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Abstract—Transportation systems are undergoing amajor tran-
sition with the integration of electric vehicles (EVs). However, due
to increase in battery energy and charger power ratings, poten-
tial adverse effects on the distribution grid is a crucial issue to
be addressed. Large voltage drops at charging nodes will deteri-
orate the quality of power service and cause unfair utilization of
grid capacity among EV users. Safe and efficient operation of the
grid along with a fast, convenient, and fair charging strategy is
an important research problem. In this paper, we adapt the addi-
tive increase multiplicative decrease (AIMD) algorithm used in the
Internet congestion control to EV charging using only local node
measurements. We analyze the relationship between distance and
grid voltage, and show how to extract this information from local
measurements. Then, we present a detailed analysis to understand
the relationship between distance and charging power in a distribu-
tion network to better address the fairness in the proposed AIMD
EV charging algorithm. Results show that localized information at
charging node voltages include important signature information
on grid congestion and can be used to implement AIMD control
for EV charging.

Index Terms—Charging stations, complex networks, computer
networks, distributed managament, electric vehicles, power distri-
bution, smart grids, TCPIP.

I. INTRODUCTION

E LECTRIC vehicles (EVs) are expected to become an im-
portant factor in modern transportation systems. Their

reduced CO2 emissions, efficient operation, increased perfor-
mance, and lower maintenance requirement make them an at-
tractive candidate for customers. With decreasing prices, EVs
will become competitive and are expected to ramp up in sales
by 2025 [1]. However, traditional electric utility grid operation
is still not ready for this transition [2]. Such a potential mass EV
integration brings new challenges in the distribution grid, such
as severe voltage drops and deviations, power losses, and fre-
quent peak loads, which are extensively studied in the literature
[3]–[10].
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Tomitigate the adverse effects of EV grid integration (EVGI),
various EV charging/discharging solutions have been proposed.
The charging solutions can be divided into direct, indirect, and
autonomous methods [11]. Direct and indirect methods require
extensive amount of data exchange between EV and the grid,
e.g., battery state of charge (SOC), vehicle arrival and departure
times, grid congestion signals, price tariffs [12]. These signals
are used to decide or influence when a customer charges an EV.
However, they require new installments of expensive communi-
cation devices at every node. The conventional wisdom has been
that these techniques are a more reasonable way of integrating
EVs to the grid, however, cost efficiency as well as deployment
practicality at massive scales are questionable.
Furthermore, advanced integration solutions with vehicle-to-

grid power transfer are also proposed including load leveling,
peak shaving, voltage regulation, and reactive power compen-
sation [13]–[17]. These solutions require a centralized server
that can exchange information with end nodes to optimize the
operation of EV charging. Considering the additional communi-
cation network complexity, its inherent limitations (e.g., latency,
loss of data, connection problems), and the required investment
costs, centralized solutions are more demanding to implement
than distributed methods.
Similar to the EV charging network, the Internet’s backbone

network carrying data traffic also faced congestion control chal-
lenges in the past. As the count of endpoints boomed in the In-
ternet, scalable control of the congestion with easy deployment
to practice was a major challenge [18]. Practical observation of
the “congestion collapse” [19], [20] necessitated solutions that
guarantee stability of the network by avoiding congestion [21]
while maximizing the end-to-end (E2E) throughput and making
sure the network’s capacity is used fairly and efficiently. Due
to the multiprovider nature of the Internet as well as the scale
complexity of the problem, the solution has been best realized
at smart endpoints operating with entirely E2E and local mea-
surements. The mainstream transport protocol TCP adopted this
decentralized E2E congestion control approach [22]. Although
significant effort has also been spent in centralized [23] and
network-supported [24] congestion control for more efficiency
and regulated fair usage of the network capacity, most of them
stayed at network edgeswith limited deployments unable to span
multiple providers. Decentralized designs with smart endpoints
and local/E2E measurements have been the most successful in
penetrating into practice and solving the congestion (or data
traffic rate) control problem at large scales.
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Fig. 1. Analogy between EV charging over the distribution grid and the downloads over the Internet.

