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Abstract—Smoothed analysis is a powerful paradigm in
overcoming worst-case intractability in unsupervised learn-
ing and high-dimensional data analysis. While polynomial
time smoothed analysis guarantees have been obtained for
worst-case intractable problems like tensor decompositions
and learning mixtures of Gaussians, such guarantees have
been hard to obtain for several other important problems
in unsupervised learning. A core technical challenge in
analyzing algorithms is obtaining lower bounds on the
least singular value for random matrix ensembles with
dependent entries, that are given by low-degree polynomials
of a few base underlying random variables.

In this work, we address this challenge by obtaining
high-confidence lower bounds on the least singular value of
new classes of structured random matrix ensembles of the
above kind. We then use these bounds to design algorithms
with polynomial time smoothed analysis guarantees for
the following three important problems in unsupervised
learning:

• Robust subspace recovery, when the fraction of inliers
in the d-dimensional subspace T of the n-dimensional
Euclidean space is at least (d/n)t for any positive
integer t. This contrasts with the known worst-case
intractability when the fraction of inliers is at most
d/n, and the previous smoothed analysis result (Hardt
and Moitra, 2013).

• Learning overcomplete hidden markov models, where
the size of the state space is any polynomial in the
dimension of the observations. This gives the first
polynomial time guarantees for learning overcomplete
HMMs in the smoothed analysis model.

• Higher order tensor decompositions, where we gener-
alize and analyze the so-called FOOBI algorithm of
Cardoso to find order-t rank-one tensors in a sub-
space. This gives polynomially robust decomposition
algorithms for order-2t tensors with rank nt.

Index Terms—smoothed analysis; unsupervised learning;
tensor decomposition; subspace recovery; hidden markov
model; anti-concentration; beyond worst-case analysis

I. INTRODUCTION

Several basic computational problems in unsupervised

learning like learning probabilistic models, clustering

and representation learning are intractable in the worst-

case. Yet practitioners have had remarkable success

in designing heuristics that work well on real-world

instances. Bridging this disconnect between theory and

practice is a major challenge for many problems in un-

supervised learning and high-dimensional data analysis.

The paradigm of Smoothed Analysis [1] has proven

to be a promising avenue when the algorithm has

only a few isolated bad instances. Given any instance
from the whole problem space (potentially the worst

input), smoothed analysis gives good guarantees for

most instances in a small neighborhood around it; this

is formalized by small random perturbations of worst-

case inputs. This powerful beyond worst-case paradigm

has been used to analyze the simplex algorithm for

solving linear programs [1], linear binary optimization

problems like knapsack and bin packing [2], multi-

objective optimization [3], local max-cut [4], [5], and

supervised learning [6]. Smoothed analysis gives an

elegant way of interpolating between traditional average-

case analysis and worst-case analysis by varying the size

of the random perturbations.

In recent years, smoothed analysis has been par-

ticularly useful in unsupervised learning and high-

dimensional data analysis, where the hard instances often

correspond to adversarial degenerate configurations. For

instance, consider the problem of finding a low-rank

decomposition of an order-� tensor that can be expressed

as T ≈ ∑k
i=1 ai ⊗ ai ⊗ · · · ⊗ ai. It is NP-hard to

find a rank-k decomposition in the worst-case when the

rank k ≥ 6n [7] (this setting where the rank k ≥ n
is called the overcomplete setting). On the other hand,

when the factors of the tensor {ai}i∈[k] are perturbed

with some small amount of random Gaussian noise, there

exist polynomial time algorithms that can successfully

find a rank-k decomposition with high probability even

when the rank is k = O(n�(�−1)/2�) [8]. Similarly,
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parameter estimation for basic latent variable models like

mixtures of spherical Gaussians has exponential sample

complexity in the worst case [9]; yet, polynomial time

guarantees can be obtained using smoothed analysis,

where the parameters (e.g., means for Gaussians) are

randomly perturbed in high dimensions [8], [10]–[12].1

Smoothed analysis results have also been obtained for

other problems like overcomplete ICA [13], learning

mixtures of general Gaussians [12], fourth-order tensor

decompositions [14], and recovering assemblies of neu-

rons [15].

The technical core of many of the above smoothed

analysis results involves analyzing the minimum singular

value of certain carefully constructed random matrices

with dependent entries. Let {ã1, ã2, . . . , ãk} be random

(Gaussian) perturbations of the points {a1, . . . , ak} ⊂
R

n (think of the average length of the perturbation to

be ρ = 1/poly(n)). Typically, these correspond to the

unknown parameters of the probabilistic model that we

are trying to learn. Proving polynomial smoothed com-

plexity bounds often boils down to proving an inverse

polynomial lower bound on the least singular value of

certain matrices (that depend on the algorithm), where

every entry is a multivariate polynomial involving some

of the perturbed vectors {ã1, . . . , ãk}. These bounds

need to hold with a sufficiently small failure probability

over the randomness in the perturbations.

Let us now consider some examples to give a flavor

of the statements that arise in applications.

• In learning mixtures of spherical Gaussians via

tensor decomposition, the key matrix that arises is

the “product of means” matrix, in which the number

of columns is k, the number of components in the

mixture, and the ith column is the flattened tensor

ã⊗�
i , where ãi is the mean of the ith component.

• In the so-called FOOBI algorithm for tensor decom-

position (proposed by [16], which we will study

later), the complexity as well as correctness of the

algorithm depend on a special matrix Φ being well

conditioned. Φ has the following form: each column

corresponds to a pair of indices i, j ∈ [k], and the

(i, j)th column is ã⊗2
i ⊗ ã⊗2

j − (ãi ⊗ ãj)
⊗2.

• In learning hidden Markov models (HMMs), the

matrix of interest is one in which each column

is a sum of appropriate monomials of the form

1In many unsupervised learning problems, the random perturbation
to the parameters can not be simulated by perturbations to the input
(i.e., samples from the mixture). Hence unlike binary linear optimiza-
tion [2], such smoothed analysis settings in learning are not limited by
known NP-hardness and hardness of approximation results.

ãi1 ⊗ ãi2 ⊗ . . . ⊗ ãi� , where i1i2 . . . i� correspond

to length-� paths in the graph being learned.

For many of the recent algorithms based on spectral

and tensor decomposition methods (e.g., ones in [17],

[18]), one can write down matrices whose condition

numbers determine the performance of the corresponding

algorithms (in terms of running time, error tolerance

etc.). While there is a general theory with broadly ap-

plicable techniques (sophisticated concentration bounds)

to derive high confidence upper bounds on the maxi-

mum singular value of such dependent random matrix

ensembles, there are comparatively fewer general tools

for establishing lower bounds on the minimum singular

value (this has more of an “anti-concentration” flavor),

except in a few special cases such as tensor decomposi-

tions (using ideas like partitioning co-ordinates).

The high level question that motivates this paper is the

following: can we obtain a general characterization of
when such matrices have a polynomial condition number
with high probability? For instance, in the first example,

we may expect that as long as k <
(
n+�−1

�

)
, the matrix

has an inverse polynomial condition number (note that

this is � n� due to the symmetries).

There are two general approaches to the question

above. The first is a characterization that follows from

results in algebraic geometry (see [17], [19]). These

results state that the matrix of polynomials either has

a sub-matrix whose determinant is the identically zero

polynomial, or that the matrix is generically full rank.

This means that the set of {ãi} that result in the

matrix having σmin = 0 has measure zero. However,

note that this characterization is far from being quan-

titative. For polynomial time algorithms, we typically

need σmin ≥ 1/poly(n) with high probability (this is

because polynomial sample complexity often requires

these algorithms to be robust to inverse polynomial er-

ror). A second approach is via known anti-concentration

inequalities for polynomials (such as the Carbery-Wright

inequality [20]). In certain settings, these can be used

to prove that each column must have at least a small

non-zero component orthogonal to the span of the other

columns (which would imply a lower bound on σmin).

However, it is difficult to use this approach to obtain

strong enough probability guarantees for the condition

number.

Our main contributions are twofold. The first is to

prove lower bounds on the least singular value for some

broad classes of random matrix ensembles where the

entries are low-degree multivariate polynomials of the

entries of a given set of randomly perturbed vectors.
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The technical difficulty arises due to the correlations in

the perturbations (as different matrix entries could be

polynomials of the same “base” variables). We note that

even in the absence of correlations, (i.e., if the entries

are perturbed independently), analyzing the least singular

value is non-trivial and has been studied extensively in

random matrix theory (see [21], [22]).

Our second contribution is to leverage these results

and prove new smoothed analysis guarantees for learning

overcomplete hidden markov models, and design algo-

rithms with improved bounds for overcomplete tensor

decompositions and for robust subspace recovery.

II. OUR RESULTS AND TECHNIQUES

A. Lower bounds on the Least Singular Value.

The first setting we consider is a simple yet natural

one. Suppose we have k independently perturbed vectors

ã1, . . . , ãk, and suppose we have a matrix in which each

column is a fixed polynomial function of precisely one of

the variables. We give a sufficient condition under which

σk (kth largest singular value, or the least singular value

here since there are only k columns) of this matrix is at

least inverse polynomial with high probability.

Theorem II.1. Let � ∈ Z+ be a constant and let
f : Rn → R

m be a map defined by m homogeneous
polynomials {fi}mi=1 of degree �. Suppose that

fi(x) =
∑

J=(j1,...,j�)∈[n]�

j1≤j2≤···≤j�

Ui(j1, . . . , j�)xj1xj2 . . . xj� ,

and let U ∈ R
m×(n+�−1

� ) denote the matrix of coeffi-
cients, with ith row Ui corresponding to fi. For vectors
a1, a2, . . . , ak ∈ R

n, let Mf (a1, a2, . . . , ak) denote the
m × k matrix whose (i, j)th entry is fi(aj). Then for
any set of vectors {ai}ki=1, with probability at least
1− k exp

(− Ω�(δn)
)
,

σk

(
Mf (ã1, . . . , ãk)

)
≥ Ω�(1)√

k

( ρ

n

)�

· σk+δ(n+�−1
� )(U),

(1)

where ãj represents a random perturbation of aj with
independent Gaussian noise N(0, ρ2/n)n.

To obtain a non-trivial bound, note that we need

σk+δ(n+�−1
� )(U) > 0. Qualitatively, σk(U) being > 0

is unavoidable. But more interestingly, we will see that

the second term is also necessary. In particular, we

demonstrate that Ω(δn�) non-trivial singular values are

necessary for the required concentration bounds even

when k = 1 (see Proposition IV.13 for details). In

this sense, Theorem II.1 gives an almost tight condition

for the least singular value of the above random matrix

ensemble to be non-negligible.

For an illustration of Theorem II.1, consider the simple

vector-valued polynomial function f(x) = x⊗� ∈ R
n�

(the associated matrix U essentially just corresponds

to the identity matrix, with some repeated rows). If

ã1, . . . , ãk ∈ R
n are randomly perturbed vectors, the

above theorem shows that the least singular value of

the matrix Mf (ã1, . . . , ãk) is inverse polynomial with

exponentially small failure probability, as long as k ≤
(1 − o(1))

(
n+�−1

�

)
(earlier results only establish this

when k is smaller by a exp(�) factor, because of par-

titioning co-ordinates). In fact, the above example will

be crucial to derive improved smoothed polynomial time

guarantees for robust subspace recovery even in the

presence of errors (Theorem VI.1).

The next setting we consider is one where the jth

column of M does not depend solely on ãj , but

on a small subset of the columns in {ã1, . . . , ãk} in

a structured form. Specifically, in the random matrix

ensembles that we consider, each of the R columns

of the matrix depends on a few of the vectors in

a1, . . . , ak as a “monomial” in terms of tensor products

i.e., each column is of the form u1 ⊗ u2 ⊗ · · · ⊗ u�

where u1, u2, . . . , u� ∈ {ã1, . . . , ãk}. To describe our

result here, we need some notation. For two monomials

u1⊗· · ·⊗u� and v1⊗· · ·⊗v�, we say that they disagree

in s positions if ui �= vi for exactly s different i ∈ [�].
For a fixed column j ∈ [R], s ∈ {0, 1, . . . , �}, let Δs(j)
represent the number of other columns whose monomial

disagrees with that of column j in exactly s positions,

and let Δs = maxj∈[R] Δs(j). (Note that Δ0 = 0 and

Δ� ≤ R by default).

Theorem II.2. Let {ã1, . . . , ãk} ⊆ R
n be a set of ρ-

perturbed vectors, let � ∈ Z+ be a constant, and let
M ∈ R

n�×R be a matrix whose columns M1, . . . ,MR

are tensor monomials in {ãi}i∈[k]. Let Δs be as above
for s = 1, . . . , �. If

�∑
s=1

Δs ·
(n
�

)�−s

≤ c
(n
�

)�

(2)

for some c ∈ (0, 1), then σR(M) > Ω�(1) · (ρ/n)�/
√
R

with probability at least 1−exp
(−Ω�(1−c)n+logR

)
.

The above statement will be useful in obtaining

smoothed polynomial time guarantees for learning over-

complete hidden markov models (Theorem II.6), and for

higher order generalizations of the FOOBI algorithm

of [16] that gives improved tensor decomposition al-

gorithms up to rank k = n��/2� for order � tensors
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(Theorem II.7). In both these applications, the matrix

of interest (call it M ′) is not a monomial matrix per

se, but we express its columns as linear combinations

of columns of an appropriate monomial matrix M .

Specifically, it turns out that M ′ = MP , and P has full

column rank (in a robust sense). For example, in the case

of overcomplete HMMs, each column of M ′ is a sum of

monomial terms of the form ãi1 ⊗ ãi2 ⊗ . . .⊗ ãi� , where

i1i2 . . . i� correspond to length-� paths in the graph being

learned. Each term corresponding to a length-� path only

shares dependencies with other paths that share a vertex.

a) Failure probability.: The theorems above em-

phasize the dependence on the failure probability. We

ensure that the claimed lower bounds on σmin hold with

a sufficiently small failure probability, say n−ω(1) or

even exponentially small (over the randomness in the

perturbations). This is important because in smoothed

analysis applications, the failure probability essentially

describes the fraction of points around any given point

that are bad for the algorithm. In many of these applica-

tions, the time/sample complexity, or the amount of error

tolerance (as in the robust subspace recovery application

we will see) has an inverse polynomial dependence

on the minimum singular value. Hence, if we have a

guarantee that σmin ≥ γ with probability ≥ 1−γ1/2 (as

is common if we apply methods such as the Carbery-

Wright inequality), we have that the probability of the

running time exceeds T (upon perturbation) is ≤ 1/
√
T .

Such a guarantee does not suffice to show that the

expected running time is polynomial (also called poly-

nomial smoothed complexity).

1) Techniques: Theorem II.1 crucially relies on the

following theorem, which may also be of independent

interest.

Informal Theorem II.3. Let V� be the space of all
symmetric order � tensors in R

n×n×···×n, and let S ⊂ V�

be an arbitrary subspace of dimension (1− δ)
(
n+1−�

�

)
,

for some 0 < δ < 1. Let Π⊥
S represents the projection

matrix onto the subspace of V� orthogonal to S. Then
for any vector x and its ρ-perturbation x̃, we have that
‖Π⊥

S x̃
⊗�‖2 ≥ 1/poly�(n, 1/ρ) with probability at least

1− exp
(− Ω�(δn)

)
.

The proofs of the theorems above use as a black-

box the smoothed analysis result of Bhaskara et al. [8]

and the improvements in Anari et al. [15] which shows

minimum singular value bounds (with exponentially

small failure probability) for tensor products of vectors

that have been independently perturbed. Given � × k

randomly perturbed vectors {ã(j)i : j ∈ [�], i ∈ [k]},

existing results [8], [15] analyze the minimum singular

value of a matrix M where the ith column (i ∈ [k]) is

given by ã
(1)
i ⊗ã

(2)
i ⊗· · ·⊗ã

(�)
i . However this setting does

not suffice for proving Theorem II.1, Theorem II.2, or

the different applications presented here because existing

results assume the following two conditions:

1) The perturbations to the � factors of the ith col-

umn i.e., a
(1)
i , . . . , a

(�)
i are independent. For proving

Theorem II.1 (and for Theorem II.5) we need to

analyze symmetric tensor products of the form x̃⊗�
i ,

where the perturbations across the factors are the

same.

2) Each column of M depends on a disjoint set of vec-

tors ã
(1)
i , . . . , ã

(�)
i , i.e., any vector ã

(j)
i is involved

in only one column. For proving Theorem II.2 (and

later in Theorems II.6 and II.7) however, the same

perturbed vector may appear in several columns of

M .

