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Abstract

Across spatial scales, biological systems exhibit exquisite hi-
erarchy in architecture and function, leading to complex,
observable phenomena. In the articular cartilage of our joints,
the organization of molecule- to tissue-level structures governs
the interplay of macromolecules and determines the biological
activity of embedded cells (chondrocytes), motivating the
development of new computational models to provide insight
and understanding. We review recent work on multiscale
modeling of cartilage, with an emphasis on finite element
based methods, and emerging experimental approaches
that enable calibration and validation. Through new
nested modeling approaches, we are now able to dissect
interactions of constituent macromolecules, and we envision
the ability to soon define the mechanical microenvironment
experienced by and within single cells that guide biological
activity.
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Introduction
Articular cartilage and osteoarthritis
Structural heterogeneity, a hallmark of biological sys-
tems, spans from tissue to molecular scales and is inte-
gral to the function of cartilage. Articular cartilage has a
layered architecture arising from the heterogeneous or-
ganization of its constituents, which include heteroge-
neously distributed fluid and electrolytes, collagen
fibers, proteoglycans, and chondrocytes [1]. The
remarkable macromechanics of cartilage derive from this
www.sciencedirect.com
heterogeneity among layers and from the complex
micromechanics of interacting constituents within each
layer [2,3].

Mechanical stimuli elicit responses in cartilage across
length scales. The heterogeneous solid phase encom-
passes a polar proteoglycan mesh and a collagen fiber
network (extracellular matrix or ECM), which form
distinct macroscopic layers (superficial, middle, and
deep) and which contribute to mechanical stiffness and
permeation of fluid. Cartilage cells (chondrocytes)
occupy location-dependent subpopulations with
distinct morphologies, gene-expression profiles, and
subcellular components, all subject to significant

deformation (strain). Strain and stress, hallmark bio-
physical parameters in mechanobiology, influence
biochemical pathways at multiple scalesdECM, cell,
and nucleusdthrough a cascade of mechano-
transduction mechanisms [4].

Mechanical stimuli also contribute to osteoarthritis
(OA), a complex disease with a multifactorial etiology
[5e9] that poses severe socioeconomic burden [6,10].
One hallmark of the disease is the decline of the me-
chanical integrity of cartilage that ultimately leads to

pain, disability, and total joint arthroplasty. A full
mechanistic understanding of OA requires clarifying all
pathological changes across all scales [11], and every
advance in our understanding promises potential targets
for new treatments and therapies.

Structural heterogeneity motivates biomechanical
modeling across scales
Multiscale models naturally mirror the architecture of
cartilage tissue, properties of which derive from hierar-
chical interactions within embedded microstructures.
Here, we apply the term “multiscale” to physiological
models including more than one biological scale;
multiscale models of cartilage, for example, link organ-

ism, organ/joint, cartilage, cell/chondrocyte, molecule,
and even gene (Figure 1). Typically, finite-element (FE)
analysis applies at the macroscale (tissue) and couples
with microscale models (fiber networks) that serve as
material models [12e16].

The advance of multiscale biomechanical models re-
quires novel experimental data to inform tissue prop-
erties and to enable new constitutive formulations and
means of calibration. Indeed, multiscale experiments
can quantify mechanical and biological properties of
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Figure 1

Computational models and experiments provide complementary information that characterize the mechanics of biological systems at
multiple length scales.Within the musculoskeletal system of the knee, body forces load the joints, which distribute forces according to their geometries
and properties of tissues. Tissue forces transfer to chondrocytes, the cells in cartilage, via a complex interplay of fluid, electrolytes, and macromolecules
like collagen fibers and proteoglycans within three subtissue zones. Within the extracellular matrix, for example, collagen fibers sustain tensile forces
that transfer to fibrils and monomers (elements adapted from Ref. [49]).
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tissues, and, for example, imaging methods can estimate
tissue structure and even strains. Using these data to
inform computational models, however, enables testing

and/or prediction otherwise difficult or impossible via
experimental methods (e.g. intratissue stresses in
human joints during daily activities).

