Cardiovascular Engineering and Technology (© 2019)
https://doi.org/10.1007/s13239-019-00428-z

BMES:::
ENGINEERING Check for
SOCIETY updates
Optimization Framework for Patient-Specific Cardiac Modeling

,1 ANDREW D. MCCULLOCH,2 DaAviD KRUMMEN,3 BASKAR GANAPATHYSUBRAMANIAN,I
and ADARSH KRISHNAMURTHY'

JosHuA MINEROFF

1Department of Mechanical Engineering, lowa State University, Ames, IA, USA; 2Bioengineering and Medicine, University of
California, San Diego, La Jolla, CA, USA; and *Department of Medicine (Cardiology), University of California, San Diego,
La Jolla, CA, USA

(Received 10 April 2019; accepted 5 August 2019)

Associate Editor Alison Marsden and Ajit P. Yoganathan oversaw the review of this article.

Abstract

Purpose—Patient-specific models of the heart can be used to
improve the diagnosis of cardiac diseases, but practical
application of these models can be impeded by the computa-
tional costs and numerical uncertainties of fitting mechanistic
models to clinical measurements from individual patients.
Reliable and efficient tuning of these models within clinically
appropriate error bounds is a requirement for practical
deployment in the time-constrained environment of the clinic.
Methods—We developed an optimization framework to tune
parameters of patient-specific mechanistic models using rou-
tinely-acquired non-invasive patient data more efficiently than
manual methods. We employ a hybrid particle swarm and
pattern search optimization algorithm, but the framework can
be readily adapted to use other optimization algorithms.
Results—We apply the proposed framework to tune full-
cycle lumped parameter circulatory models using clinical
data. We show that our framework can be easily adapted to
optimize cross-species models by tuning the parameters of
the same circulation model to four canine subjects.
Conclusions—This work will facilitate the use of biomechan-
ics and circulatory cardiac models in both clinical and
research environments by ameliorating the tedious process of
manually fitting the parameters.

Keywords—Optimization, Cardiac biomechanics, Lumped-
parameter circulation model, Patient-specific modeling.

INTRODUCTION

Physical models have been a foundational category
of computer-based medical decision aids for at least 30
years® and advances in algorithms and computing
power continue to improve the tractability of higher-
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fidelity analysis.* Patient-specific modeling (PSM) is
the process of using clinical data to individualize
computational models that integrate clinical data and
use prior physiological knowledge and physicochemi-
cal constraints to make individualized predictions and
decisions. PSM of cardiac mechanics and hemody-
namics often relies on lumped parameter models of
circulatory dynamics that often have too many
adjustable parameters to identify uniquely from
available clinical measurements alone. Similarly, cer-
tain parameters of constitutive laws for nonlinear an-
isotropic passive and active material properties of
cardiovascular tissues can be adjusted to allow model
predictions to match clinical measurements, but only if
others are constrained by prior knowledge such as
multi-axial ex-vivo tissue tests.

Existing approaches to fitting model parameters
have used specialized tuning methods. More general
tuning can allow non-experts in optimization a rea-
sonable approach to tuning medium-dimensionality
problems in their domain, ultimately leading to wider
adoption of automated tuning methods. A universal
framework can also be adapted by someone with ex-
pert knowledge of the model and algorithm to suit
their workflow. The abstraction of the internals of such
a ‘black box’ could then be compared to the internals
of an ultrasound or CT system, which have long his-
tories of successful employment in clinical settings.

In order to improve the objectivity of constrained
parameter estimation and reduce the manual tuning
required for PSM, we propose a new optimization-based
framework to support the wider application of patient-
specific physical models to the treatment of cardiovas-
cular disease (CVD). We tested this framework using
two examples: a hemodynamic lumped-parameter cir-
culation model and a left ventricular (LV) passive finite-
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element model. The framework is used to determine the
hemodynamic parameters of eight human patients using
only limited non-invasive measurements to generate
pressure—volume (P—V) loops of the different chambers
of the heart. The finite-element model is used to deter-
mine the unloaded geometry and the cardiac tissue
material parameters of four canine subjects based on
data made available from a previous benchmark
study,*” followed by the circulation model to determine
the hemodynamic parameters. This demonstrates the
broad applicability of the proposed method in handling
different mechanistic models in different species.

The main contributions of this work include the
development of:

1. A framework to automatically tune biomechanics
and circulatory cardiac models using patient-
specific data with minimal user intervention.

2. A robust optimization formulation to fit
parameters of full cardiac-cycle circulatory
models, even with missing clinical data in cer-
tain patients.

3. A methodology that is applicable for different
types of mechanistic models and enables
automatic tuning of cross-species models.

This study shows that application of the proposed
formal optimization methodology resulted in lower
errors and variability than manual estimation per-
formed on the same patients. The framework can
facilitate the widespread use of patient-specific models
by enabling model tuning using non-invasive data.

METHODS

Optimization Framework

Our framework (Fig. 1) is designed to perform
parameter optimization to tune patient-specific com-
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puterized biophysical models to available data. The
multi-modal, highly corrugated nature of these models
makes it difficult to compute gradients and favored a
derivative-free approach. We selected a hybrid particle
swarm and pattern search solver to globally search the
parameter space and support parallel model evalua-
tion. Since model analysis is the primary computa-
tional expense for this class of problems, the potential
overhead of a higher-level software package is
insignificant.