Our main tool for proving Theorem II.1, and Theo-

rem II.2 are various decoupling techniques to overcome

the dependencies that exists in the randomness for differ-

ent terms. Decoupling inequalities [23] are often used to

prove concentration bounds (bounds on the upper tail)

for polynomials of random variables. However, in our

case they will be used to establish lower bounds on the

minimum singular values. This has an anti-concentration

flavor, since we are giving an upper bound on the

“small ball probability” i.e., the probability that the

minimum singular value is close to a small ball around

0. For Theorem II.1 (and Theorem II.3) which handles

symmetric tensor products, we use a combination of

asymmetric decoupling along with a positive correlation

inequality for polynomials that is inspired by the work

of Lovett [24].

We remark that one approach towards proving lower

bounds on the least singular value for the random matrix

ensembles that we are interested in, is through a direct

application of anti-concentration inequalities for low-

degree polynomials like the Carbery-Wright inequality

(see [11] for smoothed analysis bounds using this ap-

proach). Typically this yields an ε = 1/poly(n) lower

bound on σmin with probability ε1/� (where � is the

degree). As we observed above, this cannot lead to

polynomial smoothed complexity for many problems.

Interestingly we prove along the way, a vector-valued

version of the Carbery-Wright anti-concentration in-

equality [20], [25] (this essentially corresponds to the

special case of Theorem II.1 when k = 1). In what

follows, we will represent a homogenous degree � mul-

tivariate polynomial gj : Rn → R using the symmetric
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tensor Mj of order � such that gj(x) = 〈Mj , x
⊗�〉

(please see Section III for the formal notation).

Informal Theorem II.4. Let ε, δ ∈ (0, 1), η > 0,
and let g : R

n → R
m be a vector-valued degree �

homogenous polynomial of n variables given by g(x) =

(g1(x), . . . , gm(x)) such that the matrix M ∈ R
m×n�

,
with the ith row being formed by the co-efficients of the
polynomial gi, has σδn�(M) ≥ η. Then for any fixed
u ∈ R

n, t ∈ R
m, and x ∼ N(0, ρ2/n)n we have

P

[
‖g(u+ x)− t‖2 < Ω�(εη) ·

( ρ�

n�

)]
< εΩ�(δn). (3)

See Theorem IV.2 for a more formal statement. The

main feature of the above result is that while we lose in

the “small ball” probability with the degree �, we gain

an mΩ(1) factor in the exponent on account of having a

vector valued function. The interesting setting of param-

eters is when � = O(1), ρ = 1/poly(n), ε = poly�(ρ/n)
and δ = n−o(1). We remark that the requirement of δn�

non-trivial singular values is necessary, as described in

Proposition IV.13.

The second issue mentioned earlier about [8], [15] is

that in many applications each column depends on many

of the same underlying few “base” vectors. Theorem II.2

identifies a simple condition in terms of the amount

of overlap between different columns that allows us to

prove robust linear independence for very different set-

tings like learning overcomplete HMMs and higher order

versions of the FOOBI algorithm. Here the decoupling

is achieved by building on the ideas in [14], by carefully

defining appropriate subspaces where we can apply the

existing results on decoupled tensor products [8], [15].

We now describe how the above results give new

smoothed analysis results for three different problems

in unsupervised learning.

B. Robust Subspace Recovery

Robust subspace recovery is a basic problem in

unsupervised learning where we are given m points

x1, . . . , xm ∈ R
n, an α ∈ (0, 1) fraction of which lie

on (or close to) a d-dimensional subspace T . When can

we find the subspace T , and hence the “inliers”, that

belong to this subspace? This problem is closely related

to designing a robust estimator for subspace recovery: a

β-robust estimator for subspace recovery approximately

recovers the subspace even when a β fraction of the

points are corrupted arbitrarily (think of β = 1−α). The

largest value of β that an estimator tolerates is called

the breakdown point of the estimator. This problem

has attracted significant attention in the robust statistics

community [26]–[28], yet many of these estimators are

not computationally efficient in high dimensions. On

the other hand, the singular value decomposition is not

robust to outliers. Hardt and Moitra [29] gave the first

algorithm for this problem that is both computation-

ally efficient and robust. Their algorithm successfully

estimates the subspace T when α > d/n, assuming a

certain non-degeneracy condition about both the inliers

and outliers.2 This algorithm is also robust to some

small amount of noise in each point i.e., the inliers need

not lie exactly on the subspace T . They complemented

their result with a computational hardness in the worst-

case (based on the Small Set Expansion hypothesis) for

finding the subspace when α < d/n.

We give a simple algorithm that for any constants

� ≥ 1, δ > 0 runs in poly(mn�) time and in a smoothed

analysis setting, provably recovers the subspace T with

high probability, when α ≥ (1 + δ)(d/n)�. Note that

this is significantly smaller than the bound of (d/n)
from [29] when � > 1. For instance in the setting

when d = (1 − η)n for some constant η > 0 (say

η = 1/2), our algorithms recovers the subspace when

the fraction of inliers is any constant α > 0 by choosing

� = O(log(α)/ log(1 − η)), while the previous result

requires that at least α > 1 − η of the points are

inliers. On the other hand, when d/n = n−Ω(1) the

algorithm can tolerate any inverse polynomially small

α, in polynomial time. In our smoothed analysis setting,

each point is given a small random perturbation – each

outlier is perturbed with a n-variate Gaussian N(0, ρ2)n

(think of ρ = 1/poly(n)), and each inlier is perturbed

with a projection of a n-variate Gaussian N(0, ρ2)n onto

the subspace T . Finally, there can be some adversarial

noise added to each point (this adversarial noise can in

fact depend on the random perturbations).

Informal Theorem II.5. For any δ ∈ (0, 1), � ∈ Z+ and
ρ > 0. Suppose there are m = Ω(n� + d/(δα)) points
x1, . . . , xm ∈ R

n which are randomly ρ-perturbed
according to the smoothed analysis model described
above, with an α ≥ (1 + δ)

(
d+�−1

�

)
/
(
n+�−1

�

)
fraction

of the points being inliers, and total adversarial noise
ε0 ≤ poly�(ρ/m). Then there is an efficient algorithm
that returns a subspace T ′ with ‖sinΘ(T, T ′)‖F ≤
poly�(ε0, ρ, 1/m) with probability at least 1 − exp

( −
Ω�(δn) + 2 logm

)− exp(−Ω(d logm)).

See Section VI for a formal statement, algorithm and

proof. While the above result gives smoothed analysis

2This general position condition holds in a smoothed analysis
setting.
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guarantees when α is at least (d/n)� < d/n, the hardness

result of [29] shows that finding a d-dimensional sub-

space that contains an α < d/n fraction of the points is

computationally hard assuming the Small Set Expansion

conjecture. Hence our result presents a striking contrast

between the intractability result in the worst-case and

a computationally efficient algorithm in a smoothed

analysis setting when α > (d/n)� for some constant

� ≥ 1. Further, we remark that the error tolerance of

the algorithm (amount of adversarial error ε0) does not

depend on the failure probability.

a) Techniques and comparisons.: The algorithm

for robust subspace recovery at a high level follows the

same approach as Hardt and Moitra [29]. Their main

insight was that if we sample a set of size slightly less

than n from the input, and if the fraction of inliers

is > (1 + δ)d/n, then there is a good probability of

obtaining > d inliers, and thus there exist points that

are in the linear span of the others. Further, since we

sampled fewer than n points and the outliers are also in

general position, one can conclude that the only points

that are in the linear span of the other points are the

inliers.

Our algorithm for handling smaller α is simple and

is also tolerant to an inverse polynomial amount of

adversarial noise in the points. Our first observation is

that we can use a similar idea of looking for linear

dependencies, but with tensored vectors! Let us illustrate

in the case � = 2. Suppose that the fraction of inliers

is > (1 + δ)
(
d+1
2

)
/
(
n+1
2

)
. Suppose we take a sample

of size slightly less than
(
n+1
2

)
points from the input,

and consider the flattened vectors x⊗ x of these points.

As long as we have more than
(
d+1
2

)
inliers, we expect

to find linear dependencies among the tensored inlier

vectors. However, we need to account for the adversarial

error in the points (this error could depend on the random

perturbations as well). For each point, we will look

for “bounded” linear combinations that are close to the

given point. Using Theorem II.3, we can show that such

dependencies cannot involve the outliers. This in turn

allows us to recover the subspace even when α > (d/n)�

for any constant � in a smoothed analysis sense.

We remark that the earlier least singular value bounds

of [8] can be used to show a weaker guarantee about

robust linear independence of the matrix formed by

columns x̃⊗�
i with a c� factor loss in the number of

columns (for a constant c ≈ e). This translates to

an improvement over [29] only in the regime when

d < n/c. Our tight characterization in Theorem II.3 is

crucial for our algorithm to beat the d/n threshold of

[29] for any dimension d < n.

Secondly, if there is no adversarial noise added to

the points, it is possible to use weaker concentration

bounds (e.g., Carbery-Wright inequality). In this case,

our machinery is not required (although to the best

of our knowledge, even an algorithm for this noise-

free regime with a breakdown point < d/n was not

known earlier). In the presence of noise, the weaker

concentration inequalities require a noise bound that is

tied to the intended failure probability of the algorithm

in a strong way. Using Theorem II.3 allows us to achieve

a large enough adversarial noise tolerance ε0, that does

not affect the failure probability of the algorithm.

C. Learning Overcomplete Hidden Markov Models

Hidden Markov Models (HMMs) are latent variable

models that are extensively used for data with a se-

quential structure, like reinforcement learning, speech

recognition, image classification, bioinformatics etc [30],

[31]. In an HMM, there is a hidden state sequence

Z1, Z2, . . . , Zm taking values in [k], that forms a station-

ary Markov chain Z1 → Z2 → · · · → Zm with transition

matrix P and initial distribution w = {wj}j∈[r] (as-

sumed to be the stationary distribution). The observation

Xt is represented by a vector in x(t) ∈ R
n. Given the

state Zt at time t, Xt (and hence x(t)) is conditionally

independent of all other observations and states. The

matrix O (of size n × r) represents the probability

distribution for the observations: the ith column Oi ∈ R
n

represents the expectation of Xt conditioned on the state

Zt = i i.e.

∀i ∈ [r], t ∈ [m], E[Xt|Zt = i] = Oi ∈ R
n.

In an HMM with continuous observations, the distribu-

tion of the observation conditioned on state being i can

be a Gaussian and ith column of O would correspond to

its mean. In the discrete setting, each column of O can

correspond to the parameters of a discrete distribution

over an alphabet of size n.

An important regime for HMMs in the context of

many settings in image classification and speech is

the overcomplete setting where the dimension of the

observations n is much smaller than state space r.

Many existing algorithms for HMMs are based on

tensor decompositions, and work in the regime when

n ≤ r [18], [32]. In the overcomplete regime, there

have been several works [17], [33], [34] that establish

identifiability (and identifiability with polynomial sam-

ples) under some non-degeneracy assumptions, but ob-

taining polynomial time algorithms has been particularly

challenging in the overcomplete regime. Very recently
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Sharan et al. [35] gave a polynomial time algorithm

for learning the parameters of an overcomplete discrete

HMMs when the observation matrix M is random (and

sparse), and the transition matrix P is well-conditioned,

under some additional sparsity assumptions on both the

transition matrix and observation matrix (e.g., the degree

of each node in the transition matrix P is at most

n1/c for some large enough constant c > 1). Using

Theorem II.2, we give a polynomial time algorithm in

the more challenging smoothed analysis setting where

entries of M are randomly perturbed with small random

Gaussian perturbations 3.

Informal Theorem II.6. Let η, δ ∈ (0, 1) be constants.
Suppose we are given a Hidden Markov Model with r
states and with n ≥ rη dimensional observations with
hidden parameters Õ, P . Suppose the transition matrix
P is d ≤ n1−δ sparse (both row and column) and
σmin(P ) ≥ γ1 > 0, and the each entry of the observation
matrix is ρ-randomly perturbed (in a smoothed analysis
sense), and the stationary distribution w ∈ [0, 1]r has
mini∈[r] wi ≥ γ2 > 0, then there is a polynomial time
algorithm that uses samples of time window � ≤ 1/(ηδ)
and recovers the parameters up to ε accuracy (in Frobe-
nius norm) in time (n/(ργ1γ2ε))

O(�), with probability at
least 1− exp

(− Ω�(n)
)
.

For comparison, the result of Sharan et al. [35] ap-

plies to discrete HMMs, and gives an algorithm that

uses time windows of size � = O(logn r) in time

poly(n, r, 1/ε, 1/γ1, 1/γ2)
� (there is no extra explicit

lower bound on n). But it assumes that the observation

matrix O is fully random, and has other assumptions

about sparsity about both O and P , and about non-

existence of short cycles. On the other hand, we can

handle the more general smoothed analysis setting for

the observation matrix O for n = rη (for any constant

η > 0), and assume no additional conditions about non-

existence of short cycles. To the best of our knowl-

edge, this gives the first polynomial time guarantees in

the smoothed analysis setting for learning overcomplete

HMMs.

Our results complement the surprising sample com-

plexity lower bound in Sharan et al. [35] who showed

that it is statistically impossible to recover the parameters

with polynomial samples when n = polylog(r), even

when the observation matrix is random. The algorithm

is based on an existing approach using tensor decom-

3While small Gaussian perturbations makes most sense in a con-
tinuous observation setting, we believe that these ideas should also
imply similar results in the discrete setting for an appropriate smoothed
analysis model.

positions [8], [17], [18], [35]. The robust analysis of

the above algorithm (Theorem II.6) follows by a simple

application of Theorem II.2.

D. Overcomplete Tensor Decompositions

Tensor decomposition has been a crucial tool in many

of the recent developments in showing learning guaran-

tees for unsupervised learning problems. The problem

here is the following. Suppose A1, . . . , AR are vectors

in R
n. Consider the s’th order moment tensor

Ms =
R∑
i=1

A⊗s
i .

The question is if the decomposition {Ai} can be

recovered given access only to the tensor Ms. This

is impossible in general. For instance, with s = 2,

the Ai can only be recovered up to a rotation. The

remarkable result of Kruskal [36] shows that for s > 2,

the decomposition in “typically” unique, as long as R
is a small enough. Several works [14], [16], [18], [37]

have designed efficient recovery algorithms in different

regimes of R, and assumptions on {Ai}. The other

important question is if the {Ai} can be recovered

assuming that we only have access to Ms + Err, for

some noise tensor Err.
Works inspired by the sum-of-squares hierarchy

achieve the best dependence on R (i.e., handle the largest

values of R), and also have the best noise tolerance, but

require strong incoherence (or even Gaussian) assump-

tions on the {Ai} [38], [39]. Meanwhile, spectral algo-

rithms (such as [8], [13]) achieve a weaker dependence

on R and can tolerate a significantly smaller amount of

noise, but they allow recoverability for smoothed vectors

{Ai}, which is considerably more general than recov-

erability for random vectors. The recent work of [14]

bridges the two approaches in the case s = 4.

Our result here is a decomposition algorithm for 2�’th
order tensors that achieves efficient recovery guarantees

in the smoothed analysis model, as long as R ≤ cn�

for a constant c. Our result is based on a generalization

of the “FOOBI algorithm” of Cardoso [16], [40], who

consider the case � = 2. We also give a robust analysis

of this algorithm (both the FOOBI algorithm for � = 2,

and our generalization to higher �): we show that the

algorithm can recover the decomposition to an arbitrary

precision ε (up to a permutation), as long as ‖Err‖ ≤
poly�(ε, 1/n, ρ), where ρ is the perturbation parameter

in the smoothed analysis model.

Informal Theorem II.7. Let � ≥ 2 be an integer.
Suppose we are given a 2�’th order tensor T =
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∑R
i=1 A

⊗2�
i + Err, where Ai are ρ-perturbations of

vectors with polynomially bounded length. Then with
probability at least 1 − exp(−Ω�(n)), we can find the
Ai up to any desired accuracy ε (up to a permutation),
assuming that R < cn� for a constant c = c(�), and
‖Err‖F is a sufficiently small polynomial in ε, ρ, 1/n.

See Theorem VIII.1 and Section VIII for a formal

statement and details. We remark that there exists differ-

ent generalizations of the FOOBI algorithm of Cardoso

to higher � > 2 [41]. However, to the best of our knowl-

edge, there is no analysis known for these algorithms that

is robust to inverse polynomial error. Further our new

algorithm is a very simple generalization of Cardoso’s

algorithm to higher �.

