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Control is essential to the functioning of any neural system. Indeed, under

healthy conditions the brain must be able to continuously maintain a tight

functional control between the system’s inputs and outputs. One may there-

fore hypothesize that the brain’s wiring is predetermined by the need to

maintain control across multiple scales, maintaining the stability of key

internal variables, and producing behaviour in response to environmental

cues. Recent advances in network control have offered a powerful math-

ematical framework to explore the structure–function relationship in

complex biological, social and technological networks, and are beginning

to yield important and precise insights on neuronal systems. The network

control paradigm promises a predictive, quantitative framework to unite

the distinct datasets necessary to fully describe a nervous system, and pro-

vide mechanistic explanations for the observed structure and function

relationships. Here, we provide a thorough review of the network control

framework as applied to Caenorhabditis elegans (Yan et al. 2017 Nature 550,

519–523. (doi:10.1038/nature24056)), in the style of Frequently Asked Ques-

tions. We present the theoretical, computational and experimental aspects of

network control, and discuss its current capabilities and limitations, together

with the next likely advances and improvements. We further present the

Python code to enable exploration of control principles in a manner specific

to this prototypical organism.

This article is part of a discussion meeting issue ‘Connectome to

behaviour: modelling C. elegans at cellular resolution’.
1. Introduction
Connectomics has entered an era of rapid advances on an industrial scale [1–5]

which will, in the next few years, offer datasets of unprecedented size and exqui-

site detail pertaining to the brain’s wiring diagram. The theoretical and

computational challenges that accompany these advances are also unprece-

dented: how to handle the unwieldly amount of data, to incorporate and tie

together diverse information types such as precise neuronal morphologies and

genetic profiles, and how to build experimentally tractable hypotheses andpredic-

tions. New tools must be developed in order to tackle this enormous challenge,

and any such tools—designed to handle diverse data types in the context of one

system—will almost certainly have to cross the traditional disciplinary borders.

Network control has been showing potential as one such tool [6–8]. Control

in the context of the brain may be thought of in two very distinct ways. Firstly,
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Figure 1. The network control approach to understanding the behavioural
responses of C. elegans. Graphical representation of the proposed control fra-
mework (adapted from [12]). According to structural controllability in the
context of a locomotory response to stimuli, if removal of a neuron disrupts
controllability of the muscles, we designate it ‘Essential’ for locomotion; if
not, we call it ‘Non-essential’. To make this assessment, we first mapped
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and perhaps most intuitively, control could be used to design

a perturbation in order to drive certain brain functions to a

desired state [9–11]. But secondly, control may be also

thought of in the sense of understanding how the brain

itself controls behaviour under normal conditions, and eluci-

dating the structural requirements to facilitate this [7,12–15].

Studying control in this second way can reveal fundamental

organizing principles and mechanisms pertaining to the func-

tion of neuronal systems, also constraining their connectome.

To demonstrate the importance of control principles in

neural systems, we recently framed the locomotion response

in Caenorhabditis elegans as a target control problem [12,13]. In

doing so, we simultaneously provided the first falsifiable

experimental proof of the utility of network control principles

in a real system and recovered new insights about previously

unknown neuron function in locomotion. In this paper, we

aim to make the control-based approach above accessible to

a wider and interdisciplinary audience, in terms of under-

standing, ability to implement, and inspiration to develop.

To this end, we adopt a slightly unconventional style, follow-

ing a ‘Frequently Asked Questions’ – or ‘FAQ’—format. The

‘Q’s are grouped to discuss: (i) the theoretical framework, or

Network control framework; (ii) the Model assumptions under-

lying the application to C. elegans; (iii) the Computational and
experimental details, including a link to the Python code with

which to implement the analysis; (iv) Potential improvements
to the current framework; and (v) generalization to further

