1/poly(n)), and each inlier is perturbed
with a projection of a n-variate Gaussian N (0, p?)" onto
the subspace T'. Finally, there can be some adversarial
noise added to each point (this adversarial noise can in
fact depend on the random perturbations).

Informal Theorem IL5. Forany 6 € (0,1),¢ € Z and
p > 0. Suppose there are m = Q(n’ + d/(dc)) points
X1y, Tm € R™ which are randomly p-perturbed
according to the smoothed analysis model described
above, with an a > (1 + 0) (d+§_1)/("+§_1) fraction
of the points being inliers, and total adversarial noise
g0 < poly,(p/m). Then there is an efficient algorithm
that returns a subspace T' with ||sin®(T,T')||r <
poly,(go, p, 1/m) with probability at least 1 — exp ( —
Q¢(6n) + 2logm) — exp(—Q(dlogm)).

See Section VI for a formal statement, algorithm and
proof. While the above result gives smoothed analysis

2This general position condition holds in a smoothed analysis
setting.



guarantees when a is at least (d/n)* < d/n, the hardness
result of [29] shows that finding a d-dimensional sub-
space that contains an « < d/n fraction of the points is
computationally hard assuming the Small Set Expansion
conjecture. Hence our result presents a striking contrast
between the intractability result in the worst-case and
a computationally efficient algorithm in a smoothed
analysis setting when o > (d/n)* for some constant
¢ > 1. Further, we remark that the error tolerance of
the algorithm (amount of adversarial error y) does not
depend on the failure probability.

a) Techniques and comparisons.: The algorithm
for robust subspace recovery at a high level follows the
same approach as Hardt and Moitra [29]. Their main
insight was that if we sample a set of size slightly less
than n from the input, and if the fraction of inliers
is > (1 + d)d/n, then there is a good probability of
obtaining > d inliers, and thus there exist points that
are in the linear span of the others. Further, since we
sampled fewer than n points and the outliers are also in
general position, one can conclude that the only points
that are in the linear span of the other points are the
inliers.

Our algorithm for handling smaller « is simple and
is also tolerant to an inverse polynomial amount of
adversarial noise in the points. Our first observation is
that we can use a similar idea of looking for linear
dependencies, but with tensored vectors! Let us illustrate
in the case / = 2. Suppose that the fraction of inliers
is > (1+8)(*0")/("3"). Suppose we take a sample
of size slightly less than ("}') points from the input,
and consider the flattened vectors  ® x of these points.
As long as we have more than (d;rl) inliers, we expect
to find linear dependencies among the tensored inlier
vectors. However, we need to account for the adversarial
error in the points (this error could depend on the random
perturbations as well). For each point, we will look
for “bounded” linear combinations that are close to the
given point. Using Theorem I1.3, we can show that such
dependencies cannot involve the outliers. This in turn
allows us to recover the subspace even when a > (d/n)*

for any constant ¢ in a smoothed analysis sense.

We remark that the earlier least singular value bounds
of [8] can be used to show a weaker guarantee about
robust linear independence of the matrix formed by
columns 5;;8’[ with a ¢! factor loss in the number of
columns (for a constant ¢ = e¢). This translates to
an improvement over [29] only in the regime when
d < n/c. Our tight characterization in Theorem IL3 is

crucial for our algorithm to beat the d/n threshold of
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[29] for any dimension d < n.

Secondly, if there is no adversarial noise added to
the points, it is possible to use weaker concentration
bounds (e.g., Carbery-Wright inequality). In this case,
our machinery is not required (although to the best
of our knowledge, even an algorithm for this noise-
free regime with a breakdown point < d/n was not
known earlier). In the presence of noise, the weaker
concentration inequalities require a noise bound that is
tied to the intended failure probability of the algorithm
in a strong way. Using Theorem I1.3 allows us to achieve
a large enough adversarial noise tolerance ¢, that does
not affect the failure probability of the algorithm.

C. Learning Overcomplete Hidden Markov Models

Hidden Markov Models (HMMs) are latent variable
models that are extensively used for data with a se-
quential structure, like reinforcement learning, speech
recognition, image classification, bioinformatics etc [30],
[31]. In an HMM, there is a hidden state sequence
Z1,Zs, ..., Zm taking values in [k], that forms a station-
ary Markov chain Z; — Z5 — --- — Z,,, with transition
matrix P and initial distribution w = {w;};epy (as-
sumed to be the stationary distribution). The observation
X, is represented by a vector in (Y} € R™. Given the
state Z; at time ¢, X; (and hence z(®)) is conditionally
independent of all other observations and states. The
matrix O (of size n x r) represents the probability
distribution for the observations: the ith column O; € R"™
represents the expectation of X; conditioned on the state
Zt =1 i.e.

Vier],t € m], E[XZ =i=0,eR"

In an HMM with continuous observations, the distribu-
tion of the observation conditioned on state being ¢ can
be a Gaussian and ith column of O would correspond to
its mean. In the discrete setting, each column of O can
correspond to the parameters of a discrete distribution
over an alphabet of size n.

An important regime for HMMs in the context of
many settings in image classification and speech is
the overcomplete setting where the dimension of the
observations n is much smaller than state space r.
Many existing algorithms for HMMs are based on
tensor decompositions, and work in the regime when
n < r [18], [32]. In the overcomplete regime, there
have been several works [17], [33], [34] that establish
identifiability (and identifiability with polynomial sam-
ples) under some non-degeneracy assumptions, but ob-
taining polynomial time algorithms has been particularly
challenging in the overcomplete regime. Very recently



Sharan et al. [35] gave a polynomial time algorithm
for learning the parameters of an overcomplete discrete
HMMs when the observation matrix M is random (and
sparse), and the transition matrix P is well-conditioned,
under some additional sparsity assumptions on both the
transition matrix and observation matrix (e.g., the degree
of each node in the transition matrix P is at most
n'/¢ for some large enough constant ¢ > 1). Using
Theorem IL.2, we give a polynomial time algorithm in
the more challenging smoothed analysis setting where
entries of M are randomly perturbed with small random

Gaussian perturbations 3.

Informal Theorem IL.6. Let 1,6 € (0,1) be constants.
Suppose we are given a Hidden Markov Model with r
states and with n Z~r" dimensional observations with
hidden parameters O, P. Suppose the transition matrix
P is d < n'=% sparse (both row and column) and
Omin(P) > 71 > 0, and the each entry of the observation
matrix is p-randomly perturbed (in a smoothed analysis
sense), and the stationary distribution w € [0,1]" has
min;e(,| w; > y2 > 0, then there is a polynomial time
algorithm that uses samples of time window ¢ < 1/(nd)
and recovers the parameters up to € accuracy (in Frobe-
nius norm) in time (n/(py172¢))°Y, with probability at
least 1 — exp ( — Qq(n)).

For comparison, the result of Sharan et al. [35] ap-
plies to discrete HMMs, and gives an algorithm that
uses time windows of size /¢ O(log,, r) in time
poly(n,r,1/e,1/41,1/42) (there is no extra explicit
lower bound on 7). But it assumes that the observation
matrix O is fully random, and has other assumptions
about sparsity about both O and P, and about non-
existence of short cycles. On the other hand, we can
handle the more general smoothed analysis setting for
the observation matrix O for n = r" (for any constant
1 > 0), and assume no additional conditions about non-
existence of short cycles. To the best of our knowl-
edge, this gives the first polynomial time guarantees in
the smoothed analysis setting for learning overcomplete
HMMs.

Our results complement the surprising sample com-
plexity lower bound in Sharan et al. [35] who showed
that it is statistically impossible to recover the parameters
with polynomial samples when n = polylog(r), even
when the observation matrix is random. The algorithm
is based on an existing approach using tensor decom-

3While small Gaussian perturbations makes most sense in a con-
tinuous observation setting, we believe that these ideas should also
imply similar results in the discrete setting for an appropriate smoothed
analysis model.
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positions [8], [17], [18], [35]. The robust analysis of
the above algorithm (Theorem I1.6) follows by a simple
application of Theorem II.2.

D. Overcomplete Tensor Decompositions

Tensor decomposition has been a crucial tool in many
of the recent developments in showing learning guaran-
tees for unsupervised learning problems. The problem
here is the following. Suppose Ai,..., Ar are vectors
in R™. Consider the s’th order moment tensor

R
M, =Y AP*.
=1

The question is if the decomposition {A;} can be
recovered given access only to the tensor M;. This
is impossible in general. For instance, with s = 2,
the A; can only be recovered up to a rotation. The
remarkable result of Kruskal [36] shows that for s > 2,
the decomposition in “typically” unique, as long as R
is a small enough. Several works [14], [16], [18], [37]
have designed efficient recovery algorithms in different
regimes of R, and assumptions on {A;}. The other
important question is if the {A4;} can be recovered
assuming that we only have access to M, + Err, for
some noise tensor Err.

Works inspired by the sum-of-squares hierarchy
achieve the best dependence on R (i.e., handle the largest
values of R), and also have the best noise tolerance, but
require strong incoherence (or even Gaussian) assump-
tions on the {A;} [38], [39]. Meanwhile, spectral algo-
rithms (such as [8], [13]) achieve a weaker dependence
on R and can tolerate a significantly smaller amount of
noise, but they allow recoverability for smoothed vectors
{A;}, which is considerably more general than recov-
erability for random vectors. The recent work of [14]
bridges the two approaches in the case s = 4.

Our result here is a decomposition algorithm for 2¢’th
order tensors that achieves efficient recovery guarantees
in the smoothed analysis model, as long as R < cn’
for a constant c. Our result is based on a generalization
of the “FOOBI algorithm” of Cardoso [16], [40], who
consider the case £ = 2. We also give a robust analysis
of this algorithm (both the FOOBI algorithm for ¢ = 2,
and our generalization to higher £): we show that the
algorithm can recover the decomposition to an arbitrary
precision € (up to a permutation), as long as ||Err|| <
poly,(e,1/n, p), where p is the perturbation parameter
in the smoothed analysis model.

Informal Theorem IL.7. Let ¢ > 2 be an integer.
Suppose we are given a 20’'th order tensor T



Zil Al@% + Err, where A; are p-perturbations of
vectors with polynomially bounded length. Then with
probability at least 1 — exp(—Qy(n)), we can find the
A; up to any desired accuracy € (up to a permutation),
assuming that R < cn’ for a constant ¢ = c(f), and
\|Err|| 7 is a sufficiently small polynomial in €, p,1/n.

See Theorem VIII.1 and Section VIII for a formal
statement and details. We remark that there exists differ-
ent generalizations of the FOOBI algorithm of Cardoso
to higher ¢ > 2 [41]. However, to the best of our knowl-
edge, there is no analysis known for these algorithms that
is robust to inverse polynomial error. Further our new
algorithm is a very simple generalization of Cardoso’s
algorithm to higher /.

This yields an improvement in the best-known depen-
dence on the rank in such a smoothed analysis setting
— from nf~! (from [8]) to n’. Previously such results
were only known for ¢ = 2 in [14], who analyzed an
SoS-based algorithm that was inspired by the FOOBI
algorithm (to the best of our knowledge, their results
do not imply a robust analysis of FOOBI). Apart from
this quantitative improvement, our result also has a more
qualitative contribution: it yields an algorithm for the
problem of finding symmetric rank-1 tensors in a linear
subspace.

Informal Theorem IL.8. Suppose we are given a basis
for an R dimensional subspace S of R™ that is equal to
the span of the flattenings of A?e , A?l - A%Z, where
the A; are unknown p-perturbed vectors. Then the A;
can be recovered in time poly,(n,1/p) with probability
at least 1 — exp(—Qy(n)). Further, this is also true
if the original basis for S is known up to an inverse-
polynomial perturbation.

a) Techniques.: At a technical level, the FOOBI
algorithm of [16], [40] for decomposing fourth-order ten-
sors rests on a rank-1 detecting “device” ¢ that evaluates
to zero if the inputs are a symmetric product vector, and
is non-zero otherwise. We construct such a device for
general ¢, and further analyze the condition number of
an appropriate matrix that results using Theorem IL.2.

