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Control is essential to the functioning of any neural system. Indeed, under
healthy conditions the brain must be able to continuously maintain a tight
functional control between the system’s inputs and outputs. One may there-
fore hypothesize that the brain’s wiring is predetermined by the need to
maintain control across multiple scales, maintaining the stability of key
internal variables, and producing behaviour in response to environmental
cues. Recent advances in network control have offered a powerful math-
ematical framework to explore the structure—function relationship in
complex biological, social and technological networks, and are beginning
to yield important and precise insights on neuronal systems. The network
control paradigm promises a predictive, quantitative framework to unite
the distinct datasets necessary to fully describe a nervous system, and pro-
vide mechanistic explanations for the observed structure and function
relationships. Here, we provide a thorough review of the network control
framework as applied to Caenorhabditis elegans (Yan et al. 2017 Nature 550,
519-523. (d0i:10.1038 /nature24056)), in the style of Frequently Asked Ques-
tions. We present the theoretical, computational and experimental aspects of
network control, and discuss its current capabilities and limitations, together
with the next likely advances and improvements. We further present the
Python code to enable exploration of control principles in a manner specific
to this prototypical organism.

This article is part of a discussion meeting issue ‘Connectome to
behaviour: modelling C. elegans at cellular resolution’.

1. Introduction

Connectomics has entered an era of rapid advances on an industrial scale [1-5]
which will, in the next few years, offer datasets of unprecedented size and exqui-
site detail pertaining to the brain’s wiring diagram. The theoretical and
computational challenges that accompany these advances are also unprece-
dented: how to handle the unwieldly amount of data, to incorporate and tie
together diverse information types such as precise neuronal morphologies and
genetic profiles, and how to build experimentally tractable hypotheses and predic-
tions. New tools must be developed in order to tackle this enormous challenge,
and any such tools—designed to handle diverse data types in the context of one
system—will almost certainly have to cross the traditional disciplinary borders.
Network control has been showing potential as one such tool [6-8]. Control
in the context of the brain may be thought of in two very distinct ways. Firstly,
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and perhaps most intuitively, control could be used to design
a perturbation in order to drive certain brain functions to a
desired state [9-11]. But secondly, control may be also
thought of in the sense of understanding how the brain
itself controls behaviour under normal conditions, and eluci-
dating the structural requirements to facilitate this [7,12-15].
Studying control in this second way can reveal fundamental
organizing principles and mechanisms pertaining to the func-
tion of neuronal systems, also constraining their connectome.
To demonstrate the importance of control principles in
neural systems, we recently framed the locomotion response
in Caenorhabditis elegans as a target control problem [12,13]. In
doing so, we simultaneously provided the first falsifiable
experimental proof of the utility of network control principles
in a real system and recovered new insights about previously
unknown neuron function in locomotion. In this paper, we
aim to make the control-based approach above accessible to
a wider and interdisciplinary audience, in terms of under-
standing, ability to implement, and inspiration to develop.
To this end, we adopt a slightly unconventional style, follow-
ing a ‘Frequently Asked Questions’ — or ‘FAQ’—format. The
‘Q’s are grouped to discuss: (i) the theoretical framework, or
Network control framework; (ii) the Model assumptions under-
lying the application to C. elegans; (iii) the Computational and
experimental details, including a link to the Python code with
which to implement the analysis; (iv) Potential improvements
to the current framework; and (v) generalization to further
behaviours and organisms and other Future perspectives.

2. Network control framework

(a) How does a target control framework apply to
(. elegans locomotion?

Caenorhabditis elegans moves in a sinusoidal fashion, via dorso-
ventral bends shaped by its 95 rhomboid body wall muscle
cells. Mechanosensory cues (like gentle touch) elicit a locomo-
tory response, and we found that such behaviours map very
naturally onto a target control problem as follows: the behav-
iour is driven by stimuli to sensory neurons (control signals
to input nodes), which are then processed by the connectome
(control system), and result in the muscle contractions and
relaxations that produce locomotion (states of the output
nodes) (figure 1). In this framework, the intact system, i.e. the
connectome as mapped by White et al. [16] and subsequently
updated by Varshney et al. and Chen et al. [23,24], informs us
of the level of controllability that exists naturally in the
worm. We quantify this by the number of linearly independent
control signals that reach the muscles. By systematically ablat-
ing neurons and neuron classes in silico, we can then assess
each neuron’s impact on controllability by pinpointing the
sets of muscles which receive a reduced number of indepen-
dent signals. This leaves us with a list of neurons that are
predicted to play a role in the control of a certain behaviour,
predictions that we examine via cell-specific laser ablation
and worm-tracking experiments.

(b) What is the mathematical formalism of
network control?