This yields an improvement in the best-known depen-

dence on the rank in such a smoothed analysis setting

— from n�−1 (from [8]) to n�. Previously such results

were only known for � = 2 in [14], who analyzed an

SoS-based algorithm that was inspired by the FOOBI

algorithm (to the best of our knowledge, their results

do not imply a robust analysis of FOOBI). Apart from

this quantitative improvement, our result also has a more

qualitative contribution: it yields an algorithm for the

problem of finding symmetric rank-1 tensors in a linear

subspace.

Informal Theorem II.8. Suppose we are given a basis
for an R dimensional subspace S of Rn�

that is equal to
the span of the flattenings of A⊗�

1 , A⊗�
2 , . . . A⊗�

R , where
the Ai are unknown ρ-perturbed vectors. Then the Ai

can be recovered in time poly�(n, 1/ρ) with probability
at least 1 − exp(−Ω�(n)). Further, this is also true
if the original basis for S is known up to an inverse-
polynomial perturbation.

a) Techniques.: At a technical level, the FOOBI

algorithm of [16], [40] for decomposing fourth-order ten-

sors rests on a rank-1 detecting “device” Φ that evaluates

to zero if the inputs are a symmetric product vector, and

is non-zero otherwise. We construct such a device for

general �, and further analyze the condition number of

an appropriate matrix that results using Theorem II.2.

We also give an analysis of the robustness of the

FOOBI algorithm of [16] and our extension to higher

�. While such robustness analyses are often straight-

forward, and show that each of the terms estimated

in the proofs will be approximately preserved. In the

case of the FOOBI algorithm, this turns out to be

impossible to do (this is perhaps one reason why proving

robust guarantees for the FOOBI algorithm even for

� = 2 has been challenging) . The reason is that the

algorithm involves finding the top R eigenvectors of the

flattened moment matrix, and setting up a linear system

of equations in which the coefficients are non-linear
functions of the entries of the eigenvectors. Now, unless

each of the eigenvectors is preserved up to a small error,

we cannot conclude that the system of equations that

results is close to the one in the noise-free case. Note

that for eigenvectors to be preserved approximately after

perturbation, we will need to have sufficient gaps in the

spectrum to begin with. This turns out to be impossible

to guarantee using current smoothed analysis techniques.

We thus need to develop a better understanding of

the solution to the linear system, and eventually argue

that even if the system produced is quite different, the

solution obtained in the end is close to the original.

III. PRELIMINARIES

In this section, we introduce notation and preliminary

results that will be used throughout the rest of the paper.

Given a vector a ∈ R
n and a ρ (typically a small

inverse polynomial in n), a ρ-perturbation of a is ob-

tained by adding independent Gaussian random variables

xi ∼ N(0, ρ2/n) to each coordinate of a. The result of

this perturbation is denoted by ã.

We will denote the singular values of a matrix M
by σ1(M), σ2(M), . . ., in decreasing order. We will

usually use k or R to represent the number of columns

of the matrix. The maximum and minimum (nonzero)

singular values are also sometimes written σmax(M) and

σmin(M).
While estimating the minimum singular value of a

matrix can be difficult to do directly, it is closely related

to the leave-one-out distance of a matrix, which is often

much easier to calculate.

Definition III.1. Given a matrix M ∈ R
n×k with

columns M1, . . . ,Mk, the leave-one-out distance of M
is

�(M) = min
i

dist(Mi, Span{Mj : j �= i}). (4)

The leave-one-out distance is closely related to the

minimum singular value, up to a factor polynomial in

the number of columns of M [22].

Lemma III.2. For any matrix M ∈ R
n×k, we have

�(M)√
k

≤ σmin(M) ≤ �(M). (5)

a) Tensors and multivariate polynomials.: An

order-� tensor T ∈ R
n×n×···×n has � modes each of

dimension n. Given vectors u, v ∈ R
n we will denote

by u⊗ v ∈ R
n×n the outer product between the vectors
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u, v, and by u⊗� the outer product of u with itself �
times i.e., u⊗ u⊗ · · · ⊗ u.

We will often identify an �th order tensor T (with

dimension n in each mode) with the vector in R
n�

obtained by flattening the tensor into a vector. For

sake of convenience, we will sometimes abuse notation

(when the context is clear) and use T to represent both

the tensor and flattened vector interchangeably. Given

two �th order tensors T1, T2 the inner product 〈T1, T2〉
denotes the inner product of the corresponding flattened

vectors in R
n�

.

A symmetric tensor T of order � satisfies

T (i1, i2, . . . , i�) = T (iπ(1), . . . , iπ(�)) for any

i1, . . . , i� ∈ [n] and any permutation π of the elements

in [�]. It is easy to see that the set of symmetric tensors

is a linear subspace of Rn⊗�

, and has a dimension equal

to
(
n+�−1

�

)
. Given any n-variate degree � homogenous

polynomial g ∈ R
n → R, we can associate with g

the unique symmetric tensor T of order � such that

g(x) = 〈T, x⊗�〉.
b) Minimum singular value lower bounds for de-

coupled tensor products.: We will use as a black box

high confidence lower bounds on the minimum singular

value bounds for decoupled tensor products. The first

statement of this form was shown in [8], but this had a

worse polynomial dependence on n in both the condition

number and the exponent in the failure probability. The

following result in [15] gives a more elegant proof, while

also achieving much better bounds in both the failure

probability and the minimum singular value.

Lemma III.3 ( [15], Lemma 6). Let p ∈ (0, 1], δ ∈ (0, 1)

be constants, and let W ⊆ R
n⊗�

be an arbitrary sub-
space of dimension at least δn�. Given any x1, · · · , x� ∈
R

n, then for their random perturbations x̃1, · · · , x̃�

where for each i ∈ [�], x̃i = xi +N(0, ρ2i /(2n�))
n with

ρ2i ≥ ρ2, we have

P

[
‖ΠW (x̃1 ⊗ · · · ⊗ x̃�)‖2 <

c1(�)ρ
�

n�
· p�

]
≤ pc2(�)δn

where c1(�), c2(�) are constants that depend only on �.

We remark that the statement of Anari et al. [15] is

stated in terms of the distance to the orthogonal subspace

W⊥, as long as dim(W⊥) ≤ c�n� for some c < 1; this

holds above for c = 1− δ/�.

IV. DECOUPLING AND SYMMETRIC TENSOR

PRODUCTS

In this section we prove Theorem II.1 and related the-

orems about the least singular value of random matrices

in which each column is a function of a single random

vector. The proof of Theorem II.1 relies on the following

theorem which forms the main technical theorem of this

section.

Theorem IV.1 (Same as Theorem II.3). Let δ ∈ (0, 1),
and let V� be space of all symmetric order � tensors
in R

n×n×···×n (dimension is D =
(
n+�−1

�

)
), and let

W ⊂ V� be an arbitrary subspace of dimension δD.
Then we have for any x ∈ R

n and x̃ = x + z where
z ∼ N(0, ρ2/n)n

P
z

[
‖ΠW x̃⊗�‖2 ≥ c1(�)ρ

�

n�

]
≥ 1− exp

(
− c2(�)δn

)
,

where c1(�), c2(�) are constants that depend only on �.

Theorem II.1 follows by combining the above theorem

with an additional lemma that uses a robust version of

Sylvester’s inequality for products of matrices (see Sec-

tion IV-C). Our main tool will be the idea of decoupling,

along with Lemma III.3 that handles tensor products of

vectors that have been perturbed independently. While

decoupling inequalities [23] are often used to prove con-

centration bounds for polynomials of random variables,

here this will be used to establish lower bounds on

projections and minimum singular values, which have

more of an anti-concentration flavor.

In fact we can use the same ideas to prove the

following anti-concentration statement that can be seen

as a variant of the well-known inequality of Carbery and

Wright [20], [25]. In what follows, we will represent

a degree � multivariate polynomial gj : R
n → R

using the symmetric tensor Mj of order � such that

gj(x) = 〈Mj , x
⊗�〉.

Theorem IV.2. Let ε, δ ∈ (0, 1), η > 0 and let � ≥ 2
be an integer. Let g : R

n → R
m be a vector-valued

degree � homogenous polynomial of n variables given
by g(x) = (g1(x), . . . , gm(x)) where for each j ∈ [m],
gj(x) = 〈Mj , x

⊗�〉 for some symmetric order � tensor
Mj ∈ R

n�

. Suppose the matrix M ∈ R
m×n�

formed
with the (Mj : j ∈ [m]) as rows has σδn�(M) ≥ η, then
for any fixed u ∈ R

n, t ∈ R
m, and z ∼ N(0, ρ2/n)n we

have

P

[
‖g(u+ z)− t‖2 < c(�)εη ·

( ρ�

n�

)]
< εc

′(�)δn (6)

where c(�), c′(�) > 0 are constants that depend only on
�.

Remark IV.3. Comparison to Carbery-Wright inequality:
Anti-concentration inequalities for polynomials are often

stated for a single polynomial. They take the following

form: if g : R
n → R is a degree-� polynomial with
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‖g‖2 ≥ η, and x ∼ N(0, 1)n (or other distributions

like the uniform measure on a convex body), then the

probability that

P
x∼N(0,1)n

[
|g(x)− t| < εη

]
≤ O(�) · ε1/�.

Our statement in Theorem IV.2 applies to vector valued
polynomials g. Here, if the gj are “different enough”, one

can hope that the dependence above becomes O(εm/�),
where m is the number of polynomials. Our statement

may be viewed as showing a bound that is qualitatively

of this kind (albeit with a much weaker dependence on

�, when � ≥ 2), when m ≥ δn�. We capture the notion

of gj being different using the condition on the singular

value of the matrix M . We also note that the paper of

Carbery and Wright [20] does indeed consider vector-

valued polynomials, but their focus is on obtaining ε1/�

type bounds with a better constant for ε. To the best of

our knowledge, none of the known results try to get an

advantage due to having multiple gj .

Remark IV.4. While the condition of δn� non-negligible

singular values seems strong, this in fact turns out to

be necessary. Proposition IV.13 shows that the relation

between the failure probability and the number of non-

negligible singular values is tight up to constants that

depend only on �. In fact, m ≥ n�−1 is necessary to get

any non-trivial bounds. Getting a tight dependence in the

exponent in terms of � is an interesting open question.

The main ingredient in the proof of the above theo-

rems is the following decoupling inequality.

Proposition IV.5. [Anticoncentration through Decou-
pling] Let ε > 0 and let � ≥ 2 be an integer, and let ‖·‖
represent any norm over Rn. Let g : Rn → R

m be given
by g(x) = (g1(x), . . . , gm(x)) where for each j ∈ [m],
gj(x) := 〈Mj , x

⊗�〉 is a multivariate homogeneous
polynomial of degree �, and Mj is a symmetric tensor
of order �. For any fixed u ∈ R

n, t ∈ R
m, and

z ∼ N(0, ρ2)n we have

P
z

[
‖g(u+ z)− t‖ ≤ ε

]
≤

≤ P

[
‖ĝ(u+ z0, z1, z2, . . . , z�−1)‖ ≤ ε/�!

]1/2�−1

, (7)

where ∀j ∈ [m], ĝj(u + z0, z1, . . . , z�−1) = 〈Mj , (u +
z0)⊗ z1⊗· · ·⊗ z�−1〉, z0 ∼ N(0, ρ2(�+1)/(2�))n, and
z1, z2, . . . , z�−1 ∼ N(0, ρ2/(2�))n.

Note that in the above proposition, the polynomials

ĝj(z0, z1, . . . , z�−1) = 〈Mj , (u+ z0)⊗ z1 ⊗ · · · ⊗ z�−1〉
correspond to decoupled multilinear polynomials of de-

gree �. Unlike standard decoupling statements, here the

different components u+ z0, z1, . . . , z�−1 are not identi-

cally distributed. We also note that the proposition itself

is inspired by a similar lemma in the work of Lovett [24]

on an alternate proof of the Carbery-Wright inequality.

Indeed the basic inductive structure of our argument is

similar (going via Lemma IV.8 below), but the details of

the argument turn out to be quite different. In particular

we want to consider a random perturbation around an

arbitrary point u, and moreover the proposition above

deals with vector-valued polyomials g, as opposed to

real valued polynomials in [24].

Theorem IV.1 follows by combining Proposition IV.5

and the theorem for decoupled tensor products

(Lemma III.3). This will be described in Section IV-B.

Later in Section A, we also give an alternate simple proof

of Theorem IV.1 for � = 2 that is more combinatorial.

First we introduce the slightly more general setting for

decoupling that also captures the required smoothed

analysis statement.

A. Proof of Proposition IV.5

We will start with a simple fact involving signed

combinations.

Lemma IV.6. Let α0, α1, . . . , αm be real numbers, and
let ζ1, ζ2, . . . , ζm ∈ {±1} be independent Rademacher
random variables. Then

E
ζ

[(
α0 + α1ζ1 + · · ·+ αmζm

)m+1 ∏
i∈[m]

ζi

]
=

= (m+ 1)! · α0α1 . . . αm.

Proof. For a subset S ⊆ [m], let ξ(S) =
∏

i∈S ζi. Then

it is easy to check that E
[
ξ(S)

∏
i∈[m] ζi

]
= 0 if S �=

{1, 2, . . . ,m}, and 1 if S = [m]. Applying this along

with the multinomial expansion for
(
α0 + α1ζ1 + · · ·+

αmζm
)m

gives the lemma.

Lemma IV.7. Consider any symmetric order � tensor T ,
a fixed vector x ∈ R

n , and let z1 ∼ N(0, ρ21)
n, . . . , z� ∼

N(0, ρ2�)
n be independent random Gaussians. Then we

have ∑
ζ2,...,ζ�∈±1

( �∏
i=2

ζi

)
〈T, (x+z1+ζ2z2+· · ·+ζ�z�)

⊗�〉 =

= 2�−1�! · 〈T, (x+ z1)⊗ z2 ⊗ · · · ⊗ z�〉. (8)

Note that the right side corresponds to the eval-

uation of the tensor T at a random perturbation of

(x, 0, 0, . . . , 0).

Proof. First, we observe that since T is symmetric, it

follows that 〈T, u1⊗u2⊗· · ·⊗u�〉 = 〈T, uπ(1)⊗uπ(2)⊗
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· · · ⊗ uπ(�)〉 for any permutation π on (1, 2, . . . , �). Let

u = x+z1, and let ζ2, ζ3, . . . , ζ� ∈ {±1} be independent

Rademacher random variables. For any symmetric de-

composition into rank-one tensors T =
∑

j λjv
⊗�
j (note

that such a decomposition always exists for a symmetric

tensor; see [42] for example), we have for every x ∈ R
n,

〈T, x⊗�〉 = ∑
j λj〈vj , x〉�. Applying Lemma IV.6 (with

m = �− 1) to each term separately

∀j, E
ζ2,...,ζ�

[( �∏
i=2

ζi

)
〈v⊗�

j , (u+ζ2z2+· · ·+ζ�z�)
⊗�〉

]
=

= �! · 〈v⊗�
j , u⊗ ζ2 ⊗ · · · ⊗ ζ�〉.

Combining them, we get

E
ζ2,ζ3,...,ζ�

[( �∏
i=2

ζi

)
〈T, (u+ ζ2z2 + · · ·+ ζ�z�)

⊗�〉
]
=

= �! · 〈T, u⊗ z2 ⊗ z3 ⊗ · · · ⊗ z�〉
= �! · 〈T, (x+ z1)⊗ z2 ⊗ z3 ⊗ · · · ⊗ z�〉.

Our proof of the anti-concentration statement (Propo-

sition IV.5) will rely on the signed combination of vec-

tors given in Lemma IV.7 and on a positive correlation

inequality that is given below.

Lemma IV.8. Let z ∼ N(0, ρ2)n be an n-variate
Gaussian random variable, and let z0 ∼ N(0, ρ2(� +
1)/(2�))n and z1, z2, . . . , z�−1 ∼ N(0, ρ2/(2�))n be
a collection of independent n-variate Gaussian random
variables. Then for any measurable set S ⊂ R

n we have

P
z

[
z ∈ S

]
≤ P

z

[ ∧
ζj∈{±1}

(
z0+

∑�−1
j=1 ζjzj

) ∈ S
]1/(2�−1)

(9)

This inequality and its proof are inspired by the work

of Lovett [24] mentioned earlier. The main advantage

in our inequality is that the right side here involves

the particular signed combinations of the function val-

ues at 2�−1 points from � independent copies that di-

rectly yields the asymmetric decoupled product (using

Lemma IV.7).