We also give an analysis of the robustness of the
FOOBI algorithm of [16] and our extension to higher
£. While such robustness analyses are often straight-
forward, and show that each of the terms estimated
in the proofs will be approximately preserved. In the
case of the FOOBI algorithm, this turns out to be
impossible to do (this is perhaps one reason why proving
robust guarantees for the FOOBI algorithm even for
¢ = 2 has been challenging) . The reason is that the
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algorithm involves finding the top R eigenvectors of the
flattened moment matrix, and setting up a linear system
of equations in which the coefficients are non-linear
functions of the entries of the eigenvectors. Now, unless
each of the eigenvectors is preserved up to a small error,
we cannot conclude that the system of equations that
results is close to the one in the noise-free case. Note
that for eigenvectors to be preserved approximately after
perturbation, we will need to have sufficient gaps in the
spectrum to begin with. This turns out to be impossible
to guarantee using current smoothed analysis techniques.
We thus need to develop a better understanding of
the solution to the linear system, and eventually argue
that even if the system produced is quite different, the
solution obtained in the end is close to the original.

III. PRELIMINARIES

In this section, we introduce notation and preliminary
results that will be used throughout the rest of the paper.

Given a vector ¢ € R™ and a p (typically a small
inverse polynomial in n), a p-perturbation of a is ob-
tained by adding independent Gaussian random variables
x; ~ N(0,p%/n) to each coordinate of a. The result of
this perturbation is denoted by a.

We will denote the singular values of a matrix M
by o1(M),02(M),..., in decreasing order. We will
usually use &k or R to represent the number of columns
of the matrix. The maximum and minimum (nonzero)
singular values are also sometimes written o4, (M) and
Omin (M ) .

While estimating the minimum singular value of a
matrix can be difficult to do directly, it is closely related
to the leave-one-out distance of a matrix, which is often
much easier to calculate.

Definition IIL.1. Given a matrix M € R™** with
columns My, ..., My, the leave-one-out distance of M
is

(M) = mindist(M;, Span{M; : j #i}). (4)

The leave-one-out distance is closely related to the
minimum singular value, up to a factor polynomial in
the number of columns of M [22].

Lemma IIL2. For any matrix M € R™*k we have
(M)

VEk

a) Tensors and multivariate polynomials.: An
order-¢ tensor 1T' € R™*™**X" has ¢ modes each of
dimension n. Given vectors u,v € R"™ we will denote
by u®v € R™ " the outer product between the vectors

)



u,v, and by u®’ the outer product of u with itself ¢
times i.e., U QU -+ - ® U.

We will often identify an /th order tensor 7' (with
dimension n in each mode) with the vector in R
obtained by flattening the tensor into a vector. For
sake of convenience, we will sometimes abuse notation
(when the context is clear) and use 7T to represent both
the tensor and flattened vector interchangeably. Given
two (th order tensors T7,T» the inner product (71, 75)
denotes the inner product of the corresponding flattened
vectors in R™".

A symmetric tensor 1 of order ¢ satisfies
T(ih i2, e ,ig) = T(iﬂ.(l), ey iﬂ.(g)) for any
i1,...,% € [n] and any permutation 7 of the elements

in [¢]. It is easy to see that the set of symmetric tensors
is a linear subspace of R”W, and has a dimension equal
to ("+f_l). Given any n-variate degree ¢ homogenous
polynomial ¢ € R®™ — R, we can associate with g
the unique symmetric tensor 7' of order ¢ such that
g(w) = (T,2%).

b) Minimum singular value lower bounds for de-
coupled tensor products.: We will use as a black box
high confidence lower bounds on the minimum singular
value bounds for decoupled tensor products. The first
statement of this form was shown in [8], but this had a
worse polynomial dependence on n in both the condition
number and the exponent in the failure probability. The
following result in [15] gives a more elegant proof, while
also achieving much better bounds in both the failure
probability and the minimum singular value.

Lemma IIL3 ( [15], Lemma 6). Let p € (0,1],8 € (0,1)
be constants, and let W C R"W be an arbitrary sub-
space of dimension at least n’. Given any x1,--- , x4 €
R"™, then for their random perturbations Zi,--- ,Zy¢
where for each i € [{], %; = x; + N(0, p?/(2nf))™ with
p2 > p?, we have

#]

where c1(0), c2(£) are constants that depend only on (.

ci(0)p’
nf

co(€)on

<p

IP’[HHW(fcl Q- @72 <

We remark that the statement of Anari et al. [15] is
stated in terms of the distance to the orthogonal subspace
W, as long as dim(W+) < ¢'n’ for some ¢ < 1; this
holds above for ¢ =1 — 4§/¢.

IV. DECOUPLING AND SYMMETRIC TENSOR
PrRODUCTS

In this section we prove Theorem II.1 and related the-
orems about the least singular value of random matrices
in which each column is a function of a single random
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vector. The proof of Theorem II.1 relies on the following
theorem which forms the main technical theorem of this
section.

Theorem IV.1 (Same as Theorem I1.3). Ler § € (0,1),
and let Vy be space of all symmetric order ¢ tensors
in RYX™X XN (dimension is D = ("+§_1) ), and let
W C V; be an arbitrary subspace of dimension 0D.
Then we have for any x € R™ and © = = + z where
z ~ N(0, p?/n)"

a1 (0)p*

e
z n

} >1—exp ( - 02(6)671),
where c1 (), ca(f) are constants that depend only on £.

Theorem II.1 follows by combining the above theorem
with an additional lemma that uses a robust version of
Sylvester’s inequality for products of matrices (see Sec-
tion IV-C). Our main tool will be the idea of decoupling,
along with Lemma III.3 that handles tensor products of
vectors that have been perturbed independently. While
decoupling inequalities [23] are often used to prove con-
centration bounds for polynomials of random variables,
here this will be used to establish lower bounds on
projections and minimum singular values, which have
more of an anti-concentration flavor.

In fact we can use the same ideas to prove the
following anti-concentration statement that can be seen
as a variant of the well-known inequality of Carbery and
Wright [20], [25]. In what follows, we will represent
a degree ¢ multivariate polynomial g; : R® — R
using the symmetric tensor M; of order ¢ such that
g;() = (M, 2%").

Theorem IV.2. Let £,§ € (0,1), n > 0 and let ¢ > 2
be an integer. Let g : R™ — R™ be a vector-valued
degree ¢ homogenous polynomial of n variables given
by g(z) = (¢1(2), ..., gm(x)) where for each j € [m),
gi(z) = (M;,x®*) for some symmetric order { tensor
M; € R"'. Suppose the matrix M € Rmxn’ formed
with the (M; : j € [m]) as rows has os,¢(M) > 1, then
for any fixed u € R™,t € R™, and z ~ N(0, p?/n)" we
have

pZ

Bllg(u+2) =tz < c(@en- ()] <O )

where ¢(£),c' (¢) > 0 are constants that depend only on
l.

Remark IV.3. Comparison to Carbery-Wright inequality:
Anti-concentration inequalities for polynomials are often
stated for a single polynomial. They take the following
form: if g : R® — R is a degree-¢ polynomial with



llgll2 > n, and x ~ N(0,1)™ (or other distributions
like the uniform measure on a convex body), then the
probability that

P

—_ < Lel/t
B o) i <en] <002

Our statement in Theorem IV.2 applies to vector valued
polynomials g. Here, if the g; are “different enough”, one
can hope that the dependence above becomes O(™/%),
where m is the number of polynomials. Our statement
may be viewed as showing a bound that is qualitatively
of this kind (albeit with a much weaker dependence on
¢, when ¢ > 2), when m > énf. We capture the notion
of g; being different using the condition on the singular
value of the matrix M. We also note that the paper of
Carbery and Wright [20] does indeed consider vector-
valued polynomials, but their focus is on obtaining £!/*
type bounds with a better constant for €. To the best of
our knowledge, none of the known results try to get an
advantage due to having multiple g;.

Remark TV.4. While the condition of én’ non-negligible
singular values seems strong, this in fact turns out to
be necessary. Proposition IV.13 shows that the relation
between the failure probability and the number of non-
negligible singular values is tight up to constants that
depend only on /. In fact, m > n*~! is necessary to get
any non-trivial bounds. Getting a tight dependence in the
exponent in terms of £ is an interesting open question.

The main ingredient in the proof of the above theo-
rems is the following decoupling inequality.

Proposition IV.5. [Anticoncentration through Decou-
pling] Let € > 0 and let { > 2 be an integer, and let ||-||
represent any norm over R". Let g : R™ — R™ be given
by g(z) = (91(x),...,gm(x)) where for each j € [m],
gj(z) = (M;,x®% is a multivariate homogeneous
polynomial of degree {, and Mj is a symmetric tensor
of order (. For any fixed v € R" t € R™, and
2z ~ N(0,p*)™ we have

Plg(ut =) —t << <

£—1
}1/2

SIP)|:||/g\(u—|_ZO7217:<72,...,Zg_l)H Sg/fl , (7)

where Yj € [m], g;(u+ 20,21,...,20-1) = (M}, (u +
20)®@21 @ ®@z-1), 2o ~ N(0,p*(€+1)/(20))", and
21,22,y 20—1 ~ N(0, p?/(20))™

Note that in the above proposition, the polynomials
Gi(20, 21,5 20-1) = (Mj, (u+ 20) ®21 ® -+ @ 2-1)
correspond to decoupled multilinear polynomials of de-
gree ¢. Unlike standard decoupling statements, here the
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different components u + 2q, 21, . . ., 2¢—1 are not identi-
cally distributed. We also note that the proposition itself
is inspired by a similar lemma in the work of Lovett [24]
on an alternate proof of the Carbery-Wright inequality.
Indeed the basic inductive structure of our argument is
similar (going via Lemma IV.8 below), but the details of
the argument turn out to be quite different. In particular
we want to consider a random perturbation around an
arbitrary point u, and moreover the proposition above
deals with vector-valued polyomials g, as opposed to
real valued polynomials in [24].

Theorem IV.1 follows by combining Proposition IV.5
and the theorem for decoupled tensor products
(Lemma II1.3). This will be described in Section IV-B.
Later in Section A, we also give an alternate simple proof
of Theorem IV.1 for £ = 2 that is more combinatorial.
First we introduce the slightly more general setting for
decoupling that also captures the required smoothed
analysis statement.

A. Proof of Proposition 1V.5
We will start with a simple fact involving signed
combinations.

Lemma IV.6. Let g, 1, ..., qmy be real numbers, and
let (1,Cay...,Cm € {£1} be independent Rademacher
random variables. Then

ICE {(CKO +o1Qr+ e+ Oémém)m—‘rl H C’L:|

i€[m]

=m+ 1! apay...on.

Proof. For a subset S C [m], let {(S) = ][, ¢i- Then
it is easy to check that E [£(5) [Ticpn Gi] = 0 if S #
{1,2,...,m}, and 1 if S = [m]. Applying this along
with the multinomial expansion for (ao +o1Gi 4+
aQO)m gives the lemma. O

Lemma IV.7. Consider any symmetric order ¢ tensor T,
a fixed vector x € R™, and let z; ~ N (0, p3)", ..., zp ~
N(0, p2)™ be independent random Gaussians. Then we
have

14
Z (HC@) (T, (x+21+Cozat - +Coz)®) =

Coy..CeEEXT  i=2
=27 (T (x4 2)R2®---Q2z). (8)
Note that the right side corresponds to the eval-

uation of the tensor 7' at a random perturbation of
(z,0,0,...,0).

Proof. First, we observe that since 7' is symmetric, it
follows that (7', u1 @ua®- - - @ug) = (T, Ur(1) DUr(2) @



-+ ® Uy (g)) for any permutation 7 on (1,2,...,¢). Let
u = x+2z1, and let {3, (3,...,{s € {£1} be independent
Rademacher random variables. For any symmetric de-
composition into rank-one tensors 7' =} )\jv;w (note
that such a decomposition always exists for a symmetric
tensor; see [42] for example), we have for every x € R",
( .CU®Z> >, Aj{vs, )t. Applying Lemma IV.6 (with

={—1)to each term separately

[(H@)

s (utCaza- - +§622)®£>}
® (o).