Many control methods were proposed and studied, yet only
one was widely adopted in the Internet congestion control. This
de-facto congestion control uses the additive increase multi-
plicative decrease (AIMD) algorithm [21], which is basically
an event-triggered mechanism that takes some control actions
when a congestion in the network occurs. In summary, every
end node in the network increases their share linearly in an ad-
ditive fashion until a congestion occurs in the network. Then,
they back up by reducing their share multiplicatively and free up
the resource (i.e., the capacity of the links) for reallocation. The
congestion level is determined by a threshold time it takes to
get an acknowledgment of whether a data packet has reached its
destination, a.k.a. round-trip time. This decentralized learning
mechanism provides partial information regarding the conges-
tion that may exist in the middle of the network. Such a straight-
forward solution has proved itself to be stable and maintain
proportional fairness among users [25]. A lot of work has been
done regarding the AIMD’s modeling, operational mechanism,
stability, fairness, and different variations. Interested readers
might find some of these useful references in [26]–[29]. The
AIMD algorithm proposed in this study is described in detail in
Section IV-A.
Because of the similarities between the EV charging control

and the Internet’s source data rate control (see Fig. 1), studies
tried to adopt the AIMD algorithm to EV charging [30]–[32].
This idea was further enhanced by taking power system con-
straints into account [33]. The effects of an AIMD-based algo-
rithm on the distribution system dynamics are presented in [34].
The authors in [35] present a comparison between two AIMD-
based charging algorithms and an ideal centralized solution to
benchmark the performance on a low voltage distribution net-
work. AIMD approach is also used to solve the share of power
generation problems among distributed energy sources in mi-
crogrids [36]. In [37], the authors suggested using AIMD for

frequency control of grid-connected microgrids. They consid-
ered both centralized and decentralized AIMD approaches and
presented a comparison between those aswell as with a PI-based
controller. These studies assume that the congestion signal is de-
livered to the user by somemechanismwithout providing details
on how it can be generated and implemented in the field. In [38],
the authors suggest using the local voltages as a threshold for
congestion signal in the AIMD algorithm. It is claimed that
these thresholds can be extracted from historical voltage mea-
surements for one time, however, without dynamic updates of
thresholds, this approach will suffer from the lack of flexibility
in adapting to changing conditions in the grid as expected with
EV or photovoltaic solar integration. Using power flow analysis
to calculate thresholds was suggested in [39], but this off-line
solution cannot update itself to new real-time conditions. It is
also important to note that none of these studies fully touch on
the concept of charging fairness among customers, which is one
of the main contributions of our work in this paper.
Decentralized operation of an AIMD-based EV charging al-

gorithm relies on the measured and preset threshold voltage
values. This makes it important to understand the effects of
any system parameter on the node voltages. In this study, we
present a detailed analysis regarding the relationship between
distance versus voltage and power in a simplified distribution
grid model [40]. This analysis shows that the proposed AIMD
algorithm can achieve fair charging for EVs and avoid voltage
violations provided that the voltage threshold values are set ac-
cordingly for each node depending on their locations in the grid.
With this insight, we further focus on how to use local voltage
measurements to estimate the grid congestion and set a voltage
threshold value.
The degree of congestion in a power distribution grid can

be estimated by the amount of voltage drop [41] similar
to frequency-congestion relationship in power transmission
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system. In this study, we further explore the EV integration
impact on a low voltage distribution grid by means of statisti-
cal analysis [42]. We show that the statistical characteristics of
voltage variations can be used as an input to our EV charging
algorithm by providing congestion level information to control
the charging.
Our contributions in this paper can be summarized as follows.
1) A relationship among voltage, power, and distance in a

simplified distribution grid is derived.
2) A statistical analysis that verifies this relationship in a

more realistic grid model is presented.
3) Based on the presented statistical analysis, a novel charg-

ing algorithm is proposed. This algorithm implements
two-layer AIMD-based charging rate adaptation and pro-
vides an ability to learn threshold set points by local volt-
age measurements.

4) The fairness among EV owners is addressed, and the per-
formance of the algorithm is evaluated in establishing
proportional fairness among users.

5) The results of this study can provide crucial inputs for on-
board residential and off-board dc fast charging operation
control with the potential to be scaled to mass deployment
of these infrastructure.

The organization of the paper is as follows. Section II presents
the analytical derivation of voltage versus distance relationship.
Section III introduces the model developed in MATLAB to
test the analytical derivation. Section IV explains the AIMD-
based proposed control methodology along with various case
studies, and a discussion of the obtained results on the control
methodology. Finally, Section V presents the conclusion and
planned future work.