Particle swarm optimization (PSO) is a heuristic
method using a population of candidate solutions, re-
ferred to as particles.®® Initially, these particles are
distributed throughout the parameter space with a gi-
ven location and ‘velocity.” A step of the algorithm
starts with the evaluation of the current parametric
configuration of each particle. Then, the velocities of
each particle are updated as a function of (1) its current
velocity, (2) the best solution that it has found, and (3)
the best solution any particle has found. The algorithm
continues until a termination criteria is met, usually
when a set number of iterations have passed without
improving the objective value by a given tolerance.
One of the primary benefits of PSO is its fast conver-
gence in global search for traditionally difficult prob-
lems, but it is an expensive method for computing
precise optima.

Pattern search is a direct search method (DS)
involving the use of a scalable pattern, or mesh, to step
through the parameter space from an initial location.'®
At each iteration, the mesh is centered at the current
best point and parameter values at the surrounding
mesh points are evaluated. The specific mesh pattern
used polls a positive and negative perturbation of every
parameter at each iteration. If an improvement is
found, the mesh is re-centered at the new location and
expanded to minimize the chances of convergence to a
non-global minimum. If no improvement is found, the
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FIGURE 1. A flowchart of the general model tuning framework.
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mesh is contracted to more precisely identify the local
optimum. DS methods are highly influenced by ini-
tially assumed parameter values, but are one of the
most efficient non-analytical methods for the identifi-
cation of a precise solution.

The full hybrid algorithm we employed first searches
the solution space using PSO to identify a likely global
optima. Since PSO searches randomly but uniformly
over the search space, there is a larger chance that it
will encounter the global optimum’s basin of attraction
for non-convex problems. The trade-off is that PSO
can typically be quite slow to converge to a precise
optimum. Once a reasonable objective function toler-
ance was achieved, the resulting PSO solution was then
used to initialize the DS method to more efficiently find
a precise optimum. Using DS first would make con-
vergence to a local optimum much more likely. The
application of this is represented concretely in the ca-
nine ventricular inflation section—where we only use
the DS method due to computational expense and
suspected problem convexity.

This method differs from similar box-constrained
methods like that used by Vaz and Vicente*' in that we
sequentially couple the two optimization solvers (i.e.
PSO to termination first followed by DS to termination
next), as opposed to using an alternatively coupled
solver that switches between PSO and DS every itera-
tion. It is generally impossible to prove that the true
global optimum has been identified for non-analytical
multi-modal problems, but in our experience, this
approach converges to an acceptable result within the
bounded parameter space for a majority of the runs.
Secondly, PSO and DS can individually be expected to
perform well on a wide-variety of problem classes.*
Further implementation details can be found in Sup-
plement A.

All optimization and analysis was run on a cluster
with each node having two 2.6 GHz 8-Core Intel E5-
2640 v3 processors and 128GB of RAM. The frame-
work is implemented in MATLAB,” since it has
multiple commercially-tested derivative-free solvers
and is capable of integrating with most models, and
will be made available after publication. The primary
computational expense for the kind of optimization
problems studied in this paper are the many model
evaluations required. Both optimization methods used
in our approach are well-suited to parallelization
which can decrease the wall time of the optimization by
allowing a larger pool of computational resources to be
used than could be applied to a single evaluation. This
is especially attractive with the increasing use of cloud
computing. Parallelization was handled differently for
each model and is further explained in each section.

Clinical Data

The eight human patients studied were male, aged
(66 & 11 years) with NYHA class III heart failure,
dilated cardiomyopathy, and left bundle branch block
(LBBB) were enrolled from the Veteran’s Adminis-
tration San Diego Healthcare System (San Diego,
CA). Patients gave informed consent to participate in
the human subject protocol approved by the institu-
tional review board. All patients were part of a car-
diac resynchronization therapy (CRT) study and were
implanted with a biventricular pacemaker. Key car-
diac measurements were recorded via echocardio-
gram, electrocardiogram (ECG), and routine
diagnostic methods before pacemaker implantation;
pressure data from cardiac catheterization was used
for validation.

The heart rate (HR) was controlled during cardiac
catheterization using RV pacing, just before pace-
maker implantation, causing them to have the same
HR value. Patient E was paced at a lower rate. The
catheter pressure measurements are averaged over
multiple beats obtained while pacing with breath-
hold. The cuff pressure measurements were obtained
at the same time as the echocardiographic measure-
ments, two months before the pacemaker implanta-
tion. End diastolic volume (EDV) was obtained via
Simpsons method from two views of the echocar-
diographic images. The timing of end-diastole was
measured using the start of the QRS complex in the
ECG.

Canine Subject Data

The canine simulations used four normal dog data
provided by the STACOM 2014 LV Mechanics Chal-
lenge.” The data was acquired at the National Institute
of Health, USA in collaboration with Johns Hopkins
University'* using high resolution cines, tagging, and
ex-vivo diffusion tensor imaging (DTI).** Data acqui-

TABLE 1. Experimentally measured objectives for canine
subjects studied in circulatory optimization.

Subject Pmax;y (kPa) EDV,y (mL)
S 13.6 30.3
S2 12.3 20.5
S3 10.3 24.5
S4 11.3 19.6

All subject models relied largely on reference data. Pmax;, peak
left-ventricular pressure, EDV,\, left-ventricular end-diastolic
volume.
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sition was approved by local Institutional Review
Boards and conducted in accordance with the “Guide
for the Care and Use of Laboratory Animals”.'” In-
vivo left ventricular pressures were also recorded dur-
ing scanning (Table 1). Dogs were paced from the right
atrium.

