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Abstract—Additive Increase and Moultiplicative Decrease
{AIMD) control strategy has been studied for quite a long time.
It was first introduced in 1989 and has been standardized as
the Internet’s congestion control algorithm. Its simple structure
allows easy implementation and adaptation to the problems
where fair and stable allocation of a limited resource among
a group of agentsfusers is needed. From the power engineering
perspective, this established method can be utilized for the control
of electric vehicle (EV) charging, distributed energy sources (e.g.
diesel machines, Photovoltaic panels (PV), and wind turbines),
and energy storage units, as well as microgrid management and
control. In this paper, we present the ATMD method and lay out
a mathematical analysis on its stability and rate of convergence
with a specific focus on electric vehicle charging. Later, we discuss
necessary modifications needed to make the algorithm operate
in a fully decentralized manner while still maintaining fairness.
Finally, we demonstrate a case study where the algorithm is
tested on EV charging control in the IEEE 37-bus distribution
test feeder.

Index Terms—Electric vehicles, AIMD, distributed control, EV
grid integration.

I. INTRODUCTION

The mesource management is one of the core problems
in many engineering disciplines. Distribution of the limited
resources among multiple users while ensuring the system's
safe and stable operation and a pragmatic fair allocation is
a pressing challenge. Today's Internet owns its standards and
protocols thanks to years of debates and research around this
problem. Its early days suffered congestion control challenges
as the number of endpoints drastically increased [1]. Observed
congestion collapses [2], [3] revealed the need for a solution
that assures both the stability of the system and the fair and
efficient utilization of the network capacity. Because of the
scale of the Internet, such a possible solution would be more
suitable at the end-nodes in a decentralized design rather
than a centralized control that has to keep track of every
newly added end-point. To that end, the Additive Increase
and Multiplicative Decrease (AIMD) algorithm [4] was pro-
posed as a congestion avoidance solution at the end points.
It is still now being used as the Internet’s de-facto control
method. By its very nature, the algorithm operates entirely
with local measurements at the endpoints. It consists of two
phases, which are additive increase (Al) and multiplicative
decrease (MD). Transition between the phases is triggered
by a congestion event Every agent increases their network
share linearly in the Al phase until a congestion event occurs
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Figure 1. Tlistrative analogy between power grid and the Internet.

in the network. In the event of congestion, the MD phase
activates and each agent reduces their share by scaling it down
geometrically and freeing up the resource for reallocation.
This straightforward solution has been proved to be stable and
maintain proportional fairness among agents [3].

Despite some differences, the problem of effectively sharing
network capacity among greedy users while managing conges-
tion in the network also arises when it comes to integrating
large amounts of distributed energy sources and loads to the
power distribution grid or microgrid. This phenomenon is
illustrated in Fig. 1. Diesel penerators, fuel cells, photovoltaic
(PV) panels, and wind turbines are examples of such potential
sources whereas electric vehiclkes (EVs) will constitute a
significant part of the future loads. A smart grid can have
several of these agents (either as a source or a load), each
competing for the scarcity or the available capacity depending
on whether they supply or consume power. The coordination
and management of peneration sources and the control of ac-
tive loads in such a network with ever increasing end-points is
a pressing challenge. It requires an additional communication
network through which a central controller receives and sends
commands. Even with such a costly investment, the system
would still be highly vulnerable in terms of cyber security
and stability.

The success of the AIMD inspired many in the power area
to adapt the algorithm to power network problems. The EV
charging problem has become one of the most suitable cases
in which the AIMD approach finds an application area. Some
early studies employed AIMD for EV charping and presented
its performance analysis [6]-[8]. In [9], the authors enhanced
the algorithm by taking some of the power sysiem constraints



into account. Undesired oscillations that might occur under the
AIMD regulation and their causes are investigated in [10]. A
comparison study between distributed AIMD-based and Price-
Feedback based EV charging algorithms is presented in [11]
by using an ideal centralized method as a benchmark. Most
of these studies assume a simple binary communication link
to inform agents of the grid congestion. However, as on the
Internet, a fully autonomous operation based only on local
measurements will be of a great value since it will significantly
reduce the cost and complexity of the system.