Combining them, we get

(e

=0 - (T,u®2Q23Q - 2z)
:f!'<T,($+Zl)®ZQ®Zg®"'

(u+ Gz + -+ CZZ£)®Z>] =
C2»C37

® Z@>.

O

Our proof of the anti-concentration statement (Propo-
sition IV.5) will rely on the signed combination of vec-
tors given in Lemma IV.7 and on a positive correlation
inequality that is given below.

Lemma IV.8. Let z ~ N(0,p?)" be an n-variate
Gaussian random variable, and let zy ~ N(0, p?(¢ +
1)/(20)" and z1,z9,...,20-1 ~ N(0,p%/(20))" be
a collection of independent n-variate Gaussian random
variables. Then for any measurable set S C R™ we have

c S}l/(Qz”)

P [z € S} <P ce/{\ﬂ} (20+ 32521 G%)

(&)

This inequality and its proof are inspired by the work
of Lovett [24] mentioned earlier. The main advantage
in our inequality is that the right side here involves
the particular signed combinations of the function val-
ues at 271 points from ¢ independent copies that di-
rectly yields the asymmetric decoupled product (using
Lemma IV.7).

Proof. Let zg,21,...,20-1 ~ N(0,p%/f)", and for
each k € [(—1], let g, ~ N(0, p?(k+2)/(2¢))". Clearly
Pz € S] =Plzg+ -+ +x4-1 € S]. Let f(2) = 1.¢s
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represent the indicator function of S. For 0 < k < /-1,

let
Bp=_ B [ H f(??k+
96%4;117“;9’6/“1 C1yee ,Cke{il}
+Z@zj + Z xﬂ)
j=k+1
We will prove that for each k € [( — 1], E? | < E,.

Using Cauchy-Schwartz inequality, we have
E
Yr—1,2

E;il = < [ H
ThoglseensTl—1 CiyeenCr—1€{£1}
2
+ Zf;ll Gzj + Zﬁ;i LUJ)D
¢1

yoenCo—1€{£1}
2
k—1
+Z_] 1C]ZJ+ZJ km;)}) .

E

Tk

7 (ea+

< E
Yk—1,Tk+15---,TL—1
21502k —1

E

Tk

7 (e +

Now if gy, 2 are i.i.d wvariables distributed as
N(0, p?/(20))", then x, yy + 2k, Y — 2k are identically
distributed. More crucially, yi + z; and yi — 2 are
independent! Hence

E} < E E |
SRR Yy s N (0.5
~ k—1
H f(l/k—l + 2o Gt
C1y-sCr—1€{%£1}
{—1
+ (yr + 21) + Z xj)]
j=k+1
x E 7 (et
ko2~ N (0,550 G G €{£1}
-1
N G+ (= 20 + Xk )]
= E E
yk_lz’fylitlz’k.llu_l yk,ZkNN(O’%))"
~ k—1
II f(yk—l + 2o Gt
CiyeesCr—1€{£1}

+ (yk + 2k) + Zﬁ;i-kl l’j)
X f(??k—l + YT G+ (e — 2k)+
+ZJ k41 :17])}



E

Yk Tk+15---5T0—1
Z15--3%k

II

C I 7Cke{i1}
+Z 1<32J+Zj k+1%)]

where the last step follows by identifying 75 _1 + 5 with
Yk. The proof of the lemma is completed by observing
that By = Plyo +x1 +---+x, € S] =Pz € S5].

f(@ﬁ—

O

We now proceed to the proof of the main decoupling
statement.

Proof of Proposition IV.5. Let S := {z € R" : ||g(z +
u) —t]| < e}. Let 29 ~ N(0,p%(¢ + 1)/(2¢))" and
215+, 20-1 ~ N(0, p?/(20))™ be independent n-variate
Gaussian random variables. From Lemma IV.8 we have
for z ~ N(0, p?)",

P [llg(e +u)—t <] <

<. p [ A (lgwtzt
Z05--+520—1
C1yeesCe—1€{£1}
/-1 /(21
+ Y0 G) <<
< p [ lgtutaet
Z0---20—1
CiyeesCe1€{E1}
1/(2Z—1)
- _
+ 30 G — ] < 2f 15}
—1
< el X Itz

Ciyeee

+Z] 1¢2) H <201

where the last inequality follows from triangle inequal-

ity, and observing that the signed combinations of ¢
cancel out when ¢ > 2. Now applying Lemma IV.7 for
each i € [m], we get

Ce—1€{x1} Jj=1
}1/(2“1)

)

P [ 1l < }<
B s w -t <] <

/(27

< P lgluta,z, ozl < 2/0)]
205:-3%0—1
O
B. Proofs of Theorem IV.1 and Theorem 1V.2
Proof of Theorem IV.1. Let m = 6D, and let

My, M, ..., M,, be an orthonormal basis of symmetric
tensors in W C R™". We will also denote by M
the m x n’ matrix formed by flattening M, ..., M,,
respectively. For each j € [m], let g;(x) = (M, x®*).
Let # = x + z where z ~ N(0,p?/n)". We would
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like to lower bound ||ITy2%¢|| = ||g(z + 2)||2. Using
Proposition IV.5 with ¢ = 0, for all € > 0, we have

P[llg(z +2)l2 < 2] <
21{—1)

<P |:||HW($+ZO)®21®' - ®zo—1|l2 < 8/6!] ,

(10)
where ZO ~ N(O,%)n, Z1yR2y 3201 ~
N(0, 2é) Then

/¢ 4
P[Imw® s < L9 < exp (= (0am). an
n

with ¢(¢), ¢/ (¢) > 0 being constants that depend only on
{. The last 1nequahty follows from (10) and Lemma I11.3
applied with p = 1/e,z1 = z,20 = 23 = -+~
g = 0, and & = §/¢°. This concludes the proof of
Theorem IV.1. O

Please see Appendix A for an alternate combinatorial
proof when ¢ = 2. Note that we can also obtain a
similar statement for general lower bound of en with
e € (0,1/poly(n)) (as in Theorem IV.2), where the
failure probability becomes £%(%") The proof is exactly
the same, except that we can apply Lemma III.3 with
p = &/¢ instead. Finally, the proof of Theorem IV.2
is almost identical to Theorem IV.1. In fact Theo-
rem IV.2 essentially corresponds to the special case of
Theorem II.1 when k 1. We include a proof of
Theorem IV.2 in Appendix A.

C. Condition Number Lower Bounds for Arbitrary Poly-
nomials

We are now ready to complete the proof of Theo-
rem II.1. We start by re-stating the theorem.

Theorem IV.9 (Same as Theorem II.1). Let ¢ € Z, be
a constant and let ay,as,...,ar € R™ be any arbitrary
collection of vectors, let f1, fa,..., fin be a collection

of arbitrary homogeneous polynomials f; : R® — R of
degree { given by
filz) = > Ui(Grs -+ Je) i g, - - - T,
J=(1,-50) ()
J1<j2 < <js
and let My(ay,...,a;) = (fila )) mli€lk] be the

m X k matrix formed by applying each of these polynomi-
als with the k vectors a1, . .., ay. Denote by U € R™*P
with D = (”+§_1), with row i € [m] representing



coefficients of f;. We have that with probability at least
1 —exp (— Q¢(6n) + logk) that
¢

S @) P

VE

where a; represents a random perturbation of a; with
independent Gaussian noise N (0, p? /n)".

> ok+sp(U), (12)

ok (Mf(al, o ,ak))

Remark 1V.10. We note that the condition on U is almost
tight, since o (U) being non-negligible is a necessary
condition (irrespective of A). Proposition IV.13 shows
that the additive 0n’ term in number of non-negligble
singular values is necessary even when k£ = 1. Also note
that by choosing a projection matrix U for a subspace
of dimension D, we recover Theorem IV.1. Finally as
before, we can obtain an analogous statement for € €
(0,1/polye(n)) as in Theorem IV.2 (see Section IV-B).

Definition IV.11. Let D = ("*[~"). For 1,--- , @, €
R, Py(z1, - ,2,) € RP is a vector whose entries
corresponding to D different degree-¢ monomials of

O R T

The idea behind the proof is to view My (a,...,ax)
as the product of a coefficient matrix and the matrix
whose ith column is Py(a;). Call the latter matrix Y.
The following lemma show how to use the property that
Theorem IV.2 gives about Y to show Theorem II.1.

Lemma IV.12. Let § € (0,1), and let U be a D' x D
matrix, and let Y € RP*E pe a random matrix
with independent columns Y1,Yas, ..., Yg satisfying the
Jollowing condition: for each j € [R], and any fixed
subspace V of dimension at least 6D, ||[TIyYj|a > k1
with probability at least 1 — /R over the randomness
in )7] Then assuming opysp(U) > ko, we have that
or(UY) > k1ka/v/R with probability at least 1 — 7.

Proof. For convenience let r := R+ dD. We will lower
bound the minimum singular value of M = UY using
the leave-one-out-distance. Fix an j € [R]; we want
column M; =U f’] to have a non-negligible component
orthogonal to W = span({UY; : i € [R],j # i}) w.h.p.

Let IL,II,,. be the projectors onto the space
W, W+ respectively. Note that ,.(U) = orysp > Ko,
and op/_gy1(Ily1) > 1. We can use the following
robust version of Sylvester’s inequality for products of
matrices using the variational characterization of singular
values to conclude

Or—R+1 (HWLU) > O'D/,RJrl(HWL)O'T(U)
2 KR2.
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Let V be the subspace spanned by the top r — R+ 1
right singular vectors of II,y,. U. Since the dimension
of V is at least r — R+ 1 > 6D, we can then use the
condition of the lemma to conclude that with probability
at least 1 — /R, ||y Yj|l2 > rok:1. Hence, by using a
union bound over all j € [R] and using the leave-one-out
distance the lemma follows. O

We can now complete the proof of the main result of
the section.

Proof of Theorem II.1. The idea is to  apply
Lemma IV.12 with D' = m,D = ("+§_1),R = k,
where U is the corresponding coefficient matrix, and Y
is the matrix whose jth column is d?e. Note that the
naive representation of d?e e R™" is in n’ dimensions,
whereas the rows of the co-efficient matrix U is in RP.
However &?é are elements of the D-dimensional space
of symmetric tensors of order ¢ (alternately each row of
U can be seen as a n’ dimensional vector constructed
by flattening the corresponding symmetric order ¢ tensor
for that row of U). Hence, Theorem IV.1 implies that
Y satisfies the conditions of Lemma IV.12, and this
completes the proof. O

D. Tight Example for Theorem II.1 and IV.2

We now give a simple example that demonstrates that
the condition on many non-trivial singular values for the
matrix M that encodes ¢ is necessary.

Proposition IV.13. In the notation of Theorem 1V.2, for
any r > 1, there exists a matrix M € Rmxn* (where
m = rn’=1Y), with the jth row corresponding to a sym-
metric order { tensor Mj, such that o.,e-1 (M) = Q4(1),
but

P { — [ M2%| < }> Ou(r),
vy L18@N2 = M2 < ef > (ce)

for some absolute constant c > 0.

Considering the subspace of symmetric tensors
spanned by the rows of M also gives a similar tight
example for Theorem IV.1. Moreover, the above example
also gives a tight example for Theorem II.1 even when
k = 1, by considering the function f(x) := g(x), and
a) = 0 (SO Adl = Z).

Proof. Let ey,...,e, constitute the standard basis
for R™. Let U be the space R"['_l, and let V C
R™ be the subspace spanned by ej,es,...,e.. Let
E,Ey,...,E i1 € R” " constitute the standard basis
of U given by all the / — 1 wise tensor products of
€1,...,ey. Consider the product space W = U ® V),



and let B be the matrix whose m = rnf~! rows

correspond to the orthonormal basis of W given by
{Er®e; : I € [n]*"1, j € [r]}. Note that each
of these vectors are 1-sparse. Let g : R — R™ be
given by Vj € [m], gj(z) = (Bj,2®%). First note
that by definition, ||g(z)||2 = ||Hygyr®¢||2. Hence, if
z~ N(0,1/n)", we have

B llg(=)]l2 < e]

P [ ev=®|l2 < ]

= P [ IT12® Ty 2] < e]

>P :\|Hvz|| <e/2, 2| < 21/(/371)]

B[yl < /2 | 2l < 21/(=D] (1= o(1))
> P[|Tyz| < 5/2} (1= 0(1))

> (ce)',

for some absolute constant ¢ > 0, using standard
properties of Gaussians. The second-to-last step follows
by Lemma A.1 in the Appendix.