Circulation Model

CircAdapt® is a lumped-parameter model of the
circulatory system (Fig. 2) implemented in MATLAB.
It can be used to model the pressure and volume of the
four chambers as a function of time for the complete
cardiac cycle. We use CircAdapt to perform a closed-
loop simulation of the patient-specific cardiovascular
system, incorporating up to 11 values of non-invasively
obtained patient data, and output one simulated cycle
of blood flow. The potential data include HR, blood
pressure (BP), and valve measurements (e.g. diameter
and regurgitation) that can be obtained through ECG
or echocardiogram (Table 3). Mean systemic blood
flow, ¢, was derived from EDV and ESV.

CircAdapt has more parameters than can be feasi-
bly tuned for a patient, so it is necessary to select a
subset of model parameters for tuning (Table 2). Once
the objective metrics were chosen, we were able to find
the most directly-related parameters and that is the set
of 9 that we used. Some specific parameters, e.g. Lyoa,
were found to be necessary through early experimen-
tation. The vector of these parameters is represented by

Data/ref Parameters

x. The length, N, of this vector is equal to the number
of parameters in the optimization problem, which is 9
in this case.

The CircAdapt model is a system of ODEs that
compute the hemodynamics of the heart and circula-
tion. The cardiac part of the model is the so-called
TriSeg model. The model is usually started with the
default parameter values and any change to the
parameter values take a few cycles for the circulation
system to reach steady state. In order to better repre-
sent the steady state system of the circulation, we run
several beats of the model after changing the parame-
ters from the default values to the patient-specific
values. To improve model stability to support large
perturbations from parameters and data, adaptation
from the default configuration was performed in three
steps. Adaptive convergence methods could be applied
to improve this approach. In addition, CircAdapt also
has a different set of equations to adapt the patient-
specific parameters to a patient who is at rest. So in
order to best achieve the steady state rest condition of
the circulation model (i.e. conditions in which the
measurements were taken), we first run the model
without any adaptation, achieve steady state, then run
the rest adaptation, and again run without adaptation
to achieve a new steady state after the adaptation
process. The complete CircAdapt convergence proto-
col was to run 30 beats each of Adapt0, AdaptRest, and
Adapt0.

Since we were modeling the baseline hemodynamics
of LBBB patients, setting the delay between the left
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FIGURE 2. The geometric parameters and objective metrics used in the circulatory optimization. (a) A schematic of the CircAdapt
model highlighting key geometric dimensions of major model components. A subset of the model values directly driven by patient-
specific or reference data (Table 3) and the parameters used (Table 2) are both shown. (b) A typical simulated left ventricular (LV)
pressure—volume loop showing all partial objective metrics. Pulm. pulmonary circulation, Syst. systemic circulation, LA left atrium,
RA right atrium, RV right ventricle, EDV end-diastolic volume, EDP end-diastolic pressure.
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TABLE 2. Parameters and bounds of the different optimization variables in x of the circulation model.

Lower Upper
Variable Description bound bound Units Reference
Kviap Scaling of mean arterial pressure initially calculated using the ‘33% formula’ 0.8 1.2 - 36
PApum  Blood pressure head loss across the pulmonary system 0.5 15 kPa 3245
Laorta Geometric scaling factor of effective length of aorta from CircAdapt reference configu- 0.5 1.5 -
ration
Lpum Geometric scaling factor of effective length of pulmonary artery from CircAdapt refer- 0.5 15 -
ence configuration
ki y Geometric scaling factor of left ventricular midwall surface area from CircAdapt refer- 0.5 2 - ”
ence configuration
KRvrel Geometric scaling factor of right ventricular midwall surface area from CircAdapt ref- 0.5 2 - 22
erence configuration relative to left ventricle scaling
Sfact Maximum isometric active stress of myofibers 25 200 kPa
Stoas Passive stiffness of myofibers 10 30 kPa
Mieak Ratio of mitral valve leak area to open area 1e—6 0.2 - 46

TABLE 3. Experimentally measured and reference data for human patients studied in circulatory optimization.

HR q QRS Daorta Daortic Dpuim Dpitrar Vivai Pmaxy EDV,y MRV
Patient (BPM) (mL/s) (s) (m) (m) (m) (m) (m?®) (kPa) (mL) (mL)
Ref 71 85e—6 - 25e-3 25e—3 26e—-3 25e—-3 213e—6 16.3 118 -
A 70 80e—6 0.156 22e-3 34e-3 - 18e—3 260e—6 18.7 235 -
B 70 51e—6 0.148 34e-3 18e—3 - 16e—3 190e—6 14.7 177 15
C 70 100e—6 0.162 - 22e—3 18e—-3 23e-3 270e—6 15.5 142 -
D 70 84e—6 0.130 - 24e-3 15e—3 23e-3 450e—6 20.1 289 30
E 60 45e—6 0.128 - 22e—3 - 42e-3 450e—6 13.1 257 -
F 70 55e—6 0.119 25e—3 25e-3 - 25e—-3 309e—6 9.5 135 -
G 70 46e—6 0.140 36e—3 23e-3 - 16e—-3 290e—-6 6.7 198 -
H 70 56e—6 0.124 35e—-3 21e-3 - 16e—3 237e—6 16.3 166 -

Reference values are given in italics.