II. ANALYSIS OF VOLTAGE VERSUS DISTANCE RELATIONSHIP

This section starts with deriving the relationship between the
voltage of an end node and its distance from the substation
analytically. Our goal is to gain insights on this relationship
so that we can better guide the EV nodes for decentralized
charging rate control. In thismodeling effort, we use a simplified
equivalent dc grid model as shown in Fig. 2.
This model uses a single mainline type primary distribu-

tion topology. It consists of one main feeder with voltages
V1 , V2 , . . . , Vn . There are n lateral feeders each with a total of k
nodes. Each lateral node voltage is denoted as Vi1 , Vi2 , . . . , Vik

for the ith lateral node. Essentially, this model can be viewed as
several repetitions of the lateral pattern given in Fig. 3. To find
an analytical expression between the voltage of a main node
and its distance from the substation, we model the main feeder
in a repeated pattern. Then, the currents I1 , I2 , . . . , In in Fig. 3
represents the total currents drawn from each main node. To
solve this repeated system for node voltages, we express each
node voltage in terms of other system variables such that ith
node voltage can be written as

Vi = V0 − (I1 + I2 + · · · + In )R1 − (I2 + · · · + In )R2

− (Ii + · · · + In )Ri (1)

Fig. 2. Simple distribution grid model.

Fig. 3. Repeated pattern in the simple distribution system model.

where Ri is the resistance value of the line between ith and
(i − 1)th main nodes.
The voltage of any node in the grid is determined by the dis-

tribution line parameters and all the currents drawn at all nodes
at any time. This results in a very complicated system without
a simple analytic equation. However, one can formulate voltage
versus distance relationship when the following assumptions
hold true:
1) all currents are the same I1 = I2 = I3 = · · ·= In = I;
2) all distribution line segment lengths and parameters are

the same s.t. R1 = R2 = R3= · · · = Rn = ρL/A
where ρ is line resistivity (Ω·m), L is line segment length (m),
A is line cross-sectional area (m2) of the wire. Then, the voltage
for ith node can be expressed as follows:

Vi = V0 − IρL

A
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Fig. 4. (a) Relationship between main node voltages and their distances.
(b) End-node voltages and currents wrt distance. (c) Fair allocation of charging
power wrt distance.

By letting D = Li (i being any node number), the voltage of
the ith node can be defined as a function of its distance D from
the substation as follows:

V {D} = V0 − Iρ

A

(
n +

1
2

)
D +

Iρ

A

D2

2L
. (3)

Only with the presented assumptions, it is possible to represent
this relationship by a quadratic function of a single variable
(distance) as shown in (3). Fig. 4(a) shows the analytically com-
puted voltages and the simulated voltages of ten main nodes of
the repeated grid model in Fig. 3 when all nodes draw a constant
current I equal to 0.02 p.u. This curve shows that even under
simplified assumptions, the relationship between voltage and
distance is not linear due to the complex topology of the grid.
In this study, our definition of ideal fairness in EVGI context

is that every end node, regardless of its location, should draw the
same charging power to maintain the same charging speed for
every EV owner. However, the relationship in Fig. 4(a) shows
that if every node draws the same current, the one with higher
node voltage (or the one closer to the main feeder) will draw
more power. For a fair charging strategy, the nodes should draw
an inversely proportional charging current to its voltage. Ideally,
themaximumpossible amount of charging power for all nodes is
achieved when the farthest end-node voltage is at the minimum
utilization voltage level. The required end-node current values
to ensure the same maximum power allocation to each node
and the corresponding node voltages are computed and shown
together in Fig. 4(b). The resulting currents increase as the
voltages decrease to maintain the same power. The resulting
power is approximately 6 kW for each node and this is shown
with respect to distance in Fig. 4(c).
Although the simple grid model provides an important insight

on voltage, current, and power relationships in terms of location,
it does not truly represent the real grid system and cover real-life

Fig. 5. MATLABSimulink phasormodel used for the low-voltage distribution
grid.

scenarios because of the presented assumptions and simplifica-
tions. Besides, working with fully analytic models in the real
world is often times not possible or not convenient because of
the stochastic nature of systems. This makes it necessary to
carry out some statistical analysis to discover this nature. For all
these reasons, a more realistic grid and load model are needed
to carry this study to an upper level.