behaviours and organisms and other Future perspectives.
the C. elegans responsive locomotor behaviours into a target network control
problem, asking to what degree the sensory neurons (blue) can control the
muscles ( pink). This allowed us to predict the previously unknown involve-
ment of neuron PDB in C. elegans locomotion, and functional differences
between individual neurons within the DD neuronal class. We test our pre-
dictions through cell-specific laser ablation and worm-tracking experiments,
and statistically comparing eigenworm features. The original electron
microscopy (EM) images in White et al. [16] were reconstructed from five
partial worms—primarily N2U and JSE (adult hermaphrodites), then N2T
for the anterior nerve ring (adult hermaphrodite), N2Y (adult male) for
the section between N2U and JSE, and finally JSH (L4 larva) to check con-
nectivity in the nerve ring (adapted from [17] and [12]). C. elegans moves in
a sinusoidal fashion, via dorsoventral bends. Its 95 rhomboid body wall
muscle cells are arranged as staggered paired rows in four quadrants
(dorsal left/right and ventral left/right), and each muscle cell receives mul-
tiple inputs from some of the 75 motor neurons. Corresponding muscles
contract and relax in a reciprocal fashion (e.g. for a dorsal bend, the
dorsal muscle cells contract while their ventral counterparts relax), and move-
ment requires these waveforms to be propagated sequentially to
neighbouring muscle cells, along the length of the animal, in the correct
direction. For movement to be sustained, oscillation between the contracted
and relaxed states is required. The structure of the motor circuit is critical to
achieving these basic requirements. The motor neurons themselves receive
input from the ‘command’ interneurons, which constitute a bistable circuit
that determines the direction of movement, depending on input from sensory
neurons (reviewed by [18–20]). The posture of the worm can be recon-
structed as a summation of eigenworms, and we consider the leading
four eigen projections, (shown on the bottom right as a1x to a4x), which
account for 95% of the variance in body shape, as a basis set [21,22].
2. Network control framework
(a) How does a target control framework apply to

C. elegans locomotion?
Caenorhabditis elegansmoves in a sinusoidal fashion, via dorso-

ventral bends shaped by its 95 rhomboid body wall muscle

cells. Mechanosensory cues (like gentle touch) elicit a locomo-

tory response, and we found that such behaviours map very

naturally onto a target control problem as follows: the behav-

iour is driven by stimuli to sensory neurons (control signals

to input nodes), which are then processed by the connectome

(control system), and result in the muscle contractions and

relaxations that produce locomotion (states of the output

nodes) (figure 1). In this framework, the intact system, i.e. the

connectome as mapped by White et al. [16] and subsequently

updated by Varshney et al. and Chen et al. [23,24], informs us

of the level of controllability that exists naturally in the

worm.We quantify this by the number of linearly independent

control signals that reach the muscles. By systematically ablat-

ing neurons and neuron classes in silico, we can then assess

each neuron’s impact on controllability by pinpointing the

sets of muscles which receive a reduced number of indepen-

dent signals. This leaves us with a list of neurons that are

predicted to play a role in the control of a certain behaviour,

predictions that we examine via cell-specific laser ablation

and worm-tracking experiments.

(b) What is the mathematical formalism of
network control?

Control theory has a long and vibrant history in engineering

and mathematics. It seeks to address a fundamental and
ambitious question: how to control a system’s behaviour [6].

In other words, control theory asks how we may guide the

output of a dynamical system to a desired final state (e.g.move-

ment of a set of muscles) via suitably chosen inputs
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(e.g stimulation of sensory neurons). To address this complex

question, it is generally necessary to know the system’s

dynamics—that is, the rules or equations that govern the way

the system changes state over time. In neural networks, this

corresponds to the rules determining neuronal activity at

time t þ 1 given the neuron’s inputs and current state at time t.
Recently, notions of control and controllability have taken a

new life in the study of complex networks, inspiring several

fundamental questions and making a number of predictions

[25–27]. Indeed, complex networks are of great interest to con-

trol theoretic questions. The wiring diagrams which describe

them influence function and dysfunction, and cause particular

components to be suited (or not) to specific control tasks [14].

Here we capitalize on recent theoretical advances in network
control theory, which brings together control theory and the

wiring diagram of real complex networks, and employs

novel graph-theoretic techniques to solve control-related pro-

blems [6]. There are a number of such problems one may

want to consider within the space of network control, a classic

example being the minimal control problem [28]. In this case,

one is concerned with identifying a minimal set of input

nodes (or driver nodes), to which suitable input signals may

be applied to drive the system to a desired final state. Here

we focus on C. elegans locomotion in response to an aversive

stimulus (gentle touch) which is known to activate some

specific sensory neurons. We therefore know the identity of

the input nodes (sensory neurons), and we are interested not

in full controllability of the entire system, but of a subset of

output nodes (muscles). This is then a target control problem
[26]. We use this framework to investigate how structural fea-

tures of a brain network determine neuronal dynamics and

therefore behaviour.

The mathematical formalism we use is as follows:

(i) Nature of the nodes. Nodes of the system include both

neurons and muscles.