Multiscale modeling is suited to capture heterogeneity
of not only length scales but also temporal scales, for
example, from equilibrium and injury to growth and
aging. The ability to model the interplay of different
spatiotemporal scales allows researchers to clarify
distinct mechanisms of signaling (e.g. strain transfer to
subcellular domains). Most multiscale mathematical

models begin with relatively simple models that pre-
serve enough biology to be meaningful, without intro-
ducing unnecessary or burdensome complexity. The
principles of such models can apply to many biological
Current Opinion in Biomedical Engineering 2019, 11:51–57
systems, making multiscale modeling a conducive,
powerful, and broadly applicable tool [17].

Need for multiscale models of articular cartilage
Computational simulations provide tools to identify

multiscale interactions that advance understanding of
cartilage function in health and disease, with potential
for individual patient specificity [18]. The interde-
pendency of mechanobiological responses across scales
and variability among individuals increase the
complexity and challenge of establishing the clear,
mechanistic understanding needed to drive clinical
interventions. Integrative multiscale modeling offers
the descriptive and predictive potential to meet these
challenges [19].

Benefits notwithstanding, the literature is rich with
examples of the limitations of applying continuum
www.sciencedirect.com
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mechanics to tissues [20]. An obvious constraint is our
current understanding of function within each length
scale of interest. As our knowledge of biomechanics of
cartilage at individual scales advances, so will our ca-
pacity to adapt multiscale modeling strategies from
traditional disciplines.

Emerging computational models of cartilage that span

length scales can overcome limitations inherent to
experiment and observation, offering enormous poten-
tial to generate knowledge otherwise beyond reach.
Multiscale models can test hypotheses in poorly un-
derstood or unknown systems, for instance, or enable in
silico experiments where in vitro or in vivo experiments
are impossible or insufficient [17]. Despite the benefits
and potential of such approaches, very few studies pro-
pose, develop, or apply multiscale computational models
of cartilage.
Recent computational models and
experimental methods relevant to cartilage
Computational models of cartilage
The complex properties of cartilage that determine
function also complicate computational models of

the tissue. Cartilage is not only mechanically
nonlinear but also multiphasic, anisotropic, visco-
elastic, and spatially heterogeneous [21e23]. To
capture these effects, we and others proposed
image-driven constitutive modeling to exploit image-
derived data and improve predictions of the intra-
tissue responses of cartilage [24e26]. Some of the
embedded assumptions, for example, isotropic ECM
and fiber-based permeability, may be reasonable even
at smaller scales, but a coupled microscale model of
the collagen network would enable predictions of
more phenomena. A recently proposed constitutive

model for engineered cartilage assumes a linear
biphasic mixture, among other classical assumptions,
to link solute transport and uptake, cell proliferation,
ECM synthesis, and remodeling of mechanical
properties resulting from mechanical loading [27].
To simulate conditions in vivo more generally, the
model would benefit from extension to finite-strain
theory.

The macroscale mechanics of cartilage affect model
predictions at the single-cell level. Cell-level re-

sponses of single and anatomically based 11-cell
biphasic FE models embedded in an ECM highlight
significant differences in volume-averaged cell me-
chanics at peak response during a stress relaxation test
modeled with finite-strain theory [28]. The differ-
ences between single and 11-cell representations,
while negligible at equilibrium, stem from heteroge-
neous distributions in the displacement and fluid
pressure within the ECM [28]. Such interscale
www.sciencedirect.com
relationships demonstrate the significance of multi-
scale modeling.

Multiscale models of soft tissues including cartilage
With so little published in the last 5 years on multiscale
modeling of cartilage, we include multiscale models and
studies of soft tissues with relevance to cartilage. Three
reviews of multiscale computational biomechanics
reveal distinct trends, and several studies indicate po-
tential directions of advance for cartilage modeling.

The first review bins models according to order of
intent, starting with causal confirmation (CC), then
predictive accuracy (PA), and at the highest order of
intent, determination of effect (DoE models predict
propagation of effects across radically different scales).
Overwhelmingly, most musculoskeletal and cardiovas-
cular models fall under CC, and the review opines that
to approach higher-level intent, advances should address
open problems with stricter demands on model valida-
tion [29]. Indeed, multiscale modeling is a huge
concept, and intent-based categorization provides a

constructive lens to compare relative and contributive
value. Models with CC intentdthe vast major-
itydidentify what might be important to research. To
move this field forward, we must clarify questions of
how and why effects propagate across scales with higher-
level PA and DoE models, respectively.

