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Abstract

We discuss from a pedagogical perspective the use of tensors in many-body electronic
structure methods, especially the relevant storage and computational aspects used by
modern quantum chemistry software packages. We consider the implementational con-
seqguences of the various symmetries—spin, spatial, and permutational—that appear in
tensors representing the Hamiltonian, wave functions, and other important quantities in
many-body methods. In addition, we review a number of state-of-the-art approaches to
tensor frameworks on modern high-performance computing architectures.

1. Introduction

Quantum chemical models are typically formulated in terms of basis-set
expansions, and the linear- and nonlinear equations governing these models
are thus most conveniently expressed as contractions over tensor-based

Annual Reports in Computational Chemistry, Volume 15 © 2019 Elsevier B.V. 79
ISSN 1574-1400 All rights reserved.
https://doi.org/10.1016/bs.arcc.2019.08.005



80 T. Daniel Crawford and Roberto Di Remigio

representations of the corresponding Hamiltonian integrals and wave func-
tion parameters. While two-electron repulsion integrals require up to
four-dimensional tensors, the complexity of the data structures for the wave
function coefficients depends on the complexity of the electronic structure
model. Self-consistent-field methods such as Hartree—Fock or density-
functional theory require only two-dimensional tensors (matrices) for their
molecular orbital coefficients or electron densities, whereas more advanced
electron correlation methods, such as coupled cluster theory, can require
as high as 2N-dimensional tensors, where N is the level of excitation in
the wave function ansatz. For example, the coupled cluster singles and dou-
bles (CCSD) method requires up to four-dimensional tensors for the storage
of the cluster amplitudes, while the inclusion of full triple excitations
(CCSDT) requires up to six-dimensional tensors.

The performance of computer implementations for solving the compli-
cated algebraic equations underlying such methods thus hinges on the details
of the tensor representation, and the choice of data layout/distribution,
incorporation of permutational, spatial, and/or spin symmetries, etc. is often
tied to the particular choice of high-performance computing hardware on
which the program is ultimately deployed. The large storage capacities of
distributed-memory computing architectures, for example, permit calcula-
tions involving much larger tensors than single-node computers, but they
also require much greater attention to the design of efficient tensor data lay-
outs in order to minimize internode communications.

In this article, we will discuss the details of a number of tensor represen-
tations widely used in electronic structure codes, as well as their advantages
and disadvantages for specific applications. We will take a pedagogical
approach to our presentation in order to appeal primarily to newcomers
to the field, as opposed to “old hands” who are likely already adept at many
of the concepts we consider. Given the wide array of computer languages
utilized in modern quantum chemistry software (Fortran, C, C++, Python,
etc.) we will avoid any language-specific examples. While some of the tech-
niques we describe here can be found scattered throughout the computa-
tional chemistry literature, others can be found only within the codes
themselves and have not been previously published in detail. Finally, where
appropriate we will give specific examples of community codes that utilize
these methods, but our overview is not intended to be fully comprehensive
of the current software ecosystem of the field. Thus, the lack of recognition
of any particular codes in our presentation should not be taken as a form of
expressio unius est exclusio alterius.
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2. Basics of tensor storage

Modern high-performance computers are particularly adept at algo-
rithms involving products of matrices, both because of the structure of
advanced CPU architectures (pipelining of low-level instructions, multi-
level cache memory, fused multiply-add/-accumulate operations) and the
availability of highy tuned algorithms to exploit these capabilities. Thus,
all advanced quantum chemistry programs are designed to take advantage
of matrix-based data structures. Highly optimized libraries of matrix math-
ematics functions, such as the basic linear algebra subroutines (BLAS), are
available for most architectures and operating systems. Such libraries are
capable of providing near-peak performance of matrix operations in
single-core computing systems, and standard interfaces are available that
allow the implementation of efficient electronic structure programs without
dependence on a particular matrix-algebra package.