Control theory has a long and vibrant history in engineering
and mathematics. It seeks to address a fundamental and

sensory input
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Figure 1. The network control approach to understanding the behavioural
responses of C. elegans. Graphical representation of the proposed control fra-
mework (adapted from [12]). According to structural controllability in the
context of a locomotory response to stimuli, if removal of a neuron disrupts
controllability of the muscles, we designate it ‘Essential’ for locomotion; if
not, we call it ‘Non-essential’. To make this assessment, we first mapped
the C. elegans responsive locomotor behaviours into a target network control
problem, asking to what degree the sensory neurons (blue) can control the
muscles (pink). This allowed us to predict the previously unknown involve-
ment of neuron PDB in C. elegans locomotion, and functional differences
between individual neurons within the DD neuronal class. We test our pre-
dictions through cell-specific laser ablation and worm-tracking experiments,
and statistically comparing eigenworm features. The original electron
microscopy (EM) images in White et al. [16] were reconstructed from five
partial worms—primarily N2U and JSE (adult hermaphrodites), then N2T
for the anterior nerve ring (adult hermaphrodite), N2Y (adult male) for
the section between N2U and JSE, and finally JSH (L4 larva) to check con-
nectivity in the nerve ring (adapted from [17] and [12]). C. elegans moves in
a sinusoidal fashion, via dorsoventral bends. Its 95 rhomboid body wall
muscle cells are arranged as staggered paired rows in four quadrants
(dorsal left/right and ventral left/right), and each muscle cell receives mul-
tiple inputs from some of the 75 motor neurons. Corresponding muscles
contract and relax in a reciprocal fashion (e.g. for a dorsal bend, the
dorsal muscle cells contract while their ventral counterparts relax), and move-
ment requires these waveforms to be propagated sequentially to
neighbouring muscle cells, along the length of the animal, in the correct
direction. For movement to be sustained, oscillation between the contracted
and relaxed states is required. The structure of the motor circuit is critical to
achieving these basic requirements. The motor neurons themselves receive
input from the ‘command’ interneurons, which constitute a bistable circuit
that determines the direction of movement, depending on input from sensory
neurons (reviewed by [18—20]). The posture of the worm can be recon-
structed as a summation of eigenworms, and we consider the leading
four eigen projections, (shown on the bottom right as a;x to a,x), which
account for 95% of the variance in body shape, as a basis set [21,22].

ambitious question: how to control a system’s behaviour [6].
In other words, control theory asks how we may guide the
output of a dynamical system to a desired final state (e.g. move-
ment of a set of muscles) via suitably chosen inputs
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(e.g stimulation of sensory neurons). To address this complex
question, it is generally necessary to know the system’s
dynamics—that is, the rules or equations that govern the way
the system changes state over time. In neural networks, this
corresponds to the rules determining neuronal activity at
time ¢ + 1 given the neuron’s inputs and current state at time .

Recently, notions of control and controllability have taken a
new life in the study of complex networks, inspiring several
fundamental questions and making a number of predictions
[25-27]. Indeed, complex networks are of great interest to con-
trol theoretic questions. The wiring diagrams which describe
them influence function and dysfunction, and cause particular
components to be suited (or not) to specific control tasks [14].
Here we capitalize on recent theoretical advances in network
control theory, which brings together control theory and the
wiring diagram of real complex networks, and employs
novel graph-theoretic techniques to solve control-related pro-
blems [6]. There are a number of such problems one may
want to consider within the space of network control, a classic
example being the minimal control problem [28]. In this case,
one is concerned with identifying a minimal set of input
nodes (or driver nodes), to which suitable input signals may
be applied to drive the system to a desired final state. Here
we focus on C. elegans locomotion in response to an aversive
stimulus (gentle touch) which is known to activate some
specific sensory neurons. We therefore know the identity of
the input nodes (sensory neurons), and we are interested not
in full controllability of the entire system, but of a subset of
output nodes (muscles). This is then a target control problem
[26]. We use this framework to investigate how structural fea-
tures of a brain network determine neuronal dynamics and
therefore behaviour.

The mathematical formalism we use is as follows:

(i) Nature of the nodes. Nodes of the system include both
neurons and muscles.

(i) Nodal activity and dynamical equations. The equations
governing neuronal dynamics are complex and incom-
pletely known. Here, we make some simplifying
assumptions which render the system mathematically
tractable. The level of activity of each node (neurons
and muscles) is modelled with a single number. In the
model, the change in activity of each node is assumed
to be linear—meaning it is proportional to the sum of
the upstream neuronal activity, and the external
inputs received by the node in question. This is
described by the linear equations:

x(t) = Ax(t) + Bu(t) } 1)
and y(t) = Cx(t),

where A corresponds to the adjacency matrix (a matrix
defining which nodes connect to one another, and with
non-zero elements A; that represent the nodal
dynamics of node i); the input matrix B represents the
touch receptor neurons on which the external signals
are imposed, e.g. ALML/R and AVM for anterior
gentle touch; and the vector y(t), selected by the so-
called output matrix C, represents the states of the M
muscle cells [12]. The output matrix C is an M x (N +
M)-dimensional matrix, where M is the number of
muscles and N is the number of neurons, and impor-
tantly, in each row of matrix C only one entry that
corresponds to a muscle is non-zero. In other words,

the matrix C is composed of an M x N zero matrix n

and an M x M identity matrix.