Proof. Let x0, x1, . . . , x�−1 ∼ N(0, ρ2/�)n, and for

each k ∈ [�−1], let ŷk ∼ N(0, ρ2(k+2)/(2�))n. Clearly

P[z ∈ S] = P[x0 + · · · + x�−1 ∈ S]. Let f(z) = 1z∈S

represent the indicator function of S. For 0 ≤ k ≤ �−1,

let

Ek = E
ŷk,z1,...,zk,
xk+1,...,x�−1

[ ∏
ζ1,...,ζk∈{±1}

f
(
ŷk+

+

k∑
j=1

ζjzj +
�−1∑

j=k+1

xj

)]

We will prove that for each k ∈ [�− 1], E2
k−1 ≤ Ek.

Using Cauchy-Schwartz inequality, we have

E2
k−1 =

(
E

ŷk−1,z
xk+1,...,x�−1

E
xk

[ ∏
ζ1,...,ζk−1∈{±1}

f
(
ŷk−1+

+
∑k−1

j=1 ζjzj +
∑�−1

j=k xj

)])2

≤ E
ŷk−1,xk+1,...,x�−1

z1,...,zk−1

(
E
xk

[ ∏
ζ1,...,ζk−1∈{±1}

f
(
ŷk−1+

+
∑k−1

j=1 ζjzj +
∑�−1

j=k xj

)])2

.

Now if yk, zk are i.i.d variables distributed as

N(0, ρ2/(2�))n, then xk, yk+zk, yk−zk are identically

distributed. More crucially, yk + zk and yk − zk are

independent! Hence

E2
k−1 ≤ E

ŷk−1,xk+1,...,x�−1
z1,...,zk−1

(
E

yk,zk∼N(0,
ρ2

2� ))
n

[
∏

ζ1,...,ζk−1∈{±1}
f
(
ŷk−1 +

∑k−1
j=1 ζjzj+

+ (yk + zk) +

�−1∑
j=k+1

xj

)]
× E

yk,zk∼N(0,
ρ2

2� ))
n

[ ∏
ζ1,...,ζk−1∈{±1}

f
(
ŷk−1+

+
∑k−1

j=1 ζjzj + (yk − zk) +
∑�−1

j=k+1 xj

)])
= E

ŷk−1,xk+1,...,x�−1
z1,...,zk−1

E

yk,zk∼N(0,
ρ2

2� ))
n

[
∏

ζ1,...,ζk−1∈{±1}
f
(
ŷk−1 +

∑k−1
j=1 ζjzj+

+ (yk + zk) +
∑�−1

j=k+1 xj

)
× f

(
ŷk−1 +

∑k−1
j=1 ζjzj + (yk − zk)+

+
∑�−1

j=k+1 xj

)]
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= E
ŷk,xk+1,...,x�−1

z1,...,zk

[ ∏
ζ1,...,ζk∈{±1}

f
(
ŷk+

+
∑k

j=1 ζjzj +
∑�−1

j=k+1 xj

)]
,

where the last step follows by identifying ŷk−1+yk with

ŷk. The proof of the lemma is completed by observing

that E0 = P[ŷ0 + x1 + · · ·+ x� ∈ S] = P[z ∈ S].

We now proceed to the proof of the main decoupling

statement.

Proof of Proposition IV.5. Let S := {z ∈ R
n : ‖g(z +

u) − t‖ ≤ ε}. Let z0 ∼ N(0, ρ2(� + 1)/(2�))n and

z1, . . . , z�−1 ∼ N(0, ρ2/(2�))n be independent n-variate

Gaussian random variables. From Lemma IV.8 we have

for z ∼ N(0, ρ2)n,

P
z

[
‖g(z + u)− t‖ ≤ ε

]
≤

≤ P
z0,...,z�−1

[ ∧
ζ1,...,ζ�−1∈{±1}

(
‖g(u+ z0+

+
∑�−1

j=1 ζjzj)− t‖ ≤ ε
)]1/(2�−1)

≤ P
z0...z�−1

[ ∑
ζ1,...,ζ�−1∈{±1}

‖g(u+ z0+

+
∑�−1

j=1 ζjzj)− t‖ ≤ 2�−1ε
]1/(2�−1)

≤ P
z0...z�−1

[∥∥∥ ∑
ζ1,...,ζ�−1∈{±1}

( �−1∏
j=1

ζj
)
g
(
u+ z0+

+
∑�−1

j=1 ζjzj
)∥∥∥ ≤ 2�−1ε

]1/(2�−1)

,

where the last inequality follows from triangle inequal-

ity, and observing that the signed combinations of t
cancel out when � ≥ 2. Now applying Lemma IV.7 for

each i ∈ [m], we get

P
z∼N(0,ρ2)n

[
‖g(z + u)− t‖ ≤ ε

]
≤

≤ P
z0,...,z�−1

[
‖ĝ(u+z0, z1, . . . , z�−1)‖ ≤ ε/�!

]1/(2�−1)

.

B. Proofs of Theorem IV.1 and Theorem IV.2

Proof of Theorem IV.1. Let m = δD, and let

M1,M2, . . . ,Mm be an orthonormal basis of symmetric

tensors in W ⊂ R
n⊗�

. We will also denote by M
the m × n� matrix formed by flattening M1, . . . ,Mm

respectively. For each j ∈ [m], let gj(x) = 〈Mj , x
⊗�〉.

Let x̃ = x + z where z ∼ N(0, ρ2/n)n. We would

like to lower bound ‖ΠW x̃⊗�‖2 = ‖g(x + z)‖2. Using

Proposition IV.5 with t = 0, for all ε > 0, we have

P

[
‖g(x+ z)‖2 < ε

]
≤

≤ P

[
‖ΠW (x+z0)⊗z1⊗· · ·⊗z�−1‖2 < ε/�!

]1/(2�−1)

,

(10)

where z0 ∼ N(0, ρ2(�+1)
2�n )n, z1, z2, . . . , z�−1 ∼

N(0, ρ2

2�n )
n. Then

P

[
‖ΠW x̃⊗�‖2 <

c(�)ρ�

n�

]
≤ exp

(
− c′(�)δn

)
, (11)

with c(�), c′(�) > 0 being constants that depend only on

�. The last inequality follows from (10) and Lemma III.3

applied with p = 1/e, x1 = x, x2 = x3 = · · · =
x� = 0, and δ′ = δ/��. This concludes the proof of

Theorem IV.1.

Please see Appendix A for an alternate combinatorial

proof when � = 2. Note that we can also obtain a

similar statement for general lower bound of εη with

ε ∈ (0, 1/poly(n)) (as in Theorem IV.2), where the

failure probability becomes εΩ�(δn). The proof is exactly

the same, except that we can apply Lemma III.3 with

p = ε1/� instead. Finally, the proof of Theorem IV.2

is almost identical to Theorem IV.1. In fact Theo-

rem IV.2 essentially corresponds to the special case of

Theorem II.1 when k = 1. We include a proof of

Theorem IV.2 in Appendix A.

C. Condition Number Lower Bounds for Arbitrary Poly-
nomials

We are now ready to complete the proof of Theo-

rem II.1. We start by re-stating the theorem.

Theorem IV.9 (Same as Theorem II.1). Let � ∈ Z+ be
a constant and let a1, a2, . . . , ak ∈ R

n be any arbitrary
collection of vectors, let f1, f2, . . . , fm be a collection
of arbitrary homogeneous polynomials fi : R

n → R of
degree � given by

fi(x) =
∑

J=(j1,...,j�)∈([n]
� )

j1≤j2≤···≤j�

Ui(j1, . . . , j�)xj1xj2 . . . xj� ,

and let Mf (a1, . . . , ak) =
(
fi(aj)

)
i∈[m],j∈[k]

be the
m×k matrix formed by applying each of these polynomi-
als with the k vectors a1, . . . , ak. Denote by U ∈ R

m×D

with D =
(
n+�−1

�

)
, with row i ∈ [m] representing
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coefficients of fi. We have that with probability at least
1− exp

(− Ω�(δn) + log k
)

that

σk

(
Mf (ã1, . . . , ãk)

)
≥ Ω�(1)√

k
· ρ

�

n�
· σk+δD(U), (12)

where ãj represents a random perturbation of aj with
independent Gaussian noise N(0, ρ2/n)n.

Remark IV.10. We note that the condition on U is almost

tight, since σk(U) being non-negligible is a necessary

condition (irrespective of A). Proposition IV.13 shows

that the additive δn� term in number of non-negligble

singular values is necessary even when k = 1. Also note

that by choosing a projection matrix U for a subspace

of dimension δD, we recover Theorem IV.1. Finally as

before, we can obtain an analogous statement for ε ∈
(0, 1/poly�(n)) as in Theorem IV.2 (see Section IV-B).

Definition IV.11. Let D =
(
n+�−1

�

)
. For x1, · · · , xn ∈

R, P�(x1, · · · , xn) ∈ R
D is a vector whose entries

corresponding to D different degree-� monomials of

x1, · · · , xn.

The idea behind the proof is to view Mf (a1, . . . , ak)
as the product of a coefficient matrix and the matrix

whose ith column is P�(ai). Call the latter matrix Y .

The following lemma show how to use the property that

Theorem IV.2 gives about Y to show Theorem II.1.

Lemma IV.12. Let δ ∈ (0, 1), and let U be a D′ ×D
matrix, and let Y ∈ R

D×R be a random matrix
with independent columns Ỹ1, Ỹ2, . . . , ỸR satisfying the
following condition: for each j ∈ [R], and any fixed
subspace V of dimension at least δD, ‖ΠV Ỹj‖2 ≥ κ1

with probability at least 1 − γ/R over the randomness
in Ỹj . Then assuming σR+δD(U) ≥ κ2, we have that
σR(UY ) ≥ κ1κ2/

√
R with probability at least 1− γ.

Proof. For convenience let r := R+ δD. We will lower

bound the minimum singular value of M = UY using

the leave-one-out-distance. Fix an j ∈ [R]; we want

column Mj = UỸj to have a non-negligible component

orthogonal to W = span
({UỸi : i ∈ [R], j �= i}) w.h.p.

Let ΠW ,ΠW⊥ be the projectors onto the space

W,W⊥ respectively. Note that σr(U) = σR+δD ≥ κ2,

and σD′−R+1(ΠW⊥) ≥ 1. We can use the following

robust version of Sylvester’s inequality for products of

matrices using the variational characterization of singular

values to conclude

σr−R+1

(
ΠW⊥U

) ≥ σD′−R+1

(
ΠW⊥

)
σr(U)

≥ κ2.

Let V be the subspace spanned by the top r −R+ 1
right singular vectors of ΠW⊥U . Since the dimension

of V is at least r − R + 1 ≥ δD, we can then use the

condition of the lemma to conclude that with probability

at least 1 − γ/R, ‖ΠV Ỹj‖2 ≥ κ2κ1. Hence, by using a

union bound over all j ∈ [R] and using the leave-one-out

distance the lemma follows.

We can now complete the proof of the main result of

the section.

Proof of Theorem II.1. The idea is to apply

Lemma IV.12 with D′ = m,D =
(
n+�−1

�

)
, R = k,

where U is the corresponding coefficient matrix, and Y
is the matrix whose jth column is ã⊗�

j . Note that the

naive representation of ã⊗�
j ∈ R

n⊗�

is in n� dimensions,

whereas the rows of the co-efficient matrix U is in R
D.

However ã⊗�
j are elements of the D-dimensional space

of symmetric tensors of order � (alternately each row of

U can be seen as a n� dimensional vector constructed

by flattening the corresponding symmetric order � tensor

for that row of U ). Hence, Theorem IV.1 implies that

Y satisfies the conditions of Lemma IV.12, and this

completes the proof.

D. Tight Example for Theorem II.1 and IV.2

We now give a simple example that demonstrates that

the condition on many non-trivial singular values for the

matrix M that encodes g is necessary.

Proposition IV.13. In the notation of Theorem IV.2, for
any r ≥ 1, there exists a matrix M ∈ R

m×n�

(where
m = rn�−1), with the jth row corresponding to a sym-
metric order � tensor Mj , such that σrn�−1(M) = Ω�(1),
but

P
z∼N(0,1/n)n

[
‖g(z)‖2 = ‖Mz⊗�‖ ≤ ε

]
≥ (cε)O�(r),

for some absolute constant c > 0.

Considering the subspace of symmetric tensors

spanned by the rows of M also gives a similar tight

example for Theorem IV.1. Moreover, the above example

also gives a tight example for Theorem II.1 even when

k = 1, by considering the function f(x) := g(x), and

a1 = 0 (so ã1 = z).

Proof. Let e1, . . . , en constitute the standard basis

for R
n. Let U be the space R

n�−1

, and let V ⊂
R

n be the subspace spanned by e1, e2, . . . , er. Let

E1, E2, . . . , En�−1 ∈ R
n�−1

constitute the standard basis

of U given by all the � − 1 wise tensor products of

e1, . . . , en. Consider the product space W = U ⊗ V ,
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and let B be the matrix whose m = rn�−1 rows

correspond to the orthonormal basis of W given by

{EI ⊗ ej : I ∈ [n]�−1, j ∈ [r]}. Note that each

of these vectors are 1-sparse. Let g : R
n → R

m be

given by ∀j ∈ [m], gj(x) = 〈Bj , x
⊗�〉. First note

that by definition, ‖g(x)‖2 = ‖ΠU⊗Vx⊗�‖2. Hence, if

z ∼ N(0, 1/n)n, we have

P
z

[
‖g(z)‖2 ≤ ε

]
= P

z

[
‖ΠU⊗Vz⊗�‖2 ≤ ε

]
= P

[
‖ΠUz⊗(�−1)‖‖ΠVz‖ ≤ ε

]
≥ P

[
‖ΠVz‖ ≤ ε/2, ‖z‖ ≤ 21/(�−1)

]
= P

[
‖ΠVz‖ ≤ ε/2 | ‖z‖ ≤ 21/(�−1)

]
· (1− o(1))

≥ P

[
‖ΠVz‖ ≤ ε/2

]
· (1− o(1))

≥ (cε)r,

for some absolute constant c > 0, using standard

properties of Gaussians. The second-to-last step follows

by Lemma A.1 in the Appendix.

We now just need to give a lower bound of Ω(rn�−1)
for the number of non-trivial singular values of the

matrix M , where Mj is the symmetric order � tensor

representing gj i.e., 〈Mj , x
⊗�〉 = 〈Bj , x

⊗�〉 for every

x ∈ R
n. In other words Mj is just the symmetrization

(projection onto the space of all symmetric tensors) of

Bj . Note that each Mj is �! sparse (since Bj were 1-

sparse). Hence there are at least rn�−1/�! vectors Mj

which have disjoint support. Hence at least rn�−1/�!
singular values of M are at least 1/

√
�!, as required.

V. POLYNOMIALS OF FEW RANDOM VECTORS

In this section, we consider random matrix ensembles,

where each column is a constant degree “monomial”

involving a few of the columns. We will first consider

a matrix M whose columns are degree � monomials in

the input vectors ã1, . . . , ãk (that is, tensors of the form

ãf(1) ⊗ . . . ⊗ ãf(�) with f(i) ∈ [k] for i = 1, . . . , �).
Since the same vector may appear in many columns or

multiple times within the same column, there are now

dependencies in the perturbations between columns as

well as within a column, so we cannot apply [8] directly.

We deal with these dependencies by extending an idea of

Ma, Shi and Steurer [14], carefully defining appropriate

subspaces that will allow us to decouple the randomness.

Since one type of dependence comes from the same

input vector appearing in many different columns, it is

natural to require that the number of these overlaps be

small. Because of the decoupling technique used to avoid

dependencies within a column, the troublesome overlaps

are only those in which the same input vector appears

in two different columns of M in the same position

within the tensor product. This motivates the following

definition.

Definition V.1. Let M be a matrix whose columns

M1, . . . ,MR consist of order-� tensor products of

{ã1, . . . , ãk}. For s ∈ [�] and a fixed column Mi, let

Δs(i) be the number of other columns that differ from

Mi in exactly s spots. (If Mi = ãf(1) ⊗ . . .⊗ ãf(�) and

Mj = ãf ′(1) ⊗ . . .⊗ ãf ′(�), then the number of spots in

which Mi and Mj differ is |{i : f(i) �= f ′(i)}|.) Finally,

let Δs = maxi Δs(i).

Theorem V.2 (Same as Theorem II.2). Let
{ã1, . . . , ãk} ⊆ R

n be a set of ρ-perturbed vectors, let
� ∈ Z+ be a constant, and let M ∈ R

n�×R be a matrix
whose columns M1, . . . ,MR are tensor monomials in
{ãi}. Let Δs be as above for s = 1, . . . , �. If

�∑
s=1

Δs ·
(n
�

)�−s

≤ c
(n
�

)�

(13)

for some c ∈ (0, 1), then σR(M) > Ω�(1) · (ρ/n)�/
√
R

with probability at least 1−exp(−Ω�(1)(1−c)n+logR).