(ii) Nodal activity and dynamical equations. The equations

governing neuronal dynamics are complex and incom-

pletely known. Here, we make some simplifying

assumptions which render the system mathematically

tractable. The level of activity of each node (neurons

and muscles) is modelled with a single number. In the

model, the change in activity of each node is assumed

to be linear—meaning it is proportional to the sum of

the upstream neuronal activity, and the external

inputs received by the node in question. This is

described by the linear equations:

_xðtÞ ¼ AxðtÞ þ BuðtÞ
and yðtÞ ¼ CxðtÞ,

)
ð2:1Þ

where A corresponds to the adjacency matrix (a matrix

defining which nodes connect to one another, and with

non-zero elements Aii that represent the nodal

dynamics of node i); the input matrix B represents the

touch receptor neurons on which the external signals

are imposed, e.g. ALML/R and AVM for anterior

gentle touch; and the vector y(t), selected by the so-

called output matrix C, represents the states of the M
muscle cells [12]. The output matrix C is an M � (N þ
M)-dimensional matrix, where M is the number of

muscles and N is the number of neurons, and impor-

tantly, in each row of matrix C only one entry that

corresponds to a muscle is non-zero. In other words,
the matrix C is composed of an M � N zero matrix

and an M �M identity matrix.

(iii) External input. For the equations above to sensibly

describe the system, Ax(t) and Bu(t) must have the

same units. This implicitly assumes that there exists

a mapping between the units of the external stimulus

and the units of neuronal activity.

(iv) Quantifying controllability. In this setting, the rank of

controllability matrix K is equal to the number of inde-

pendently controllable muscles.

We note that real-world neurons have nonlinear

dynamics and are therefore not fully described by the

equations above; we return to this issue below, in ‘Can we

use linear dynamics to describe the control principles of a

highly nonlinear brain?’

(c) How does the control framework compare to other
network-based predictive tools?

One can design multiple plausible network topology-based

approaches [29] to elucidate the neurons important for loco-

motion. Most of these approaches depend on ranking the

neurons based on some network property. The most obvious

problem presented by such approaches is the lack of objective

criteria for what aspect of a neuron’s connectivity should be

considered (degree, number of connections to muscle cells

and so on), and lack of criteria to define the cut-off value

above which a neuron is deemed essential. Nevertheless, we

can clearly learn a lot from such simple networks-based

approaches [24,30]. On the other end of the scale, detailedmod-

elling approaches that take realistic neuronal dynamics into

account will ultimately offer vital understanding of the circuits

[31–33]. The structural control approach offers a useful middle

ground—it does not demand knowledge of detailed dynamics

(see below), yet is capable of identifying neurons with an

important role in control even if they are not obviously

well-connected (e.g. PDB), as well as differences between

neurons that on the face of it look similar in their wiring

(such as the DDs) [12]. Moreover, it can highlight the mechan-

ism through which this control is exerted.

(d) What do we expect to observe when control theory
predicts loss of control for a specific neuron?

As described above, we can quantify controllability by the

number of linearly independent control signals received by

the muscles—this also corresponds to the number of muscles

which could, in theory, be moved independently. Naturally,

the worm does not need the ability to independently control

every single one of its 95 muscles [34], and this is also

reflected in our results, which show that fewer than 95

(specifically, 89) linearly independent control signals can

reach the muscles. What the network control framework

allows us to do is predict the deviation from the healthy start-

ing point—if the ablation of a neuron reduces the number of

control signals reaching the muscles, then we expect a

reduction in the worm’s ability to finely control locomotion.

From this, we can infer if the ablated neuron(s) play a role

in the control process. This approach does not tell us the pre-

cise role of the ablated neuron—it only tells us that in the

absence of the neuron the network loses some degree of con-

trol over the muscles. Note also that a loss of controllability
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does not imply loss of activity: a loss of controllability over a

small number of muscles means only that these muscles

cannot be independently controlled by the nervous system

and must have an amount of correlation. Thus, the predicted

phenotypes (reduction in overall controllability of a few

muscles) can be in some cases quite subtle.

While the structural controllability framework provides a

deterministic number of controllablemuscles, there is in general

more than one configuration of muscles that could make up

this number. The set of 89 independently controllable muscles

in the healthy worm is not unique, but we can assign a prob-

ability to which muscles are controllable. This exploits the

fact that there are multiple solutions to the control problem

[35], each ofwhich gives rise to the same level of controllability.

Hence cataloguing the independent solutions can inform

us which muscles are more likely to experience a reduction in

control. For each ablation of a neuron or neuron class, we

numerically obtained the probability pattern of each muscle

losing its controllability, and compared this pattern to that

of the healthy worm. The difference between these two

probability patterns reveals which muscles are affected most

strongly by the ablation. In practice, we find that the sets of

affected muscles tend to be spatially co-localized across differ-

ent solutions. For example, in the case of the DD neurons, the

control analysis predicted a reduction in control over the set

of posterior muscles where defects were experimentally

observed [12]. These probability patterns may be used to

inform expected phenotypes in future experiments.
3. Model assumptions
(a) Can we factor in the effect of different connection

types on network control?
Neuronal connections may be: (i) inhibitory or excitatory; (ii)

weighted, in a structural or functional sense; (iii) chemical

synapses or electrical gap junctions; (iv) synaptic (wired) or

extrasynaptic (wireless).