(iii) External input. For the equations above to sensibly
describe the system, Ax(t) and Bu(t) must have the
same units. This implicitly assumes that there exists
a mapping between the units of the external stimulus
and the units of neuronal activity.

(iv) Quantifying controllability. In this setting, the rank of
controllability matrix K is equal to the number of inde-
pendently controllable muscles.

We note that real-world neurons have nonlinear
dynamics and are therefore not fully described by the
equations above; we return to this issue below, in ‘Can we
use linear dynamics to describe the control principles of a
highly nonlinear brain?’

(c) How does the control framework compare to other

network-based predictive tools?

One can design multiple plausible network topology-based
approaches [29] to elucidate the neurons important for loco-
motion. Most of these approaches depend on ranking the
neurons based on some network property. The most obvious
problem presented by such approaches is the lack of objective
criteria for what aspect of a neuron’s connectivity should be
considered (degree, number of connections to muscle cells
and so on), and lack of criteria to define the cut-off value
above which a neuron is deemed essential. Nevertheless, we
can clearly learn a lot from such simple networks-based
approaches [24,30]. On the other end of the scale, detailed mod-
elling approaches that take realistic neuronal dynamics into
account will ultimately offer vital understanding of the circuits
[31-33]. The structural control approach offers a useful middle
ground—it does not demand knowledge of detailed dynamics
(see below), yet is capable of identifying neurons with an
important role in control even if they are not obviously
well-connected (e.g. PDB), as well as differences between
neurons that on the face of it look similar in their wiring
(such as the DDs) [12]. Moreover, it can highlight the mechan-
ism through which this control is exerted.

(d) What do we expect to observe when control theory

predicts loss of control for a specific neuron?
As described above, we can quantify controllability by the
number of linearly independent control signals received by
the muscles—this also corresponds to the number of muscles
which could, in theory, be moved independently. Naturally,
the worm does not need the ability to independently control
every single one of its 95 muscles [34], and this is also
reflected in our results, which show that fewer than 95
(specifically, 89) linearly independent control signals can
reach the muscles. What the network control framework
allows us to do is predict the deviation from the healthy start-
ing point—if the ablation of a neuron reduces the number of
control signals reaching the muscles, then we expect a
reduction in the worm'’s ability to finely control locomotion.
From this, we can infer if the ablated neuron(s) play a role
in the control process. This approach does not tell us the pre-
cise role of the ablated neuron—it only tells us that in the
absence of the neuron the network loses some degree of con-
trol over the muscles. Note also that a loss of controllability
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does not imply loss of activity: a loss of controllability over a
small number of muscles means only that these muscles
cannot be independently controlled by the nervous system
and must have an amount of correlation. Thus, the predicted
phenotypes (reduction in overall controllability of a few
muscles) can be in some cases quite subtle.

While the structural controllability framework provides a
deterministic number of controllable muscles, there is in general
more than one configuration of muscles that could make up
this number. The set of 89 independently controllable muscles
in the healthy worm is not unique, but we can assign a prob-
ability to which muscles are controllable. This exploits the
fact that there are multiple solutions to the control problem
[35], each of which gives rise to the same level of controllability.
Hence cataloguing the independent solutions can inform
us which muscles are more likely to experience a reduction in
control. For each ablation of a neuron or neuron class, we
numerically obtained the probability pattern of each muscle
losing its controllability, and compared this pattern to that
of the healthy worm. The difference between these two
probability patterns reveals which muscles are affected most
strongly by the ablation. In practice, we find that the sets of
affected muscles tend to be spatially co-localized across differ-
ent solutions. For example, in the case of the DD neurons, the
control analysis predicted a reduction in control over the set
of posterior muscles where defects were experimentally
observed [12]. These probability patterns may be used to
inform expected phenotypes in future experiments.

3. Model assumptions

(a) Can we factor in the effect of different connection
types on network control?

Neuronal connections may be: (i) inhibitory or excitatory; (ii)
weighted, in a structural or functional sense; (iii) chemical
synapses or electrical gap junctions; (iv) synaptic (wired) or
extrasynaptic (wireless).