Remark V.3. The condition (13) is tight up to a multi-

plicative constant depending only on �. We give a simple

upper bound on Δs. Assume σR(M) > 0, and fix a

column Mi of M . There are
(
�
s

)
ways to choose a set

of s spots in which to differ from Mi, and once we

make this choice, the dimension of the available space

is ns since each of the s spots contributes n dimensions.

Therefore the subspace of R
n�

consisting of all tensors

that differ from Mi in exactly s spots has dimension at

most
(
�
s

)
ns. Since all subsets of columns of M must

be linearly independent, we must have Δs ≤ (
�
s

)
ns.

Therefore our condition is tight up to a factor of at most

�2�+1.

In the above theorem, as stated, the columns of

M are “monomials” involving the underlying vectors

ã1, . . . , ãk. However in our applications (e.g., Sec-

tions VII and VIII) the matrix of interest M ′ will

have columns that are more general polynomials of the

underlying vectors. Such matrices are expressible as

M ′ = MP where P ∈ R
R×R′

is a coefficient matrix

with σR′(P ) > 1/poly(n, 1/ρ). Hence, our theorem

implies that σR′(M ′) > 1/poly(n, 1/ρ) in these cases

w.h.p.

As in [8], we will use leave-one-out distance, denoted

�(M), as a surrogate for the smallest singular value. The

proof will make use of Lemma III.3, which we will use
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to bound leave-one-out distances. Our goal will be to

find a suitable subspace W that is both large enough

and independent of the column of M we are projecting.

Proof of Theorem V.2. Let L1, . . . , L� be an equiparti-

tion of [n]. Define a new matrix M ′ ∈ R
(n

� )
�×R by

restricting the columns of M to the indices L1 × L2 ×
. . .× L�. In other words, if Mi is a column of M with

Mi = ãf(1) ⊗ . . . ⊗ ãf(�), then M ′
i = ãf(1),L1

⊗ . . . ⊗
ãf(�),L�

, where aL denotes the restriction of the vector

a to the coordinates in the set L. This ensures that for

every column Mi, the perturbations of each factor of this

tensor product are independent.

Fix a column M ′
i of M ′, and let W be the subspace

spanned by all other columns of M ′. We want to find a

subspace V satisfying:

1) W ⊆ V .

2) V is independent of M ′
i .

3) dimV ⊥ = c′(n� )
� for some c′ ∈ (0, 1).

Given such a V , properties 2 and 3 allow us to apply

Lemma III.3 to obtain that ‖ProjV ⊥M ′
i‖ ≥ Ω�((ρ/n)

�)
with probability at least 1− exp(−Ω(c′n)). Since W ⊆
V , we have

‖ProjW⊥M ′
i‖ ≥ ‖ProjV ⊥M ′

i‖ ≥ Ω�((ρ/n)
�)

with high probability. Taking a union bound over all

columns of M ′ gives that �(M ′) ≥ Ω�((ρ/n)
�) with

probability at least 1− exp(−Ω�(1) · c′n+logR). Since

adding more rows to M ′ can only increase the magnitude

of the projection of any column onto some subspace,

�(M) ≥ �(M ′). Now using properties of the leave-one-

out distance (Lemma III.2), we have

σmin(M) ≥ �(M)√
R

≥ Ω�(1) · ρ�

n�
√
R
.

Next we construct the subspace V . Let M ′
i′ , i

′ �= i
be some other column of M ′. Let S ⊆ [�] be the set

of indices at which M ′
i and M ′

i′ share a factor, and let

s = |S|. In order to ensure V is independent of M ′
i ,

we must avoid touching any factors of M ′
i′ shared by

M ′
i . Therefore we include in V all vectors of the form

ũ1 ⊗ . . . ⊗ ũ�, where ũj agrees with the jth factor of

M ′
i′ if j �∈ S and ũj is any vector in R

n/� otherwise. As

desired, V now includes M ′
i′ and is independent of M ′

i ,

at a cost of adding (n� )
s dimensions to V .

Repeat this process for each i′ �= i, and let V be the

span of all vectors included at each step. Since the num-

ber of overlaps with M ′
i can be s at most Δ�−s times,

the total dimension of V is at most
∑�

s=1 Δs(
n
� )

�−s. By

our assumption on the Δss, we get dimV ⊥ = c′(n� )
� as

desired, with c′ = 1− c.

VI. ROBUST SUBSPACE RECOVERY

We introduce the following smoothed analysis frame-

work for studying robust subspace recovery. The fol-

lowing model also tolerates some small amount of error

in each point i.e., inliers need not lie exactly on the

subspace, but just close to it.

A. Input model

In what follows, α, ε0, ρ ∈ (0, 1) are parameters.

1) An adversary chooses a hidden subspace T of di-

mension d in R
n, and then chooses αm points from

T and (1− α)m points from R
n. We denote these

points inliers and outliers respectively. Then the ad-

versary mixes them in arbitrary order. Denote these

points a1, a2, . . . , am. Let A = (a1, a2, . . . , am),
and Iin, Iout be the set of indices of inliers and

outliers respectively. For convenience, we assume

that all the points have lengths in the range [1/2, 1].4

2) Each inlier is ρ-perturbed with respect to T .

(Formally, this means considering an orthonormal

basis BT for T and adding BT v, where v ∼
N (0, ρ2/d)d.) Each outlier is ρ-perturbed with re-

spect to R
n. Let G denote the perturbations, and let

us write Ã = A+G.

3) With the constraint ‖E‖F ≤ ε0, the adversary adds

noise E ∈ R
n×m to A, yielding Ã′ = Ã + E =

(ã′1, ã
′
2, · · · ). Note that this adversarial noise can

depend on the random perturbations in step 2.

4) We are given Ã′.
The goal in the subspace recovery problem is to return

a subspace T ′ close to T .

a) Notation.: As introduced above, Ã = A + G
denotes the perturbed vectors. ãi denotes the i’th column

of Ã. We also use the notation AI to denote the sub-

matrix of A corresponding to columns in a set I .

B. Our result

We show the following theorem about the recoverabil-

ity of T .

Theorem VI.1. Let δ ∈ (0, 1), � ∈ Z+ and ρ > 0.
Suppose we are given m ≥ n� + 8d/(δα) points
x1, x2, · · · , xm ∈ R

n generated as described above,
where the fraction of inliers α satisfies α ≥ (1 +
δ)
(
d+�−1

�

)
/
(
n+�−1

�

)
. Then there exists ε0 = poly�(ρ/m)

such that whenever ‖E‖F ≤ ε0, there is an efficient

4If the perturbations in step (2) are done proportional to the norm,
this assumption can be made without loss of generality. (Since the
algorithm can scale the lengths of each of the points.)
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deterministic algorithm that returns a subspace T ′ that
satisfies

‖sinΘ(T, T ′)‖F ≤ ‖E‖F · poly�(m, 1/ρ),

w.p. ≥ 1− 2m2[exp(−Ω�(δn)) + exp(−Ω(d logm))].
(14)

When d/n < 1, the above theorem gives recovery

guarantees even when the fraction of inliers is approx-

imately (d/n)�. This can be significantly smaller than

d/n (shown in [29]) for any constant � > 1.

a) Algorithm overview.: We start by recalling the

approach of [29]. The main insight there is that if we

sample a set of size slightly less than n from the input,

and if the fraction of inliers is > (1+ δ)d/n, then there

is a good probability of obtaining > d inliers, and thus

there exist points that are in the linear span of the others.

Further, since we sampled fewer than n points and the

outliers are also in general position, one can conclude

that the only points that are in the linear span of the other

points are the inliers! In our algorithm, the key idea is to

use the same overall structure, but with tensored vectors.

Let us illustrate in the case � = 2. Suppose that the

fraction of inliers is > (1+ δ)
(
d+1
2

)
/
(
n+1
2

)
. Suppose we

take a sample of size slightly less than
(
n+1
2

)
points from

the input, and consider the flattened vectors x⊗x of these

points. As long as we have more than
(
d+1
2

)
inliers, we

expect to find linear dependencies among the tensored

inlier vectors. Further, using Theorem IV.1 (with some

modifications, as we will discuss), we can show that such

dependencies cannot involve the outliers. This allows us

to find sufficiently many inliers, which in turn allows us

to recover the subspace T up to a small error.

Given m points, the algorithm (Algorithm 1) consid-

ers several batches of points each of size b = (1 −
δ
3 )
(
n+�−1

�

)
. Suppose for now that m is a multiple of b,

and that the m/b batches form an arbitrary partition of

the m points. (See the note in Section VI-C for handling

the general case.) In every batch, the algorithm does the

following: for each point u in the batch, it attempts to

represent u⊗� as a “small-coefficient” linear combination

(defined formally below) of the tensor products of the

other points in the batch. If the error in this representa-

tion is small enough, the point is identified as an inlier.

Definition VI.2 (c-bounded linear combination). Let

v1, v2, . . . , vm be a set of vectors. A vector u is said

to be expressible as a c-bounded linear combination of

the {vi} if there exist {αi}mi=1 such that |αi| ≤ c for all

i, and u =
∑

i αivi. Further, u is said to be expressible

as a c-bounded combination of the {vi} with error δ if

there exist {αi}mi=1 as above with |αi| ≤ c for all i, and

‖u−∑
i αivi‖1 ≤ δ.

Notice that in the above definition, the error is mea-

sured by �1 norm. In the algorithm, we will need a sub-

procedure to check whether a vector is expressible as a

1-bounded combination of some other vectors with some

fixed error. By the choice of �1 norm, this subprocedure

can be formulated as a Linear Programming problem,

hence we can solve it efficiently.

Algorithm 1 Robust subspace recovery

1: Set threshold τ = Ω�(ρ
�/n�)(which is the thresh-

old from Theorem IV.1). Set batchsize b = (1 −
δ/3)

(
n+�−1

�

)
.

2: Let V1, V2, · · · , Vr be the r ≤ m batches each of

size b as defined above.

3: Initialize C = ∅.

4: for i = 1, 2, · · · , r do
5: Let S be the set of all u ∈ Vi such that ã′⊗�

u can

be expressed as 1-bounded combinations of {ã′⊗�
v :

v ∈ Vi \ {u}}, with error ≤ τ/2.
6: C = C ∪ S
7: Return the subspace T ′ corresponding to the top d

singular values of Ã′
C

, for any 2d-sized subset C of

C

b) Proof outline.: The analysis involves two key

steps. The first is to prove that none of the outliers are

included in S in step 5 of the algorithm. This is where

we use 1-bounded linear combinations. If the coefficients

were to be unrestricted, then because the error matrix E
is arbitrary, it is possible to have a tensored outlier being

expressible as a linear combination of the other tensored

vectors in the batch. The second step is to prove that

we find enough inliers overall. On average, we expect to

find at least δ
3

(
d+�−1

�

)
inlier columns in each batch. We

“collect” these inliers until we get a total of 2d inliers.

Finally, we prove that these can be used to obtain T up

to a small error.

For convenience, let us write g(n) := Ω�(δn) (which

is the exponent in the failure probability from Theo-

rem IV.1). Thus the failure probabilities can be written

as exp(−g(n)).

Lemma VI.3. With probability at least 1−exp(−g(n)+
2 logm), none of the outliers are chosen. I.e., C∩Iout =
∅.

Proof. The proof relies crucially on the choice of the

batch size. Let us fix some batch Vj . Note that by the
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way the points are generated, each point in Vj is ãi
′
, for

some ai that is either an inlier or an outlier.

Let us first consider only the perturbations (i.e., with-

out the noise addition step). Recall that we denoted these

vectors by ãi. Let us additionally denote by B(j) the

matrix whose columns are ã⊗�
i for all i in the phase j.

Consider any i corresponding to an outlier. Now, because

the batch size is only (1 − δ
3 )
(
n+�−1

�

)
, we have (using

Theorem IV.1) that the projection of the column B
(j)
i

orthogonal to the span of the remaining columns (which

we denote by B
(j)
−i ) is large enough, with very high

probability. Formally,

P[dist(B
(j)
i , span(B

(j)
−i )) ≥ τ ] ≥ 1− exp(−g(n)). (15)

Indeed, taking a union bound, we have that the in-

equality dist(B
(j)
i , span(B

(j)
−i )) ≥ τ holds for all outliers

i (and their corresponding batch j) with probability

≥ 1−m2 exp(−g(n)).
We need to show that moving from the vectors ãi to

ã′i maintains the distance. For this, the following simple

observation will be useful.

Observation VI.4. If ai is an outlier, then

P[‖ãi‖ ≥ 1 + 2ρ] ≤ exp(−n/2).

On the other hand if ai is an inlier,

P[‖ãi‖ ≥ 1 + 4ρ
√

logm] ≤ exp(−4d logm).

Both the inequalities are simple consequences of the

fact that the vectors ai were unit length to start with,

and are perturbed by N (0, ρ2/n) and N (0, ρ2/d) re-

spectively.

Now let us consider the vectors with noise added, ã′i.
Note that ‖ãi − ã′i‖ ≤ ε0. Since ‖ai‖ ≤ 1 and since i
is an outlier, we have (using Observation VI.4), ‖ã′i‖ ≤
1 + 2ρ + ε0, with probability ≥ 1 − exp(−n/2). Thus

for the flattened vectors ã⊗�
i , with the same probability,

‖ã⊗�
i − (ã′i)

⊗�‖ = ‖
(
ã⊗�
i − ã

⊗(�−1)
i ⊗ ã′i

)
+
(
ã
⊗(�−1)
i ⊗ ã′i − ã

⊗(�−2)
i ⊗ ã′⊗2

i

)
+ . . .‖

≤ �(max{‖ãi‖, ‖ã′i‖})�−1ε0

≤ �(1 + 2ρ+ ε0)
�ε0. (16)

Thus, for any 1-bounded linear combination of the b
vectors in the batch (which may contain both inliers and

outliers), ã′⊗�
i is at a Euclidean distance ≤ b�(1 + ε0 +

4ρ
√
logm)�ε0 to the corresponding linear combination

of the �th powers of the vectors in the batch prior to

the addition of noise (i.e., the columns of B
(j)
−i ). Thus

if b�(1 + ε0 + 4ρ
√
logm)�ε0 < τ/2, then ã′⊗�

i cannot

be expressed as a 1-bounded combination of the other

lifted vectors in the batch with Euclidean error < τ/2,

let alone �1 error.

This means that none of the outliers are added to the

set S, with probability at least 1 − m[exp(−g(n)) −
exp(−4d logm)].

Next, we turn to proving that sufficiently many inliers

are added to S. The following simple lemma will help

us show that restricting to 1-bounded combinations does

not hurt us.

Lemma VI.5. Let u1, u2, . . . , ud+c be vectors that all lie
in a d-dimensional subspace of Rn. Then at least c of the
ui can be expressed as 1-bounded linear combinations
of {uj}j 
=i.

Proof. As the vectors lie in a d-dimensional subspace,

there exists a non-zero linear combination of the vectors

that adds up to zero. Suppose
∑

i αiui = 0. Choose the

i with the largest value of |αi|. This ui can clearly be

expressed as a 1-bounded linear combination of {uj}j 
=i.

Now, remove the ui from the set of vectors. We are

left with d + c − 1 vectors, and we can use the same

argument inductively to show that we can find c − 1
other vectors with the desired property. This completes

the proof.

The next lemma now proves that the set C at the end

of the algorithm is large enough.

Lemma VI.6. For the values of the parameters chosen
above, we have that at the end of the algorithm,

|C| ≥ δ/3

1 + δ/3
αm,

with probability at least 1− exp(−4d logm).

Proof. We start with the following corollary to

Lemma VI.5. Let us consider the jth batch.

Observation. Let nj be the number of inliers in the jth

batch. If nj ≥
(
d+�−1

�

)
+ k, then the size of S found in

Step 5 of the algorithm is at least k.

Proof of Observation. Define B(j) as in the proof of

Lemma VI.3. Now, since the inliers are all perturbed

within the target subspace, we have that the vectors

ã⊗�
i corresponding to the inliers all live in a space of

dimension
(
d+�−1

�

)
. Thus by Lemma VI.5, at least k

of the vectors B
(j)
i can be written as 1-bounded linear

combinations of the vectors B
(j)
−i .
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For inliers i, using the fact that ai are perturbed by

N (0, ρ2/d), we have

P[‖ãi‖ ≥ (1 + 4ρ
√

logm)] ≤ exp(−4d logm).

Using (16) again, we have that ã′⊗�
i can be expressed

as a 1-bounded linear combination of the other vec-

tors in the batch, with Euclidean error bounded by

b� · (1 + 5ρ
√
logm)�ε0. We know �1 norm is a

√
n�-

approximation of �2 norm. By assumption, the �1 norm

of the error is < τ/2, thereby completing the proof of

the observation.