The ref row describes the default values in CircAdapt. Missing measurements were substituted by appropriately scaling these values. HR
heart rate, g mean systemic blood flow, QRS QRS complex duration, Doz diameter of aorta, D,oric Open diameter of aortic valve, Dpyim open
diameter of pulmonary artery, Dp,iro) Open diameter of mitral valve, V4 ventricular wall volume, Pmax,, peak left-ventricular pressure,
EDV,y left-ventricular end-diastolic volume, MRV mitral regurgitant volume.

and right ventricular activation is important to get a
good agreement with the measured data. In this re-
spect, the QRS duration of each of the 8 patients were
measured using ECG. In the CircAdapt model
(specifically in the myofilament parameters), the QRS
duration was used to set the delay in activation of the
LV with respect to the RV activation time.

Primary model fit was assessed as a function of the
relationships of simulated peak pressure (P, Eq. 1)
and end-diastolic volume (EDV, Eq. 3) to measured
patient values, with additional constraints that are
enforced as penalties to the objective function. These
penalties were based on (1) minimum LV pres-
sure (Ppin: 0.5 kPa, Eq. 2), (2) LV end-diastolic pres-
sure (EDP: 2.5-4 kPa, Eq. 4), and  (3) mitral
regurgitant volume (MRV, Eq. 5).

The component weights of the objective function
(Eq. 6) were selected to prioritize those with greater
certainty and reduce those relying on assumptions
from reference data. The contribution of constraints

on P,;,, and EDP were weighted the least, as they
were not derived from patient data, while P, was
weighted highly, as it was measured most directly.
These weights were also informed by the resulting
ranges of each component; for example, the P,,;, er-
ror was typically very small so the corresponding
term did not contribute heavily to the objective even
with the larger coefficient of 0.75. Additionally, pos-
itive P,,,» and EDV model error were penalized by a
factor of 2; this reduced the likelihood that one value
was unreasonably increased to marginally improve
the other or as a result of possible measurement
overestimation.”®>> This helped to constrain the P-V
loops within the physiological domain. If no MRV
patient data was available, then a healthy reference
value of 30 mL was used as an upper bound; 3 mL
was used for the canine subjects. Our framework
could be easily adapted to use other objective func-
tions motivated by biomechanical principles or
physiology (e.g. Heusinkveld et al.'®).
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S(x) =0.8 % yppax(X) + 0.2 * yepy (X)
+0.75 % gpmin(x) + 0.75 x ggpp(x)  (6)
+ 0.15 % gMRV(X)

The goal of the optimization problem is to find x such
that f(x) (Eq. 6) is minimized, subject to the parameter
bounds on x listed in Table 2.

This optimization formulation was used to generate
CircAdapt models for eight human patients and four
canine subjects. This resulted in 45 (5N) evaluations
for each PSO iteration and 18 (2N) iterations for each
DS iteration. Each optimization was run in a MA-
TLAB environment on one 16-core node, allowing for
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16 parallel single-threaded evaluations. Repeated
parameter configurations used the initial result for
improved efficiency.

Finite Element Model of Canine Left Ventricular
Inflation

In this section, we show the applicability of our
optimization framework to identify the material
parameters and unloaded geometry of a finite element
ventricular model.

The canine data was the same as the ones used for
the circulation model optimization. Additional pro-
cessed data included mesh point clouds and binary
masks defining the LV geometry and muscle fiber
orientations derived from ex vivo diffusion tensor
MRI. The geometries only reflect the location of the
epicardial and endocardial surfaces; they do not en-
code material point displacements. The finite element
geometry for the dog models were reconstructed using
the methods outlined in Krishnamurthy er al.**

We use a finite-element model of the canine LV to
determine its unloaded state and personalized material
parameters of the cardiac tissue. An analysis-suit-
able LV mesh is constructed from an MRI scan of the
subject or patient heart at end-diastole. However, since
this mesh is measured at the loaded (pressurized) state,
an unloaded (unpressurized) mesh state needs to be
determined along with the properties of the passive
Ogden-Holzapfel material model.!”

The unloaded mesh is obtained through an iterative
inflation-deflation process based on the methods of
Bols et al.® and Sellier.”” We first assume an initial
unloaded LV geometry that is identical to the MRI
mesh, and passively inflate it to the measured EDP.
Then the deformation gradient between the loaded and
MRI mesh is inversely applied to the unloaded
geometry. This process is repeated until the interior
volume of the loaded mesh and MRI mesh converge to
within 3%.>

a a
W= %eb(h%) +2Tf;(eb,(14,71) —1) (7)

Four material model parameters (a, b, a, and by,
Table 6) are used to represent patient-specific material
properties in a simplified form of the Ogden-Holzapfel
strain energy function (Eq. 7). Correctness of the
material parameters is determined by the conformation
of the resulting inflated ventricle to the reference end-
diastolic P-V relationship (EDPVR) described by
Klotz?'; a similar approach was used by Augustin® and
Nasopoulou ez al.>' The EDPVR formulation uses the
sole original end-diastolic pressure (EDP) and volume
(EDV) data point to describe the entire EDPVR as a



Optimization Framework for Patient-Specific Cardiac Modeling

(@

Unloaded LV

Inflated LV

(b) .
Klotz curve
Simulation
0.8
;(E; EDP
= 0.6
)
—
?
» 0.4
o
o
0.2
0
10V,

Volume (mL)

FIGURE 3. A representative example of both mesh states of the finite-element optimization and the resulting EDPVR curve. (a) A
converged unloaded and inflated mesh from the simulation showing the change in ventricular shape and volume. (b) A comparison
of the precomputed Klotz curve?' and simulated pressure-volume curve. EDPVR end-diastolic pressure—volume relationship.

function (Eq. 8) with patient-specific values o and p.
The calculation of those values uses some experimen-
tally-determined constants and is described in detail in
that paper. Here, i denotes discrete sampling locations
along the EDPVR. The least squares error is then
calculated between this curve and the complete set of
data captured during the simulated inflation (Fig. 3).