We now just need to give a lower bound of Q(rn‘~1)
for the number of non-trivial singular values of the
matrix M, where M; is the symmetric order ¢ tensor
representing g; i.e., (M;, 2% = (B;,®) for every
x € R™. In other words Mj is just the symmetrization
(projection onto the space of all symmetric tensors) of
B;. Note that each M; is ¢! sparse (since B; were 1-
sparse). Hence there are at least rn‘~1/¢! vectors M;
which have disjoint support. Hence at least rn‘~! /¢!
singular values of M are at least 1/ V1, as required. O

V. POLYNOMIALS OF FEW RANDOM VECTORS

In this section, we consider random matrix ensembles,
where each column is a constant degree “monomial”
involving a few of the columns. We will first consider
a matrix M whose columns are degree ¢ monomials in
the input vectors a1, ..., ay (that is, tensors of the form
Fdfﬂ) ... af(g) with f(l) € [k] fori =1,...,0).
Since the same vector may appear in many columns or
multiple times within the same column, there are now
dependencies in the perturbations between columns as
well as within a column, so we cannot apply [8] directly.
We deal with these dependencies by extending an idea of
Ma, Shi and Steurer [14], carefully defining appropriate
subspaces that will allow us to decouple the randomness.

Since one type of dependence comes from the same
input vector appearing in many different columns, it is
natural to require that the number of these overlaps be
small. Because of the decoupling technique used to avoid
dependencies within a column, the troublesome overlaps
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are only those in which the same input vector appears
in two different columns of M in the same position
within the tensor product. This motivates the following
definition.

Definition V.1. Let M be a matrix whose columns
My, ...,Mgr consist of order-/ tensor products of
{a1,...,ax}. For s € [{] and a fixed column M;, let
A (1) be the number of other columns that differ from
M; in exactly s spots. (If M; = ap1) ® ... ® as(g and
Mj = a1y ®...®ay ), then the number of spots in
which M; and M; differ is [{i : f(i) # f'(¢)}|.) Finally,
let Ay = max; Ag(i).

Theorem V.2 (Same as Theorem I1.2). Let

{a1,...,ar} C R™ be a set of p-perturbed vectors, let
£

¢ € Z be a constant, and let M € R™ *¥ be a matrix

whose columns M, ..., Mgr are tensor monomials in
{a;}. Let Ag be as above for s =1,... L. If

Y (1) =)

for some c € (0,1), then or(M) > Qu(1) - (p/n)¢/VR
with probability at least 1—exp(—Q(1)(1—c)n+log R).

n

7 (13)

Remark V.3. The condition (13) is tight up to a multi-
plicative constant depending only on ¢. We give a simple
upper bound on A;. Assume og(M) > 0, and fix a
column M; of M. There are (%) ways to choose a set
of s spots in which to differ from M;, and once we
make this choice, the dimension of the available space
is n?® since each of the s spots contributes n dimensions.
Therefore the subspace of R consisting of all tensors
that differ from M, in exactly s spots has dimension at
most (Y)n?. Since all subsets of columns of M must
be linearly independent, we must have A, < (ﬁ)ns

Therefore our condition is tight up to a factor of at most
€2£+1 .

In the above theorem, as stated, the columns of
M are “monomials” involving the underlying vectors
ai,...,a. However in our applications (e.g., Sec-
tions VII and VIII) the matrix of interest M’ will
have columns that are more general polynomials of the
underlying vectors. Such matrices are expressible as
M’ = MP where P € REXE' is a coefficient matrix
with or/(P) > 1/poly(n,1/p). Hence, our theorem
implies that o/ (M’) > 1/poly(n,1/p) in these cases
w.h.p.

As in [8], we will use leave-one-out distance, denoted
£(M), as a surrogate for the smallest singular value. The
proof will make use of Lemma III.3, which we will use



to bound leave-one-out distances. Our goal will be to
find a suitable subspace W that is both large enough
and independent of the column of M we are projecting.

Proof of Theorem V.2. Let Lq,...,Ly; be an eqzuiparti-
tion of [n]. Define a new matrix M’ € R(¥) *7 by
restricting the columns of M to the indices L1 X Lo X
... X Ly. In other words, if M, is a column of M with
M,; = 5f(1) R...Q0 Eif(g), then MZ, = af(l)’Ll R...Q
af(sy,r,» Where ar, denotes the restriction of the vector
a to the coordinates in the set L. This ensures that for
every column M, the perturbations of each factor of this
tensor product are independent.

Fix a column MZ’ of M’, and let W be the subspace
spanned by all other columns of M’. We want to find a
subspace V satisfying:

) WcCV.

2) V is independent of M.

3) dimV+ = /(%) for some ¢ € (0,1).

Given such a V, properties 2 and 3 allow us to apply
Lemma II1.3 to obtain that ||[Projy . M!|| > Q((p/n)*)
with probability at least 1 — exp(—Q(c’n)). Since W C
V', we have

[Projyy + M| > [[Projy .« M;|| > Qu((p/n)*)

with high probability. Taking a union bound over all
columns of M’ gives that £(M’) > Q((p/n)?) with
probability at least 1 —exp(—(1) - ¢'n+log R). Since
adding more rows to M’ can only increase the magnitude
of the projection of any column onto some subspace,
(M) > ¢(M’). Now using properties of the leave-one-
out distance (Lemma III.2), we have
p

0(M) (1) - L

VR >

Next we construct the subspace V. Let M/, i’ # i
be some other column of M’'. Let S C [{] be the set
of indices at which M/ and M/, share a factor, and let
s = |S|. In order to ensure V is independent of M/,
we must avoid touching any factors of M, shared by
M. Therefore we include in V' all vectors of the form
U1 ® ... ® up, where u; agrees with the jth factor of
M, if j ¢ S and @, is any vector in R™/¢ otherwise. As
desired, V' now includes MZ-’/ and is independent of M{ s
at a cost of adding (%) dimensions to V.

Repeat this process for each i’ # 4, and let V be the
span of all vectors included at each step. Since the num-
ber of overlaps with M/ can be s at most Ay_ times,
the total dimension of V' is at most Zﬁ:1 Ay (%)= By
our assumption on the A,s, we get dim V+ = c’(%)e as
desired, with ¢/ =1 —c. O

4
Umin(M) >
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VI. ROBUST SUBSPACE RECOVERY

We introduce the following smoothed analysis frame-
work for studying robust subspace recovery. The fol-
lowing model also tolerates some small amount of error
in each point i.e., inliers need not lie exactly on the
subspace, but just close to it.

A. Input model

In what follows, a, &g, p € (0,1) are parameters.

1) An adversary chooses a hidden subspace T of di-
mension d in R™, and then chooses am points from
T and (1 — a)m points from R™. We denote these
points inliers and outliers respectively. Then the ad-
versary mixes them in arbitrary order. Denote these
points ai,as,...,am. Let A = (a1,a2,...,0n),
and I;,,I,,: be the set of indices of inliers and
outliers respectively. For convenience, we assume
that all the points have lengths in the range [1/2,1].4
Each inlier is p-perturbed with respect to 7.
(Formally, this means considering an orthonormal
basis By for T and adding Brv, where v ~
N(0, p?/d)?.) Each outlier is p-perturbed with re-
spect to R™. Let G' denote the perturbations, and let
us write A = A+ G.

With the constraint || E||» < o, the adversary adds
noise £ € R™ ™ to A, yielding A’ = A+ F =
(a},dl,---). Note that this adversarial noise can
depend on the random perturbations in step 2.

4) We are given A’.

2)

3)

The goal in the subspace recovery problem is to return
a subspace T’ close to T.

a) Notation.: As introduced above, A=A+G
denotes the perturbed vectors. a; denotes the 7’th column
of A. We also use the notation A 1 to denote the sub-
matrix of A corresponding to columns in a set I.

B. Our result

We show the following theorem about the recoverabil-
ity of T..

Theorem VL1. Let 6 € (0,1), £ € Z4 and p > 0.
Suppose we are given m > n' 4+ 8d/(5a) points
T1,To, Ty € R™ generated as described above,
where the fraction of inliers « satisfies o > (1 +
9) (d%*l)/("*f*l). Then there exists £g = poly,(p/m)
such that whenever ||E||p < e, there is an efficient

4If the perturbations in step (2) are done proportional to the norm,
this assumption can be made without loss of generality. (Since the
algorithm can scale the lengths of each of the points.)



deterministic algorithm that returns a subspace T' that
satisfies

|sin®(T, T")||r < | E||F - poly,(m,1/p),

w.p. > 1 —2m?exp(—Q(6n)) + exp(—Q(dlogm))].
14

When d/n < 1, the above theorem gives recovery
guarantees even when the fraction of inliers is approx-
imately (d/n)*. This can be significantly smaller than
d/n (shown in [29]) for any constant £ > 1.

a) Algorithm overview.: We start by recalling the
approach of [29]. The main insight there is that if we
sample a set of size slightly less than n from the input,
and if the fraction of inliers is > (1 + §)d/n, then there
is a good probability of obtaining > d inliers, and thus
there exist points that are in the linear span of the others.
Further, since we sampled fewer than n points and the
outliers are also in general position, one can conclude
that the only points that are in the linear span of the other
points are the inliers! In our algorithm, the key idea is to
use the same overall structure, but with tensored vectors.
Let us illustrate in the case ¢ = 2. Suppose that the
fraction of inliers is > (1+4) (d'gl)/(";l). Suppose we
take a sample of size slightly less than ("3") points from
the input, and consider the flattened vectors x®x of these
points. As long as we have more than (dérl) inliers, we
expect to find linear dependencies among the tensored
inlier vectors. Further, using Theorem IV.1 (with some
modifications, as we will discuss), we can show that such
dependencies cannot involve the outliers. This allows us
to find sufficiently many inliers, which in turn allows us
to recover the subspace 7" up to a small error.

Given m points, the algorithm (Algorithm 1) consid-
ers several batches of points each of size b = (1 —

g)(’”ﬁ_l). Suppose for now that m is a multiple of b,
and that the m/b batches form an arbitrary partition of
the m points. (See the note in Section VI-C for handling
the general case.) In every batch, the algorithm does the
following: for each point u in the batch, it attempts to
represent u®* as a “small-coefficient” linear combination
(defined formally below) of the tensor products of the
other points in the batch. If the error in this representa-

tion is small enough, the point is identified as an inlier.

Definition VI.2 (c-bounded linear combination). Let
v1,V2,...,U;, be a set of vectors. A vector u is said
to be expressible as a c-bounded linear combination of
the {v;} if there exist {c;}7* such that |a;| < ¢ for all
i, and u = ), a;v;. Further, u is said to be expressible
as a c-bounded combination of the {v;} with error ¢ if
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there exist {«; }", as above with |a;| < ¢ for all 4, and
||U - zi ai'UiHl S 4.

Notice that in the above definition, the error is mea-
sured by ¢; norm. In the algorithm, we will need a sub-
procedure to check whether a vector is expressible as a
1-bounded combination of some other vectors with some
fixed error. By the choice of ¢; norm, this subprocedure
can be formulated as a Linear Programming problem,
hence we can solve it efficiently.

Algorithm 1 Robust subspace recovery

1: Set threshold 7 = Q,(p’/n’)(which is the thresh-
old from Theorem IV.1). Set batchsize b = (1 —
5/3) (n-‘rf—l) ]

: Let V1, V5, -+, V.. be the 7 < m batches each of

size b as defined above.

Initialize C' = 0.

fore=1,2,--- ,r do

Let S be the set of all u € V; such that @®* can
be expressed as 1-bounded combinations of {a@®* :

v € V;\ {u}}, with error < 7/2.