In terms of an autonomous and decentralized designs,
congestion decision can be made by evaluating the spare
capacity in the grid. In [12], it is explained that local voltage
can be used for this purpose. Furthermore, a congestion event
occurs when the local voltage drops below a certain threshold
value. Based on this fact, an AIMD EV charging algorithm
using local voltage measurements is proposed in [13]. We
presented an analysis in [14] to show how AIMD operates
in terms of fairness and voltage violations once the voltage
thresholds are properly set. In [15], we proposed a method
on how to set these voltage thresholds dynamically by means
of statistical analysis. A recent study [16] demonstrated that
the local grid frequency can also be utilized in a decentral-
ized AIMD algorithm to control grid-connected microgrids.
Although these prior studies showed effectiveness of AIMD-
based EV charging, an analytical study of how to set sevearl
parameters of AIMD in this context is missing.

In this study, we first introduce the AIMD algorithm and
present a mathematical modeling to help us analyze its dy-
namic behaviour. We give a solid proof on its stability and con-
vergence signifying the roles and importance of its parameters.
Later, we propose a method inspired by the TCP [17] protocol
of the Internet to further enhance it with an autonomous
feature based on local measurements. Finaly, we present a test
case study where we implement the AIMD in EV charging
control and discuss the results and improvements compared to
uncontrolled case.

The rest of the paper is organized as follows: In Section IL.A,
we will introduce AIMD and present its convergence proof.
In Section IL.B, we will propose an EV charging algorithm
and also present a method that makes the algorithm fully
autonomous. In Section III, we will present the test setup used
in this study and in Section IV, we will discuss the results and
conclude in Section V.

II. DESCRIPTION AND ANALYSIS OF THE AIMD
ALGORITHM

There are two aspects to the understanding of the AIMD
algorithm. The first is the proper modeling of the algorithm
that allows us to do the dynamic stability analysis, and the
second is its congestion detection mechanism.

A. AIMD Modeling

The AIMD is a straightforward algorithm that has two
operation phases. The additive increase (Al) phase takes part
when there is available capacity in the system. In this phase,

agents are allowed to increase their shares linearly by a rate
a > 0. In case of a congestion/capacity event, the algorithm
switches to the multiplicative decrease (MD) phase where
agents scale down their shares by a factor 0 < 8 < 1. The
capacity share of an agent at time ¢ + 1 can be formulated as
follows:

w;(t) + a;
w;(t) x B

where w; denotes the share of the agent <. However this piece-
wise formulation is not convenient for a dynamic analysis,
and thus we need a proper mathematical model of the system.
There are many approaches studied to model the algorithm.
We use the switched system modeling approach presented in
[18].

We assume that congestion events occur at discrete times,
e.g. tk, tg+1. Then, the share of agent ¢ at time ¢ > t;, can be
described by a linear rule:

if there is no congestion

wi(t—i-l):{ (1

if congestion occurs

w;i(t) = Biwi(te) + it —tr), te <t<tpp1 (2

To obtain a discrete-time model, we can rewrite (2) by noting
that w; (k) denotes the i*" agent’s share at the k*" capacity
event. Then, our model equation becomes:

where D(k) is the time between two successive congestion
events k and k + 1 such that D(k) = tx11 — tx.

(3) represents a linear difference system. If we let w;(0)
and d denote the initial share and the average time between
two congestion events, respectively, and let k£ tend to a large
number of n (k — n), then it yields:

w;(1) = Biw;(0) + od
w;(2) = Bi(Biwi(0) + a;d) + cvid

UIl(’I’L) = ﬂz"wz(O) + ayd - (Binil + ﬁin72 + ...+ 6+ 1)
“)

By using the geometric sum identity, we can modify (4) to
obtain (5) such that:

(5) can be further simplified into:
id id

It is easy to see that (6) has a transient term represented
by 3;" x (w;(0) — f‘_ﬁd) and a steady-state term governed by

f_i'/i. Since 3; is always between 0 and 1, 8;" term vanishes

to zero as n tends to infinity and the system converges to (7):
*

«d
i wi(n) = wj = 1a— B;

(7
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Figure 2. Capacity share w(n) over time with AIMD in action as n tends
to infinity.