(i) Inhibitory versus excitatory. Depending on what kind of
ion channel they control, chemical synapses can either
be excitatory (by opening sodium/cation channels) or
inhibitory (by opening chloride/anion channels). In a
network sense, an excitatory synapse is described as a
link with a positive sign, and an inhibitory synapse
with a negative sign. While the excitatory/inhibitory
nature of individual neuromuscular synapses is
known, for neuron to neuron synapses it is mostly
unknown (in C. elegans, all classical neurotransmitters
can be either excitatory or inhibitory). Structural con-
trollability does not make any assumptions about
the signs of the links, only whether they are non-
zero [6,26]. The inhibitory/excitatory nature of the
synapses only becomes important if we aim to actu-
ally control the network in specific ways, and does
not change the conclusions and predictions regarding
the more fundamental question of controllability.

(ii) Weighted. Similar to the signs of the links, weights are
treated as free parameters in the structural controll-
ability calculations. If we are interested in quantities
such as control energy or control time, the weights
become essential [6,26,36,37]. These weights may be

(iii)

(iv)

defined structurally (synaptic sizes and numbers) or n
functionally (correlations between neuronal activity),
a choice that should be carefully considered in the
context of the line of inquiry.

Chemical and electrical synapses, the two distinct forms of
wiring between neurons, differ greatly mechanistically,
with effects on connectivity that are felt at the network
level (figure 2). Specifically, in chemical synapses, an
electrical signal in the presynaptic cell is transformed
to a chemical signal (release of a neurotransmitter)
and then transformed back to an electrical signal
in the responding cell (neuron or muscle) through post-
synaptic neurotransmitter receptors that are, or control,
ion channels. The signal is directional (from presynaptic
to postsynaptic cell), and the strength and timing of the
signalling depends only on the state (i.e. membrane
potential) of the sending cell. Despite some nonlineari-
ties, the properties of chemical synapses can be
reasonably approximated by the matrix formulation of
our control framework.

By contrast, electrical synapses (gap junctions) are
channels by which electrical current can flow between
coupled cells. While current can, in principle, flow in
either direction through the electrical synapse, at any
given time it can only flow in one direction, and this
direction is determined by the relative membrane
potentials of the coupled cells. Consequently, gap junc-
tions can lead to partial electrical coupling between
cells, making their membrane potentials more similar
to one another. These connections are less well mod-
elled by the matrix formulation of our control
framework, and they are considerably more restricted
than chemical synapses in their ability to transmit a con-
trol signal. Moreover, many gap junctions, in C. elegans
and other organisms, are asymmetric in the expression
of their constituent innexins, and consequently pass
current more easily in one direction than another. With-
out knowing which of the 25 innexins is expressed at a
particular gap junction [38,39], it is impossible to infer
from connectome data which of them are asymmetri-
cally rectifying, further complicating the inclusion of
gap junctions in the control framework.

In our control analysis [12], we treated all synaptic
connections as if they were the same, and we used two
directed connections (one each way) to represent an
undirected gap junction. However, due to the properties
noted above, we now suspect that the inclusion of gap
junctions in the network may lead to overestimation of
the structural controllability of the real connectome—
see Potential improvements section below.

Wired versus wireless. In addition to synaptic (wired)
connections, neurons also signal to each other using
neuromodulators such as monoamines and peptides,
connections that are mostly extrasynaptic (wireless)
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[40]. In other words, neuromodulatory molecules are
released by neurons into the system, and this form of
signalling is received, on a local and/or global scale,
by all neurons which express the relevant receptors.
As the connectome data used for our analysis relied
only on the chemical synapses and electrical gap
junctions (wired connections), neuromodulatory inter-
actions were not taken into account. In principle, one
can describe the wireless connections as external control
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Figure 2. Chemical synapses and electrical gap junctions. Chemical synapses and electrical gap junctions have very different properties and underlying mechanisms.
In electrical gap junctions (a), voltage is transferred via touching membranes and signals may pass in both directions. In chemical synapses (b), signals are trans-

ferred through ion channels from the pre- to postsynaptic neuron.

signals applied to receiving nodes and, with a suffi-
ciently complete map, one could determine which
nodes are required for controllability by neuromodu-
lators. Although we do not yet have such maps,
efforts are underway to extend our knowledge of neuro-
modulatory networks, and hence in the future this
approach may be feasible.

(b) Can we use linear dynamics to describe the control
principles of a highly nonlinear brain?

Neuronal dynamics are inherently nonlinear, so if we aim to
capture the system’s behaviour in detail, we must model it
using a fully nonlinear framework, which is currently intract-
able. Our goal is different here: we aim to understand the role
of the network wiring diagram in control. As we discuss next,
linear dynamics offer a useful approximation for this purpose
in some cases. Indeed, the real-world use of linear control
theory—considering linear time-invariant dynamics in the con-
text of nonlinear systems—has been well demonstrated in
multiple classical problems, from stick balancing [41] to rockets
subject to thrust [42], internet congestion control [43], tracking
control of helicopters [44] and stabilization of open flows [45].