(i) Inhibitory versus excitatory. Depending on what kind of

ion channel they control, chemical synapses can either

be excitatory (by opening sodium/cation channels) or

inhibitory (by opening chloride/anion channels). In a

network sense, an excitatory synapse is described as a

link with a positive sign, and an inhibitory synapse

with a negative sign. While the excitatory/inhibitory

nature of individual neuromuscular synapses is

known, for neuron to neuron synapses it is mostly

unknown (in C. elegans, all classical neurotransmitters

can be either excitatory or inhibitory). Structural con-

trollability does not make any assumptions about

the signs of the links, only whether they are non-

zero [6,26]. The inhibitory/excitatory nature of the

synapses only becomes important if we aim to actu-

ally control the network in specific ways, and does

not change the conclusions and predictions regarding

the more fundamental question of controllability.

(ii) Weighted. Similar to the signs of the links, weights are

treated as free parameters in the structural controll-

ability calculations. If we are interested in quantities

such as control energy or control time, the weights

become essential [6,26,36,37]. These weights may be
defined structurally (synaptic sizes and numbers) or

functionally (correlations between neuronal activity),

a choice that should be carefully considered in the

context of the line of inquiry.

(iii) Chemical and electrical synapses, the two distinct forms of

wiring between neurons, differ greatly mechanistically,

with effects on connectivity that are felt at the network

level (figure 2). Specifically, in chemical synapses, an

electrical signal in the presynaptic cell is transformed

to a chemical signal (release of a neurotransmitter)

and then transformed back to an electrical signal

in the responding cell (neuron or muscle) through post-

synaptic neurotransmitter receptors that are, or control,

ion channels. The signal is directional (frompresynaptic

to postsynaptic cell), and the strength and timing of the

signalling depends only on the state (i.e. membrane

potential) of the sending cell. Despite some nonlineari-

ties, the properties of chemical synapses can be

reasonably approximated by the matrix formulation of

our control framework.

By contrast, electrical synapses (gap junctions) are

channels by which electrical current can flow between

coupled cells. While current can, in principle, flow in

either direction through the electrical synapse, at any

given time it can only flow in one direction, and this

direction is determined by the relative membrane

potentials of the coupled cells. Consequently, gap junc-

tions can lead to partial electrical coupling between

cells, making their membrane potentials more similar

to one another. These connections are less well mod-

elled by the matrix formulation of our control

framework, and they are considerably more restricted

than chemical synapses in their ability to transmit a con-

trol signal. Moreover, many gap junctions, in C. elegans
and other organisms, are asymmetric in the expression

of their constituent innexins, and consequently pass

current more easily in one direction than another.With-

out knowing which of the 25 innexins is expressed at a

particular gap junction [38,39], it is impossible to infer

from connectome data which of them are asymmetri-

cally rectifying, further complicating the inclusion of

gap junctions in the control framework.

In our control analysis [12], we treated all synaptic

connections as if they were the same, and we used two

directed connections (one each way) to represent an

undirected gap junction. However, due to the properties

noted above, we now suspect that the inclusion of gap

junctions in the network may lead to overestimation of

the structural controllability of the real connectome—

see Potential improvements section below.

(iv) Wired versus wireless. In addition to synaptic (wired)

connections, neurons also signal to each other using

neuromodulators such as monoamines and peptides,

connections that are mostly extrasynaptic (wireless)

[40]. In other words, neuromodulatory molecules are

released by neurons into the system, and this form of

signalling is received, on a local and/or global scale,

by all neurons which express the relevant receptors.

As the connectome data used for our analysis relied

only on the chemical synapses and electrical gap

junctions (wired connections), neuromodulatory inter-

actions were not taken into account. In principle, one

can describe thewireless connections as external control
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signals applied to receiving nodes and, with a suffi-

ciently complete map, one could determine which

nodes are required for controllability by neuromodu-

lators. Although we do not yet have such maps,

efforts are underway to extend our knowledge of neuro-

modulatory networks, and hence in the future this

approach may be feasible.

(b) Can we use linear dynamics to describe the control
principles of a highly nonlinear brain?

Neuronal dynamics are inherently nonlinear, so if we aim to

capture the system’s behaviour in detail, we must model it

using a fully nonlinear framework, which is currently intract-

able. Our goal is different here: we aim to understand the role

of the network wiring diagram in control. As we discuss next,

linear dynamics offer a useful approximation for this purpose

in some cases. Indeed, the real-world use of linear control

theory—considering linear time-invariant dynamics in the con-

text of nonlinear systems—has been well demonstrated in

multiple classical problems, from stick balancing [41] to rockets

subject to thrust [42], internet congestion control [43], tracking

control of helicopters [44] and stabilization of open flows [45].

