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Abstract—Analyzing realistic EV-grid integration (EVGI)
with available simulation tools is cumbersome due to the soft-
ware overhead associated with offline simulation. Alternatively,
real-time hardware platforms are becoming convenient means
for testing and evaluating systems before field implementation.
This study presents a digital implementation of an EVGI model
in real-time on a multi-core processor based simulation plat-
form. Furthermore, an Interned-inspired EV charging control
algorithm is proposed in a decentralized fashion to prevent
congestion related problems in a residential distribution grid.
The impact of the proposed EV charging control on the IEEE
37-node test system is evaluated through the real-time analysis.
The developed controller results show promise for extension
to any utility-interfaced power electronics system. Real-time
simulation implementation requirements and challenges in the
context of EVGI are also discussed.

I. INTRODUCTION

Massive EV-grid integration (EVGI) is on the horizon.
This phenomenon will bring new challenges such as grid
congestion, severe voltage deviations, and transformer over-
loading [1]–[8]. To address these problems in EV charg-
ing, the proposed solutions include centralized [9]–[12]
and distributed approaches [13]–[18]. Centralized control
methods are more established in the literature and used to
optimize certain parameters in the system. On the other hand,
distributed control utilizes local measurements as much as
possible so that the need for a communication network
that may suffer from network-related limitations such as
complexity, latency, data security, and privacy is minimized.

EVGI control must ensure a fair and efficient utilization
of the distribution system capacity among EV users while
avoiding the grid congestion for sustainable mass integration.
In its early days, the Internet also experienced similar
congestion problems as the number of end-users drastically
increased [19]. Mainstream transfer protocol (TCP) was
developed as a solution and is still being implemented at
end-points using local measurements [20]. This protocol uses
the additive increase and multiplicative decrease (AIMD)
algorithm for congestion control [21]. AIMD is basically an
event-triggered mechanism that takes control actions when-
ever a congestion occurs in the network. Previous studies
also tried to adapt the AIMD control to EV charging [15]–
[18]. These studies lack detecting the grid congestion with
only local variables and require some sort of communica-
tion overhead. Authors previously investigated implementing
AIMD via heavily using local variables [22]–[26]. In this
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study, we impelemented AIMD algorithm in a real-time
simulation environment.

Design, testing, and analysis of EV charging controllers
are currently handled using off-line simulation. One of
the major approach is to use phasor-based simulation that
considers magnitude and phase calculation of voltages and
currents in a steady-state operation mode [27]. This approach
does not capture transient events that might occur in the
power grid. On the other hand, time-based real-time sim-
ulation (RTS) capture very fast transients using dedicated
processors. This allows to calculate instantaneous current
and voltage waveforms [27]. Parallel hardware platforms can
perform the RTS in which the system is sampled at the same
time length as real-world time [28]. Such an environment is
essential to do hardware-in-the-loop (HIL) testing of AIMD
control to evaluate the real integration challenges of the
control algorithm, a step that should be verified before
field implementation. A real-time emulated EV-grid model,
therefore, allows us to analyze the EV charging and other
loads in the distribution system under a wide range of
situations in a non-destructive environment.

In this study, an EV-grid model is emulated on a multi-
core real-time simulator. The impact of proposed AIMD-
based EV charging algorithm on the distribution grid are
tested and analyzed in real-time. HIL testing results are
presented to show the impact of the proposed charging
algorithm on the actual grid. Section II presents EV-grid
integration test system. The IEEE 37-node test feeder is
used as a benchmark. Section III introduces the proposed
AIMD-based EV charging algorithm. Section IV presents the
experimental RTS test setup. Section V presents the testing
results, followed by the concluding remarks in Section VI.

II. EV GRID INTEGRATION SYSTEM DESCRIPTION

A. Distribution Grid Modeling

To emulate an EVGI system, this study uses the IEEE
37-node test feeder as a benchmark [29]. The modeled grid
is a 2.5 MVA, 230 kV/4.8 kV, 37-bus, three-phase balanced
network. EV charging loads are incorporated in the system
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Figure 1: EV-grid integration system model.
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Figure 2: Implemented battery model.

in parallel with conventional residential loads as shown in
Fig. 1. In accordance with the test feeder configuration,
the loads are connected to the buses through a ground
transformer rated at 25 kVA and 4.8 kV/120-240 V split-
phase. Each bus includes four inner nodes to which four
residential and EV loads are connected in parallel. There are
a total of 10 neighborhoods and 160 residential customers in
the model1. The EVGI model is developed and implemented
in Matlab/SIMULINK environment while RT-LAB [30] is
used to compile and run it on the target platform.