III. SYSTEM DESCRIPTION FOR THE DISTRIBUTION

GRID TEST CASE

In Section II, we used a single mainline type dc grid to an-
alyze the voltage versus distance relationship. In this section,
we convert this model to a more realistic three-phase ac grid
structure that operates at a nominal voltage of 4.8 kV. We will
use this grid structure as the benchmark for our EV charging
study.

A. Distribution Grid Model

For our test benchmark, we designed a primary network in
MATLAB Simulink as shown in Fig. 5. Each pictured box in
Fig. 5 represents a neighborhood that is connected to a primary
feeder bus. There are a total of ten neighborhoods located in
ascending order of distance from the substation, i.e., first neigh-
borhood is the closest and the tenth one is the farthest.
We model each neighborhood as a secondary network as

shown in Fig. 6. The secondary network is developed follow-
ing a similar procedure and data described in [43]. It contains
four inner nodes and at each node, a pole-mounted transformer
of 25 kVA is located. Each transformer steps down the pri-
mary feeder voltage of 4.8 kV to a secondary voltage level of
120/240 V and supplies power to four residential houses. In to-
tal, there are 160 residential customers in the model. The overall
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Fig. 6. Secondary distribution network structure implemented in the
MATLAB model.

distribution grid operates slightly over 350 kW at peak hours
without any charging event.

B. EV Load Model

In order to model EV charging load on the distribution grid,
we focused on their critical parameters. We derived their ar-
rival and departures times from a Gaussian distribution with
mean and standard deviation of (5:30 P.M.,1 A.M.) and (07:47
A.M., 12:23 A.M.), respectively. The load model generates SOC
values for each EV at the time of grid connection based on a
Gaussian daily trip distribution with mean and standard devi-
ation of (40.0 min, 5.0 min). Each EV is assumed to have a
60-kWh battery pack with an on-board charger of 7 kW corre-
sponding to around 30-A ac current for a rated voltage of 240 V.
The reason all the EVs are modeled with the same configuration
type is to prevent possible confusions that might arise in the
discussion of addressing fairness performance of the algorithm.
We wanted to make sure the EVs’ rate of charge do not interfere
with the charging control algorithm’s capability of attaining a
fair charging scheme. Designing a charging control algorithm
that can attain fairness across heterogeneous EVs with different
capabilities is a future direction our work can be taken to.

C. Residential Load Model

We designed a random consumption data generator for resi-
dential houses. The power consumption profile for each house
in the simulation model are generated using 16 d of real power
consumption data of a household collected by e-Gauge [44] at
1-min intervals (see Fig. 7). For each 1-min interval, the 16 d
of data specific to that interval period are used to model the
power consumption as a Gaussian distributed random variable
where the mean and variance parameters of the distribution are
calculated from the e-Gauge data for that interval. By this way,
a different power consumption probability distribution function
(PDF) is defined for each time interval of a day. Hence, simula-
tion of power consumption of an house for each time interval is
done by generating a random value from the corresponding PDF
for that time interval. One example of such a profile is shown in
Fig. 8. We then assumed 0.9 power factor lagging operation by
keeping the active power consumption the same since the orig-
inal e-Gauge data did not include reactive power consumption
which is very common in residential houses.

Fig. 7. Sixteen days (shown in different colors) of power consumption data
of a household.

Fig. 8. Sample power profile of a single household generated from 16 d of
consumption data.

D. Verification of the Analytic Model Through
Statistical Analysis

To verify the voltage and distance relationship presented in
Section II through statistical analysis, a Monte Carlo simulation
is developed. The realistic grid model in Fig. 5 is simulated for
a period of 100 d and phase voltages of the main nodes are
recorded for the interval of 6:00–6:15 P.M. at 1-min intervals,
which create a total of 1500 data samples. The average of these
simulated phase voltages are then compared with the voltage
values computed by (3), and the results are shown in Fig. 9.
This comparison assumes that the distribution lines are purely

resistive and the currents drawn from each neighborhood are
equal on average. The distribution grid data for this analysis
is extracted from IEEE 37-Node Test Feeder [45]. Using this
dataset, we considered each line segment with R = 2.09 Ω and
X = 0.77 Ω. Since R ≈ Z, neglecting X in the analysis gives a
negligible error. The statistical analysis developed here consid-
ered X as well and showed that both analysis demonstrated a
similar relationship as shown in Fig. 9. The reason that the an-
alytically computed voltages are little higher than the measured
ones is because the presented assumptions ignore the voltage
drops due to the line inductances.
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Fig. 9. Comparison between measured and analytically obtained main node
voltages.