EDP; = o EDV’ (8)

The optimized material parameter values are those that
minimize this error (Eq. 9). The first term of this
summation describes the pressure at a given step in the
simulation while the second term describes the Klotz-
predicted pressure at the corresponding volume. We
used four meshes generated from canine subjects to
demonstrate the approach. Note that the objective
components are not normalized like in Eq. 6—as there
is only one target. In contrast, for the CircAdapt
model it was necessary to balance the fit of EDV and
P,..x With each other and the other listed criteria.

n

Jx) =D (Pi(x) = a(x) EDVi(x)!M)* (9)

i=1

Evaluation of this model is significantly more expen-
sive than the circulation model, and is therefore opti-
mized using only the more computationally efficient
DS portion of the optimization framework. This shows
how the exact implementation of the framework can be
easily adapted to different problems. The MATLAB-
based DS optimization framework generated eight
(2N) parameter configurations for each mesh iteration
of the optimization algorithm. The evaluation of these
was handled via a queue managed by GNU Parallel*’
to run up to eight evaluations in parallel across four
nodes. A bash script was used to control the inflation/

deflation cycle until the model had converged. Each
simulation was performed using Continuity 6.4,'* a
Python-based multi-scale FEA and modeling tool
developed by the UCSD Cardiac Mechanics Research
Group, in parallel across eight cores. This approach is
highly scalable with a minimal amount of overhead.

RESULTS

Circulation Model Results

Patient-specific circulatory models were tuned for
the eight human subjects using CircAdapt with the
presented optimization framework to determine
parameter values (Table 4). The pressure error for the
eight patients had a max of 0.53% and a mean of
0.15%. Volume error had a max of 6.71% and a mean
of 1.26%. Only the models for patients A and E ex-
ceeded the reference minimum pressure value of 1 kPa,
with patient E having the highest value of 1.18 kPa,
but all models had acceptable EDP values within 18%
of the 2.5 kPa reference value. Mitral regurgitant vol-
ume was within 1.3 mL of the measured value for two
of the patients where data was available (B and D),
and within the (<30 mL) healthy range for patients
that did not have that data. The low measured regur-
gitant volume (5 mL) of patient E was not able to be
satisfied, contributing significantly (30%) to the
objective value.

The tuned models for patients A and E had signif-
icantly higher optimized objective values than the
other six patients (0.21e—3 and 1.23e—3 respectively,
compared to the overall median of 6.4¢—8), primarily
from EDV error. The model for patient F was the best
optimization result, with an objective value of 6e—9.
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TABLE 4. Optimized parameters and results of human patients and canine subjects studied in circulatory optimization.
Pat/ Kumap P Apuim Laorta Lpuim 1% KRvrel Sfact Stpas Mieak Obj Pmaxe EDVer
Sub - (kPa) - - - - (kPa) (kPa) - 1e-3 % %
Ref 1 1.5 1 1 1 1 120 4.0 1le—6 - - -

A 1.15 0.50 1.31 0.86 1.57 0.50 200 10.0 7.1e-2 0.21 -0.53 -2.39
B 1.04 0.77 0.68 1.23 1.30 0.53 142 22.9 4.7e-2 0.00 -0.02 —0.00
C 1.18 1.24 1.46 0.54 1.19 0.79 171 24.4 4.5e—-3 0.00 0.01 0.00
D 1.15 0.50 1.49 1.46 1.68 0.50 198 10.0 4.7e-2 0.02 —0.03 -0.95
E 0.99 0.50 1.26 0.51 1.48 0.70 158 222 8.7e—4 1.23 —-0.50 —6.71
F 0.92 0.81 1.00 1.35 1.33 0.63 200 194 2.2e-2 0.00 —0.01 —0.01
G 1.04 1.14 0.53 0.64 1.55 0.64 149 24.7 5.4e-2 0.00 0.02 0.00
H 0.95 1.22 1.30 0.91 1.29 1.08 193 29.3 2.9e-2 0.00 —0.03 0.00
u 1.05 0.84 1.13 0.94 1.42 0.67 176 20.3 0.03 0.18 0.15 1.26
4 +0.10 +0.33 +0.36 +0.37 +0.17 +0.19 +24 +7.0 +0.02 +0.43 +0.23 +2.36
S 1.06 1.50 0.92 0.53 1.28 1.30 194 10.1 1e—6 0.22 —0.45 0.05
S2 1.06 1.30 1.48 1.49 1.18 0.53 171 10 1.3e-6 0.10 -0.14 -0.33
S3 1.13 1.42 1.25 1.29 1.28 0.53 153 28.7 1.3e-3 7.48 0.02 -0.27
S4 1.1 1.03 0.50 1.50 1.17 0.71 115 29.7 1e—6 0.00 0.14 —0.08
u 1.09 1.31 1.3 1.2 1.23 0.77 158 19.6 3.3e—4 1.95 0.19 0.18
g +0.04 +0.21 +0.27 +0.46 +0.06 +0.37 +33 +11.1 +6.5e—4 +3.69 +0.18 +0.14

Reference values are given in italics.