In the context of network control, recent experimental and

numerical studies indicated that the neuronal dynamics of

the nematode C. elegans are low-dimensional and can be

understood as transitions between different attractors (limit

cycles or fixed points) [46–48]. This allows us to apply local
controllability, i.e. examine the dynamical equation at the

fixed points or along the limit cycles.

If a system is locally controllable along a specific trajectory

(such as limit cycles here) in the state space, then the
corresponding nonlinear system is also controllable along the

same trajectory [49]. Hence the controllability of the linearized

system is expected to illuminate the controllability of neuronal

dynamics of C. eleganswithin an attractor, even if some level of

uncertainty remains (e.g. if the linear system is not controllable,

then the nonlinear system may or may not be controllable).

Indeed, simulations show that the nonlinear controllability

of motifs with non-identical link weights exhibits the same

properties as its linear and structural counterpart [50], and

recent work [9] shows that linear controllability predictions

are consistent with simulations of neuronal networks with

Wilson–Cowan nonlinear dynamics.

Note that linearizing neuronal dynamics along a limit cycle

can lead to a time-varying Jacobian matrix A. In Yan et al. [12],
we assume that the changes occur only in link weights and

that the structure of matrix A is constant, being encoded by the

C. elegans connectome. This allowsus to apply structural controll-
ability which is link-weight independent, hence variation in the

nature or the strength of the links has no impact on our results as

long as the network diagram remains unchanged. Ultimately,

these modelling assumptions are simplifications motivated by

theoretical tractability. Although the reasons above suggest

that this framework might be usefully applied, it is the

experimental validation that provides proof of this utility.
(c) What role do individual neuronal dynamics, and the
resulting self-loops, play in controllability?

Neurons have intrinsic dynamics. Activity is observed in the

absence of external input, and response to external input is

mediated by factors such as the neuron’s own state or mem-

brane potential. In a network sense, such intrinsic dynamics
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Figure 3. Intrinsic dynamics and self-loops. The dynamics of many real networks—including neuronal networks—may be modelled as a simple set of ordinary differ-
ential equations [51,52], with terms to account for (i) the intrinsic dynamics of the nodes; (ii) the input signals from other nodes in the network resulting from network
topology; and (iii) any external input signals. The intrinsic dynamics manifest as self-loops. We can assume that neurons have one type of self-loop, and muscles have
another [12].
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manifest as self-loops on the nodes, as a self-loop represents a

node’s interactionwith itself (figure 3). It has been claimed that

any network where each node has a self-loop is structurally

controllable [53]. It is imperative to clarify that this result,

namely that a single external signal can control the whole net-

work with nodal self-loops, was derived under the specific

condition that the same single signal is directly imposed on every
node. In contrast, in the C. elegans nervous system only a

small number of sensory neurons receive a given stimulus,

hence not all nodes receive the same external signal. Given

the two distinct components of the C. elegans connectome—

neurons andmuscle cells—we could use three distinct assump-

tions for self-loops: (i) all nodes have the same dynamics, and

thus the same self-loops; (ii) neurons have one type of self-loop

and muscles have another; and (iii) all nodes have different

self-loops regardless of type. The first is the least realistic case

and the third the most. A recent paper [54] showed that if

each node has an identical non-zero self-loop, as in (i), then

controllability of a network can be estimated using the maxi-

mum matching framework derived in Yan et al., Liu et al. and
Gao et al. [12,25,26]. This is what makes the calculation compu-

tationally tractable for networkswithmore than approximately

50 nodes. In Yan et al. [12], we proved that, for the target con-

trollability of the C. elegans connectome, the assumption of

identical self-loops for each node is not necessary and can be

relaxed to case (ii), demonstrating that the results are valid

even when assuming that different kinds of nodes (neurons

or muscles) have different self-loops. The third and most

fully realistic case (iii) where each neuron and each muscle

exhibits different dynamics and therefore self-loops has yet to

be explored, and represents a potential extension to the

framework.
4. Computational and experimental details
(a) How are the analyses implemented

computationally?
We havemade the code for the control analysis in Yan et al. [12]
available in the form of Python scripts at https://github.com/
EmmaTowlson/c-elegans-control. In its current form, it

recovers the neuron classes predicted by the control analysis

to be involved in the locomotory response to posterior and

anterior gentle touch. Some simple amendments by the user

will allow for the varying of input neurons. We are actively

augmenting the repository to expand its capabilities.
(b) What are eigenworms and how can we use them to
detect reductions in controllability?