Algorithm 1: Proposed AIMD Algorithm.

Input: Charger voltage and current: Vc(t), Ic(t)
Output: Charger current command Ic(t + 1)
if Vc(t) > Vth(t) then

Ic(t + 1) = Ic(t) + α(t)
else

Ic(t + 1) = β(t) × Ic(t)
end if

IV. PROPOSED AIMD-BASED EV CHARGE

CONTROL ALGORITHM

A. Baseline Algorithm With Learning Threshold Voltages

In this section, the AIMD algorithm is adopted into the EV
charging control. The baseline implementation of this algorithm
is explained in Algorithm 1. This algorithm either increases
or decreases the charging current, thus charging power, de-
pending on whether or not its node voltage Vc(t) exceeds its
threshold voltage Vth(t). Increase is done additively by α(t),
whereas decrease is done by the multiplicative factor β(t).
Here Vth(t) is the key parameter since it serves as a conges-
tion indicator. The minimum and maximum utilization voltage
ranges are specified as 0.9 and 1.05 p.u. by ANSI C84.1-2016.
These values correspond to 216 and 252 V for 240-V nomi-
nal voltage. The algorithm can also be modified to take these
limits into account. Two additional fix thresholds being the
lower and upper voltage limits can be introduced to the de-
tection condition. Thereby, the AIMD algorithm takes action
not only in the case of network congestion, but also of voltage
limit violations, by either reducing or increasing the charging
power.
The voltage level at a certain point in the grid varies depend-

ing not only on the grid structure and distribution line lengths,
but also on the overall system load at any time. Therefore,
Vth(t) must be specific to each node such that observing this
specific voltage and comparing with node’s regular voltage pro-
file should reveal the congestion event information. This implies
that the distant locations with respect to the substation should
have lower threshold values compared to closer nodes since they

Fig. 10. Box plot of voltages averaged over 6:00–6:15 P.M. for ten houses
after 100 d at full charging power.

experience lower voltages. Consequently, there should be a cor-
relation between the threshold value of a node and its voltage
profile. The voltage profile itself also changes in accordance
with the loading level of the grid over a day. Therefore, it must
be defined as a function of time. For a given time interval, this
profile follows a normal distribution based on the results of our
measurements. The mean of the distribution represents the gen-
eral tendency of the voltage, whereas the variance means how
much the node voltage is effected by the load changes in the
grid.
Our previous work discusses how voltage profiles vary at

different EV penetration levels and how to obtain the voltage
distributions with respect to nodes [42]. After learning the dis-
tribution for time intervals, we can set our threshold to the value
which corresponds to the 25th percentile of the distribution.
This will give the node some voltage margin to drop below its
mean value. Since the threshold value is directly derived from
the node’s voltage profile, it also adapts itself to any change
in the grid by constantly relearning the voltage distribution.
This should be highlighted as a key ability of the proposed
algorithm.

B. Implementation of Baseline Algorithm

This section shows whether the statistically learned thresh-
old voltages can result in fair average charging power among
customers regardless of their location in the grid. Initially, it is
assumed that only 16 households (10% penetration) have EVs.
For 100 d of simulation, the EVs are charged at rated fixed
power of 7.2 kW, and their node voltages were recorded. The
distribution of the recorded voltages of ten selected houses from
each neighborhood is shown as box plots in Fig. 10 in ascending
order of distance. As it can be seen, the voltage distributions de-
crease as the distance of the house from the substation increases
and the downward trend is not linear, but rather of a quadratic
form.
Each voltage distribution is calculated by only the local volt-

age values observed at that house. Each box in Fig. 10 cor-
responds to a different house, and each house can calculate
its own voltage threshold without any further information from
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Fig. 11. Node voltage, voltage threshold, and charging current waveforms of
a single vehicle as AIMD is in action.