The second review curates models of tendon mechanics
across scales, with obvious application to cartilage, given
reasonably analogous networks of collagen support me-
chanical load in both types of tissue [30]. Mechanical

models of tendon tissue, fibers, or fibrils are generally
phenomenological (contain parameters that lack clear
physical interpretation) or microstructural (combine
behaviors of different components) and can examine
mechanical responses across scales. Very few studies,
however, focus on multiscale load transfer, which re-
mains one of the biggest challenges in multiscale
modeling generally [30]. To systematically bridge scales
would provide invaluable data to develop multiscale
models, and considering the proliferation of well-
developed, coupled two-scale studies, this aim seems

imminent.

The third review highlights multiscale models based
on Mixture Theory, the multiphase properties of
which are ideal for cartilage [17]. Listing several
theoretical approaches and examples, the authors note
that all face challenges in light of the complexity of
biological systems. Nonetheless, multiscale ap-
proaches based on Mixture Theory present strong
opportunities to bridge spatial and temporal scales in
modeling soft tissues and may enable more predictive

(PA) models.
Current Opinion in Biomedical Engineering 2019, 11:51–57
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The complexity of biological systems and concomitant
peril of computational expense make simplifying
multiscale models without loss of biological or me-
chanical fidelity paramount. Recent studies demon-
strate the efficacy of two such approaches. The first,
investigating how chondrocytes regulate bone formation
on the basis of load, simplifies the microstructure, and
assumes chondrocytes attach to surrounding matrix

continuously for the multiscale FE model [31]. The
results identified a correlation between hydrostatic
stress at the cellular level in growth-plate cartilage, and
zonal chondrocyte morphology, and function over time.
Although simplified, the model captures the depth-
dependent heterogeneity crucial for modeling carti-
lage. Similarly, to simulate molecular processes within
cellular environments, the second validated a simpli-
fying technique that incorporates macromolecules on
the basis of coarse-grained representation within an
aqueous solvent (mesoscopic description), as well as

mutual exchange of forces [32]. This technique could
also apply to models of chondrocytes and increase effi-
ciency of cartilage models.

Recent models of biological tissues provide other
modeling concepts applicable to cartilage. A study of
soft and hard tissues (cortical veins and bones, respec-
tively) applied asymptotic homogenization techniques
on the basis of microscale representative volume ele-
ments [33], demonstrating the efficacy of linking local
constituents to macroscopic behaviors and the power of

multiscale models to clarify mechanicalebiological
couplings. Degeneration of cartilage in OA and rupture
of collagen fibers during microcracking [34,35] repre-
sent two challenges with rich translational potential
where multiscale models could synthesize experimental
data toward new, clinically relevant knowledge. To
realistically advance toward predicting long-term pa-
tient-specific evolutions, however, we must improve the
accuracy of such models [33].

Another recent model demonstrates elegant use of
necessary and sufficient assumptions. Using tendon as a

representative soft collagenous tissue, the authors devel-
oped a multiscale model of localization of stressestrain at
the microscale. Applying a multistep homogenization
technique from nanoscale (intermolecular cross-links and
mechanics), through the microscale (collagen fibers), to
themacroscale (homogenized tissue), themodel produces
valid results, yet addresses only elastic mechanisms,
neglecting contributions from inelastic phenomena and
damage. The approach drives at a better understanding of
multiscalemechanics of tissues, perhaps shedding light on
aspects of mechanobiology of cells and organs [36].

Importantly, this work identifies what assumptions are
necessary, andhowmany are reasonable. Simplymodifying
themodel accordingtominordifferencesbetweenfibers in
tendon and those in cartilage would shed light on fiber
Current Opinion in Biomedical Engineering 2019, 11:51–57
performance and contribute significantly to models of
cartilage.

Homogenization is ideally suited to bridge joint, tissue,
and intratissue scales by coupling macro-micro boundary
value problems. A direct, two-scale homogenization
technique called FE2 or multilevel FE (FE analyses
augmented to derive material behaviors from a distribu-

tion of finer scale FE analyses) solves a range of classic
problems in the transfer of information frommicroscales to
macroscales [37]. Combining Theory of Porous
Media with FE2 produces a new modeling framework
ideally suited to modeling cartilage. A preliminary (2-D)
simulation employed this new framework to compare
compression tests of two tissues, each with a different
microstructure. The tissue-scale results were nearly
identical, while microscale results differed significantly,
underscoring the need to incorporate microstructures
[38]. This extendedFE2method is inherentlymultiphase

and can naturally represent the anisotropicmicrostructure
and through-thickness heterogeneity of cartilage. We see
great promise for this framework to couple diverse length
scales in multiphysics models of cartilage.