Previous studies have shown that the space of shapes adopted

by C. elegans during motion is low-dimensional, with just four

dimensions accounting for 95% of the shape variance. This

four-dimensional [21,22] eigenworm basis provides a compact,

relatively unbiased representation of movement with which to

look for phenotypes. Eigen projections give us an idea of what

motor behaviours may be affected: for example projection 4

is a measure of variance in the head/tail, which led us to

more closely look at these parts of the worm—indeed for

posterior DD-ablated animals the locomotion defect appears

to be largely localized to the tail.

However, eigenworms do not provide a direct measure of

the movement dynamics of all 95 individual muscles, and

given the severity of the dimensionality reduction—95 to 4—

there is no guarantee that the expected subtle changes in

control will be identified. Thus, although we were able to

observe experimental differences using the eigenworm basis,

in the future it may be useful to explore other approaches,

such as directly comparing the set of (49-dimensional) postures

exhibited by intact and ablated animals [55]. Indeed, abnorm-

alities in some muscle groups may be easier to detect using the

eigenworm basis than others. For example, unc-2 (neuronal

voltage-gated Ca2þ channel) deletion mutants, which are

strongly defective in neurotransmission from all neurons

(figure 4, reproduced with permission from [56]) show very

strong abnormalities in locomotion but usually overlap in

their eigenworm statistics with wild-type worms. In the case

of PDB, we observed a highly significant reduction in the ven-

tral bias of omega turns, from 86% to 66% for PDB-ablated

animals [12]. As the first eigen projection (EP1) represents the

https://github.com/EmmaTowlson/c-elegans-control
https://github.com/EmmaTowlson/c-elegans-control
https://github.com/EmmaTowlson/c-elegans-control
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relative curvature of the entire body, the ventral bias in omega

turns also translated into smaller, but measurable and statisti-

cally significant changes in EP1. This highlights the need for an

in-depth screening of behavioural changes when assessing

ablation phenotypes. In particular, it would be useful to

develop better analytical tools to identify differences in shape

dynamics at particular points along the worm body, to more

directly correlate locomotion phenotypes with alterations in

the activity of specific muscle groups.
5. Potential improvements
(a) The connectivity data are likely inaccurate—how do

they affect the analysis?
The extraordinary mapping efforts by the authors inWhite et al.
[16] have still not been rivalled 30years later, and continue to fuel

new insights onC. elegans [12,30]. Remarkable as this very special

dataset is, however, it is naturally imperfect. EM sections were

reconstructed from five partial worms—primarily N2U and

JSE (adult hermaphrodites), then N2T for the anterior nerve

ring (adult hermaphrodite), N2Y (adult male) for the section

between N2U and JSE, and finally JSH (L4 larva) to check con-

nectivity in the nerve ring (figure 1). While connectivity is

widely assumed to be deterministic and almost invariant

between individuals, it is highlyunlikely tobeprecisely identical.

These issues—the compilation of worms, with not just

individual variation, but different ages, and genders, plus

the tracing errors inevitable with any mapping method-

ology—lead to a dataset that probably contains a number
of erroneous and/or non-reproducible elements. Given the

confounding factors, the level of unreliability is hard to quan-

tify and can be expected to include missing connections, extra

connections, mislabelled connections, and errors in the type

and number of connections between neurons. Despite these

issues, the existing connectivity map is clearly invaluable

for an array of purposes and lines of inquiry [12,24,30]. The

accuracy of the control-based predictions offers another testa-

ment to its suitability. We tested the adequacy using a

robustness analysis [12,23], finding that the predictions

from the control framework are consistent and robust even

when the data used for modelling contain discrepancies

compared to the real connectome structure. Here, we

extend the analysis presented in the original paper, finding

that the predictions are robust to 420 random weak link

deletions (figure 5). The fact that we can delete as many as

14% of the weak links and rewire or add as many as 3%

[12], and still recover our predictions, suggests that the

control framework employed by the worm is robust to

significant differences in the network—i.e. its wiring is

such that it can maintain controllability even taking into

account a high level of variation in the fine detail of the

connectivity patterns.

A small section of the posterior worm body was never

reconstructed. Beth Chen’s thesis (2007) contains the most

complete reconstruction of the ventral cord (where DD inter-

neuronal synapses lie) as well as a parsimonious model of

the dorsal cord (with the DD neuromuscular junctions

(NMJs)). Specifically, this work reconstructed many missing

connections in the ventral cord, some via new EM images of

thin sections from the original N2U worm. With respect to
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Table 1. Control predictions for the chemical synapse network; italics
denotes the results for the aggregate network.