We can also see that 3;" provides an exponential convergence.
The speed of this convergence depends on 3; and the differ-
ence between the initial and final shares {w;(0) — w;(c0)}.

The average of the steady-state share value in (7) over two
capacity events is donated by w* and calculated as:

wi(k) = il/ttk w;(t) - dt
¢ “2(1 - ;)

Fig. 2 demonstrates a typical share waveform under AIMD
with constant «, 3 and d parameters.

®)
d

B. Congestion Detection

(7) shows us that the final share of an agent depends
on the algorithm parameters «, [ and the period of the
congestion detection d. If the parameters are set to be the
same across the network and each agent is notified of the
congestion simultaneously (i.e., centralized control), then this
equation guarantees that every agent will get the same share
from the network, establishing an ideal fairness. For a fully
autonomous control, however, congestion has to be detected
by each agent using local information. In the Internet, this is
done by measurements at every round trip time (RTT). When
data packets sent from one end-point arrive at their destination,
an acknowledgement (ack) is sent back to inform the sender
of its packet delivery. Thus, RTT is the time it takes between
sending the packets and receiving the ack.

A congestion in the network increases the packet queues at
routers and thus results in longer RTTs. This clearly shows a
correlation between RTTs and the congestion level. Therefore
the Internet’s TCP/IP protocol uses RTT to autonomously
detect the congestion by comparing it with a timeout value.
This value is called the re-transmission timeout (RTO) and it
is calculated on-the-fly by using the statistics of the measured
RTTs. Some agents might detect the congestion more often
than others depending on their closeness to the congestion’s
location. This naturally results in the average time d, and
thus w;, being slightly different from one agent to another
and creates a proportional fairness among agents. The agents
whose packets are traversing longer paths (i.e., using more
link capacity in total) get penalized accordingly and converge
to a lower w;.

Algorithm 1 AIMD algorithm for EV charging network

Input: Previous charging current: I;(t)

Output: New charging current: I;(¢t + 1)

Parameter: Increase parameter: «(t) > 0

Parameter: Decrease parameter: 0 < §(t) < 1
1. if V(t) > Vi, and V(t) > V,5;, then

2 Ii(t—&-l)zli(t)—kai
3: else
5: end if

In a power distribution network, an autonomous congestion
detection mechanism can be realized by using local voltage
measurements [12], [15]. For EV charging control, the AC
charging current I;(t) can be chosen as the share parameter
w;(t), and the algorithm can be implemented as described
in Algorithm 1. The detection condition checks whether the
measured node voltage V(¢) is higher than the threshold
voltage V4, and the minimum allowable grid utilization voltage
Vinin. If it is less than either of these, MD phase kicks in,
and the charging current is reduced by f;. Just like RTO
in the Internet, the key parameter V;; also has to be locally
calculated for each agent by means of voltage measurement
statistics. In essence, V;j, can be calculated as an outlier of the
estimated average voltage value based on Chebyshev’s outlier
estimation [19]. Chebyshevs Inequality states for any random
variable X with mean  and variance o2 that

1
P(X ¢ | kol) < 7 ©)

This means that 100 x (1 — 75)% of the measured X values
are to be between p — ko and p + ko. In TCP congestion
control, the recommended value for & is 4. For our study, we
too chose k£ to be 4, which means that around 93% of the
time the true average of voltage must be within the measured
voltages. Then, the 7% should correspond to the outlier, which
can be used as V};, as follows:

Vin(t +1) =V (t+1) —4-V(t+1) (10)
where V(¢ 4 1) and V(¢ 4 1) correspond to the mean and
standard deviation of the measured voltage. Using exponen-
tially weighted moving average (EWMA), we estimate V' and
1% values, then:

Vit+1)=X-V(#)+ (1 -\ -V(t) .
Vit+1)=w-[VE) =V + (1 —-w)- V() ()

where A and w are the coefficients that determine the contri-
bution of the recent measurements to the average values and
thereby, the response time of the system. For this study, we
chose « =1, f = 0.5, A = 0.7, and w = 0.2. While « and
[ are the default values in TCP congestion control, we chose
the latter two parameters driven by TCP as well.
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Figure 3. Primary and secondary distribution network implemented in the MATLAB model.
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Figure 4. Voltage profiles of 416 households for %0 EV penetration.