Now, note that we have
∑

j nj ≥ αm, by assumption.

This implies that

m/b∑
j=1

max

{
0, nj −

(
d+ �− 1

�

)}
≥

≥ αm− m

b

(
d+ �− 1

�

)
≥ δ/3

1 + δ/3
αm.

The last inequality follows from our choice of α and the

batch size b. Thus the size of S in the end satisfies the

desired lower bound.

Finally, we prove that using any set of 2d inliers,

we can obtain a good enough approximation of the

space T , with high probability (over the choice of the

perturbations). The probability will be high enough that

we can take a union bound over all 2d-sized subsets of

[m].

Lemma VI.7. Let I ⊆ Iin be any (fixed) set of size
2d. Then if ‖E‖F ≤ poly(ρ/m), the subspace U
corresponding to the top d singular value of Ã′

I will
satisfy

‖sinΘ(U, T )‖F ≤ poly(m, 1/ρ) · ‖E‖F
with probability at least 1− e−4d logm.

Proof. We start by considering the matrix ÃI (the matrix

without addition of error). This matrix has rank ≤ d (as

all the columns lie in the subspace T ). The first step is to

argue that σd(ÃI) is large enough. This implies that the

space of the top d SVD directions is precisely T . Then

by using Wedin’s theorem [43], the top d SVD space U
of Ã′

I satisfies

‖sinΘ(U, T )‖F ≤ 2
√
d‖E‖F

σd(ÃI)− ‖E‖F
. (17)

Hence it suffices to show σd(Ã) is at least inverse-

polynomial with high probability.

Recall that ÃI = AI + GI , where GI is a random

matrix. Without loss of generality we can assume that

T is spanned by the first d co-ordinate basis; in this case

every non-zero entry of GI is independently sampled

from N (0, ρ2

d ). We can thus regard AI , GI as being

d × 2d matrices. Recall that leave-one-out distance is

a good approximation of least singular value, it suffices

to show �((AI + GI)
T ) is at least inverse-polynomial

with high probability. Let Aj , Gj denote the jth row of

AI , GI correspondingly. Consider j ∈ [d], fix all other

rows except jth. Let W be the subspace of R
2d that

is orthogonal to span({Ak + Gk : k ∈ [d], k �= j}),
and let w1, w2, . . . , wd+1 be an orthonormal basis for

W . Then for any t > 0, if the projection of (Aj +Gj)
to W is < t (equivalent to the leave-one-out distance

< t), then for all 1 ≤ i ≤ d + 1, we must have

|〈wi, Aj + Gj〉| ≤ t. Using the anti-concentration of a

Gaussian and the orthogonality of the wi, this probability

can be bounded by (t/ρ)d+1. Choosing t = ρ/m4, this

can be made < (1/m4)d+1, and thus after taking a union

bound over the m choices of j, we have that the leave-

one-out distance is > ρ/m4 (and thus σd > ρ/m5) with

probability ≥ 1− exp(−4d logm)

We can now complete the proof of the theorem.

Proof of Theorem VI.1. Suppose that ‖E‖F ≤ ε0 is

small enough. Now by Lemma VI.3, we have that

C ⊆ Iin with probability at least 1−exp(−g(n)+logm.

By Lemma VI.6 and our assumption that m is at

least Ω(d/(δα)), we know |C| ≥ 2d with probability

1 − e−4d logm. Finally, by Lemma VI.7 and a union

bound over all 2d sized subsets of [m], we have that

with probability at least 1 − exp(−Ω(d logm)), for

any subset of inliers with size 2d, the subspace T ′

corresponding to the top-d singular value will satisfy

‖sinΘ(T, T ′)‖F ≤ ‖E‖F /poly(m).

C. Batches when m is not a multiple of b

he case of m not being a multiple of b needs some

care because we cannot simply ignore say the last few

points (most of the inliers may be in that portion). But we

can handle it as follows: let m′ be the largest multiple

of b that is < m. Clearly m′ > m/2. Now for 1 ≤
j ≤ n, define Dj = {xj , xj+1, . . . , xj+m′−1} (with the

understanding that xn+t = xt). This is a set of m′ points

for every choice of j. Each Dj is a possible input to the

algorithm, and it has at least m′ > m/2 points, and

additionally the property that b|m′.
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At least one of the Dj has ≥ α fraction of its points

being inliers (by averaging). Thus the procedure above

(and the guarantees) can be applied to recover the space.

To ensure that no outlier is chosen in step 5 of the

algorithm (Lemma VI.3), we take an additional union

bound to ensure that Lemma VI.3 holds for all Dj .

VII. LEARNING HIDDEN MARKOV MODELS

We consider the setup of Hidden Markov Mod-

els considered in [17], [32]. A hidden state sequence

Z1, Z2, . . . , Zm ∈ [r] forms a stationary Markov chain

with transition matrix P and initial distribution w =
{wk}k∈[r], assumed to be the stationary distribution. The

observations {Xt}t∈[m] are vectors in R
n. The observa-

tion matrix of the HMM is denoted by O ∈ R
n×r; the

columns of O represent the conditional means of the

observation Xt ∈ R
n conditioned on the hidden state

Zt i.e., E[Xt|Zt = i] = Oi, where Oi represents the ith
column of O. We also assume that Xt has a subgaussian

distribution about its mean (e.g., Xt is distributed as a

multivariate Gaussian with mean Oi when the hidden

state Zt = i). In the smoothed analysis setting, the

model is generated using a randomly perturbed observa-

tion matrix Õ, obtained by adding independent Gaussian

random vectors drawn from N(0, ρ2/n)n to each column

of O. We remark that some prior works [17], [35]

consider the more restrictive discrete setting where the

observations are discrete over an alphabet of size n.5

While our smoothed analysis model with small Gaussian

perturbations is natural for the more general continuous

setting, it may not be an appropriate smoothed analysis

model for the discrete setting (for example, the perturbed

vector Oi could have negative entries).

Using a trick from [17], [32], we will translate the

problem into the setting of multi-view models. Let m =
2�+1 for some � to be chosen later, and use the hidden

state Z�+1 as the latent variable. In what follows, we

will abuse notation and also represent the states using

the standard basis vectors e1, e2, . . . , er ∈ R
r: for each

j ∈ [r], � ∈ [m], Z� = ej ∈ R
r iff the state at time

� is j. Our three views are obtained by looking at the

past, present, and future observations: the first view is

X�⊗X�−1⊗ . . .⊗X1, the second is X�+1 and the third

is X�+2⊗X�+3⊗ . . . X2�+1. We can access these views

by viewing the moment tensor X1⊗ . . .⊗X2�+1 as a 3-

tensor of shape n�×n×n�. The conditional expectations

of these three views are given by matrices A, B, and C

5These observations can be represented using the n standard basis
vectors for the n alphabets and column Oi gives the probability
distribution conditioned on the current state being i ∈ [r].

of dimensions n� × r, n × r, and n� × r respectively.

Explicitly, these matrices satisfy

E[X� ⊗ . . .⊗X1|Z�+1] = AZ�+1,

E[X�+1|Z�+1] = BZ�+1,

E[X�+2 ⊗ . . .⊗X2�+1|Z�+1] = CZ�+1.

Let P ′ = diag(w)PT diag(w)−1, which is the reverse

transition matrix Zi → Zi−1, and let X � Y denote the

Khatri-Rao product of X and Y , given in terms of its

columns by (X � Y )i = Xi ⊗ Yi. Then we can write

down A, B, and C in terms of the transition and obser-

vation matrices as follows. This fact is straightforward

to check, so we leave the details to [17].

A = ((. . . (ÕP ′)� Õ)P ′)� Õ) . . . P ′)� Õ)P ′ (18)

B = Õ (19)

C = ((. . . (ÕP )� Õ)P )� Õ) . . . P )� Õ)P, (20)

where Õ and P or P ′ appear � times each in A and

C. Our goal is to upper bound the condition numbers

of A and C. Once we do this, we will be able to use a

argument similar to that in [33] to obtain P and Õ up

to an inverse polynomial error.

The proof of this theorem will use a simple lemma

relating the minimum singular value of a matrix A to

that of a matrix obtained by adding together rows of A.

Lemma VII.1. Let n1, n2, n3 be positive integers with
n2 ≥ n3. Let A = (A(i1,i2),j) ∈ R

n1n2×n3 be a matrix,
and let B ∈ R

n2×n3 be the matrix whose i2th row is∑
i1
A[(i1,i2),:]. Then σn3(A) ≥ 1√

n1
σn3

(B).

Proof. We can write B = MA, where M ∈ R
n2×n1n2

is a matrix whose ith row consists of n1(i − 1) zeros,

then n1 ones, then n1(n2−i) zeros. For any v = (vij) ∈
R

n1n2 , applying the Cauchy-Schwarz inequality gives

‖Mv‖2 =

n2∑
i=1

(M[i,:] ·v)2 =

n2∑
i=1

⎛⎝ n1∑
j=1

vij

⎞⎠2

≤ n1‖v‖2.

Therefore σmax(M) ≤ √
n1. Since σmin(B) ≤

σmax(M)σmin(A), we have

σmin(A) ≥ 1√
n1

σmin(B).

Theorem VII.2. Let � ∈ Z+ be a constant. Suppose
we are given a Hidden Markov Model in the setting
described above, satisfying the following conditions:
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1) P ∈ R
r×r is d-sparse, where d <

O(min{n/�2, n/r1/�}) and n = Ω(r1/�). In
addition, we assume σmin(P ) ≥ γ1.

2) The columns of O ∈ R
n×r are polynomially

bounded (i.e. the lengths are bounded by some
polynomial in n) and are perturbed by independent
Gaussian noise N(0, ρ2/n)n to obtain Õ, with
columns {Õi}.

3) The stationary distribution w of P has wi > γ2 for
all i ∈ [r].

Then there is an algorithm that recovers P and Õ up to
ε error (in the Frobenius norm) with probability at least
1− exp(−Ω�(n)), using samples of m = 2�+1 consec-
utive observations of the Markov chain. The algorithm
runs in time (n/(ργ1γ2ε))

O(�).

Proof. We will show that C is well-conditioned. First

note that since the columns of Õ (and therefore of C)

are polynomially bounded, σmax(C) is also bounded by

some polynomial in n and r. Therefore we only need

to give a lower bound on σmin(C). Since σmin(P
′) ≥

γ2 · σmin(P ), the proof for A is identical. We can write

C = M(Õ, P ) · F (P ), where M ∈ R
n�×R is a matrix

whose columns are order-� tensor products of {Õi} and

F (P ) ∈ R
R×r is a matrix of coefficients. We will show

that each of these factors is well-conditioned, which will

give us a bound on the condition number of C.

First we work with M . The columns of M are

all of the tensor products of {Õi} that appear in C.

Specifically, if the columns of Õ are {Õi}i∈[r], then the

columns of M are all tensor products of the form

Õi1 ⊗ . . .⊗ Õi� , (21)

where Pis,is+1
�= 0 for all s = 1, . . . , �−1. The key here

is that while the noise coming from the ρ-perturbations

of {Oi} is not independent column to column, any

column of M has noise that is highly correlated with

only a few other columns.

In order to apply Theorem II.2, we need to find

Δ1, . . . ,Δ�. Fix a column Mi of M . For s < �, we

have

Δs(Mi) ≤
(
�

s

)
ds. (22)

To show why, we describe a way of generating all

columns of M that differ from Mi in s factors. First,

choose a set S ⊆ [�] with |S| = s, which will specify

the places at which the new column will differ from

Mi. Begin at one place at which the new column will

not differ, which is possible because s < �. Fill in the

remaining factors by progressing by step forwards and

backwards until each factor is chosen. Each time a place

in S is encountered, we have at most d choices due to

the sparsity of P .

Remark VII.3. Note that not all of these choices may

correspond to a path through the state space of the

Markov chain. Thus additional conditions limiting the

number of short cycles in the graph of the Markov chain

could lead to smaller upper bounds on {Δs}.

For s = �, we have Δ�(Mi) ≤ R ≤ r · d� since all

of the � factors are arbitrary as long as they determine

a path in the Markov chain.

Now the condition of Theorem II.2 becomes

rd� +
�−1∑
s=1

(
�

s

)
ds

(n
�

)�−s

≤ c
(n
�

)�

for c ∈ (0, 1),

(23)

which holds by the restrictions on d and r. Therefore

we conclude that σmin(M) ≥ Ω�(1) · (ρ/n)�/
√
R with

probability at least 1 − exp(−Ω�(n) + logR) ≥ 1 −
exp(−Ω�(n) + log n�) = 1− exp(−Ω�(n)).

Next, we show that F is well-conditioned. To simplify

notation, we write as if R = r� (in which case M would

have many unused columns and F would have many

zero rows and columns). Index the rows of F by a tuple

(i1, . . . , i�). We have

F(i1,...,i�),j = Pji1Pi1i2 · · ·Pi�−1i� . (24)

In other words, the coefficient of Õi1 ⊗ . . . ⊗ Õi� in

column j of C is the probability, given that you begin

at state j, of traveling through states i1, . . . , i�.
We want to give a lower bound for the least singular

value of F . Lemma VII.1 shows that it is enough to

bound the least singular value of a matrix obtained by

adding together rows of F . Using this idea, we sum over

all rows with the same i� to obtain a matrix F ′ ∈ R
r×r

with entries

F ′
i,j =

∑
i1,...,i�−1

Pji1Pi1i2 · · ·Pi�−1i. (25)

Thus we have F ′ = (P �)T , which has σmin(F
′) ≥ γ�

1.

Therefore Lemma VII.1 gives σmin(F ) ≥ γ�
1/r

�/2.

These two results show that

σmin(C) ≥ Ω�(1) · (ργ1)�/(n
√
rd)�r1/2

≥ Ω�(1) ·
(

ργ1√
n3r

)�

with probability at least 1− exp(−Ω�(n)).
As mentioned above, we also get σmin(A) ≥ Ω�(1) ·

(ργ1γ2/
√
n3r)� with the same probability. In order to

recover P and Õ, we use an algorithm similar to

Algorithm 1 from Sharan et al. [35]. First, we can
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estimate the moment tensor X1⊗. . .⊗X2�+1 to sufficient

accuracy using poly�(n, 1/ε) many samples since each

observation vector has a conditional distribution which is

subgaussian. This follows from standard large deviation

bounds, for example see Lemma C.1 in [33]. Next, we

can obtain A, B, and C up to an error δ = poly(ε, n, ρ)
using a tensor decomposition algorithm such as in [8].

Since B = Õ, it only remains to find P . To do

this, we use a similar trick to [17]. We will use the

fact that C and P are both well-conditioned. First, let

D = (C�Õ)P . Note that we can obtain D by following

the entire procedure again but increasing � by one. Since

we already have Õ up to a small error, we can also find

C � Õ. Now σmin(C � Õ) ≥ σmin(D)/σmax(P ), and

σmax(P ) ≤ √
r. Therefore we can recover P from D

and C � Õ up to the required inverse polynomial error.

VIII. HIGHER ORDER TENSOR DECOMPOSITIONS

In this section, we describe an algorithm to decompose

2�’th order tensors of rank up to n�. Let us start by

recalling the problem: suppose A1, . . . , AR are vectors

in R
n. Consider the 2�’th order moment tensor

M2� =
R∑
i=1

A⊗2�
i .

The tensor decomposition problem asks to find the

vectors Ai to a desired precision (up to a re-ordering),

given only the tensor M2�. The question of robust
recovery asks to find the vectors Ai to a desired precision

given access to a noisy version of M2�, specifically, given

only the tensor T = M2� + Err. The aim is to show

that recovery is possible, assuming that ‖Err‖ is bounded

by some polynomial in n and the desired precision for

recovering the Ai. We give an algorithm for robust

recovery, under certain condition number assumptions

on the Ai. Then using the methods developed earlier

in the paper, we show that these assumptions hold in a

smoothed analysis model.

A. Robust decomposition assuming non-degeneracy

We will now consider a generalization of the algorithm

of Cardoso [16], and prove robust recovery guarantees

under certain non-degeneracy assumptions. As stated in

the introduction, our contribution is along two directions:

the first is to extend the algorithms of [16] and [44]

to the case of 2�’th order tensors. Second (and more

importantly), we give a robustness analysis.