In the context of network control, recent experimental and
numerical studies indicated that the neuronal dynamics of
the nematode C. elegans are low-dimensional and can be
understood as transitions between different attractors (limit
cycles or fixed points) [46—-48]. This allows us to apply local
controllability, i.e. examine the dynamical equation at the
fixed points or along the limit cycles.

If a system is locally controllable along a specific trajectory
(such as limit cycles here) in the state space, then the

corresponding nonlinear system is also controllable along the
same trajectory [49]. Hence the controllability of the linearized
system is expected to illuminate the controllability of neuronal
dynamics of C. elegans within an attractor, even if some level of
uncertainty remains (e.g. if the linear system is not controllable,
then the nonlinear system may or may not be controllable).
Indeed, simulations show that the nonlinear controllability
of motifs with non-identical link weights exhibits the same
properties as its linear and structural counterpart [50], and
recent work [9] shows that linear controllability predictions
are consistent with simulations of neuronal networks with
Wilson—Cowan nonlinear dynamics.

Note that linearizing neuronal dynamics along a limit cycle
can lead to a time-varying Jacobian matrix A. In Yan et al. [12],
we assume that the changes occur only in link weights and
that the structure of matrix A is constant, being encoded by the
C. elegans connectome. This allows us to apply structural controll-
ability which is link-weight independent, hence variation in the
nature or the strength of the links has no impact on our results as
long as the network diagram remains unchanged. Ultimately,
these modelling assumptions are simplifications motivated by
theoretical tractability. Although the reasons above suggest
that this framework might be usefully applied, it is the
experimental validation that provides proof of this utility.

(<) What role do individual neuronal dynamics, and the
resulting self-loops, play in controllability?

Neurons have intrinsic dynamics. Activity is observed in the
absence of external input, and response to external input is
mediated by factors such as the neuron’s own state or mem-
brane potential. In a network sense, such intrinsic dynamics
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Figure 3. Intrinsic dynamics and self-loops. The dynamics of many real networks—including neuronal networks—may be modelled as a simple set of ordinary differ-
ential equations [51,52], with terms to account for (i) the intrinsic dynamics of the nodes; (ii) the input signals from other nodes in the network resulting from network
topology; and (iii) any external input signals. The intrinsic dynamics manifest as self-loops. We can assume that neurons have one type of self-loop, and muscles have

another [12].

manifest as self-loops on the nodes, as a self-loop represents a
node’s interaction with itself (figure 3). It has been claimed that
any network where each node has a self-loop is structurally
controllable [53]. It is imperative to clarify that this result,
namely that a single external signal can control the whole net-
work with nodal self-loops, was derived under the specific
condition that the same single signal is directly imposed on every
node. In contrast, in the C. elegans nervous system only a
small number of sensory neurons receive a given stimulus,
hence not all nodes receive the same external signal. Given
the two distinct components of the C. elegans connectome—
neurons and muscle cells—we could use three distinct assump-
tions for self-loops: (i) all nodes have the same dynamics, and
thus the same self-loops; (ii) neurons have one type of self-loop
and muscles have another; and (iii) all nodes have different
self-loops regardless of type. The first is the least realistic case
and the third the most. A recent paper [54] showed that if
each node has an identical non-zero self-loop, as in (i), then
controllability of a network can be estimated using the maxi-
mum matching framework derived in Yan ef al., Liu et al. and
Gao et al. [12,25,26]. This is what makes the calculation compu-
tationally tractable for networks with more than approximately
50 nodes. In Yan ef al. [12], we proved that, for the target con-
trollability of the C. elegans connectome, the assumption of
identical self-loops for each node is not necessary and can be
relaxed to case (ii), demonstrating that the results are valid
even when assuming that different kinds of nodes (neurons
or muscles) have different self-loops. The third and most
fully realistic case (iii) where each neuron and each muscle
exhibits different dynamics and therefore self-loops has yet to
be explored, and represents a potential extension to the
framework.

4. Computational and experimental details

(a) How are the analyses implemented
computationally?

We have made the code for the control analysis in Yan ef al. [12]
available in the form of Python scripts at https://github.com/

EmmaTowlson/c-elegans-control. In its current form, it
recovers the neuron classes predicted by the control analysis
to be involved in the locomotory response to posterior and
anterior gentle touch. Some simple amendments by the user
will allow for the varying of input neurons. We are actively

augmenting the repository to expand its capabilities.

(b) What are eigenworms and how can we use them to
detect reductions in controllability?

Previous studies have shown that the space of shapes adopted
by C. elegans during motion is low-dimensional, with just four
dimensions accounting for 95% of the shape variance. This
four-dimensional [21,22] eigenworm basis provides a compact,
relatively unbiased representation of movement with which to
look for phenotypes. Eigen projections give us an idea of what
motor behaviours may be affected: for example projection 4
is a measure of variance in the head/tail, which led us to
more closely look at these parts of the worm—indeed for
posterior DD-ablated animals the locomotion defect appears
to be largely localized to the tail.