The refrow describes the default values in CircAdapt. Bounded optimal parameter values are bolded. Explanation of variables can be found in
Table 2. Patient-specific data and target metrics can be found in Table 3.
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FIGURE 4. Left ventricular pressure-volume loops for the eight human patients. Light gray lines show the fitting targets. The
small hash marks around 2.5 kPa represent the unpenalized EDP range.

Parameter values were not consistently bounded and
were typically distributed through the allowable range.
None of the LV P-V loops from each of the tuned
models (Fig. 4) have any obvious artifacts that would
signify errors in CircAdapt model convergence.

Since PSO is stochastic, solution stability is an
obvious concern. For each of the presented patients,
the algorithm was run multiple times and resulted in

BIOMEDICAL
ENGINEERING
SOCIETY

similar objective values and constraint violations
between runs—which is expected given that they are
small to begin with. Additionally, the parameter values
did not vary significantly (less than 10%) implying that
the problem was not overparameterized.

CircAdapt models were also tuned for four canine
subjects (Table 4), generating a set of P—V loops
(Fig. 5). The objective values for these models were
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FIGURE 5. Left ventricular pressure—volume loops for the four canine subjects. Light gray lines show the fitting targets. The small

hash marks around 2.5 kPa represent the unpenalized EDP range.
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FIGURE 6. Validation of the simulated left ventricular pressure curves for the eight human patients with catheter data after tuning
the optimized results with the average VAP and Sf,.:. Gray lines show cuff measurement systolic and diastolic pressures—only

catheter pressure was available as the reference for Patient H.

higher on average than the human patients (1.95¢—3
vs. 1.8e—4). The primary source of errors varied across
subjects, with S1 being most affected by P,,,. and S3
being most affected by EDP and P,,;,.

The average time to solution was 29 h, with a range
of 2540 h. The average number of model evaluations
was 3875, ranging from 2257 to 5454; 8% of these were
repeat configurations where the optimizer reevaluated
a specific set of parameters, but returned the previously
logged solution instead of rerunning the CircAdapt
model.

Both sets of circulatory results were validated by
calculating the root-mean-square error (RMSE)
between the simulated pressure curves and the left
ventricular catheter data that was available for the

eight patients. The result highlights a potential down-
side of only using non-invasive measurements, because
systolic cuff pressure data for the studied patients dif-
fered from peak LV catheter pressure by an average of
41%. Substituting the LV catheter pressure for cuff
pressure as the optimization input reduced RMSE by
an average of 31%; patient E error decreased by 69%
(Fig. 13). It must be noted that catheter measurements
are not routinely performed on heart failure patients.
We tried several different approaches to get an effective
simulated pressure time-course in the absence of reli-
able, invasive BP data; we discuss these approaches in
detail in Supplement B. The approach that gave the
best result was to optimize the patients using the cuff
systolic pressure first and then replacing the M AP and
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Sfuce for all patients with an average value (Fig. 6).
This method reduced the RMSE error for most
patients except for patient G and H (Table 5) and the
authors expect that this is due to some uniqueness of
the studied population relative to the general healthy
population initially used to create the CircAdapt
model. If this model were to be clinically applied, it
would be appropriate to compute more accurate ref-
erence starting values for different classes of diseased
patients. That reasonable results were obtained with-
out more tailored starting values supports the stability
of the approach.

Since cuff pressure was not available for the canine
subjects, catheter data was used as a direct optimiza-
tion input. This led to a lower average RMSE than for
the non-invasive human patient results (1.6 kPa vs.
3.12 kPa, Fig. 7). One of the largest contributors to the
calculated RMSE values was inaccuracy in the total
time of cardiac tissue activation. While the activation

between the LV and RV for the heart failure patients
studied. This value was not a parameter in the opti-
mization, since there was no available patient data to
evaluate it against, and thus remained at the typical
reference value. Table 5 shows the RMSE values for
each subject and each patient when optimized with cuff
and catheter pressure (Table 6).

FEA Model Results

Material properties for four canine subjects were
fitted using a left-ventricular passive inflation simula-
tion in Continuity (Table 7). The optimized values for
all subjects were notably dissimilar from the reference
values. S1 had much different values than the other
subjects, likely caused by its significantly greater
chamber volume. The average least squares error was