B. Household Load Modeling

A household load data generator is developed to create
more realistic power consumption profiles for all houses in
the model. 16 days of real power consumption data in one
minute resolution was collected using publicly available e-
Gauge meter data of a residential house [29]. There are
16 samples coming from 16-day household data for each
minute, and we calculated the mean and standard deviation
statistics of these samples. Then, we generated a new power
value for each particular time interval from a Gaussian
distribution function with the calculated mean and standard
deviation. We repeated the process to generate a different
power profile for each house in the model. As we only have
active power consumption data currently, we considered a
constant 0.9 power factor lagging operation in the simulation
and kept the real power consumption the same. The future
work will include more detailed household load modeling
thanks to a new E-gauge meter installed to a real house in
Alabama [31].

C. EV Battery Modeling

In this study, we developed a battery system model that is
compatible to operate in real-time simulation environment.
The implemented battery pack model is shown in Fig. 11.

The battery model is comprised of an open-circuit cell
voltage (OCV) in series with an equivalent internal resistance
(Req) that both change as a function of the cell state
of charge (SOC), i.e. f1 and f2. The initial SOC of the
battery pack and cumulative battery current (Ibt) generate
the instantaneous SOC at each time step, which is used to
calculate Req and OCV. Voltage drop due to Req and OCV
together produce voltage across the battery (Vbt) at each time
step. In this study, a 24.8 Ah, 3.7 V nominal, baseline Li-on
battery cell is used to form the battery pack model for each

1The original model is downsized to realize real-time simulation as
detailed in Section IV.

Figure 3: Time-domain waveform of a user share under the
AIMD operation.

EV. Battery packs are modeled such that they have a rated
capacity of 60 kWh and maximum charging current of 30 A.
Number of cells that are in series (Ns) is 93, and number of
parallel strings (Np) is seven. All the EVs are modeled with
the same parameters to preserve fairness in the performance
assessment of the proposed AIMD algorithm.

III. INTERNET-INSPIRED CHARGING CONTROL
ALGORITHM

Fair allocation of a limited capacity among many users
while making sure that the system will operate in a safe and
stable way is a core problem in many engineering disciplines.
The Internet’s standards and protocols that have led to its
ever-increasing growth are the results of years of debates
and research around this very problem. The early days of
the today’s Internet suffered from the congestion challenges
as the number of users greatly increased [19]. The observed
congestion collapses [32], [33] made it necessary to develop
a solution to ensure the stability of the system as well as
the fair and efficient utilization of the available capacity.
Given the size of the Internet, a possible solution would be
better realized at end-nodes in a decentralized, plug-and-play
manner without the need for a centralized controller to keep
track of every newly added end-point. Therefore, the AIMD
algorithm [21] was first introduced as a congestion avoidance
solution, and it is still serving as the Internet’s congestion
avoidance solution today.

We will first explain the mechanism of the general AIMD
algorithm and propose a counterpart algorithm for EV
charging control. The algorithm is triggered by the capacity
event (CE) that takes place when the network is congested
due to high utilization by users. Every user increases their
share in the network (i.e. charging power for EV network)
linearly until a CE occurs. This phase is called the additive
increase (AI) phase. In case of CE, users decrease shares by
scaling them down allowing for reallocation of the available
capacity. This is the multiplicative decrease (MD) phase.
A typical time-domain waveform of a user share under the
AIMD operation is illustrated in Fig. 3. The general model of
the AIMD algorithm can be written as a piece-wise function
as in (1), where wi is the ith user’s share, αi is the the
increase parameter and 0 < βi < 1 is the decrease factor.

wi(t+ 1) =

{
wi(t) + αi if no CE happens
wi(t)× βi if CE happens

(1)



Figure 4: Computation of the threshold value using the
statistics of the voltage distribution.

Algorithm 1 AIMD algorithm for EV charging network

Parameter: Increase parameter: α(t) > 0
Parameter: Decrease parameter: 0 < β(t) < 1
Input: Previous charging current: Ii(t)
Input: Node voltage: Vi(t)
Output: New charging current: Ii(t+ 1)

1: while SOC < 100% do
2: Measure voltage: V = [V (1), V (2), · · · , V (t)]
3: Vth,i = UpdateThreshold(V, δ)
4: if V (t) > Vth,i and V (t) > Vmin then
5: Ii(t+ 1) = Ii(t) + αi

6: else
7: Ii(t+ 1) = βi × Ii(t)
8: end if
9: end while

The Internet has an implicit congestion detection mecha-
nism that allows users to detect congestion using their local
information. This is accomplished by observing the statistics
of packet round trip times (RTT) on a network link. If
these times are measured to be much longer than an average
timeout, this can mean a congested network for users. Simi-
larly in a distribution network, end-nodes experience higher
voltage drops as the grid is more loaded. These voltage drops
can be translated into a power congestion when they are
significant enough compared to the average voltage regime.
When this average regime is learned, the users can take
charging actions based on their local voltage measurements.
Inspired by the Internet’s congestion detection, we propose
Algorithm 1 as a counterpart algorithm for EV charging.
The algorithm takes voltage measurements over one-minute
time interval and calculates a voltage threshold value equal
to the δ quantile of the collected voltage data. This threshold
essentially represents the learned average voltage regime and
can be demonstrated in Fig. 4. In this study, we set δ equal
to 0.25, which is also known as the 25th percentile. Vmin

represents the minimum allowed utilization voltage, which
is chosen to be 216 V RMS specified by ANSI C84.1-2016.
The algorithm parameters α and β are set to 1 and 0.5,
respectively.