Recent experiments to drive the development and
calibration of multiscale cartilage models
The complexity of cartilage structure and behavior drives
the need for elegant experimental methods that can aide
in the calibration and validation of new computational
models. One recent approach involved the combination of
multiple data types, including joint anatomy (viamagnetic
resonance imaging), joint kinematics (via robot-assisted
testing), tissue mechanics (via compression testing), and

microstructural morphology (via histology), all from the
same specimens [39]. Multiscale biomechanical and
structural data therefore providemeans to bridge the joint
to cell scales from the same individual.

Advanced experimental approaches involve the use of
image data, which enables noninvasive acquisition of
local tissue architecture and function. A recent study
describes using high-speed microscopy to quantify bulk
and local strain fields to predict the fissure formation
characteristic of cartilage damage [40]. An important

finding was that while bulk mechanics predict fissures at
the population level, only local strains predict damage in
individual samples. Concurrent developments in mag-
netic resonance imaging provide the ability to measure
local mechanics in the cartilage of human subjects in vivo.
Early results emphasize the dominant role of shear strain
in the knee in vivo, a finding impossible tomeasure via any
other conventional medical imaging modality [41]. Only
now are we positioned to link local mechanics measured
in individuals to the progression of damage [42].

Emerging methods now enable extraction of full-field
biomechanical data at cellular and subcellular scales.
www.sciencedirect.com

www.sciencedirect.com/science/journal/24684511


Toward multiscale models of cartilage Wang et al. 55

Author's Personal Copy
Using deformation microscopy, which couples image
data to computational models, we can now map matrix
to subnuclear level strain data [43]. This method en-
ables us to quantify strain transfer from the extracellular
or pericellular domains to intracellular and intranuclear
regions, document amplified strains in chromatin do-
mains [44], and clarify the role of specific nuclear
membrane proteins that regulate the transfer of strain to

the nuclear interior [43]. As computational models move
to increasingly small scales, microscopy data will likely
guide their calibration and validation.
Discussion and outlook
The goal of computational modeling is to quantify and
predict phenomena that would otherwise be difficult or
impossible to compute using available experimental
methods. While existing models provide insight into
mechanical quantities such as stress and strain, the
leading edge of the field has yet to connect these data to
known architectures of matrix molecules like collagen
subtypes, proteoglycans, and glycoproteins and to
regional variations in water content. Multiscale models
of cartilage could allow researchers to understand how
complex interactions at the molecular scaledfor

example, between the network of collagen and the
densely packed proteoglycansdgenerate the remark-
able macromechanics of cartilage. Many open questions
remain. What role do local variations in minor collagen
types, lubricating proteins, and molecular cross-linkers
play in the stiffness and damage resistance of carti-
lage? How does damage or progression of OA affect
these micromechanics? Do these evolving micro-
mechanics present new treatment targets?

Distinctly few conventional models connect mechanical
and biological/biochemical factors, let alone on varying

spatial and temporal scales. Macroscale computational
models may estimate stiffness in the bulk tissue matrix,
and hierarchical models may refine our understanding of
the local (substrate) stiffness experienced by individual
cells; however, stiffness is only one parameter driving
cellular expression. Activity of ion channels [45], celle
cell connectivity [46] and signaling [47], and intracel-
lular cytoskeletal networks [43] require more advanced
models that predict distinct mechanotransduction and
biochemical pathways. Emerging knowledge of chon-
drocyte biological activity in health and through the

progression of disease [48] may in part drive this need.
Alternatively, new computational formulations that
incorporate growth and development may predict new
biological activity not previously envisioned.

Predictive multiscale modeling of the mechanics and
evolution of cartilage is a difficult task because much of
the required knowledge (experiments, theories, and
numerics) remain poorly understood or disjointed
(Figure 1). Additionally, no multiphase, multiscale
www.sciencedirect.com
models relevant to cartilage mechanics and mecha-
nobiology currently existda paucity that offers enor-
mous opportunity for future models that link patient-
specific large-strain mechanics, biology, and biochem-
istry in 3-D, and drive patient-oriented treatments and
soft-tissue replacements in tissue engineering.
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