As an example of the use of matrix algorithms, consider the following,
typical tensor contraction, written in Einstein notation in which summation
1s implied over repeated indices:

= =i (1)
we will assume for now that these tensors exhibit no special symmetries (e.g.,
permutational symmetry). A naive implementation would store each tensor
as a four-dimensional array and carry out the multiplications and additions
explicitly. However, a more efficient implementation would be to pack
each tensor into rectangular matrices and utilize optimized linear algebra
libraries. To make this example more concrete but simple, assume that
indices i and j range from 0O to 2 and indices a, b, ¢, and d range from O to
3. Then, for example, we can arrange the 3 X 3 = 9 possible combinations

of i and j as
I J U]
0 0 0
0 1 1
0 2 2
1 0 3
1 1 4




82 T. Daniel Crawford and Roberto Di Remigio

1 2 5
2 0 6
2 1 7
2 2 8

where the compound index ij = 3 X i + j for a total of nine ij combinations.
Assuming a comparable structure for the 14 possible combinations of
corresponding ab and ¢d compound indices, we may view the three tensors
x, y, and z as simple matrices and the contraction as a matrix-matrix product,
depicted schematically as

ab

ab cd

ij V4 < X X cd Y

Thus, one may take advantage of the efticiency of matrix operations on
modern computing hardware by arranging the tensors into such matrices
using contiguous memory storage and passing pointers or references to the
start of this memory to optimized BLAS functions, particularly the general
matrix multiply (GEMM) routines. In most quantum chemical programs,
double-precision (64-bit) storage and multiplication is used for such ten-
sors, but recent work has suggested that single precision (32-bit) can pro-
vide better performance without loss of necessary precision. We emphasize
that the storage of such tensors must be contiguous in memory (i.e., each
consecutive element of the matrix must occupy consecutive elements of
memory) in order to conform to the standard BLAS implementations. This
implies that one must take care when allocating memory dynamically for
storing such tensors. In C/C++ programs, the default storage is row-wise,
meaning that the beginning of a row of the matrix immediately follows the
end of the preceding row in linear memory. However, the default interface
in many BLAS implementations is Fortran based, which assumes that the
default storage is column-wise, and thus many codes will implicitly transpose
and reorder the matrix-matrix multiplication to account for this without
the need to sort the tensor elements. There do exist C/C++-based BLAS
interfaces that provide row-wise access, and these are gaining wider
adoption.
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In many electronic structure methods, such as coupled cluster, the same
tensor may appear in multiple contractions, but with different index orderings.

For example, the x tensor above might appear in another contraction as
P if ght app
_ o d,da
Wi, = X ij Ujke - (2)

In this case, the matrix-based storage used for the previous contraction no
longer applies, because the row and column indices have been changed,
as shown in the schematic below:

ka jd ka

ic w « ic X X jd "4

In order to take advantage of the efficient matrix—matrix multiplication

algorithms of the BLAS, the x7; 4 tensor (as well as w and 1/ ¢, 1f they are used

in other contractions) must ﬁrst be sorted into the appropriate element
ordering, and many production-level programs may keep several orderings
of a given tensor simultaneously, provided sufficient memory and other
storage.

A perhaps subtle point, however, is that not all tensor-index reorderings
require explicit movement of data. Consider yet another contraction of
the form

r;’h = vkséb )
In this case we have a contraction of a two-index tensor and a four-index
tensor to yield another four-index tensor, with only a single summation
index (k). To take advantage of the BLAS matrix-matrix multiplication
algorithm, we require the tensor ordering shown schematically below:

bij k bij

a r «— al| VvV | x k S

Thus, it appears that we must ensure that the elements of the SZb tensor
are ordered such that only k stands as the row index against a compound bij
index for the columns. If we have already stored the elements of 5}, in a
matrix with a kb compound row index and a ij compound column index,
it appears we must sort the elements into the new arrangement. However,
closer inspection reveals that no movement of data is actually required.
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Fig. 1 An example of matrix-based storage of the SZb tensor for a system with j, j, k €{0, 1,
2} and b €{0, 1, 2, 3} orbitals. In (A), the tensor elements are arranged with compound
row and column indices of kb and ij, respectively, while in (B) the rows are labeled by
only k while the columns use the compound index bij. If row-wise contiguous memory
storage is used, the two arrangements are, in fact, identical.