IV. REAL-TIME SIMULATION PLATFORM DESCRIPTION

The choice of a real-time simulation platform is based
on its performance, cost, and constraints imposed by the
application. The performance is assessed by the computa-
tional time and accuracy. The constraint dictated by our
application is mainly the system scale. Most of the actual
real time simulation platforms have computational step times

Figure 5: OP5600 real time simulation platform.

Figure 6: An overview of modelling a test system into several
subsystems in RT-LAB Platform.

in the range of microseconds which will be sufficient to
capture dynamics of an EVGI system which is in the range
of milliseconds. In this study, a multi-core processor based
target platform OPAL-RT OP5600 [30] is selected for the
real-time execution of the developed EVGI model with
respect to the above-mentioned considerations. The platform
consists of 12 Intel processor cores @3.0 GHz that can be
executed in parallel, including a SPARTAN-3 FPGA card
as the I/O interface with 256 analog and digital I/O lines.
Fig. 5 shows the set-up along with the real-time observation
of system variables using a YOKOGAWA DL850E DAQ
device.

An RTS requires that all computations in the model must
be done in an interval equal to or less than the simulation
time step size. The accuracy is another crucial aspect for the
trustworthiness of the RTS results. Improving the accuracy
based on utilization of detailed models increases the simu-
lation computational time within each time step. However,

Figure 7: High-level system view of the model.



Figure 8: A part of the main feeder with 6 connected neighborhoods (SS-Grid2).

the growing need for a wider frequency bandwidth inherently
requires a smaller simulation time step. Those lead to a trade-
off between accuracy and frequency bandwidth for the RTS.

In the RT-LAB platform, the test system is divided and
designed into several subsystems to enable parallel program-
ming which reduces computational burden and distinguish
computational blocks and input/output interface. This design
configuration approach is summarized in Fig. 6. In our RT-
LAB model, the IEEE 37-bus along with neighbourhood
loads (household and EV) is designed into two subsystems
(SM-Grid and SS-Grid2) to assign the computation load
to different CPU cores and do parallel computing inside
the cores of the target platform. The high-level overview
of the RT-Lab model is shown in Fig. 72. Stub-line block
is used to make an interface between the signals of two
subsystems. SS-Control subsystem, on the other hand, is
built to implement the proposed AIMD charging control and
provide measurements whereas SC-Console block displays
the desired signals to the user.

The part of the main feeder where six neighborhoods are
connected is shown in Fig. 8 (SS-Grid2). Further zooming
in one of the neighborhoods, Fig. 9 shows individual blocks
of houses that are connected with one another. Each of
the house blocks are fed by a ground transformer rated at
25 kVA. Furthermore, Fig. 10 shows four houses powered
by one ground transformer. Each of the houses has an EV
as well as a regular household power consumption profile
that was explained in Section II-B. Last, Fig. 11 shows
household level implementation of power consumption in
the RTS environment.

As explained above, the system scale and the proposed
algorithm complexity in our study are computationally de-

2Note that the individual variables in Figs 7–11 are out of scope and
will not be introduced in the paper. These figures aim to show how RTS
platform is deisgned and how it works.

manding. To have a proper simulation time step, the EVGI
model has been executed for different time steps demanding
various computational powers. The use of available com-
putational power was optimized by decoupling the model
into three parts within the RT-Lab software [30]. This
makes it suitable for parallel programming where cores
are assigned to each part separately and can run multiple
instructions on a single die at the same time. To maintain
the desired computational speed (i.e., simulation time step),
the target uses five cores in parallel in our application.
Considering dynamics, the calculation time step was tested
with two different settings: (i) 250 µs and (ii) 500 µs.
Ts = 500 µs resulted in individual core loading of 20%
for SM-Grid, 42% for SS-Grid2, and 16% for SS-control.
In contrast, for a higher fidelity simulation if Ts = 250 µs,
then every individual core utilization almost doubles. In the
future, we will further optimize the design so that number
of neighborhoods increase from 10 to 26. However, the
challenge is as more EVs are connected to the grid, the
simulator might violate the RTS system requirement in terms
of the time step that will lead to data losses and inaccuracy.
One way to avoid this issue is to further increase simulation
time step. We can run the full system model at a time
step of one ms. However, increasing simulation time step
decreases the numerical resolution which is undesirable in
time domain simulation to preserve accuracy. We will find
a good compromise between the accuracy and optimized
complexity of the EVGI system.