control predicted neuron classes

control muscles DA, DB

DD

AVA, AVB

VA, VB, VD, AS

PDB

PVC

RID

control motor neurons AVA, AVB

AVD

AVE

PVC

AVJ

DVA

PVR
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NMJs, (to quote the source) ‘Neuron-to-muscle connections for

the first 32 muscles in the head are detailed byWhite et al. [16].
For the remaining muscles, direct neuron-to-muscle mapping

is not available. In this case, we assume that motor neurons

connect to muscles where positions of neuromuscular junc-

tions overlap the sarcomere region of a given muscle. . . For

neurons lacking complete reconstruction, especially ones on

the dorsal side of the worm, the number of neuron-to-muscle

connections is assumed to be the average NMJ per muscle

from fully reconstructed neurons of the same class’. However,

there are still many synapses missing, prompting us to ask if

this affects the controllability predictions. Most of the predic-

tions in Yan et al. [12] stemmed from patterns of

neuromuscular connections, where the estimates by Chen

et al. [24] were based on the observed or interpolated positions

of muscle arms and motor neuron processes, and thus are

likely to be close to the real situation. However, it is certainly

possible that the missing connectivity data have led to incom-

plete or even inaccurate predictions. Some efforts to infer this

information from repeating patterns in thewider locomotor cir-

cuit have produced a probabilistic model describing the

connections [57,58], which could be used as an estimate of con-

nectivity in future analyses. In Yan et al. [12], we used the

currently accepted gold standard dataset, but we do expect

improved data to be made available over the next few years,

including more complete data filling this gap in the future.
(b) What happens to the control predictions if gap
junctions are excluded from the network?

Above, we noted that the chemical synapses are better mod-

elled by the control framework than gap junctions are. To see

how the inclusion of electrical synapses might have affected

control predictions, we reanalysed the network using only

the chemical synapses, and ignoring gap junctions. This

makes the network sparser, which typically leads to more

control nodes [25]. Indeed, the analysis identified several

additional neurons and neuronal classes predicted to affect
controllability (table 1). Note that we recover all of our orig-

inal predictions based on the aggregate network (in italics),

lending further credence to our original findings [12]. We

also identify three more neurons—AVB, PVC and RID—

when considering muscle control, all three of which have

now been implicated in locomotion [59,60]. Two of the four

new neurons predicted for control of motor neurons have

known roles in locomotion [60], and the final two, AVJ and

PVR, have not currently been implicated and open an

avenue for experimental testing in future work. Arguably,

this larger set of predictions makes the synapse-only network

more indicative of locomotion control and appropriate for the

current set-up.
6. Future perspectives
(a) Can we use the control framework to more precisely

describe the response to stimulus?
As more is learned about the physiological responses of neur-

ons to stimuli, it will be possible to more fully describe the

mechanisms of behaviour:mapping resultant neuronal activity

to membrane voltage, and ultimately to muscle cell activity,

contraction and relaxation, and locomotion. These detailed

dynamic features can in turn also inform the control formalism,

particularly if a nonlinear framework becomes available for

neural systems. Indeed, one potentially promising avenue

which would yield even more precise testable experimental

hypotheses is to explore and define the relation between

muscle control and eigenworms. In the current analyses the

outputs are the states of muscles, i.e. we focused on the con-

trollability of muscle states. The framework can theoretically

be extended to incorporate a matrix W mapping the muscle

states to eigenworms. Each entry, wij, of this matrix denotes

the strength with which muscle i affects eigenworm j.
In this setting, the eigenworms themselves become the outputs

of our structural controllability framework, and thus can
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be more explicitly testable with experiments. Accurately

determining the wij values is worth future pursuit.

(b) Is the control framework generalizable to other
behaviours?

The control framework is not limited to mechanosensation; it

can be applied to investigate the basis of any behaviour that

can be described as a response (output) to a stimulus (input),

with known input and output nodes. For example, if we were

interested in the locomotor response to olfaction, the output

nodes would remain the muscles and we would define the

input nodes as chemosensory neurons, such as ASH for the

case of certain aversive chemicals [61]. Note that while this

mapping to the target control framework adequately models

the majority of behaviours, control-theoretic methodologies

can be used without specifying the inputs and outputs

[62,63]. It may be of interest to consider in silico non-biologi-

cal or biologically challenging amendments to the neuronal

network, such as edge additions and deletions. In these

cases, we could theoretically use detailed simulations

[64,65] to interrogate our predictions.

An interesting extension of the current framework which

may offer finer insights into different behaviours would be to

take into account the time and energy required for specific

control tasks [6,27,36,37], such as steering the muscles into

a particular pattern of muscular activity. If the ablation of a

component of the connectome leads to a significant increase

in control time and/or energy for such an output state,

then the component is probably involved in this behaviour.

With the hypothesis that lower energy states that are reached

within reasonable time are favoured over others, such tem-

poral and energetic considerations could also elucidate why

certain behavioural states are realized over others, and

potentially offer insights into the extremely low dimensional-

ity of the system (see above on eigenworms). To quantify

the change in control time/energy, we would need to

include the weight and inhibitory/excitatory nature of each

link and self-loop. Such information has not been available

so far.