Assuming that the indices i, j, and k, range from 0 to 2 and the indices a

and b range from 0 to 3, as before, then a kb X ij matrix-based storage of st
corresponds to the arrangement shown in Fig. 1A, where we have explicitly
indicated the values of the individual indices corresponding to each element
of the 12 X 9 matrix. If the matrix is stored row-wise, then the first element
in memory corresponds to Soo’ followed by 500, 500’ etc. The last element of
the first row corresponds to 532, and, if the rows are stored contiguously in
memory, the next value is the first element of the second row, i.e., si..
Compare this ordering to that required to carry out the contraction in
Eq. (3) above, which is shown in Fig. 1B as a 3 X 36 matrix. Again the first
element is 500, followed by s 500, 500, etc. Butin this case, the last element of the
first row is 573, and it is followed by the first element of the next row, viz. s{;.
However, the first nine tensor elements end with 533, followed by s/, just as
occurred in the kb X ij ordering of the tensor. Therefore, a shift between the
two arrangements requires no movement of the data in memory, only per-
haps a recalculation of the pointers to the beginning of each row in memory
(but this is not necessary for the BLAS matrix-matrix multiplication
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algorithm). This observation also holds if we required the matrix to exhibit a
kbi X jarrangement, assuming no packing of the i and j indices, e.g., to take
advantage of permutational symmetry (vide infra) — no movement of the
tensor elements in memory is needed. Furthermore, this observation holds
for tensors of any order: given an n-dimensional tensor with elements stored
contiguously in linear memory, any partitioning of the dimensions along
adjacent indices requires no movement of tensor elements within memory.
A six-dimensional tensor, for example, x(i, j, k, a, b, ¢), could be viewed
equivalently as a matrix with index dimensions i X jkabc, ij X kabe, ijk X
abe, ijka X< be, or ijkab X c.

3. Tensor symmetries

Electronic structure calculations can take advantage of a wide array of
wave function symmetries to streamline both the storage requirements and
floating-point operational costs of a calculation, including permutational,
spin, and spatial symmetries. Here we summarize the basic concepts behind
utilizing these symmetries and what advantages and disadvantages they
provide.

3.1 Permutational symmetry

The Pauli antisymmetry principle indicates that wave functions describing
termions (which includes electrons) must change sign upon the interchange
of the (spin and spatial) coordinates of any two particle. This principle is
often manifested in electronic structure calculations in the antisymmetry
of the various tensors that appear in the second-quantized representation
of the Hamiltonian and the electronic wave function. For example, the
two-electron integrals are often expressed in Dirac/physicist notation as

<P61||V3>=/d?1 /d§2¢;<§1)¢;(§2)i(¢r<§1)¢s<§2)_gbs(;l)gbr(;z))’

2
(4)
r

where x| and x, contain the spin (@) and spatial (¥) coordinates of each
electron, (5 is the length of difference in the space vectors of the two elec-
trons, and the {¢,} denote spin orbitals. This definition bestows on this
tensor the antisymmetry:

(gl rs) = —={pgll sr) = —(ap [l rs) = {ap [| s7), (5)
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and, if the spin orbitals are real functions,

(pgllrs) = (sl pa) = =(rs [l ap) = —(sr | pg) = (sr [l ap)- (6)

When the Hamiltonian is formulated as above, the wave function ampli-
tudes in electron correlation methods also exhibit antisymmetry, e.g., the
double-excitation amplitude tensor of coupled cluster theory,

fy =ty =~ =4 )

where i and j (a and b) denote occupied (unoccupied) spin orbitals.

One can take advantage of permutational antisymmetry by packing the
canonical indices described earlier. For example, if the tensor xfjf of Eq. (1) 1s
antisymmetric with respect to permutation of'its i and j indices, then the ear-
lier table of values of the compound index ij is reduced from nine elements
to only three because tensor elements with i = j are necessarily zero:

i J ij
1 0 0
2 0 1
2 1 2

‘While this results in considerable reduction of the storage and computing
demands, a complication arises when the tensor indices must be unpacked
for contractions that require all values of the permutable indices, such as that
occurring in Eq. (2).