We now define an operator, and then a matrix whose

condition number is important for our argument. Given

�’th order tensors X,Y , we define the operator Φ as

Φ(X,Y ) = Ψ(X,Y ) +Ψ(Y,X), where Ψ : R� ×R
� �→

R
2� is defined by:

Ψ(X,Y )(i1, i2, . . . , i�, j1, j2, . . . , j�) =

= Xi1...i�−1i�Yj1...j�−1j� −Xi1...i�−1j�Yj1...j�−1i� (26)

One of the nice properties of Φ above is that Φ(X,X) =
0 for a symmetric tensor6 X iff X = u⊗�, for some

u ∈ R
n (and for this reason, [16] who introduced such an

operator for � = 2 and subsequent works refer to this as a

rank-1 “detector”). The algorithm and its analysis only

use the easy direction of the above statement, namely

Φ(u⊗�,u⊗�) = 0 for any u ∈ R
n, and thus we do not

prove the property above.

The following matrix plays a crucial role in the anal-

ysis: consider the
(
R
2

)
vectors of the form Φ(A⊗�

i , A⊗�
j ),

for i < j. Let MΦ be the matrix with all of these vectors

as columns. Thus MΦ is of dimensions n2� × (
R
2

)
.

a) Relevant condition numbers.: Our robustness

analysis will depend on (a) the condition number of the

matrix U := A��, which we will denote by κU , and

(b) the condition number of the matrix MΦ described

above, which we will denote by κM . For convenience, let

us also define ui = A⊗�
i , flattened. From the definition

of U above, we also have M2� equal to UUT , when

matricized.

The following is our main result of the section.

Theorem VIII.1. Given the tensor T = M2� + Err, an
accuracy parameter ε, and the guarantee that ‖Err‖F ≤
εc/(κUκM )c

′
for some constants c, c′, there is an algo-

rithm that outputs, with failure probability 1 − γ, a set
of vectors {Bi}Ri=1 such that

min
π

∑
i

‖Ai −Bπ(i)‖ ≤ ε.

Furthermore, this algorithm runs in time
poly(n�, κU , κM , log(1/γ)).

b) Remark.: We note that the above statement does

not explicitly require a bound on the rank R. However,

the finiteness of the condition numbers κU and κM

implies that R ≤ n�/2. Our theorem VIII.13 shows

that when R ≤ n�/2, the condition numbers are both

polynomial in n in a smoothed analysis model. Also,

we do not explicitly compute c, c′. From following the

proof naı̈vely, we get them to be around 8, but they can

likely be improved.

6An �’th order tensor T is said to be symmetric if Ti1i2...i� =
Tπ(i1)π(i2)...π(i�)

for any permutation π.
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1) Outline of the proof and techniques: We will start

(section VIII-A2) by presenting the FOOBI procedure

for arbitrary �. The algorithm proceeds by considering

the top eigenvectors of the matricized version of M2�,

and tries to find product vectors (i.e. vectors of the form

x⊗�) in their span. This is done via writing a linear

system involving the basis vectors.
In section VIII-A3, we show that the entire procedure

can be carried out even if M2� is only known up to a

small error. The technical difficulty in the proof arises

for the following reason: while a small perturbation in

M2� does not affect the top-R SVD of the (matricized)

M2�, if we have no guarantees on the gaps between

the top R eigenvalues, the eigenvectors of the perturbed

matrix can be quite different from those of M2�. Now

the FOOBI procedure performs non-trivial operations on

these eigenvectors when setting up the linear system we

mentioned in the previous paragraph. Showing that the

solutions are close despite the systems being different is

thus a technical issue we need to overcome.
2) Warm-up: the case of Err = 0: Let us start by

describing the algorithm in the zero error case. This

case illustrates the main ideas behind the algorithm and

generalizes the FOOBI procedure to arbitrary �.
The algorithm starts by computing the SVD of the

matricized M2� (i.e., UUT ). Thus we obtain matrices

E and Λ such that UUT = EΛET . Let H denote the

matrix EΛ1/2. Then we have HHT = UUT , and thus

there exists an orthogonal R × R matrix Q such that

U = HQ. Thus, finding U now reduces to finding the

orthogonal matrix Q.
This is done using in a clever manner using the

rank-1 detecting device Φ. Intuitively, if we wish to

find one of the columns of U , we may hope to find

a linear combination
∑

j αjHj of the {Hj} such that

Φ(
∑

j αjHj ,
∑

j αjHj) = 0. Each column of Q would

provide a candidate solution α. However, this is a

quadratic system of equations in αi, and it is not clear

how to solve the system directly.
The main idea in [16] is to find an alternate way

of computing Q. The first observation is that Φ is bi-

linear (i.e., linear in its arguments X,Y ). Thus, we have

Φ(
∑

j αjHj ,
∑

j αjHj) =
∑

i,j∈[R] αiαjΦ(Hi, Hj).
Now, consider the linear system of equations∑

i,j∈[R]

WijΦ(Hi, Hj) = 0. (27)

This is a system of n2� equations in R2 variables. The

reasoning above shows that for every column Qi of Q,

we have that W = QiQ
T
i is a solution to (27). Because

of linearity, this means that for any diagonal matrix D,

QDQT is a solution to the linear system as well. The

main observation of [16] is now that any symmetric

solution W (i.e. one that satisfies Wij = Wji) is of this

form! Thus, the matrix Q can be computed by simply

finding a “typical” symmetric solution W and computing

its eigen-decomposition. Let us now formalize the above.

Lemma VIII.2. [16] The space of symmetric solutions
to the system of equations (27) has dimension precisely
R, and any solution is of the form W = QDQT , for
some diagonal matrix D.

Proof. Consider any symmetric solution W . Because of

bi-linearity, using the fact that HQ = U , or H = UQT ,

we have that Hi =
∑

s Us(Q
T )si =

∑
s UsQis. Thus

for any i, j,

Φ(Hi, Hj) =
∑
s,t

QisQjt · Φ(Us, Ut).

Thus,∑
i,j

WijΦ(Hi, Hj) =
∑
s,t

Φ(Us, Ut) ·
∑
i,j

WijQisQjt

=
∑
s,t

Φ(Us, Ut)〈W,QsQ
T
t 〉. (28)

Since κM < ∞, we have that {Φ(Us, Ut) : s <
t} is linearly independent. Now, since Φ(Us, Ut) =
Φ(Ut, Us), and since Φ(Us, Ut) �= 0 for all s �= t
(the latter is a simple computation, using the fact that

As �= At), we must have that

for all s �= t, 〈W,QsQ
T
t 〉 = 0.

Now, since Q is an orthogonal matrix, we have that

{QsQ
T
t }s,t∈[R] forms an orthonormal basis for all R×R

matrices. The above equality thus means that W lies only

in the span of {QsQ
T
s }s∈[R]. This implies that W =

QDQT , for some diagonal matrix D.

Plugging back into (28), we see that any W of

this form satisfies the equation. As the QsQ
T
s are all

orthogonal, we have found a solution space of dimension

precisely R.

To handle the robust case, we also need a slight

extension of the lemma above. Let HΦ denote a matrix

that has R(R+1)/2 columns, described as follows. The

columns correspond to pairs i, j ∈ [R], for i ≤ j. For

i = j, the corresponding column is Φ(Hi, Hi) and for

i < j, the corresponding column is
√
2 ·Φ(Hi, Hj). We

note that the null space of HΦ can be mapped in a one-

one manner to symmetric R × R matrices W . For any

z = (zij)i≤j , define the symmetric R × R matrix ψ(z)
to have ψ(z)ii = zii and ψ(z)ij = ψ(z)ji =

zij√
2

. The
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point of this definition is that 〈z, z′〉 = 〈ψ(z), ψ(z′)〉.
Note that ψ−1 is well-defined, and that it takes sym-

metric matrices to R(R+1)/2-dimensional vectors (and

preserves dot-products).

Further, we have

HΦz =
∑
i

Φ(Hi, Hi)zii +
∑
i<j

√
2 · Φ(Hi, Hj)zij

=
∑
i

Φ(Hi, Hi)zii +
∑
i<j

2Φ(Hi, Hj)ψ(z)ij

=
∑
i,j

Φ(Hi, Hj)ψ(z)ij . (29)

Using this correspondence, Lemma VIII.2 implies

that HΦ has a null space of dimension precisely R
(corresponding to the span of ψ−1(QsQ

T
s ), for s ∈ [R]).

We now claim something slightly stronger.

Lemma VIII.3. Let λ denote the (R + 1)th smallest
singular value of HΦ. We have that λ ≥ σmin(MΦ).
Recall that MΦ was defined to be the matrix with
columns Φ(A⊗�

i , A⊗�
j ), for i < j.

Proof. Consider any z orthogonal to span{ψ−1(QsQ
T
s ) :

s ∈ [R]}. Then, ψ(z) is orthogonal to QsQ
T
s for all

s, as ψ preserves dot-products. Thus, using our earlier

observation that {QsQ
T
t } forms an orthonormal basis for

all R×R matrices, we can write

ψ(z) =
∑
s
=t

αstQsQ
T
t .

Since ψ(z) is symmetric, we also have αst = αts.

Now, using the expansion (28) with Wij = ψ(z)ij , we

have ∑
i,j

ψ(z)ijΦ(Hi, Hj) =
∑
s,t

αstΦ(Us, Ut)

= 2
∑
s<t

αstΦ(Us, Ut).

Combining this with (29), and the definition of the

smallest singular value, we obtain

‖HΦz‖2F ≥ 4

(∑
s<t

α2
st

)
σmin(MΦ)

2.

Finally, since ‖z‖2 = ‖ψ(z)‖2F = 2
∑

s<t α
2
st, the

desired conclusion follows (indeed with a slack of a

factor
√
2).

The following theorem then gives the algorithm to

recover Q, in the case Err = 0.

Theorem VIII.4. Let S be the subspace (of R
R×R)

of all symmetric solutions to the system of equations

∑
ij WijΦ(Hi, Hj) = 0. Let Z be a uniformly random

Gaussian vector in this subspace of unit variance in each
direction. Then with probability at least 9/10, we have
that

Z =
∑
i

αiQiQ
T
i , where min

i
=j
|αi − αj | ≥ 1

20R2
.

Thus the SVD of Z efficiently recovers the Qi, with
probability ≥ 9/10.

Proof. From the lemmas above, we have that the space

S is precisely the span of QsQ
T
s , for s ∈ [R]. These are

all orthogonal vectors. Thus a random Gaussian vector

in this space with unit variance in each direction is of

the form
∑

i αiQiQ
T
i , where the αi are independent and

distributed as the univariate Gaussian N (0, 1).
Now, for any i, j, we have that αi − αj is distributed

as N (0, 2), and thus

P

[
|αi − αj | ≤ 1

20R2

]
≤ 1

20R2
.

Taking a union bound over all pairs i, j now gives the

result.

This completes the algorithm for the case Err = 0.

Let us now see how to extend this analysis to the case

in which Err �= 0.
3) A robust analysis: We will now prove an approx-

imate recovery bound by following the above analysis,

when Err is non-zero (but still small enough, as in the

statement of Theorem VIII.1). As is common in such

analyses, we will use the classic Davis-Kahan Sin-θ
theorem. We start by recalling the theorem. To do so,

we need some notation.

Suppose V1 and V2 are two n × d matrices with or-

thonormal columns. Then the matrix of principal angles
between the column spans of V1 and V2 is denoted

by Θ(V1, V2), and is defined to be the diagonal matrix

whose entries are arccos(λi), where λi are the singular

values of V T
1 V2.

Theorem VIII.5 (Sin-θ theorem, [45]). Let Σ and Σ′ ∈
R

n×n be symmetric, with eigenvalues λ1 ≥ λ2 ≥ . . . λn

and λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
n. Let 1 ≤ r ≤ s ≤ n, and let

d = s − r + 1. Let V be a matrix with columns being
the eigenvectors corresponding to λr . . . λs in Σ, and
suppose V ′ is similarly defined. Let

δ := inf{|λ′ − λ| : λ ∈ [λs, λr],

λ′ ∈ (−∞, λ′
s+1] ∪ [λ′

r−1,∞)},
which we assume is > 0. Then we have

‖sinΘ(V, V ′)‖F ≤ ‖Σ− Σ′‖F
δ

.
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Furthermore, there exists an orthogonal matrix O′ such
that

‖V − V ′O′‖F ≤
√
2‖Σ− Σ′‖F

δ
. (30)

We note that the precise statement above is from [?].

Our proof will follow the outline of the Err = 0 case.

The first step is to symmetrize the matricized version of

T , so that we can take the SVD. We have the following

simple observation.

Lemma VIII.6. Let A ∈ R
n×n, and define A′ = (A+

AT )/2. Let B ∈ R
n be symmetric. Then ‖A′ − B‖F ≤

‖A−B‖F .

Proof. The lemma follows from observing that A′ is the

projection of A onto the linear space of symmetric n×n
matrices, together with the fact that projections to convex

sets only reduces the distance.

Let T ′ be the symmetric version of the matricized

version of T . Then we have ‖T ′ − UUT ‖F ≤ ‖Err‖F .

Likewise, let T̂ be the projection of T ′ onto the PSD

cone (we obtain T̂ by computing the SVD and zero’ing

out all the negative eigenvalues). By the same reasoning,

we have ‖T̂ − UUT ‖F ≤ ‖Err‖F . For convenience, in

what follows, we denote ‖Err‖F by η.

Next, we need a simple lemma that relates the error

in a square root to the error in a matrix.

Lemma VIII.7. Let Z and H be n × d matrices with
d ≤ n, and suppose ‖ZZT − HHT ‖ ≤ δ. Then there
exists an orthogonal matrix Q such that

‖ZQ−H‖F ≤ (dδ)1/2 +
2δdσ1(H)

σd(H)2
.

Proof. Let ZZT = M1Σ1N
T
1 , and let HHT =

M2Σ2N
T
2 , where Mi, Ni are n × d matrices with

orthonormal columns. Now, the theory of operator-

monotone functions acting on PSD matrices (see e.g. [?],

Theorem X.1.1) implies that

‖M1Σ
1/2
1 NT

1 −M2Σ
1/2
2 NT

2 ‖F ≤ δ1/2.

Now we may apply the Sin-θ theorem (with r = 1
and s = d in the statement above) to conclude that

there exists an orthogonal matrix Q1 such that ‖N1Q1−
N2‖F ≤

√
2 δ

σd(H)2 . Thus, writing N2 = N1Q1 + Δ, the

LHS above becomes

‖M1Σ
1/2
1 NT

1 −M2Σ
1/2
2 QT

1 N
T
1 −M2Σ

1/2
2 ΔT ‖F .

Now, we have ‖M2Σ
1/2
2 ΔT ‖F ≤ ‖M2Σ

1/2
2 ‖F ‖Δ‖F .

The first term is simply (tr(Σ2))
1/2 ≤ d1/2σ1(H). Using

this, we obtain

‖(M1Σ
1/2
1 −M2Σ

1/2
2 QT

1 )N
T
1 ‖F

= ‖M1Σ
1/2
1 NT

1 −M2Σ
1/2
2 NT

2 +M2Σ
1/2
2 ΔT ‖F

≤ δ1/2 +
2δd1/2σ1(H)

σd(H)2
.

We can now appeal to the simple fact that for a

matrix X , for any N2 with orthonormal columns, we

have ‖X‖F = ‖XNT
2 N2‖ ≤ ‖XNT

2 ‖F d1/2. This gives

us

‖M1Σ
1/2
1 −M2Σ

1/2
2 QT

1 ‖F ≤ (dδ)1/2 +
2δdσ1(H)

σd(H)2
.

Thus, since Z = M1Σ
1/2
1 Q′ for an orthogonal matrix

Q′ and likewise for H , and because the product of

orthogonal matrices is orthogonal, we have the desired

result.

In what follows, to simplify the notation, we introduce

the following definition.

Definition VIII.8 (Poly-bounded function). We say that

a function f of a parameter η is poly-bounded if f(η)
is of the form ηc · poly(n,R, κU , κM ), where c > 0 is

a constant.

Intuitively speaking, by choosing η to be “polynomi-

ally small” in n,R and the condition numbers κU , κM ,

we can make f(η) arbitrarily small.

Now, the lemma above gives the following as a

corollary.

Corollary VIII.9. Let ÊΛ̂ÊT be the rank-R SVD of T̂ ,
and let UUT = EΛET be the SVD as before. Define
Ĥ = ÊΛ̂1/2 and H = EΛ1/2. Then there exists an
orthogonal matrix P such that ‖ĤP − H‖F ≤ f1(η)
for some poly-bounded function f1.

Proof. The desired conclusion follows from

Lemma VIII.7 if we show that ‖ÊΛ̂ÊT −EΛET ‖ ≤ 2η.

This follows from the fact that ‖T̂ − ÊΛ̂ÊT ‖ ≤ η
(which is true because the SVD gives the closest rank-k
matrix to T̂ — and UUT is at distance at most η),

together with the triangle inequality.