Finally, we note that a behaviour might involve different

sets of sensory neurons, or different connection strengths at

different times (for example in the case when connection

weights are altered during learning). In this case, the problem

could be reformatted using a temporal control framework,

i.e. the input nodes, output nodes and even the network

structure itself may change with time. Recent efforts address

the problem of full controllability of temporal networks

(i.e. controlling all nodes in a temporal network) [37,66,67].

The target controllability of temporal networks (controlling

only the output nodes in a temporal network) remains an

open but tractable theoretical question.

(c) Is the control framework generalizable to other
organisms?

The control framework is agnostic to the system in question,

hence it is not limited to C. elegans. Currently, the main chal-

lenge presented by generalizing the framework to other

organisms is simply the availability, completeness and accu-

racy of connectome data. Given that a full connectome at the

neuronal level does not—for now—exist for many organisms

[68], but partial maps and macroscopic maps do [1,3,4,69],
we are left with two choices. The control framework can be

applied at meso- or macroscale resolutions, an approach that

has already shown success [7]. Alternatively, subcircuitry

[70–72]—incomplete data in the sense of the whole brain,

but complete when considered as a specific circuit—can be

examined as smaller, stand-alone systems. For example, in

the case of the Drosophila larva, we have knowledge of wiring

of the olfactory glomeruli [70,73]. Olfactory receptors (input)

receive external stimuli in the form of odours, the information

is processed by the local circuitry (control system), and des-

cending neurons (output) pass signals to the mushroom

body and elsewhere in the brain. Encouragingly, the previous

robustness analyses indicate that, in the face of imperfect or

incomplete data, we can still glean important insights from

the control framework.
(d) Discussion and outlook
C. elegans remains at the forefront of the quest to understand the

structure and function of brain networks, and offers an excel-

lent model system also from the perspective of control. We

interrogated the theory and experimental practice for under-

standing control principles in the C. elegans connectome. We

find that this framework recovers an impressive set of neurons

or classes of neurons experimentally known to be important for

locomotion; but it is not a complete list. A number of neurons

with clear ablation phenotypes (for example, SMB and RIV

[74]) were not predicted by the current implementation of the

control approach. However, the neurons that are identified as

affecting controllability are very likely to affect real behaviour,

and in some cases (like PDB and the posterior DD neurons)

these predictions will be unexpected from casual inspection.

Classically, ablation experiments have been guided by obvious

traits in the connectivity—RIV makes numerous synapses only

to the ventral headmuscles and hencewas expected to have the

effect on the ventral bias of turns which was observed [74]. In

Yan et al. [12], some of the predictions recovered by the control

framework were much less intuitive—PDB, which we demon-

strated to have a similar ablation phenotype to RIV, is located in

the tail and, while it does have an asymmetric connectivity pro-

file, its synapses are very small in number. Effects on the ventral

bias of omega turns were therefore much more surprising.

Similarly, while the DD neuron class was expected to play a

role in forward and backward locomotion [60], the prediction

from the control framework that the individual dorsal DD

neurons would be more important than the anterior neurons

was highly unexpected.

Importantly, the work in C. elegans gives us clues to

approaches that are unlikely to be successful. For example,

applying control theory to find a set of driver nodes among

the full set of nodes in the nervous system (analogous to

approaches in human brain data [14]) produced results that

are more difficult to interpret biologically [63]. It is only when

formulating our question in terms of target control and includ-

ing the muscles as output nodes within our network that we

began making successful predictions. This suggests that for

higher-order organisms also the emphasis should be on formu-

lating control problems quite precisely, for example trying to

steer network dynamics in a particular region (output nodes)

away from particular aberrant dynamics (e.g. epileptic activity

[75]). We may also find that features and properties of other

brain networks such as nonlinearity and proprioceptive
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feedback become more important, and their incorporation will

be an important challenge to add to the framework.

Over the next 5–10 years, theoretical and experimental

advances will doubtless improve upon our current approach,

and perhaps most significantly, so will new datasets. Neuro-

technologies continue to be developed at an astonishing rate

[2,76,77], and with them comes the promise of data which

will complement, and ultimately supersede, the existing con-

nectome. Functional data such as from calcium imaging may

provide us with theweights and even signs on the connections

needed to calculate control energy and control time [27,36,37],

and investigate more mechanistic queries, such as how control

is achieved and why certain behavioural states are preferred

over others. As larger and more detailed datasets arrive for

higher-order organisms, we will be equipped with the tools
developed for C. elegans as the groundwork for elucidating

their system-specific control principles.
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