: C=Cus

7: Return the subspace T” corresponding to the top d

singular values of fl’é, for any 2d-sized subset C' of
C

b) Proof outline.: The analysis involves two key
steps. The first is to prove that none of the outliers are
included in S in step 5 of the algorithm. This is where
we use 1-bounded linear combinations. If the coefficients
were to be unrestricted, then because the error matrix £
is arbitrary, it is possible to have a tensored outlier being
expressible as a linear combination of the other tensored
vectors in the batch. The second step is to prove that
we find enough inliers overall. On average, we expect to
find at least 2 (“*07") inlier columns in each batch. We
“collect” these inliers until we get a total of 2d inliers.
Finally, we prove that these can be used to obtain 71" up
to a small error.

For convenience, let us write g(n) := Q,(dn) (which
is the exponent in the failure probability from Theo-
rem IV.1). Thus the failure probabilities can be written

as exp(—g(n)).

Lemma VL.3. With probability at least 1 —exp(—g(n)-+
2logm), none of the outliers are chosen. Le., CNIyy =

Proof. The proof relies crucially on the choice of the
batch size. Let us fix some batch V;. Note that by the



way the points are generated, each point in Vj is a;', for
some a; that is either an inlier or an outlier.

Let us first consider only the perturbations (i.e., with-
out the noise addition step). Recall that we denoted these
vectors by a;. Let us additionally denote by BU) the
matrix whose columns are a ¢ for all i in the phase j.
Consider any 7 correspondlng to an outlier. Now, because

the batch size is only (1 — %)(”’Lf_l), we have (using

Theorem IV.1) that the projection of the column B(] )
orthogonal to the span of the remaining columns (Wthh
we denote by BY)) is large enough, with very high
probability. Formally,

Pldist(BY, span(BY))) > 7] > 1 — exp(—g(n)). (15)

Indeed, taking a union bound, we have that the in-
equality dist(B, span(BY))) > 7 holds for all outliers
7 (and their corresponding batch j) with probability
> 1—m?exp(—g(n)).

We need to show that moving from the vectors a; to
a; maintains the distance. For this, the following simple
observation will be useful.

Observation V1.4. If a; is an outlier, then
Pllla:ll > 1+ 2p] < exp(—n/2).
On the other hand if a; is an inlier,

P[l|la;|| > 1+ 4p+/logm] < exp(—4dlogm).

Both the inequalities are simple consequences of the
fact that the vectors a; were unit length to start with,
and are perturbed by N(0,p?/n) and N(0,p?/d) re-
spectively.

Now let us consider the vectors with noise added, ag.
Note that ||a; — a}|| < €o. Since |la;|] < 1 and since i
is an outlier, we have (using Observation V1.4), |[a}|| <
1 + 2p + ¢, with probability > 1 — exp(—n/2). Thus

for the flattened vectors 'd?é, with the same probability,
~@L—1) o ~r
a; X ai)

Jag* - @)l = 1l (a¢* -
+ (&'Z@(Z*U ®a’; B a;@(Z*Q) ®a;®2>
+.
< e(mac{]jall, ;) )~

< L(1+2p+ €0)‘eo. (16)

Thus, for any 1-bounded linear combination of the b
vectors in the batch (which may contain both inliers and
outliers), 'd;‘g’[‘ is at a Euclidean distance < bl(1 + eg +
4p\/Togm)‘eq to the corresponding linear combination
of the /th powers of the vectors in the batch prior to
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the addition of noise (i.e., the columns of B(_JB ). Thus
if b0(1 + & + 4py/Togm)’eq < 7/2, then ?i;@’z cannot
be expressed as a 1-bounded combination of the other
lifted vectors in the batch with Euclidean error < 7/2,
let alone ¢ error.

This means that none of the outliers are added to the
set .S, with probability at least 1 — m[exp(—g(n)) —
exp(—4dlogm)]. O

Next, we turn to proving that sufficiently many inliers
are added to S. The following simple lemma will help
us show that restricting to 1-bounded combinations does
not hurt us.

Lemma VLS. Let uy,us, .. ., Ud+c be vectors that all lie
in a d-dimensional subspace of R™. Then at least c of the
u; can be expressed as 1-bounded linear combinations

of {u;}jzi-

Proof. As the vectors lie in a d-dimensional subspace,
there exists a non-zero linear combination of the vectors
that adds up to zero. Suppose » _, a;u; = 0. Choose the
i with the largest value of |c;|. This u; can clearly be
expressed as a 1-bounded linear combination of {u; } ;.

Now, remove the u; from the set of vectors. We are
left with d + ¢ — 1 vectors, and we can use the same
argument inductively to show that we can find ¢ — 1
other vectors with the desired property. This completes
the proof. O

The next lemma now proves that the set C' at the end
of the algorithm is large enough.

Lemma VI.6. For the values of the parameters chosen
above, we have that at the end of the algorithm,

5/3
cl>
1= 350

with probability at least 1 — exp(—4dlogm).

Proof. We start with the following corollary
Lemma VIL.5. Let us consider the jth batch.

to

Observation. Let n/ be the number of inliers in the jth
batch. If n; > (d+ ) + k, then the size of S found in
Step 5 of the algorithm is at least k.

Proof of Observation. Define BU) as in the proof of
Lemma VI.3. Now, since the inliers are all perturbed
within the target subspace, we have that the vectors
51@@ corresponding to the inliers all live in a space of
dimension (dH 1) Thus by Lemma VL5, at least k
of the vectors ij ) can be written as 1-bounded linear

combinations of the vectors B(_JL)



For inliers ¢, using the fact that a; are perturbed by
N(0, p?/d), we have

Pllla:|| = (14 4py/logm)] < exp(—4dlogm).

Using (16) again, we have that 'd;‘gw can be expressed

as a l-bounded linear combination of the other vec-
tors in the batch, with Euclidean error bounded by
bl - (1 4 5py/Togm)leo. We know £; norm is a V/nf-
approximation of /5 norm. By assumption, the ¢; norm
of the error is < 7/2, thereby completing the proof of
the observation. O

Now, note that we have ) ;1 > am, by assumption.
This implies that

m/b
-1
ZmaX{O,nj—<d+ﬁ )}2
j=1
m({d+{¢—1
> _
> am b( ' )
> 0/3 am
—1446/3

The last inequality follows from our choice of o and the
batch size b. Thus the size of S in the end satisfies the
desired lower bound. O

Finally, we prove that using any set of 2d inliers,
we can obtain a good enough approximation of the
space T', with high probability (over the choice of the
perturbations). The probability will be high enough that
we can take a union bound over all 2d-sized subsets of

Lemma VL7. Let I C I;, be any (fixed) set of size
2d. Then if |E|r < poly(p/m), the subspace U
corresponding to the top d singular value of A’ will

satisfy
Isin®(U, T)||» < poly(m,1/p) - |E|r
with probability at least 1 — e—4dlogm

Proof. We start by considering the matrix Aj (the matrix
without addition of error). This matrix has rank < d (as
all the columns lie in the subspace T'). The first step is to
argue that o4(A;) is large enough. This implies that the
space of the top d SVD directions is precisely 7. Then
by using Wedin’s theorem [43], the top d SVD space U
of A} satisfies

2v/d|| El|

Isin (U, T)||p < —YHENE
oa(Ar) — | Elr

(a7
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Hence it suffices to show og(A) is at least inverse-
polynomial with high probability.

Recall that fl[ = A; + Gy, where Gy is a random
matrix. Without loss of generality we can assume that
T is spanned by the first d co-ordinate basis; in this case
every non-zero entry of GGy is independently sampled
from N(0, %) We can thus regard A;, G as being
d x 2d matrices. Recall that leave-one-out distance is
a good approximation of least singular value, it suffices
to show ¢((A; + G)T) is at least inverse-polynomial
with high probability. Let A;, G; denote the jth row of
Ar, Gy correspondingly. Consider j € [d], fix all other
rows except jth. Let T be the subspace of R?? that
is orthogonal to span({Ay + Gi : k € [d],k # j}).
and let wi,ws,...,wqs1 be an orthonormal basis for
W. Then for any ¢t > 0, if the projection of (A; + G;)
to W is < t (equivalent to the leave-one-out distance
< t), then for all 1 < ¢ < d + 1, we must have
|(w;, A; + G;)| < t. Using the anti-concentration of a
Gaussian and the orthogonality of the wj;, this probability
can be bounded by (t/p)?*!. Choosing t = p/m?, this
can be made < (1/m*)4*+?, and thus after taking a union
bound over the m choices of j, we have that the leave-
one-out distance is > p/m?* (and thus o4 > p/m?>) with
probability > 1 — exp(—4dlogm) O

We can now complete the proof of the theorem.

Proof of Theorem VILI. Suppose that ||E||r < &g is
small enough. Now by Lemma VI3, we have that
C C I, with probability at least 1 —exp(—g(n)-+logm.
By Lemma VI.6 and our assumption that m is at
least Q(d/(dar)), we know |C| > 2d with probability
1 — e~4dloe™  Finally, by Lemma VL7 and a union
bound over all 2d sized subsets of [m], we have that
with probability at least 1 — exp(—Q(dlogm)), for
any subset of inliers with size 2d, the subspace T’
corresponding to the top-d singular value will satisfy
Isin ©(T, T") | < || E]| - /poly (m). O

C. Batches when m is not a multiple of b

he case of m not being a multiple of b needs some
care because we cannot simply ignore say the last few
points (most of the inliers may be in that portion). But we
can handle it as follows: let m’ be the largest multiple
of b that is < m. Clearly m’ > m/2. Now for 1 <
7 < n, define Dj = {.%’j,ﬂl'j+1, .. ~7xj+m’—1} (with the
understanding that z,,+; = x;). This is a set of m’ points
for every choice of j. Each Dj is a possible input to the
algorithm, and it has at least m’ > m/2 points, and
additionally the property that b|m/'.



At least one of the D; has > « fraction of its points
being inliers (by averaging). Thus the procedure above
(and the guarantees) can be applied to recover the space.
To ensure that no outlier is chosen in step 5 of the
algorithm (Lemma VI.3), we take an additional union
bound to ensure that Lemma V1.3 holds for all D;.

VII. LEARNING HIDDEN MARKOV MODELS

We consider the setup of Hidden Markov Mod-
els considered in [17], [32]. A hidden state sequence
Z1,Z2y ..., Zm € [r] forms a stationary Markov chain
with transition matrix P and initial distribution w =
{wi } kepr)> assumed to be the stationary distribution. The
observations {X; };c[n] are vectors in R™. The observa-
tion matrix of the HMM is denoted by O € R™*"; the
columns of O represent the conditional means of the
observation X; € R” conditioned on the hidden state
Zy ie., E[X¢|Zy = i] = O;, where O; represents the ith
column of O. We also assume that X; has a subgaussian
distribution about its mean (e.g., X; is distributed as a
multivariate Gaussian with mean O; when the hidden
state Z; 7). In the smoothed analysis setting, the
model is generated using a randomly perturbed observa-
tion matrix O, obtained by adding independent Gaussian
random vectors drawn from N (0, p?/n)™ to each column
of O. We remark that some prior works [17], [35]
consider the more restrictive discrete setting where the
observations are discrete over an alphabet of size n.’
While our smoothed analysis model with small Gaussian
perturbations is natural for the more general continuous
setting, it may not be an appropriate smoothed analysis
model for the discrete setting (for example, the perturbed
vector O; could have negative entries).

Using a trick from [17], [32], we will translate the
problem into the setting of multi-view models. Let m =
2¢ + 1 for some £ to be chosen later, and use the hidden
state Zy11 as the latent variable. In what follows, we
will abuse notation and also represent the states using
the standard basis vectors e, eo,...,e, € R": for each
j e [r,t € [m], Z, = e; € R" iff the state at time
¢ is j. Our three views are obtained by looking at the
past, present, and future observations: the first view is
X ®Xp-1®...8 X, the second is X, and the third
1S Xyp10® Xpy3®...Xop41. We can access these views
by viewing the moment tensor X; ®...® Xopy1 as a 3-
tensor of shape n’ x n x n’. The conditional expectations
of these three views are given by matrices A, B, and C'

SThese observations can be represented using the n standard basis
vectors for the m alphabets and column O; gives the probability
distribution conditioned on the current state being ¢ € [r].
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of dimensions n x v, n x r, and n’ x r respectively.