However, eigenworms do not provide a direct measure of
the movement dynamics of all 95 individual muscles, and
given the severity of the dimensionality reduction—95 to 4—
there is no guarantee that the expected subtle changes in
control will be identified. Thus, although we were able to
observe experimental differences using the eigenworm basis,
in the future it may be useful to explore other approaches,
such as directly comparing the set of (49-dimensional) postures
exhibited by intact and ablated animals [55]. Indeed, abnorm-
alities in some muscle groups may be easier to detect using the
eigenworm basis than others. For example, unc-2 (neuronal
voltage-gated Ca®" channel) deletion mutants, which are
strongly defective in neurotransmission from all neurons
(figure 4, reproduced with permission from [56]) show very
strong abnormalities in locomotion but usually overlap in
their eigenworm statistics with wild-type worms. In the case
of PDB, we observed a highly significant reduction in the ven-
tral bias of omega turns, from 86% to 66% for PDB-ablated
animals [12]. As the first eigen projection (EP1) represents the
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Figure 4. Eigenworm feature statistics for the voltage-gated calcium channel mutant unc-2(gk366). This allele is a deletion of the voltage-gated calcium channel
gene unc-2, and mutant animals are hence strongly defective in neurotransmission from all neurons. The four panels depict the probability distributions of the first
four eigen projections, for wild-type (grey) and for the mutant unc-2(gk366) (blue). The y-axis shows the probability density (3P(x) = 1) and the x-axis shows the
projected amplitude for each eigenworm (arbitrary units). While the distributions for the two strains are clearly different, there is significant overlap in the observed
eigen projections. Reproduced with permission from the database described previously [56].

relative curvature of the entire body, the ventral bias in omega
turns also translated into smaller, but measurable and statisti-
cally significant changes in EP1. This highlights the need for an
in-depth screening of behavioural changes when assessing
ablation phenotypes. In particular, it would be useful to
develop better analytical tools to identify differences in shape
dynamics at particular points along the worm body, to more
directly correlate locomotion phenotypes with alterations in
the activity of specific muscle groups.

5. Potential improvements

(a) The connectivity data are likely inaccurate—nhow do

they affect the analysis?
The extraordinary mapping efforts by the authors in White e al.
[16] have still not been rivalled 30 years later, and continue to fuel
new insights on C. elegans [12,30]. Remarkable as this very special
dataset is, however, it is naturally imperfect. EM sections were
reconstructed from five partial worms—primarily N2U and
JSE (adult hermaphrodites), then N2T for the anterior nerve
ring (adult hermaphrodite), N2Y (adult male) for the section
between N2U and JSE, and finally JSH (L4 larva) to check con-
nectivity in the nerve ring (figure 1). While connectivity is
widely assumed to be deterministic and almost invariant
between individuals, it is highly unlikely to be precisely identical.

These issues—the compilation of worms, with not just
individual variation, but different ages, and genders, plus
the tracing errors inevitable with any mapping method-
ology—lead to a dataset that probably contains a number

of erroneous and/or non-reproducible elements. Given the
confounding factors, the level of unreliability is hard to quan-
tify and can be expected to include missing connections, extra
connections, mislabelled connections, and errors in the type
and number of connections between neurons. Despite these
issues, the existing connectivity map is clearly invaluable
for an array of purposes and lines of inquiry [12,24,30]. The
accuracy of the control-based predictions offers another testa-
ment to its suitability. We tested the adequacy using a
robustness analysis [12,23], finding that the predictions
from the control framework are consistent and robust even
when the data used for modelling contain discrepancies
compared to the real connectome structure. Here, we
extend the analysis presented in the original paper, finding
that the predictions are robust to 420 random weak link
deletions (figure 5). The fact that we can delete as many as
14% of the weak links and rewire or add as many as 3%
[12], and still recover our predictions, suggests that the
control framework employed by the worm is robust to
significant differences in the network—i.e. its wiring is
such that it can maintain controllability even taking into
account a high level of variation in the fine detail of the
connectivity patterns.

A small section of the posterior worm body was never
reconstructed. Beth Chen’s thesis (2007) contains the most
complete reconstruction of the ventral cord (where DD inter-
neuronal synapses lie) as well as a parsimonious model of
the dorsal cord (with the DD neuromuscular junctions
(NMyJs)). Specifically, this work reconstructed many missing
connections in the ventral cord, some via new EM images of
thin sections from the original N2U worm. With respect to
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Figure 5. Robustness of the predictions to imperfect data. Robustness
analyses, testing the robustness of ablation predictions to up to 420
random weak link deletions (approximately 14% of the network).