Fig. 12. Average EV charging powers at 10% penetration after the implemen-
tation of AIMD with learned threshold values.

other houses. A voltage threshold that represents 25th percentile
is selected for each house.
Later, 100 simulations were re-run with the learned thresh-

old voltages, but this time, the EVs implemented Algorithm 1
(α = 1 and β = 0.5) rather than charging at the rated power
rate. To demonstrate the operation of the algorithm, Fig. 11
shows voltage profile, charging current, and voltage threshold
waveforms over the time period of 4:00–8:00 P.M. for a single
EV. The congestion events occur when the node voltage drops
below the calculated threshold values. They are demonstrated
by black circles in the figure. The current linearly increases until
the node voltage becomes lower than the threshold (congestion
event) during when it is multiplicative reduced. The resulting
average charging power of 16 houses (10% penetration) are
shown Fig. 12. As shown, EVs learned to charge at approxi-
mately 4 kW of power without needing any central charging
power command and only by using local voltage information.
However, this case only implemented a single learning cycle
and showed that some degree of fairness has been established
through statistically learning of voltage thresholds and using
them in the AIMD algorithm.
The problem with this approach is that as every node con-

stantly learns their thresholds and uses them in the AIMD, their
average charging power gradually decreases in favor of the grid.
This will create an upward trend in the measured local voltages

Fig. 13. Box plot representation of 32 end-node voltages between (20% pen-
etration) 6:00–6:15 P.M. after (a) 1st week, (b) 3rd week, (c) 6th week, and
(d) 10th week.

causing the threshold values to go even higher. This is demon-
strated with a case study described as follows. It is assumed that
the first 16 EVs in the first case already know their thresholds
and another set of 16 EVs are integrated into the grid making
with the total penetration level 20%. This scenario investigates
whether a fairness will be established between the former and
latter 10% EV populations by constantly learning and updating
their thresholds.
The recently integrated EVs will start their learning process

by charging at the fixed rated power of 7.2 kW and will then
start implementing the AIMD after they learn their first thresh-
olds over 7 d. Figs. 13 and 14 show the voltage distributions
and average charging powers of 32 end nodes between 6:00–
6:15 P.M. after 1st week, 3rd week, 6th week, and 10th week,
respectively. As seen, the voltage distributions always move up-
ward causing the thresholds to increase as well. This results
in the average charging powers decreasing after every learning
cycle. Higher threshold means lower average power compared
to lower threshold. So, in the long run, the system will always
try to heal itself by lowering the charging powers toward zero,
essentially causing a slow charging speed problem.

C. Voltage Threshold Update Algorithm

To solve this problem, a threshold update algorithm is pro-
posed in this study. This algorithm is executed after the learning
process is completed. It compares the new estimated threshold
value with the previous one. If the threshold has increased, then
it lowers it by a constant voltage value, i.e., k > 0. If the thresh-
old has dropped or stayed the same, it does not take any action
because this indicates that the system has already sufficient volt-
age margin to use. The threshold update algorithm is defined in
Algorithm 2.
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Fig. 14. Average charging power of EVs (20% penetration) for (a) 1st week,
(b) 3rd week, (c) 6th week, and (d) 10th week. (Single-layer AIMD).

Fig. 15. SOC variations of 32 vehicles (20% penetration) over the time period
between 4:00 P.M.–12:00 A.M.

Algorithm 2: Proposed Voltage Threshold Update Algo-
rithm.
Input: Previous and new thresholds: Vth(prev) , Vth(new)
Output: Final threshold : Vth(final)

if Vth(new) > Vth(prev) then
Vth(final) = Vth(new) − k

else
Vth(final) = Vth(prev)

end if

D. Implementation of the Advanced Algorithm

To overcome the self-healing problem mentioned in
Section IV-B, the vehicles will also implement Algorithm 2
in this case study. The voltage reduction constant (k) is of sig-
nificant importance since it effects the average charging power
of each EV. Thus, the ideal value of k for a given system greatly
depends on the available capacity and topology constraints. In

Fig. 16. Box plot representation of 32 end-node voltages (20% penetration)
between 6:00–6:15 P.M. for (a) 1st week, (b) 10th week, (c) 20th week, and
(d) 30th week. (Two-layer AIMD).

this study, k was experimentally adjusted to be 1.25 V so that the
average charging power converges around a moderate value for
each vehicle. Also, the voltage at the farthest node stays slightly
over the critical voltage threshold.
The learning time that is needed to collect the measured data

and generate the associated voltage distributions was chosen
to be one week as it could generate enough data samples for
learning. In this way, the system will be able to capture changes
in the grid operation in a short time frame. The whole simulation
is run for 100 weeks to evaluate how the fairness is maintained
in the long run. The voltage distributions and the average
charging power for each household in the 1st, 10th, 20th, and
30th weeks are given in Figs. 16 and 17, respectively. The SOC
variations of all 32 vehicles (20%) over the period between
4:00 P.M.–12:00 A.M. are shown in Fig. 15. This figure shows
that all EVs manage to achieve their energy demand before
12:00 A.M.