Explicitly, these matrices satisfy

E[Xg R...Q X1|Z[+1] =AZpq,
E[X¢41]Ze1] = BZp4a,
E[Xiio®...Q Xopr1|Zo41] = CZpgq.

Let P’ = diag(w)PTdiag(w)~!, which is the reverse
transition matrix Z; — Z;_1, and let X ® Y denote the
Khatri-Rao product of X and Y, given in terms of its
columns by (X ©Y); = X; ® ;. Then we can write
down A, B, and C in terms of the transition and obser-
vation matrices as follows. This fact is straightforward
to check, so we leave the details to [17].

A=((...(OPY® O)P)Y® O)...P)o O)P' (18)
B=0 (19)
C=(...(OP)®O)P)© 0)...P)® O)P,  (20)

where O and P or P’ appear ¢ times each in A and
C. Our goal is to upper bound the condition numbers
of A and C. Once we do this, we will be able to use a
argument similar to that in [33] to obtain P and O up
to an inverse polynomial error.

The proof of this theorem will use a simple lemma
relating the minimum singular value of a matrix A to
that of a matrix obtained by adding together rows of A.

Lemma VIL1. Let nq,nq,n3 be positive integers with
ng > naz. Let A = (A, 4,),;) € RM7™2X" be a matrix,
and let B € R™*"™3 pe the matrix whose isth row is

Zil A[(il,iz),:}- Then O'T,,3(A) > \/%O'T,,B(B).

Proof. We can write B = M A, where M € R"2*"1m2
is a matrix whose ith row consists of ny(i — 1) zeros,
then ny ones, then nq (ny —14) zeros. For any v = (v;;) €
R™™2 applying the Cauchy-Schwarz inequality gives

2
na n2 ni

||MU||2 = Z(M[i,:] 'U)2 = Z Zvij

i=1 i=1 \j=1

< nylv]|.

Therefore opar (M) < /np. Since opmin(B) <
Omaz(M)omin(A), we have
1
Omin A > ——0min(B).
(A) N (B)
O

Theorem VIL2. Let { € Z, be a constant. Suppose
we are given a Hidden Markov Model in the setting
described above, satisfying the following conditions:



d <
QY. In

1) P € R"™ s d-sparse, where
O(min{n/?,n/r'/*}) and n =
addition, we assume 0 ;i (P) > 1.

2) The columns of O € R"™ " are polynomially
bounded (i.e. the lengths are bounded by some
polynomial in n) and are perturbed by independent
Gaussian noise N(0,p?/n)" to obtain O, with
columns {O; }.

3) The stationary distribution w of P has w; > 72 for
all i € [r].

Then there is an algorithm that recovers P and 9] up to
€ error (in the Frobenius norm) with probability at least
1—exp(—Q¢(n)), using samples of m = 20+ 1 consec-
utive observations of the Markov chain. The algorithm
runs in time (n/(py1v2¢))°®.

Proof. We will show that C' is well-conditioned. First
note that since the columns of O (and therefore of (')
are polynomially bounded, 0,4, (C) is also bounded by
some polynomial in n and r. Therefore we only need
to give a lower bound on ¢y,;,,(C). Since opin(P’) >
Yo - Omin(P), the proof for A is identical. We can write
C = M(O,P) - F(P), where M € R" %R ig a_matrix
whose columns are order-¢ tensor products of {O;} and
F(P) € REX" is a matrix of coefficients. We will show
that each of these factors is well-conditioned, which will
give us a bound on the condition number of C.

First we work with M. The columns of M are
all of the tensor products of {O;} that appear in C.
Specifically, if the columns of O are {O;};c[,), then the
columns of M are all tensor products of the form

0, ®...90;, Q1)

where P;_; ., # 0forall s=1,...,/—1. The key here
is that while the noise coming from the p-perturbations
of {O;} is not independent column to column, any
column of M has noise that is highly correlated with
only a few other columns.

In order to apply Theorem II.2, we need to find
Aq,...,Ay. Fix a column M; of M. For s < ¢, we
have

AL(M;) < (i) &, 22)
To show why, we describe a way of generating all
columns of M that differ from M; in s factors. First,
choose a set S C [/] with |S| = s, which will specify
the places at which the new column will differ from
M;. Begin at one place at which the new column will
not differ, which is possible because s < /. Fill in the
remaining factors by progressing by step forwards and
backwards until each factor is chosen. Each time a place
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in S is encountered, we have at most d choices due to
the sparsity of P.

Remark VIL.3. Note that not all of these choices may
correspond to a path through the state space of the
Markov chain. Thus additional conditions limiting the
number of short cycles in the graph of the Markov chain
could lead to smaller upper bounds on {A,}.

For s = ¢, we have Ay(M;) < R < r-d* since all
of the ¢ factors are arbitrary as long as they determine
a path in the Markov chain.

Now the condition of Theorem II.2 becomes

y e s (M) n\*¢
rd +§(s)d (7) =<(7)
(23)

which holds by the restrictions on d and r. Therefore
we conclude that 7,5, (M) > Q(1) - (p/n)¢/VR with
probability at least 1 — exp(—Qy(n) + logR) > 1 —
exp(—Q(n) +logn’) =1 — exp(—Q(n)).

Next, we show that F' is well-conditioned. To simplify
notation, we write as if R = r* (in which case M would
have many unused columns and F' would have many
zero rows and columns). Index the rows of F' by a tuple
(i1,...,1¢). We have

for ¢ € (0,1),

F(i17~~-7i£);j = Pjil Py i, (24)

irig
In other words, the coefficient of (5241 ®...® 6ie in
column j of C is the probability, given that you begin
at state j, of traveling through states 1, ..., 7.

We want to give a lower bound for the least singular
value of F. Lemma VII.1 shows that it is enough to
bound the least singular value of a matrix obtained by
adding together rows of F'. Using this idea, we sum over
all rows with the same %, to obtain a matrix F/ € R™*"
with entries

Fi/,j = Z Pjilpiliz o
11,001
Thus we have I’ = (P*)T, which has o, (F') > ~{.
Therefore Lemma VIL1 gives 0, (F) > ~%/r/2.
These two results show that

Umin(c) > Qg(l) . (p’yl)e/(n\/a)frl/Z

> Q1) - < >£

with probability at least 1 — exp(—Q¢(n)).

As mentioned above, we also get op,in(A) > Qp(1) -
(py172/Vn3r)* with the same probability. In order to
recover P and O, we use an algorithm similar to
Algorithm 1 from Sharan et al. [35]. First, we can

- P,

14

(25)

P71
n3y




estimate the moment tensor X ®. ..® X1 to sufficient
accuracy using poly,(n,1/¢) many samples since each
observation vector has a conditional distribution which is
subgaussian. This follows from standard large deviation
bounds, for example see Lemma C.1 in [33]. Next, we
can obtain A, B, and C up to an error § = poly(e,n, p)
using a tensor decomposition algorithm such as in [8].
Since B O, it only remains to find P. To do
this, we use a similar trick to [17]. We will use the
fact that C'_and P are both well-conditioned. First, let
D = (C®O)P. Note that we can obtain D by following
the entire procedure again but increasing ¢ by one. Since
we already have O up to a small error, we can also find
C®0O.Now 0pin(C © O) = 0min(D) /0 maz(P), and
Omaz(P) < +/r. Therefore we can recover P from D
and C' ® O up to the required inverse polynomial error.

O

VIII. HIGHER ORDER TENSOR DECOMPOSITIONS

In this section, we describe an algorithm to decompose
20’th order tensors of rank up to n‘. Let us start by
recalling the problem: suppose Ai,..., Ar are vectors
in R™. Consider the 2¢’th order moment tensor

R

20

My =) AP
i=1

The tensor decomposition problem asks to find the
vectors A; to a desired precision (up to a re-ordering),
given only the tensor My,. The question of robust
recovery asks to find the vectors A; to a desired precision
given access to a noisy version of Moy, specifically, given
only the tensor 7' = Moy + Err. The aim is to show
that recovery is possible, assuming that ||Err|| is bounded
by some polynomial in n and the desired precision for
recovering the A;. We give an algorithm for robust
recovery, under certain condition number assumptions
on the A;. Then using the methods developed earlier
in the paper, we show that these assumptions hold in a
smoothed analysis model.

A. Robust decomposition assuming non-degeneracy

We will now consider a generalization of the algorithm
of Cardoso [16], and prove robust recovery guarantees
under certain non-degeneracy assumptions. As stated in
the introduction, our contribution is along two directions:
the first is to extend the algorithms of [16] and [44]
to the case of 2¢’th order tensors. Second (and more
importantly), we give a robustness analysis.

We now define an operator, and then a matrix whose
condition number is important for our argument. Given
£’th order tensors X,Y, we define the operator ® as
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O(X,Y)=V(X,Y)+U(Y, X), where ¥ : R x R —
R? is defined by:

U(X,Y)(i1,12,..
= Xil }/J

a.jf) =
Y;

'aibjlaj%"'

sip—1ig 1"~j2—1j157Xil-uiZ—lj£ 1. Je—1te (26)

One of the nice properties of ® above is that (X, X) =
0 for a symmetric tensor® X iff X = u®’, for some
u € R"” (and for this reason, [16] who introduced such an
operator for / = 2 and subsequent works refer to this as a
rank-1 “detector”). The algorithm and its analysis only
use the easy direction of the above statement, namely
O (u®’,u®") = 0 for any u € R", and thus we do not
prove the property above.

The following matrix plays a crucial role in the anal-
ysis: consider the (%) vectors of the form ®(AF*, A?Y),
for ¢ < j. Let Mg be the matrix with all of these vectors

as columns. Thus Mg is of dimensions n2¢ x (1;)

a) Relevant condition numbers.: Our robustness
analysis will depend on (a) the condition number of the
matrix U := A®¢, which we will denote by sy, and
(b) the condition number of the matrix Mg described
above, which we will denote by ;. For convenience, let
us also define u; = AZ@Z, flattened. From the definition
of U above, we also have My, equal to UUT, when
matricized.

The following is our main result of the section.

Theorem VIIL.1. Given the tensor T = Moy + Err, an
accuracy parameter €, and the guarantee that ||Err||p <
e/ (kukar )€ for some constants ¢, ¢, there is an algo-
rithm that outputs, with failure probability 1 — ~y, a set
of vectors {B;}| such that

ngnZHAi — Bl <e.

Furthermore, this  algorithm in time
pOly(TLé, Ku, Kn, IOg(l/’Y))

b) Remark.: We note that the above statement does
not explicitly require a bound on the rank R. However,
the finiteness of the condition numbers xy and k)
implies that R < n‘/2. Our theorem VIIL.13 shows
that when R < n’ /2, the condition numbers are both
polynomial in n in a smoothed analysis model. Also,
we do not explicitly compute c, ¢’. From following the
proof naively, we get them to be around 8, but they can

likely be improved.

runs

SAn £’th order tensor T is said to be symmetric if Tiyig..ip

T (i1 ) (i)...w(ip) fOr any permutation .



1) Outline of the proof and techniques: We will start
(section VIII-A2) by presenting the FOOBI procedure
for arbitrary ¢. The algorithm proceeds by considering
the top eigenvectors of the matricized version of My,
and tries to find product vectors (i.e. vectors of the form
%) in their span. This is done via writing a linear
system involving the basis vectors.

In section VIII-A3, we show that the entire procedure
can be carried out even if My is only known up to a
small error. The technical difficulty in the proof arises
for the following reason: while a small perturbation in
Mo, does not affect the top-R SVD of the (matricized)
Moy, if we have no guarantees on the gaps between
the top R eigenvalues, the eigenvectors of the perturbed
matrix can be quite different from those of Msy. Now
the FOOBI procedure performs non-trivial operations on
these eigenvectors when setting up the linear system we
mentioned in the previous paragraph. Showing that the
solutions are close despite the systems being different is
thus a technical issue we need to overcome.

2) Warm-up: the case of Err 0: Let us start by
describing the algorithm in the zero error case. This
case illustrates the main ideas behind the algorithm and
generalizes the FOOBI procedure to arbitrary /.

The algorithm starts by computing the SVD of the
matricized My, (i.e., UUT). Thus we obtain matrices
E and A such that UUT = EAET. Let H denote the
matrix £A'/2. Then we have HH” = UU7, and thus
there exists an orthogonal R x R matrix ) such that
U = HQ. Thus, finding U now reduces to finding the
orthogonal matrix Q.