Informally speaking, we have shown that ĤP ≈η H ,

for an orthogonal matrix P . We wish to now use our

machinery from Section VIII-A2 to find the matrix U ,

which will then allow us to obtain the vectors in the

decomposition.

605



Let us define H ′ = HPT , where P is as above. Thus

we have H = H ′P (and thus H ′ ≈η Ĥ , informally).

Further, if Q is the orthogonal matrix such that U = HQ
(as in Section VIII-A2), we have U = H ′PQ.

a) Outline of the remainder.: We first sketch the

rest of the argument. The key idea is the following:

suppose we run the whole analysis in Section VIII-A2

using the matrices H ′ and PQ instead of H and Q,

we obtain that the set of symmetric solutions to the

system of equations
∑

i,j∈[R] WijΦ(H
′
i, H

′
j) is precisely

the span of the matrices (PQ)s(PQ)Ts . Thus, a random

matrix in the space of symmetric solutions can be

diagonalized to obtain (PQ)s. Using U = H ′(PQ),
one can reconstruct U . Now, we have access to Ĥ and

not H ′. However, we can relate the space of symmetric

approximate solutions to the perturbed system to the

original one in a clean way. Taking a random matrix in

this space, and utilizing the “gap” in Theorem VIII.4, we

obtain the matrix PQ approximately. This is then used

to find Û that approximates U , completing the argument.

Lemma VIII.10. For any i, j ∈ [R], we have

‖Φ(H ′
i, H

′
j)− Φ(Ĥi, Ĥj)‖ ≤

≤ O
(
‖H ′

i − Ĥi‖‖H ′
j‖+ ‖H ′

j − Ĥj‖‖Ĥi‖
)
.

Proof.

‖Φ(H ′
i, H

′
j)− Φ(Ĥi, Ĥj)‖ ≤

≤ ‖Φ(H ′
i, H

′
j)− Φ(Ĥi, H

′
j)‖

+ ‖Φ(Ĥi, H
′
j)− Φ(Ĥi, Ĥj)‖.

The first term can be bounded by 2‖H ′
j‖‖H ′

i−Ĥi‖, and

so also the second term is bounded by 2‖Ĥi‖‖H ′
i−Ĥi‖,

which implies the lemma.

Next, as in Section VIII-A2, define the R(R + 1)/2
dimensional matrices ĤΦ and H ′

Φ. Specifically, these

matrices have columns corresponding to pairs 1 ≤ i ≤
j ≤ R, and for i = j, the corresponding column of H ′

Φ is

Φ(H ′
i, H

′
i) and for i �= j, the column is

√
2 ·Φ(H ′

i, H
′
j).

A simple corollary of the lemma above is that

‖ĤΦ −H ′
Φ‖F ≤ O

(
‖Ĥ −H ′‖F · (‖Ĥ‖F + ‖H ′‖F )

)
= f2(η), (31)

for some poly-bounded function f2. This follows from

the lemma and corollary above, together with an appli-

cation of the Cauchy-Schwarz inequality. Next, we show

the following.

Lemma VIII.11. For 1 ≤ r ≤ R, we have σr(ĤΦ) ≤
f2(η). Also, we have σR+1(ĤΦ) ≥ σmin(MΦ)− f2(η).

Proof. The main idea, as mentioned in the outline, is to

apply Lemma VIII.3 to H ′. If λ′ denotes the (R+ 1)th
smallest singular value of H ′

Φ, then this lemma implies

that H ′
Φ has R zero singular values and λ′ ≥ σmin(MΦ).

Weyl’s inequality7 now immediately implies the lemma.

From now on, suppose that η is chosen small enough

that f2(η) <
σmin(MΦ)

2 . Next, let us define the spaces S′

and Ŝ as in Theorem VIII.4: let S′ be the space of all

symmetric solutions to the linear system∑
i,j

WijΦ(H
′
i, H

′
j) = 0.

Likewise, let Ŝ be the space of symmetric matrices ψ(z)
(see Section VIII-A2 for the definition of ψ), where z
is in the span of the R smallest singular values of ĤΦ.

The analog of Theorem VIII.4 is the following.

Theorem VIII.12. Let Z be a uniformly random Gaus-
sian vector in Ŝ, and suppose that Z = GΣGT is
the SVD of Z. Then with probability ≥ 9/10, we have
‖G − PQ‖F ≤ f3(η), for some poly-bounded function
f3.

Proof. The first step is to show that the spaces S′ and

Ŝ are close. This is done via the Sin-θ theorem, applied

to the matrices (H ′
Φ)

TH ′
Φ and ĤT

Φ ĤΦ. Let T ′ and T̂ be

the spans of the smallest R singular vectors of the two

matrices. By Theorem VIII.5 and the bounds on σR+1,

we have that there exist orthonormal bases Υ and Υ̂ for

these spaces such that for some orthonormal matrix Q′,

‖ΥQ′ − Υ̂‖F ≤ ‖(H ′
Φ)

TH ′
Φ − ĤT

Φ ĤΦ‖F
σmin(MΦ)2

.

Now, appealing to the simple fact that for any two

matrices X,Y , ‖XTX − Y TY ‖F ≤ ‖XT (X − Y ) +
(XT − Y T )Y ‖F ≤ ‖X − Y ‖F (‖X‖F + ‖Y ‖F ), we

can bound the quantity above by f4(η) for some poly-

bounded function f4.

We can now obtain bases for Ŝ and S′ by simply

applying ψ to the columns of the matrices Υ̂ and Υ
respectively. Let us abuse notation slightly and call these

bases Ŝ and S′ as well. By properties of ψ, we have that

‖S′Q′ − Ŝ‖F ≤ ‖ΥQ′ − Υ̂‖F ≤ f4(η). (32)

7Recall that the inequality bounds the change in eigenvalues due to
a perturbation of a matrix by the spectral norm (and hence also the
Frobenius norm) of the perturbation.
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Next, note that a random unit Gaussian vector in the

space Ŝ can be viewed as first picking v ∈ N (0, 1)R and

taking Ŝv. Now, using Theorem VIII.4 if we consider

the matrix S′v (which is a random Gaussian vector in

the space S′), with probability at least 9/10, we have

an eigenvalue gap of at least 1
20R2 . Thus, using this

and (32), together with the Sin-θ theorem (used this

time with precisely one eigenvector, and thus the rotation

matrix disappears), we have that ‖Gi − (PQ)i‖ ≤
20R2f4(η). Summing over all i (after taking the square),

the theorem follows.

We can now complete the proof of the main theorem

of this section.

Proof of Theorem VIII.1. Theorem VIII.12 shows that

the matrix G gives a good approximation to the rotation

matrix (PQ) with probability 9/10. (Since this proba-

bility is over the randomness in the algorithm, we can

achieve a probability of 1− γ by running the algorithm

O(log 1/γ) times.) We now show that ĤG ≈ H ′PQ:

‖ĤG−H ′PQ‖F ≤ ‖Ĥ(G− PQ) + (Ĥ −H ′)PQ‖F
≤ f5(η). (33)

Note now that H ′PQ is precisely U ! Thus the matrix

Û := ĤG (which we can compute as discussed above) is

an approximation up to an error f5(η). Finally, to obtain

a column Ui of U , we reshape Û into an n×n�−1 matrix,

apply an SVD, and output the top left-singular-vector.

This yields an error f6(η), for some poly-bounded func-

tion of η.

B. Smoothed analysis

Finally, we show that Theorem VIII.1 can be used

with our earlier results to show the following.

Theorem VIII.13. Suppose T =
∑

i∈[R] Ã
⊗2�
i + E,

where {Ai} have polynomially bounded length. Given
an accuracy parameter ε and any 0 < δ < 1/�2,
with probability at least 1 − exp(−Ω�(n)) over the
perturbation in Ã, there is an efficient algorithm that
outputs a set of vectors {Bi}Ri=1 such that

min
π

∑
i

‖Ãi −Bπ(i)‖ ≤ ε,

as long as R ≤ δn�, and ‖E‖F ≤ poly(1/n, ρ, ε), for
an appropriate polynomial in the arguments.

The proof of this theorem goes via the robust de-

composition algorithm presented in Theorem VIII.1. In

order to use the theorem, we need to bound the two

condition numbers κU and κM . Since the columns of

A are polynomially bounded, the columns of U and

MΦ are as well, so σmax(U), σmax(MΦ) are bounded

by some polynomial in n. Therefore we only need to

give lower bounds on σmin(U) and σmin(MΦ). We

now use Theorem II.2 to prove that these quantities

are both polynomially bounded with high probability in

a smoothed analysis setting. This would complete the

proof of Theorem VIII.13.

Lemma VIII.14. Let U = Ã��, and MΦ be the matrix
whose columns are indexed by pairs i, j ≤ R, and whose
{i, j}’th column is Φ(Ã⊗�

i , Ã⊗�
j ). Then for R ≤ n�/�2,

with probability at least 1−exp(−Ω�(n)), we have both
σR(U) and σR(R−1)/2(MΦ) to be ≥ poly(1/n, ρ).

Proof. The desired inequality for the matrix U was

already shown in earlier sections. Let us thus consider

MΦ. We can write the {i, j}’th column as

(MΦ)i,j = (ã⊗�
i ⊗ ã⊗�

j )

− (ã
⊗(�−1)
i ⊗ ãj ⊗ ã

⊗(�−1)
j ⊗ ãi)

+ (ã⊗�
j ⊗ ã⊗�

i )

− (ã
⊗(�−1)
j ⊗ ãi ⊗ ã

⊗(�−1)
i ⊗ ãj).

We will show a stronger statement, namely that a

matrix with four different columns (corresponding to

each term above) for each pair {i, j} has σmin ≥
poly(1/n, ρ). In this matrix, which we call M ′

Φ, we

have two columns for every (ordered) pair (i, j). The

first column is ã⊗�
i ⊗ ã⊗�

j and the second is ã
⊗(�−1)
i ⊗

ãj ⊗ ã
⊗(�−1)
j ⊗ ãi.

For any of the columns, we thus have

Δ2 = 1 (same i, j, different terms)

Δ� = R− 1 (same i, different j)

Δ�+1 = R− 1 (same i, different j, different terms)

Δ2�−2 = 1 (i and j swapped, different terms)

Δ2�−1 = R− 1 (same i, different j, different terms)

Δ2� = R2.

The rest of the Δ values are zero. Thus, we observe

that we can apply Theorem V.2 (with c = Ω(1)),
as the dominant terms are the ones corresponding to

Δ2,Δ�,Δ2�. This completes the proof.
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APPENDIX

Lemma A.1. Let X,Y be two independent real random
variables, for all a, b ∈ R such that P[X + Y ≤ b] > 0,
we have

P[X ≤ a] ≤ P[X ≤ a|X + Y ≤ b]

Proof. WLOG, assume P[X ≤ a] > 0,P[X > a] > 0,

then we have

P[X + Y ≤ b|X ≤ a] ≥ P[Y ≤ b− a|X ≤ a]

= P[Y ≤ b− a]

= P[Y ≤ b− a|X > a]

≥ P[X + Y ≤ b|X > a]

Hence P[X + Y ≤ b|X ≤ a] ≥ P[X + Y ≤ b] , then

P[X ≤ a|X + Y ≤ b] =
P[X ≤ a]P[X + Y ≤ b|X ≤ a]

P[X + Y ≤ b]

≥ P[X ≤ a]

The proof of Theorem IV.2 is almost identical to

Theorem IV.1.

Proof of Theorem IV.2. By Proposition IV.5, it suffices

to show that

P[‖ĝ(u+ z0, z1, · · · , z�−1)‖2 < c(�)εη · ρ
�

n�
] < εc

′(�)δn

where z0 ∼ N(0, ρ2(� + 1)/(2n�))n and

z1, z2, · · · , z�−1 ∼ N(0, ρ2/(2n�)), c(�), c′(�) > 0
are constants depending only on �. Let W be the span

of the top δn� right singular vectors of M . Observe that

‖ĝ(u+ z0, z1, · · · , z�−1)‖2 =

= ‖M(u+ z0)⊗ z1 ⊗ · · · ⊗ z�−1‖2
≥ η‖ΠW (u+ z0)⊗ z1 ⊗ · · · ⊗ z�−1‖2.

The theorem then follows by applying Lemma III.3

with x1 = u, x2 = x3 = · · · = x� = 0 and p = ε1/�.

We now give a self-contained combinatorial proof

of Theorem IV.1 for � = 2, that uses decoupling and

Lemma III.3. Let D′ be the dimension of the subspace

W , and let M1,M2, . . . ,MD′ be a basis for W . Let

z ∼ N(0, ρ2)n and z1, z2, . . . , zr ∼ N(0, ρ2/r)n be

independent Gaussian random vectors for r = O(
√
n).

Note that x+ z1 ± z2 ± z3 ± · · · ± zr are all identically

distributed as x̃.

Consider the following process for generating x̃ =
x+ z. We first generate z1, z2, . . . , zr and random signs

ζ = (ζ2, ζ3, . . . , ζr) ∈ {±1}r−1 all independently, and

return z = z1 +
∑r

i=2 ζ2z2. It is easy to see that z ∼
N(0, ρ2). We will now prove that at most one of the

2r−1 signed combinations z1 ± z2 ± · · · ± zr has a non-

negligible projection onto W .

Consider any fixed pair ζ, ζ ′ ∈ {±1}r−1, and let u =
z1 +

∑r
i=2 ζizi and u′ = z1 +

∑r
i=2 ζ

′
izi. We will use

the basic decoupling Lemma IV.7 to show w.h.p. at least

one of ‖ΠWu⊗2‖2 or ‖ΠW (u′)⊗2‖2 is non-negligible.

Using decoupling (with � = 2) in Lemma IV.7 we have

for each j ∈ [D′]〈
Mj , (x+ u)⊗2

〉− 〈
Mj , (x+ u′)⊗2

〉
=

= 4 〈Mj , (x+ u+ u′)⊗ (u− u′)〉
= 4 〈Mj , (x+ v1)⊗ v2〉 , (34)

where v1 = z1 +
∑

2≤i≤r:ζi=ζ′
i

ζizi,

v2 =
∑

2≤i≤r:ζi 
=ζ′
i

ζizi.

Also from Lemma III.3, we have that the above

decoupled product (x + v1) ⊗ v2 has a non-negligible

projection onto W ; hence with probability at least

1− exp
(− Ω(δn)

)
,

‖ΠW (x+ v1)⊗ v2‖22 =
D′∑
j=1

〈Mj , (x+ v1)⊗ v2〉2

≥ Ω(ρ4)

r2n4

i.e., ∃j∗ ∈ [D′] s.t. |〈Mj∗ , (x+ v1)⊗ v2〉| ≥ Ω(ρ2)

rn3
.

Applying (34) with the above inequality for j∗,

|〈Mj∗ , (x+ u)⊗2
〉− 〈

Mj∗ , (x+ u′)⊗2
〉| ≥ Ω(ρ2)

rn3
.

Hence,

‖ΠW (x+u)⊗2‖2+‖ΠW (x+u′)⊗2‖2 ≥ Ω
( ρ2

rn3

)
, (35)

with probability at least 1− exp(−Ω(δn)).

Since r = c1δn (for a sufficiently small constant

c1 > 0), we can apply (35) for each of the 22r−1 pairs
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of ζ, ζ ′ ∈ {±1}r−1, and union bound over them to

conclude that with probability at least 1−exp(−Ω(δn)),

∀ζ �= ζ ′ ∈ {±1}r−1,

max
{∣∣〈Mj , (x+ z1 +

r∑
i=2

ζizi)
⊗2〉∣∣,

∣∣〈Mj , (x+ z1 +

r∑
i=2

ζ ′izi)
⊗2〉∣∣} ≥ Ω(ρ2)

rn3
.

Hence w.h.p. at most one of the 2r−1 signed combi-

nations x+z1±z2±· · ·±zr has a negligible projection

onto W . Hence, with probability at least 1− 2−r+1 i.e.,

with probability at least 1 − 2−Ω(δn), ‖ΠW x̃⊗2‖2 ≥
Ω(ρ2)/n4. This establishes Theorem IV.1. An identical

proof also works for Theorem IV.2 when � = 2.
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[2] R. Beier and B. Vöcking, “Typical properties of winners
and losers in discrete optimization,” SIAM J. Comput.,
vol. 35, no. 4, pp. 855–881, 2006. [Online]. Available:
https://doi.org/10.1137/S0097539705447268

[3] A. Moitra and R. O’Donnell, “Pareto optimal solutions for
smoothed analysts,” in Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, ser. STOC ’11.
New York, NY, USA: ACM, 2011, pp. 225–234. [Online].
Available: http://doi.acm.org/10.1145/1993636.1993667
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