V. RTS RESULTS AND ANALYSIS

A day-long real-time simulation (e.g., 24h) has been
finally performed. When presenting the results, we employed
the following methodology is employed: we selected three
houses with respect to the distance to the main substation
(i.e., the closest, the intermediate, and the farthest) to verify
the controller performance. The node voltages, EV currents,



Figure 9: The neighborhood modeling with four house groups each powered by a 25kVA ground transformer.

Figure 10: The house group model. Each group contains four
houses connected to the same transformer through a service
cable.

and their SOCs have been measured through the analog
outputs of the platform as shown in Fig. 5. We also recorded
these signals for three distinct nodes in 0.01 sec resolution
through the DataLogger feature provided with RT-LAB from
release version 11.3 upwards.

EVs start arriving to the neighborhoods after 4PM of
simulation time. Since the simulation is performed in real-
time, the actual voltage waveforms are sinusoidal. Therefore,
the farthest node voltage is provided in Fig. 12 to show one
sample of the actual voltage waveform for a single node
for verification. Furthermore, the node voltages of the three
chosen houses for the first four hours are shown in Fig. 13.
The threshold voltages are computed on the fly based on the
voltage measurements collected during every minute. The
voltage drops and variations typically increase as we go
further away from the substation, which can also be seen
in Fig. 13. This causes distant nodes to experience higher
voltage deviations and therefore go into the MD phase more
frequently. Consequently, the average charging currents (and

Figure 11: Household and EV load modeling. A controlled
current source is used to model these dynamic loads.

thus powers) of these nodes will be less compared to closer
nodes.

Fig. 14 compares the RMS current waveforms of the three
chosen EV nodes with AIMD-based charging control. The
average current values are calculated as 16.2 A, 15.3 A,
and 11.7 A for the closest, intermediate, and furthest nodes,
respectively. This shows that the closer nodes take advantage
of higher voltages and less variations, and therefore get to
charge their vehicles at higher powers whereas the further
nodes suffer from the deviations more and have to curtail
their powers. This phenomenon is also an expected obser-
vation of the decentralized AIMD and usually known as the
proportional fairness. We should also note that the furthest
node’s voltage is maintained at the minimum service voltage
of 216V. This shows that its charging power must have been
further reduced not to violate the utility voltage requirement.

The resulted charging powers have also an impact on the
charging times. Fig. 15 shows the SOC values of the chosen
vehicles in percentage with respect to time. The all three
vehicles start charging at nearly the same SOC level (85%)
and receive charge for four hours. Due to the difference
between the average charging powers, the furthest EV was



Figure 12: The farthest real-time node voltage measured
during four hour simulation.

‘

Figure 13: RMS voltages of the selected three nodes.

able to get charged up to little over 95% while the closer
EVs get fully charged in four hours3. The algorithm can
also be modified by a pre-defined policy in favour of the
further nodes by changing the parameters such as α and β,
and the quartile constant δ. However, this requires further
information regarding the location of the nodes and the
overall grid state, and therefore makes it more centralized.

VI. CONCLUSION AND FUTURE WORK

In this study, a real-time simulation of an EVGI model
has been used to test Internet-inspired charging control on a
multi-core processor based parallel hardware platform. The
impact of proposed EV charging algorithm on sharing the
available capacity among users has been evaluated through
RTS. We showed that a decentralized AIMD algorithm for
EV charging based on local measurements can be imple-
mented in real-time in time-domain without any stability
problem. The algorithm resulted in considerably close charg-
ing powers for the nodes closer to the substation. The furthest
node had to reduce its power due to experiencing higher
voltage deviations and being closer to the minimum service
voltage (proportional fairness). RTS system requirements
and challenges in the context of EVGI have been also
addressed. RTS platform provides an HIL testbed to evaluate
the developed AIMD controller under a wide range of
contingencies and extreme conditions in a nondestructive
environment before field implementation. Future work will
focus on further developing the grid model and introducing
real EV charging hardware implementation using a grid
simulator connected to the HIL platform described in this
study. AIMD control will be tested using a power electronics
converter connected to the grid simulator.

3It is important to note that CV charging is not implemented in this study
and will be added to RTS in the future studies.

(a)

(b)

(c)

Figure 14: AIMD adopted EV charging currents, a) closest,
b) intermediate, c) farthest nodes.

Figure 15: SOC variations of EVs at selected nodes.
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