This is done using in a clever manner using the
rank-1 detecting device ®. Intuitively, if we wish to
find one of the columns of U, we may hope to find
a linear combination Z a;H; of the {H;} such that
(>, a;H;, 5 ojHj) = 0. Each column of @ would
provide a candldate solutlon a. However, this is a
quadratic system of equations in «;, and it is not clear
how to solve the system directly.

The main idea in [16] is to find an alternate way
of computing @). The first observation is that ¢ is bi-
linear (i.e., linear in its arguments X, Y'). Thus, we have
(3 a;Hy, > 5 o H;) 2 jerr) @i ®(Hi, Hy).
Now, consider the linear system of equations

> Wi;(H;, Hy) = 0.
i,jE[R]

27)

This is a system of n?¢ equations in R? variables. The
reasoning above shows that for every column ); of @,
we have that W = QiQ;fF is a solution to (27). Because
of linearity, this means that for any diagonal matrix D,
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QDQT is a solution to the linear system as well. The
main observation of [16] is now that any symmetric
solution W (i.e. one that satisfies W;; = W;) is of this
form! Thus, the matrix ) can be computed by simply
finding a “typical” symmetric solution W and computing
its eigen-decomposition. Let us now formalize the above.

Lemma VIIL2. [16] The space of symmetric solutions
to the system of equations (27) has dimension precisely
R, and any solution is of the form W = QDQT, for
some diagonal matrix D.

Proof. Consider any symmetric solution . Because of
bi-linearity, using the fact that HQ = U, or H = UQ",
we have that H; = > Us(QT)s; = >, UsQ;s. Thus

for any i, 7,
HlaH Zstth USaUt)
Thus,
ZWU(I)(H“H Zq) UsaUt ZW’L]Q’LSQ_]t
2,7 R ,J

= (U, Up)(W,Q.Q1). (28)

s,t

Since Ky < oo, we have that {®(U,,U;) @ s <
t} is linearly independent. Now, since ®(Us,U;) =
®(U;,Us), and since ®(U,,U;) # 0 for all s # ¢t
(the latter is a simple computation, using the fact that
As # Ay), we must have that

(W,Q:Qf) = 0.

Now, since () is an orthogonal matrix, we have that
{QthT}s’te[ g) forms an orthonormal basis for all Rx R
matrices. The above equality thus means that 1 lies only
in the span of {Q.QT}sc(r). This implies that W =
QDQT, for some diagonal matrix D.

Plugging back into (28), we see that any W of
this form satisfies the equation. As the Q,Q7T are all
orthogonal, we have found a solution space of dimension
precisely R. O

for all s # ¢,

To handle the robust case, we also need a slight
extension of the lemma above. Let Hg denote a matrix
that has R(R+1)/2 columns, described as follows. The
columns correspond to pairs 4,5 € [R], for i < j. For
i = j, the corresponding column is ®(H;, H;) and for
i < j, the corresponding column is V2. ®(H;, Hj). We
note that the null space of Hg can be mapped in a one-
one manner to symmetric [ X IR matrices W. For any
2 = (%ij)i<j, define the symmetric R X R matrix (z)
to have ¥(2)ii = zi; and ¥ (2)i; = ¥(2)i The

_ i

Ve




point of this definition is that (z,2") = (¥(z),¥(2")).
Note that ¢)~! is well-defined, and that it takes sym-
metric matrices to R(R+ 1)/2-dimensional vectors (and
preserves dot-products).

Further, we have

Hyz = Z(I)(HiaHi)Zii +

> V2 ®(H;, Hj)z

i<j

= O(H;, Hy)zii + Y 28(H;, Hy)(2)i;
i i<j

= O(H;, Hy)(2)i;. (29)

]

Using this correspondence, Lemma VIIL.2 implies
that Hg has a null space of dimension precisely R
(corresponding to the span of ¢~ 1(Q.Q7T), for s € [R)).
We now claim something slightly stronger.

Lemma VIIL3. Let A denote the (R + 1)th smallest
singular value of Hg. We have that N > owyin(Mg).
Recall that Mg was defined to be the matrix with
columns @(A?{A?%, for i < j.

Proof. Consider any z orthogonal to span{t)~(Q,Q7T) :
s € [R]}. Then, 1(z) is orthogonal to Q;QT for all
s, as 1 preserves dot-products. Thus, using our earlier
observation that {Q,Q?'} forms an orthonormal basis for
all R x R matrices, we can write

1/1(2) = Z asthQ;‘,‘F'
s#t

Since 9 (z) is symmetric, we also have ag = us.
Now, using the expansion (28) with W;; = (2);;, we
have

> w(2)i@(Hi, Hy) = > aq®(Us, Uy)

%7 s,t
=2 au®(U,,Uy).
s<t

Combining this with (29), and the definition of the
smallest singular value, we obtain

a2 4 (z o,

s<t

) Unlin(MCI>)2~

Finally, since |z||? ()% = 2>, a3, the
desired conclusion follows (indeed with a slack of a
factor ﬂ). O

The following theorem then gives the algorithm to
recover (), in the case Err = 0.

Theorem VIIL4. Let S be the subspace (of RT¥*1)
of all symmetric solutions to the system of equations
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> i Wig®(Hi, Hy) = 0. Let Z be a uniformly random
Gaussian vector in this subspace of unit variance in each
direction. Then with probability at least 9/10, we have
that

1
Z = ZaiQiQ?, where rgg?\ai
i

— ol 2 3op

Thus the SVD of Z efficiently recovers the Q;, with
probability > 9/10.

Proof. From the lemmas above, we have that the space
S is precisely the span of Q,Q7, for s € [R]. These are
all orthogonal vectors. Thus a random Gaussian vector
in this space with unit variance in each direction is of
the form ), aiQiQiT, where the «; are independent and
distributed as the univariate Gaussian N (0,1).

Now, for any 4, j, we have that o; — «; is distributed
as N(0,2), and thus

1 1
] < —— | < ——
%~ 4l S 55pe | S g2
Taking a union bound over all pairs ¢, j now gives the
result. O

Pl

This completes the algorithm for the case Err = 0.
Let us now see how to extend this analysis to the case
in which Err # 0.

3) A robust analysis: We will now prove an approx-
imate recovery bound by following the above analysis,
when Err is non-zero (but still small enough, as in the
statement of Theorem VIII.1). As is common in such
analyses, we will use the classic Davis-Kahan Sin-6
theorem. We start by recalling the theorem. To do so,
we need some notation.

Suppose V7 and V5, are two n x d matrices with or-
thonormal columns. Then the matrix of principal angles
between the column spans of V; and Vs is denoted
by ©(V7, V%), and is defined to be the diagonal matrix
whose entries are arccos()\;), where \; are the singular
values of V{'Vs.

Theorem VIILS5 (Sin-6 theorem, [45]). Let ¥ and ¥/ €
R™ ™ be symmetric, with eigenvalues \y > Ao > ... A\
and Ny > XNy > - > X . Let 1 <r < s <n, and let
d=s—r+1 Let V be a matrix with columns being
the eigenvectors corresponding to A\, ...)\s in %, and
suppose V' is similarly defined. Let

§:=1inf{|N — X : X € [As, \],
/\/ € (_007/\;—1—1} U [)‘;ﬂ—lv OO)}v

which we assume is > 0. Then we have

_ !
lsino(v. Ve < Z= e



Furthermore, there exists an orthogonal matrix O such
that

IV -V'0|r < (30)

V2| - ¥r

5 .

We note that the precise statement above is from [?].

Our proof will follow the outline of the Err = 0 case.

The first step is to symmetrize the matricized version of

T, so that we can take the SVD. We have the following
simple observation.

Lemma VIIL6. Let A € R™*", and define A’ = (A +
AT /2. Let B € R™ be symmetric. Then ||A" — B||r <
1A= B

Proof. The lemma follows from observing that A’ is the
projection of A onto the linear space of symmetric n xn
matrices, together with the fact that projections to convex
sets only reduces the distance. O

Let 7" be the symmetric version of the matricized
version of T'. Then we have ||T" — UU” ||p < ||Err||p.
Likewise, let T" be the projection of T’ onto the PSD
cone (we obtain 7' by computing the SVD and zero’ing
out all the negative eigenvalues). By the same reasoning,
we have ||T — UUT||p < ||Err||z. For convenience, in
what follows, we denote ||Err||z by 7.

Next, we need a simple lemma that relates the error
in a square root to the error in a matrix.

Lemma VIIL7. Let Z and H be n x d matrices with
d < n, and suppose ||ZZT — HHT| < 6. Then there
exists an orthogonal matrix Q) such that

2(5d0’1 (H)

— 1/2
Proof. Let ZZ7T M N{, and let HHT
My NT, where M;, N; are n x d matrices with
orthonormal columns. Now, the theory of operator-
monotone functions acting on PSD matrices (see e.g. [?],
Theorem X.1.1) implies that

M ST 2NT — MySY2NT || p < 612

Now we may apply the Sin-6 theorem (with r = 1
and s = d in the statement above) to conclude that

there exists an orthogonal matrix @)1 such that | N1Q1 —

No|r < U‘(H)z Thus, writing No = N1Q, + A, the

LHS above becomes

1M SV 2NT = Mysy 2 QT NT — Mysl? AT
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Now, we have |[MoSy*AT || g < || Moy % || p[| Al p-
The first term is simply (tr(X3))'/? < d*/?¢,(H). Using
this, we obtain

(M2,
= || M2

— M55 QTN |
S12NT — MyxY2NT 4+ MoSy/ 2 AT g
26d" %0 (H)

< §1/2
<oE 4+ oo (H 2

We can now appeal to the simple fact that for a
matrix X, for any Ny with orthonormal columns, we
have || X||r = | X NI Ny|| < || XNT||zd"/2. This gives
us

20do (H)

M Y2 Mo 20T | < (d6)H/? 4+ 229982

|| 147 2442 Ql HF —( ) + O'd(H)2
Thus, since Z = M; Ei/ ZQ’ for an orthogonal matrix

Q' and likewise for H, and because the product of

orthogonal matrices is orthogonal, we have the desired

result. O

In what follows, to simplify the notation, we introduce
the following definition.

Definition VIIL8 (Poly-bounded function). We say that
a function f of a parameter n is poly-bounded if f(n)
is of the form 7 - poly(n, R, ky, kar), where ¢ > 0 is
a constant.

Intuitively speaking, by choosing 7 to be “polynomi-
ally small” in n, R and the condition numbers Ky, Kz,
we can make f(n) arbitrarily small.

Now, the lemma above gives the following as a
corollary.

Corollary VIILY. Let EAET be the rank-R SVD of T,
and letAUA'UT = EAET be the SVD as before. Define
H = EAY? and H = EAY2 Then there exists an
orthogonal matrix P such that |HP — H||r < fi1(n)
for some poly-bounded function f.

Proof. The  desired  conclusion  follows  from
Lemma VIIL7 if we show that | EAET — EAET|| < 2n.
This follows from the fact that |T — FAET| < n
(which is true because the SVD gives the closest rank-k
matrix to 7 — and UUT is at distance at most n),
together with the triangle inequality. O

Informally speaking, we have shown that HP ~, H,
for an orthogonal matrix P. We wish to now use our
machinery from Section VIII-A2 to find the matrix U,
which will then allow us to obtain the vectors in the
decomposition.



Let us define H' = HPT, where P is as above. Thus
we have H = H'P (and thus H’ =, H, informally).
Further, if @ is the orthogonal matrix such that U = H(Q
(as in Section VIII-A2), we have U = H'PQ.

a) Outline of the remainder.: We first sketch the
rest of the argument. The key idea is the following:
suppose we run the whole analysis in Section VIII-A2
using the matrices H' and PQ instead of H and Q,
we obtain that the set of symmetric solutions to the
system of equations Ei)jE[R] Wi;®(H;, H}) is precisely
the span of the matrices (PQ)s(PQ)%. Thus, a random
matrix in the space of symmetric solutions can be
diagonalized to obtain (PQ)s. Using U = H'(PQ),
one can reconstruct U. Now, we have access to H and
not H’. However, we can relate the space of symmetric
approximate solutions to the perturbed system to the
original one in a clean way. Taking a random matrix in
this space, and utilizing the “gap” in Theorem VIIIL.4, we
obtain the matrix P@) approximately. This is then used
to find U that approximates U, completing the argument.