TABLE 6. Parameters and bounds of coefficients of x in

time for normal patients can be measured directly from Eq. 9.
QRS, we cannot directly subtract the timing delay
a ar b b
(kPa) (kPa) - -
TABLE 5. RMSE between both human and canine model and
catheter data when either peak systolic cuff (with or without Upper bound 50 50 50 50
using the mean values of MAP and Sf,;) or catheter pressure Reference 15 15 8 15
is used as an optimization target. Lower bound 0.01 0.01 0.01 0.01
Subject/patient Cuff (kPa) Mean (kPa) Cath (kPa)
A 4.07 2.90 2.41
B 2.66 2.57 2.75 TABLE 7. Optimized coefficients from Eq.9 and Klotz
C 2.85 2.53 2.78 curve?! fit for each canine subject
D 4.59 4.08 3.28
E 3.1 1.53 0.97 a ar b br Objective
F 3.48 3.29 1.43 Subject (kPa) (kPa) - - -
G 2.79 4.44 1.39
H 1.42 1.55 1.42 Ref 1.5 15 8 15 -
S - - 1.30 S 1.6 5.1 7.3 4.5 0.30
S2 - - 1.41 S2 0.1 11.1 4 14.3 0.22
S3 - - 1.11 S3 0.3 6.8 4.3 12.7 0.09
S4 - - 2.72 S4 0.4 4.8 4.5 43.5 0.21
Reference values are given in italics.
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FIGURE 7. Validation of the simulated left ventricular pressure curves for the the four canine subjects with catheterized in-vivo

pressure data. Gray line shows reference catheter pressure.
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FIGURE 8. Results from simulated inflations of four canine left ventricles. (a) The final unloaded meshes. (b) Comparison of the
optimized simulated pressure-volume curves to the Klotz curves.?'

0.21, ranging from 0.09 to 0.30. Figure 8 shows the
resulting unloaded meshes and EDPVR curves for all
four subjects.

The largest impediment to fit was the allowed EDV
convergence error for the estimation of the unde-
formed ventricle geometry. The average solution took
76 h with 1277 evaluations, each requiring 2-3 inflation
deflation iterations; however the number of required
unique evaluations varied widely between 374 and
3092, with repeat configurations used the previously
logged result for efficiency.

DISCUSSION

Our results showed that the proposed optimization-
based tuning framework avoids many of the issues
inherent to manual tuning. Highly sophisticated
models exist for many biophysical cardiac phenom-
ena, 10203443 which require tuning of circulatory
models. Circulatory models were tuned for individuals
with widely-varied parameters, but acceptable solu-
tions were found for all of them.

It would be very time-consuming and tedious to
manually tune these models from a standard set of
assumed parameter values in each case without con-
siderable experience. The manual process also does not
ensure repeatability of the parameter results. Evalua-
tion of the manual tuning performed by Krishna-
murthy et al®> on CircAdapt models of the same
patients used in this study resulted in an average
objective of 2.42e—3, 97% higher than even the worst
result from our method; pressure was the largest error
contributor. In addition, the manual process was sig-
nificantly slower, with each patient requiring up to 4
days of manual tuning. Our optimized parameter val-

ues were also very different between individuals, sug-
gesting that immediate local optima were avoided. We
demonstrated the seamless integration of idealized
reference values with patient-specific data, thereby
accounting for missing data.

Most previous applications of optimization to cir-
culatory model parameter fitting have used a localized
or gradient-based approach; however, derivative-free
and heuristic methods are more suitable for complex,
multi-modal models where gradient-evaluation is
expensive and there are many local optima that con-
fuse the solver. Neal and Bassingthwaighte® used the
Nelder-Mead Simplex algorithm (NMS) to tune two
open-loop models of hemorrhage in porcine subjects,
while Lim es al?” applied NMS to model an
implantable rotary blood pump under various oper-
ating conditions. Ellwein er al.'> used the gradient-
based Levenberg-Marquardt algorithm to fit a
lumped-parameter model of congestive heart failure.
Balaban er al.’ investigated the application of local
optimizers with the multi-start method to further im-
prove robustness and confidence in the optimized re-
sult. In this work, we demonstrate an efficient and
reliable algorithm for optimizing hemodynamic models
that can work for a wide variety of patients.

Automated model tuning supports wider applica-
tion without the need for expensive manual tuning.
Wang er al.** tuned passive LV material properties
from MRI data using automatically-oriented myocar-
dial fibers. Chabiniok er al’ the affect of varying
geometric subdivisions on tissue contractility tuning
for a porcine subject with infarct. Marchesseau et al.*®
used Unscented Transform to fit ventricular volume
curves. Xi et al.* tuned diastolic material parameters
by iterating hierarchical parameter sweeps. Had-
jicharalambous er al.'> tuned passive myocardial stiff-
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ness with parameter sweeps. Our proposed framework
allows non-experts in optimization a reasonable
approach to tuning medium-dimensionality problems
in their domain, ultimately leading to wider adoption
of automated tuning methods.

One of the main insights that we obtained during
implementation of the framework is that the objective
function for the circulation model optimization had to
be carefully selected. Generally, a well-formulated
objective function will be smooth and accurately rep-
resent the desired trade-offs used to compare multiple
solutions. Objective function selection is also typically
an iterative process. An objective function including
Pmax and EDV alone was not complete enough to
obtain consistent optimization results. Without the
addition of the other penalties, primarily from refer-
ence values, the resulting P-V loops were highly
unrealistic in both shape and position. We also found
that an appropriate QRS duration value was vital to
avoid model artifacts caused by incorrect fill timing.

In support of our hybrid global approach, early
experimentation with local optimizers produced poor
results when applied to the CircAdapt model; this
shows that some of the previous methods in the liter-
ature, such as NMS and Levenberg-Marquardt, may
not be appropriate for certain patient-specific param-
eters in our optimization. Generally, local optimizers
that are heavily influenced by initial assumptions offer
improved convergence and precision; however, they
can also increase the likelihood of issues due to sensi-
tive parameters common in PSM which can easily be
initialized in a non-global basin-of-attraction. These
issues are especially common with constrained, over-
parameterized models. The benefit of an initial search
using heuristic global optimizers (like PSO) is that they
do a good job of randomly sampling the physiologi-
cally-bounded space. This increases the probability
that the optimal solution obtained is robust.