NMyJs, (to quote the source) ‘Neuron-to-muscle connections for
the first 32 muscles in the head are detailed by White et al. [16].
For the remaining muscles, direct neuron-to-muscle mapping
is not available. In this case, we assume that motor neurons
connect to muscles where positions of neuromuscular junc-
tions overlap the sarcomere region of a given muscle. .. For
neurons lacking complete reconstruction, especially ones on
the dorsal side of the worm, the number of neuron-to-muscle
connections is assumed to be the average NM] per muscle
from fully reconstructed neurons of the same class’. However,
there are still many synapses missing, prompting us to ask if
this affects the controllability predictions. Most of the predic-
tions in Yan ef al. [12] stemmed from patterns of
neuromuscular connections, where the estimates by Chen
et al. [24] were based on the observed or interpolated positions
of muscle arms and motor neuron processes, and thus are
likely to be close to the real situation. However, it is certainly
possible that the missing connectivity data have led to incom-
plete or even inaccurate predictions. Some efforts to infer this
information from repeating patterns in the wider locomotor cir-
cuit have produced a probabilistic model describing the
connections [57,58], which could be used as an estimate of con-
nectivity in future analyses. In Yan et al. [12], we used the
currently accepted gold standard dataset, but we do expect
improved data to be made available over the next few years,
including more complete data filling this gap in the future.

(b) What happens to the control predictions if gap
junctions are excluded from the network?

Above, we noted that the chemical synapses are better mod-
elled by the control framework than gap junctions are. To see
how the inclusion of electrical synapses might have affected
control predictions, we reanalysed the network using only
the chemical synapses, and ignoring gap junctions. This
makes the network sparser, which typically leads to more
control nodes [25]. Indeed, the analysis identified several
additional neurons and neuronal classes predicted to affect

Table 1. Control predictions for the chemical synapse network; italics [JEJ}

denotes the results for the aggregate network.

control predicted neuron classes

DA, DB
DD

AA, AVB
1A, VB, VD, AS
PDB
pPVC

RID

A4, AVB
AD

AVE

pVC

Av)

DVA

PVR

control muscles

control motor neurons

controllability (table 1). Note that we recover all of our orig-
inal predictions based on the aggregate network (in italics),
lending further credence to our original findings [12]. We
also identify three more neurons—AVB, PVC and RID—
when considering muscle control, all three of which have
now been implicated in locomotion [59,60]. Two of the four
new neurons predicted for control of motor neurons have
known roles in locomotion [60], and the final two, AV] and
PVR, have not currently been implicated and open an
avenue for experimental testing in future work. Arguably,
this larger set of predictions makes the synapse-only network
more indicative of locomotion control and appropriate for the
current set-up.

6. Future perspectives

(a) Can we use the control framework to more precisely
describe the response to stimulus?

As more is learned about the physiological responses of neur-
ons to stimuli, it will be possible to more fully describe the
mechanisms of behaviour: mapping resultant neuronal activity
to membrane voltage, and ultimately to muscle cell activity,
contraction and relaxation, and locomotion. These detailed
dynamic features can in turn also inform the control formalism,
particularly if a nonlinear framework becomes available for
neural systems. Indeed, one potentially promising avenue
which would yield even more precise testable experimental
hypotheses is to explore and define the relation between
muscle control and eigenworms. In the current analyses the
outputs are the states of muscles, i.e. we focused on the con-
trollability of muscle states. The framework can theoretically
be extended to incorporate a matrix W mapping the muscle
states to eigenworms. Each entry, w;, of this matrix denotes
the strength with which muscle i affects eigenworm j.
In this setting, the eigenworms themselves become the outputs
of our structural controllability framework, and thus can
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be more explicitly testable with experiments. Accurately
determining the w;; values is worth future pursuit.

(b) Is the control framework generalizable to other
behaviours?

The control framework is not limited to mechanosensation; it
can be applied to investigate the basis of any behaviour that
can be described as a response (output) to a stimulus (input),
with known input and output nodes. For example, if we were
interested in the locomotor response to olfaction, the output
nodes would remain the muscles and we would define the
input nodes as chemosensory neurons, such as ASH for the
case of certain aversive chemicals [61]. Note that while this
mapping to the target control framework adequately models
the majority of behaviours, control-theoretic methodologies
can be used without specifying the inputs and outputs
[62,63]. It may be of interest to consider in silico non-biologi-
cal or biologically challenging amendments to the neuronal
network, such as edge additions and deletions. In these
cases, we could theoretically use detailed simulations
[64,65] to interrogate our predictions.

An interesting extension of the current framework which
may offer finer insights into different behaviours would be to
take into account the time and energy required for specific
control tasks [6,27,36,37], such as steering the muscles into
a particular pattern of muscular activity. If the ablation of a
component of the connectome leads to a significant increase
in control time and/or energy for such an output state,
then the component is probably involved in this behaviour.
With the hypothesis that lower energy states that are reached
within reasonable time are favoured over others, such tem-
poral and energetic considerations could also elucidate why
certain behavioural states are realized over others, and
potentially offer insights into the extremely low dimensional-
ity of the system (see above on eigenworms). To quantify
the change in control time/energy, we would need to
include the weight and inhibitory/excitatory nature of each
link and self-loop. Such information has not been available
so far.