Lemma VIIL10. For any i,j € [R)], we have

|@(HY, Hy) - (H;, )| <
< O (|l — B Hj | + |1~ H 1)) -
Proof.
@ (H;, Hy) — (;, )| <
< |[0(H}, H)) ~ ®(H;, 1))
+ |0, 1)) — ©(;, 1))

—ﬁiH,and
Hyll,
O

The first term can be bounded by 2| H ||| H

s0 also the second term is bounded by 2|| H;|| |H]—
which implies the lemma.

Next, as in Section VIII-A2, define the R(R + 1)/2
dimensional matrices Hg and H&). Specifically, these
matrices have columns corresponding to pairs 1 < ¢ <
J < R, and for ¢ = j, the corresponding column of H}; is
®(H], H}) and for i # j, the column is v/2- ®(H], HY).
A simple corollary of the lemma above is that

|Ho — Hyllr <O (1 — H' |- (1] + |1H'|1r))

for some poly-bounded function f5. This follows from
the lemma and corollary above, together with an appli-
cation of the Cauchy-Schwarz inequality. Next, we show
the following.
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Lemma VIIL11. For 1 <r < R, we have O'r(_ﬁcp) <
fa(n). Also, we have opy1(Ha) > omin(Ma) — f2(n).

Proof. The main idea, as mentioned in the outline, is to
apply Lemma VIIL3 to H'. If X’ denotes the (R + 1)th
smallest singular value of Hj, then this lemma implies
that H} has R zero singular values and X' > op,in(Ms).
Weyl’s inequality’ now immediately implies the lemma.

O

From now on, suppose that 7 is chosen small enough
that fo(n) < M Next, let us define the spaces S’
and S as in Theorem VIIL4: let S’ be the space of all
symmetric solutions to the linear system

> Wi S(H], Hj) = 0.

Likewise, let S be the space of symmetric matrices 1(z)
(see Section VIII-A2 for the definition of ), where z
is in the span of the R smallest singular values of Hg.
The analog of Theorem VIIL.4 is the following.

Theorem VIIL.12. Let Z be a uniformly random Gaus-
sian vector in S, and suppose that 7 = GXGT i
the SVD of Z. Then with probability > 9/ 10, we have
|G — PQllr < fs(n), for some poly-bounded function

Js.

Proof. The first step is to show that the spaces S’ and
S are close. This is done via the Sin-6 theorem, applied
to the matrices (H})T H} and HL Hg. Let T' and T be
the spans of the smallest R singular vectors of the two
matrices. By Theorem VIILS and the bounds on op+1,
we have that there exist orthonormal bases Y and Y for
these spaces such that for some orthonormal matrix ',

[(Hy)"Hy — HyHa | r
O'min(]\4<l>)2

Now, appealing to the simple fact that for any two
matrices X, Y, [|[XTX - YTY|r < | XT(X -Y) +
(XT = YT)Y|r < X = Y|e(IX]r + V]|, we
can bound the quantity above by f4(n) for some poly-
bounded function fy. R

We can now obtain bases for S and S” by simply
applying v to the columns of the matrices T and T
respectively. Let us abuse notation slightly and call these
bases S and S’ as well. By properties of ¢, we have that

18'Q" — S|lr < ITQ" — Y|k < faln).

ITQ" — Y| <

(32)

7Recall that the inequality bounds the change in eigenvalues due to
a perturbation of a matrix by the spectral norm (and hence also the
Frobenius norm) of the perturbation.



Next, note that a random unit Gaussian vector in the
space S can be viewed as first picking v € N'(0,1)% and
taking Sv. Now, using Theorem VIII.4 if we consider
the matrix S’v (which is a random Gaussian vector in
the space S’), with probability at least 9/10, we have
an eigenvalue gap of at least ﬁ. Thus, using this
and (32), together with the Sin-6 theorem (used this
time with precisely one eigenvector, and thus the rotation
matrix disappears), we have that |G; — (PQ)|
20R2 f4(n). Summing over all 4 (after taking the square),
the theorem follows. 0

We can now complete the proof of the main theorem
of this section.

Proof of Theorem VIII.1. Theorem VIII.12 shows that
the matrix GG gives a good approximation to the rotation
matrix (PQ)) with probability 9/10. (Since this proba-
bility is over the randomness in the algorithm, we can
achieve a probability of 1 —~ by running the algorithm
O(log 1/~) times.) We now show that HG ~ H'PQ:

(H — H')PQ|F
(33)

IHG — H'PQ||r < |H(G - PQ) +
< f5(n).

Note now that H 'PQ is precisely U! Thus the matrix
U:=HG (which we can compute as discussed above) is
an approximation up to an error f5(7). Finally, to obtain
a column U; of U, we reshape U into an n X n’~1 matrix,
apply an SVD, and output the top left-singular-vector.
This yields an error fg(n), for some poly-bounded func-
tion of 7. O

B. Smoothed analysis

Finally, we show that Theorem VIIL.1 can be used
with our earlier results to show the following.

Theorem VIIL13. Suppose T = 3 ,cip A®? L E,
where {A;} have polynomially bounded length. Given
an accuracy parameter € and any 0 < § < 1/¢2,
with probability at least 1 — exp(—Q4(n)) over the
perturbation in A, there is an efficient algorithm that
outputs a set of vectors {B;}*| such that

H;iHZH/L‘ - Byl <,

as long as R < dn’, and ||E||r < poly(1/n,p,¢), for
an appropriate polynomial in the arguments.

The proof of this theorem goes via the robust de-
composition algorithm presented in Theorem VIIL.1. In
order to use the theorem, we need to bound the two
condition numbers kg and kj;. Since the columns of
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A are polynomially bounded, the columns of U and
Mg are as well, S0 0p42(U), Omaz(Me) are bounded
by some polynomial in n. Therefore we only need to
give lower bounds on 0y, (U) and 0. (Ms). We
now use Theorem II.2 to prove that these quantities
are both polynomially bounded with high probability in
a smoothed analysis setting. This would complete the
proof of Theorem VIII.13.

Lemma VIIL.14. Let U = g®£’ and Mg be the matrix
whose columns are indeg/ced bx pairs i, 7 < R, and whose
{1,7} th column is @(A?E,A;M). Then for R < n’/(?,
with probability at least 1 —exp(—Q¢(n)), we have both
or(U) and or(r—1)/2(Ma) to be > poly(1/n, p).

Proof. The desired inequality for the matrix U was
already shown in earlier sections. Let us thus consider
Mg. We can write the {7, j}’th column as

(Meg); = (a7 ®@a5")
(5®(€ 2 ®a; ®a;
+ (a?e )
(EZ;@(Z 1) e oa " @a;).

B(-1) o @)

We will show a stronger statement, namely that a
matrix with four different columns (corresponding to
each term above) for each pair {i,j5} has ommm >
poly(1/n,p). In this matrix, which we call M}, we
have two columns for every (ordered) pair (¢,j). The
first column is a®* ® Zi?e and the second is Zi;@(e*l) ®
e Veu
For any of the columns, we thus have

Ag =1 (same i, j, different terms)

Ay;=R—1 (same i, different j)

Ay = R—1 (same i, different j, different terms)
Agy_o =1 (i and j swapped, different terms)
Aoy 1 = R—1 (same 1, different j, different terms)
Ay = R%.

The rest of the A values are zero. Thus, we observe
that we can apply Theorem V.2 (with ¢ = (1)),
as the dominant terms are the ones corresponding to
Ag, Ay, Agy. This completes the proof. O



APPENDIX

Lemma A.1. Let X,Y be two independent real random
variables, for all a,b € R such that P[X +Y < b] > 0,
we have

P[X <a] <P[X <a|X +Y <

Proof. WLOG, assume P[X < a] > 0,P[X > a] > 0,
then we have

P[X +Y <bX <a]>P[Y <b—alX <4
—P[Y <b—d]
=PlY <b-—alX > d
>PX+Y <bX >d]
Hence P[X +Y <b|X <a]| >P[X +Y <], then

P[X < a]P[X +Y < b|X < a]
PIX +Y <0
> P[X <d]

PIX <alX+Y <b =

O

The proof of Theorem IV.2 is almost identical to
Theorem IV.1.

Proof of Theorem IV.2. By Proposition IV.5, it suffices
to show that

c'(£)én

(4
Pl + 20,21, s ze-1)ll2 < cl0)en - 2] < e

where 2o N(0,p*(¢ + 1)/(2n£))™ and
21,20, 20-1 ~ N(0,p?/(2nl)), c(l),cd(f) > 0
are constants depending only on /. Let W be the span
of the top én’ right singular vectors of M. Observe that

~

9(u+ 20,21, ze-1)|l2 =
=||M(u+2)®@2 & @ z1]l2
> UHHW (U + ZO) R210--& 24_1”2.

The theorem then follows by applying Lemma II1.3
with 27 = u, 20 =23 =--- =2y = 0 and p = £'/%.
O

We now give a self-contained combinatorial proof
of Theorem IV.1 for ¢ = 2, that uses decoupling and
Lemma IIL.3. Let D’ be the dimension of the subspace
W, and let My, Ms, ..., Mp be a basis for W. Let
z ~ N(0,p*)" and z1,22,...,2. ~ N(0,p?/r)" be
independent Gaussian random vectors for r = O(y/n).
Note that  + 21 £ 29 £+ 23 £+ - - - & 2,. are all identically
distributed as z.

Consider the following process for generating x
z + z. We first generate 21, 29, . . ., 2, and random signs
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¢ = (¢2,¢3,-..,¢) € {£1}71 all independently, and
return z = 21 + 22:2 C22o. It is easy to see that z ~
N(0,p?). We will now prove that at most one of the
27! signed combinations z; & 2o & - - - & z, has a non-
negligible projection onto W.

Consider any fixed pair ¢,¢’ € {£1}""!, and let u =
214+ Y9 Giziand W = 21 4+ Y.y (lz;. We will use
the basic decoupling Lemma IV.7 to show w.h.p. at least
one of [Ty u®?||y or ||y (u')®?||2 is non-negligible.
Using decoupling (with £ = 2) in Lemma IV.7 we have
for each j € [D']

<Mj7 (ZL’ + U)®2> — <MJ, (l‘ + ul)®2> =
M, (z+u+u)® (u—1u'))

M;, (x +v1) @ua), (34)

where v| = 21 + g Gizi,
2<i<riCi=(]
V2 = E Gizi-
2<i<riCi A£G,

Also from Lemma III.3, we have that the above
decoupled product (x + v1) ® vy has a non-negligible
projection onto W; hence with probability at least
1 —exp (—Q(0n)),

D/
T (2 +v1) @23 =Y (M, (& + v1) @ v2)?
j=1

Q(p*)

>
2p4

-or

Q(p?)
rnd

ie., 35 € [D'] s.t. [(Mj«, (z + v1) @ vg)| >

Applying (34) with the above inequality for j*,

(p*)

rn3

|<Mj*, (x + u)®2> — <Mj*, (z + u’)®2>| >

Hence,

2
0w (o) 22 [ (+0) 222 = (L), 39)

with probability at least 1 — exp(—(dn)).
Since r c10n (for a sufficiently small constant
c1 > 0), we can apply (35) for each of the 22"~ pairs



of ¢,¢’ € {£1}"", and union bound over them to
conclude that with probability at least 1 —exp(—Q(dn)),

VA e T
max{|<Mj, (x4 21 + Z Gizi)®?)

)

=2
r Q 2
000 3 = 2

Hence w.h.p. at most one of the 2"~! signed combi-
nations x + 21 + zo £ - - - = z;- has a negligible projection
onto W. Hence, with probability at least 1 — 27" i.e.,
with probability at least 1 — 2720 ||y 222, >
Q(p?)/n*. This establishes Theorem IV.1. An identical
proof also works for Theorem IV.2 when ¢ = 2.
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