A key enabler in successfully optimizing overpa-
rameterized models is the correlation of the model
parameters with physiologically relevant measure-
ments. CircAdapt is a good example of such a model,
where the model is parameterized using physically
measurable quantities such as dimensions and flow
rates. It is straightforward to set the appropriate
parameter constraints for such a model, which in turn
increases the probability that the optimization finds a
physiologically feasible solution within the parameter
bounds.

Though the proposed framework addressed many
of the issues currently impeding the use of patient-
specific cardiovascular models, there are still some key
limitations to its application. The first is that the use of
noninvasive data imposes limitations on accuracy and
data acquisition. However, requiring invasive proce-
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dures reduces the value of the framework as compared
to more traditional explorative methodologies. The
most efficient response is to determine the data sources
which are most sensitive and justify the most effort to
capture accurately. UQ can also be used to identify
necessary parameters or variables that are difficult to
measure but do not explain much of the patient vari-
ance in model outputs, so they can be replaced by
published population means for the clinical cohort
under consideration. Krishnamurthy ez al.*> discusses
patient-specific and population-averaged data use in
patient-specific cardiac models in more detail.

In the circulatory optimization, ks 4p, Sfucr, and kpy
were the most sensitive parameters; all had mean-
normalized standard deviations less than half the value
of any other parameter. The values of these parameters
are strongly correlated with P, and EDV, which is
not surprising as those metrics were most heavily
weighted in the objective, meaning that the accuracy of
those reference measurements will have a large effect
on the results of the optimization. While myofiber
stress increases as heart failure progresses—increased
left ventricular diastolic pressure, increased left ven-
tricular diameter, and myocardial thinning all con-
tribute to increased myofiber stress—the parameters of
active contractile stress development will be lower than
for healthy subjects. Thus, the precise relationship
between these factors is uncertain, and is therefore
difficult to model, especially using a lumped-parameter
model such as CircAdapt. One way to mitigate this
measurement and model uncertainty would be to ob-
tain cheap, but non-routine, measurements for patient
P-V loop validation, such as echocardiographic vol-
ume at key points in the cardiac cycle.

We found that non-invasive measures of P,,,, were
especially unreliable, and this has also been docu-
mented in the literature.’® Obtaining pressure through
catheterization is currently ideal for data reliability,
but improvements in non-invasive measurement
methods are necessary to enable the broader applica-
tion of PSM. Along with the approach of averaging
M AP and Sf,, discussed in the Results section, we also
tried using diastolic cuff pressure as a reference for
aortic diastolic pressure. However, none of these
methods had a lower RMSE compared to the
catheterized pressure measurements. These results can
be found in Supplement B.

One valuable future development would be the
coupling of the optimization of the FEA and
CircAdapt models. The reason that was not done here
is that CircAdapt and the FEA model use substantial
different material models. While the CircAdapt model
used a single exponential Fung-type model, the FEA
model used the more recent Holzapfel and Ogden'’
model with multiple exponential terms. The Holzapfel
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and Ogden'” model allows us to better match the
measured EDPVR than the single exponential model.
Please refer to Aguado-Sierra er al.' for more details
about the differences in the model. A possible option
was to correlate the parameters of the two models.
However, with only the 4 canine subjects, there was
not enough data to build a reliable correlation
between the two.

Another limitation is that it is generally impossible
to prove that a global optimum has been found for
non-convex non-analytical problems, so there is always
the potential for a slightly better tuned result. It is also
still necessary that an appropriate objective function be
manually constructed to evaluate model fit, which can
often be surprisingly difficult. This problem decreases
in significance as the specific application of a model
becomes more widespread; in such cases a “‘state-of-
the-art” objective function and parameter bounds can
be shared among researchers and clinicians without
requiring local expertise.

The optimized canine material parameters in the
FEA model all converged to apparently reasonable
values with the initially-assumed loose bounds, sug-
gesting that typical material parameters give relatively
good results for a wide variety of individuals or that it
is a convex problem. However, with the more complete
orthotropic material model and complex geometries,
the solution may well not be convex.’!

For this work, the methodology was tuned for
robustness over efficiency. With the large model per-
turbations required during the optimization, this
meant that convergence of each CircAdapt model took
up to 15 min. However, based on past experience we
expect significant speedup to be possible—including
potential conversion of the model to C+ +—in future
work.

In summary, this framework can facilitate the
widespread use of patient-specific or subject-specific
models by enabling tuning from non-invasive data.
The optimization methods employed are resource effi-
cient and easily scalable to the needs and computa-
tional capacity of the application. Using an
optimization framework, the information learned in
the medical community can be easily and reliably dis-
tributed, making it relatively easy to tune a new patient
model in a clinical environment compared with current
manual methods. Finally, the framework is also usable
in a research setting, where a major concern in cross-
species research is maintaining a consistent protocol.
By tuning both human and canine circulatory models
with no modifications to the implementation besides
reference parameter values we demonstrate that this
concern can be naturally addressed. This work can be
used in cross-species research and contribute to im-
proved treatment of CVD.
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