Finally, we note that a behaviour might involve different
sets of sensory neurons, or different connection strengths at
different times (for example in the case when connection
weights are altered during learning). In this case, the problem
could be reformatted using a temporal control framework,
i.e. the input nodes, output nodes and even the network
structure itself may change with time. Recent efforts address
the problem of full controllability of temporal networks
(i.e. controlling all nodes in a temporal network) [37,66,67].
The target controllability of temporal networks (controlling
only the output nodes in a temporal network) remains an
open but tractable theoretical question.

(c) Is the control framework generalizable to other
organisms?

The control framework is agnostic to the system in question,
hence it is not limited to C. elegans. Currently, the main chal-
lenge presented by generalizing the framework to other
organisms is simply the availability, completeness and accu-
racy of connectome data. Given that a full connectome at the
neuronal level does not—for now—exist for many organisms
[68], but partial maps and macroscopic maps do [1,3,4,69],

we are left with two choices. The control framework can be
applied at meso- or macroscale resolutions, an approach that
has already shown success [7]. Alternatively, subcircuitry
[70-72]—incomplete data in the sense of the whole brain,
but complete when considered as a specific circuit—can be
examined as smaller, stand-alone systems. For example, in
the case of the Drosophila larva, we have knowledge of wiring
of the olfactory glomeruli [70,73]. Olfactory receptors (input)
receive external stimuli in the form of odours, the information
is processed by the local circuitry (control system), and des-
cending neurons (output) pass signals to the mushroom
body and elsewhere in the brain. Encouragingly, the previous
robustness analyses indicate that, in the face of imperfect or
incomplete data, we can still glean important insights from
the control framework.

(d) Discussion and outlook

C. elegans remains at the forefront of the quest to understand the
structure and function of brain networks, and offers an excel-
lent model system also from the perspective of control. We
interrogated the theory and experimental practice for under-
standing control principles in the C. elegans connectome. We
find that this framework recovers an impressive set of neurons
or classes of neurons experimentally known to be important for
locomotion; but it is not a complete list. A number of neurons
with clear ablation phenotypes (for example, SMB and RIV
[74]) were not predicted by the current implementation of the
control approach. However, the neurons that are identified as
affecting controllability are very likely to affect real behaviour,
and in some cases (like PDB and the posterior DD neurons)
these predictions will be unexpected from casual inspection.
Classically, ablation experiments have been guided by obvious
traits in the connectivity—RIV makes numerous synapses only
to the ventral head muscles and hence was expected to have the
effect on the ventral bias of turns which was observed [74]. In
Yan et al. [12], some of the predictions recovered by the control
framework were much less intuitive—PDB, which we demon-
strated to have a similar ablation phenotype to RIV, is located in
the tail and, while it does have an asymmetric connectivity pro-
file, its synapses are very small in number. Effects on the ventral
bias of omega turns were therefore much more surprising.
Similarly, while the DD neuron class was expected to play a
role in forward and backward locomotion [60], the prediction
from the control framework that the individual dorsal DD
neurons would be more important than the anterior neurons
was highly unexpected.

Importantly, the work in C. elegans gives us clues to
approaches that are unlikely to be successful. For example,
applying control theory to find a set of driver nodes among
the full set of nodes in the nervous system (analogous to
approaches in human brain data [14]) produced results that
are more difficult to interpret biologically [63]. It is only when
formulating our question in terms of target control and includ-
ing the muscles as output nodes within our network that we
began making successful predictions. This suggests that for
higher-order organisms also the emphasis should be on formu-
lating control problems quite precisely, for example trying to
steer network dynamics in a particular region (output nodes)
away from particular aberrant dynamics (e.g. epileptic activity
[75]). We may also find that features and properties of other
brain networks such as nonlinearity and proprioceptive
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feedback become more important, and their incorporation will
be an important challenge to add to the framework.

Over the next 5-10 years, theoretical and experimental
advances will doubtless improve upon our current approach,
and perhaps most significantly, so will new datasets. Neuro-
technologies continue to be developed at an astonishing rate
[2,76,77], and with them comes the promise of data which
will complement, and ultimately supersede, the existing con-
nectome. Functional data such as from calcium imaging may
provide us with the weights and even signs on the connections
needed to calculate control energy and control time [27,36,37],
and investigate more mechanistic queries, such as how control
is achieved and why certain behavioural states are preferred
over others. As larger and more detailed datasets arrive for
higher-order organisms, we will be equipped with the tools

developed for C. elegans as the groundwork for elucidating [ 10 |

their system-specific control principles.
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