The application of the AIMD algorithm in the EV charging
problem has several important objectives. These include utiliz-
ing the maximum available capacity system to charge EVs as
fast as possible, avoiding any voltage violations, and establish-
ing fairness among vehicle owners.
Once the threshold values are determined properly, the pro-

posed AIMD algorithm establishes a proportional fairness re-
sulting in approximately equal average charging powers (see
Fig. 12). However, due to the dynamic nature of the grid as in
the case with the Internet, the load level may gradually increase
as new EVs are connected to the system. This requires adapting
voltage thresholds periodically. The length of this period was
chosen in this study to be 7 d.
The results of Algorithm 2 have shown that even though there

is a significant increase in the EV penetration, since all EVs
learn new thresholds, their average charging powers reached an
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Fig. 17. Average charging power of EVs (20% penetration) for (a) 1st week,
(b) 10th week, (c) 20th week, and (d) 30th week. (Two-layer AIMD).

equilibrium point around 4 kW (see Fig. 17). This equilibrium
point is determined by the constant voltage parameter k of Al-
gorithm 2. A higher k value will shift the equilibrium point
upward since it decreases the thresholds allowing the charging
currents to increase even more.
Equilibrium state can also be observed from the voltage dis-

tributions in Fig. 16. After 20th week, the voltage distributions
converge to an equilibrium point for each node within a tight
voltage interval. This result shows that a charging operating
point for each EV can be set by adjusting a single parameter,
i.e., k.
The obtained results showed that each local observed voltage

distribution carries information about the congestion and can be
successfully used in the learning process for the EV charging
control. It can also be inferred that the reduction parameter k
being the same at all nodes could bring some more advantages
for those nodes which are closer to the substation or experience
high voltage profiles. This is because it takes more power for the
closer nodes to see the same amount of voltage drop compared
to the further nodes. One possible solution for this would be
adjusting the reduction parameter k in accordance with the volt-
age profile just like in the case of thresholds. This will assign
slightly higher k values to the far-end nodes relative to the closer
nodes. In the future, we will work to further improve these ideas
and also try to develop a method to determine the k parameter.
The total power of the system in 1st, 10th, 20th, 30th, 40th,

and 50th weeks between 4:00–12:00 P.M. is shown in Fig. 18.
This figure shows that the total power has reached a peak value
after the 20th week and stayed around this power in the follow-
ing weeks. This validates the results shown in Fig. 17 showing
that the average charging powers of the EVs reached an equilib-
rium point. This settling time is dependent on how frequently
threshold values are calculated. In this study, every node up-
dated their thresholds every week. If we reduce this time, the

Fig. 18. Total power of the system along with the base power (no EV) in 1st,
10th, 20th, 30th, 40th, and 50th weeks between 4:00–12:00 P.M. interval.

system can more quickly settle around a charging power. It is
also seen in this figure that the overall charging power shifted
toward the 7:00–8:00 P.M. interval as weeks pass. This naturally
happens as more EVs implement the AIMD algorithm.

V. CONCLUSION

Inspired by the operation of the Internet, this paper develops
a novel decentralized, stable, fair, and practical EV charging so-
lution. Thereby, the AIMD control algorithm, the main protocol
for TCP, is adopted and modified in this paper for EV charg-
ing via learning the threshold voltages of individual charging
nodes. The value of the threshold voltage depends on the EV
location as well as EV penetration ratio in the system. In this
paper, we proposed a novel method to determine the threshold
voltages based on the statistically collected local voltage values
providing a decentralized control solution.
For future studies, the proposed algorithms will be further

improved and tested for more realistic grid structures. It is also
stated in the paper that a single parameter k establishes fair-
ness among users, but at which power level it should achieve
the fairness is now a new current direction and requires some
capacity estimation methods with available local information.
A hardware environment will be developed where the behav-
ior of a grid is simulated in real time by a grid simulator and
the charging algorithms are implemented on hardware via real
power converters. Installing charging infrastructures in the field
and collecting real-time voltage, current, and power data in the
event of EV charging will also help us better understand the
relationships among these parameters and be definitely a future
direction to go.
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