III. SIMULATION SETUP

For testing the proposed algorithm, the distribution grid
model in [20] is used. The modeled grid is a 2.5 MVA,
4.8 kV, 37-bus, three-phase balanced network implemented in
MATLAB Simulink. Each node is designed as a neighbor-
hood with 16 houses, making a total of 416 customers. EV
charging loads are incorporated in the system in parallel with
conventional residential loads as shown in Fig 3. EV loads
are modeled such that they have a rated capacity of 60 kWh
and maximum charging current of 30 A. For this study, all
EVs are assumed to arrive after 16:00 with a state of charge
(SOC) higher than 80%. Residential power consumption are
generated uniquely for each household from a consumption
probability distribution function (PDF) based on 16 days of
consumption data downloaded from E-gauge [15], [21]. Three
EV penetration levels (25%, 50% and 100%) will be tested
under AIMD. The results will be compared with the 0% and
100% penetration cases with uncontrolled charging.

IV. RESULTS AND DISCUSSION

In order to see the impact of the proposed algorithm and
make a better comparison, we consider two extreme cases. One
such a case is where there is no EV penetration (baseline load)
and the other is 100% EV penetration. All EVs are charged
at full power (7 kW).

Figs. 4 and 5 show the root mean square (rms) voltage wave-
forms of all 416 households between 16:00-24:00 for 0% and
100% EV penetrations (no charging control), respectively. As
shown, grid voltages considerably drop compared to the base
load case. Without a controlled charging at 100% penetration,
the voltages drop even below the minimum allowable voltage
limit (216 V) during peak-hours (18:00-20:00).
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Figure 5. Voltage profiles of 416 households for 100% EV penetration with
charging at rated power of 7 kW.

The voltage waveforms of 416 households at 100% EV pen-
etration with AIMD control is presented in Fig. 6. This figure
shows that with AIMD in action, the voltages are successfully
held above the critical level at 100% EV penetration avoiding
any voltage violation.
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Figure 6. Voltage profiles of 416 households for 100% EV penetration with
AIMD charging.

The total power of the system between 16:00-24:00 for
different penetration levels along with the base load (0% EV)
is given in Fig. 7. This shows that the peak-load of the grid
(purple) is successfully shifted towards off-peak hours (yellow)
with fully autonomous control. SOC variations of the vehicles
for 100% penetration level with the AIMD control is given in
Fig. 8. This figure shows that the EVs managed to get fully
charged by midnight by shifting the peak-load and avoiding
voltage violations.

The average charging power of each EV in the ascending
order of distance to substation is also presented in Fig. 9. This
figure shows that a proportional fairness has been established
around 3-4 kW for all penetration levels in the grid. This
means the customers closer to the substation benefit higher
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charg

ing power since they experience higher voltage levels.

It is also seen that the average charging power of each EV
is not significantly different for different penetration levels.

This

means that the capacity is not fully utilized at lower

penetration levels. This shows the available capacity could be
better estimated to fully take advantage of it.

In

V. CONCLUSIONS
this paper, we first presented a detailed study on the

AIMD algorithm and its stability analysis. We then discussed
how it can be modified and implemented for grid integration,
in particular for EV charging control. Later, we presented
the results of several simulations in a test distribution grid
where we perform EV charging with and without the proposed
algorithm under different EV penetration levels. The voltage
profiles showed that the voltage violation can be avoided at

high penetrations with the AIMD charging control. The peak
power of the system also shifts to off-peak hours with the
AIMD in action, and EVs still manage to get fully charged
by midnight. Future studies will mostly focus on estimating
and fully utilizing the available capacity in the grid by means
of autonomous methods. Further, we will work on improving
our AIMD-based EV charging algorithm by fine tuning its
parameters.
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