3.2 Spin symmetry

In the case of a spin-independent Hamiltonian, the total spin angular momen-
2

tum operator (S"), commutes with the Hamiltonian and thus eigenfunctions
can be constructed that are common to both operators. In practice, this
typically means that approximate wave functions are constructed to be
eigenfunctions of §2, i.e., to represent a pure spin state. This is relatively
straightforward for Hartree—Fock wave functions and for wave functions
tor which the wave operator is linear in nature, such as in configuration
interaction methods. For more complicated electron correlation models,
such as coupled cluster theory, enforcing spin symmetry is straightforward
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only for states whose zeroth-order wave function represents a closed-shell
singlet. For open-shell states, conventional coupled cluster approaches do
not yield spin eigenfunctions unless one takes great pains in both formu-
lation and implementation [1, 2].

While spin-orbital representations, such as those described in the pre-
vious subsection, yield antisymmetric tensors for Hamiltonian components
and wave function parameters, the tensors representing spin-adapted wave
functions are typically spin free (i.e., constructed in terms of spatial orbitals
rather than spin orbitals), and thus have more limited permutational sym-
metry. For example, in a spin-adapted representation of a spin singlet, the
coupled cluster double-excitation amplitudes mentioned earlier have only
one permutational degree of freedom,

b b
£ =t (8)

where the indices here refer to spatial orbitals rather than spin orbitals.

3.3 Spatial/point group symmetry

While it is certainly true that the vast majority of molecules are asymmetric,
the existence of even one symmetry element’ can make a significant differ-
ence in the cost of an electronic structure calculation. The use of spatial sym-
metry to streamline quantum chemical calculations hinges on the vanishing
integral rule, which states in its simplest terms that an integral of a general
function over a symmetric domain is zero unless the integrand contains a
component that transforms as the totally symmetric irreducible representa-
tion (irrep) of the applicable point group. While this rule holds for any point
group, irreps, it is most straightforwardly derived for Abelian groups, for
which all irreps are one-dimensional.

Consider such a point group comprised of /i symmetry operations, O
and, correspondingly h one-dimensional irreps with characters )(((3) An

arbitrary function, f(x), defined on a domain R, may be written as a
sum of components, each spanning an irrep of the point group,

irreps

@)= &) )

* We focus here on point group symmetry, which is of principal importance to molecular systems, as
opposed to space-group symmetry, which is relevant to periodic systems, such as molecular crystals.
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where we will take j = 1 to denote the totally symmetric irrep. Thus, the

integral of f (X' ) over R may similarly be decomposed into irrep components,

irreps irreps
1= [1@as=) [ rEa5=3 1 (10
R iR j

Furthermore, the action of a symmetry operator O on the components of

f(X) yields the corresponding characters as eigenvalues, viz.

irreps irreps

O (7= > MO (), (1)

J J
and therefore,

irreps irreps

OI=0) L => x(O)I. (12)
J J

If the domain R is unchanged by the operations of the group, O[R] — R,

then the integral of f(x) over the domain R is concomitantly unchanged.
Thus,

irreps irreps

OI — I—Z)(é - =0, (13)
J

Given that this equation holds for all operations of the group, we may there-
fore sum over all such operations and reorder the summations to obtain,

irreps

zO: (O1-1) ZIZ( —1):0. (14)

For point groups with nondegenerate irreps [3],

A if 1 = totally symmetric irre
Z P O { J y sy P (15)

0 otherwise

Thus,

irreps irreps

Z )=) 5> (~1)=-h) L=0. (16)

O #1 0 J#1
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We therefore conclude that the sum of the nontotally symmetric integrals is
zero and that only the integral containing the totally symmetric irrep can
make a nonzero contribution to the total integral, i.e.,

I=1,. (17)

The implication of the vanishing integral rule in electronic structure cal-
culations is straightforward: if the one- and two-electron integrals appearing
in the second-quantized Hamiltonian are comprised of molecular orbitals
that are themselves built from symmetry-adapted basis functions (a common
procedure in modern quantum chemical programs), then the integrals —
and, by extension, the molecular orbitals and other wave function parame-
ters/amplitudes and any intermediate tensors built from their products — are
zero unless the direct product of their corresponding irreps contains the
totally symmetric irrep. This result is probably the most fundamental selec-
tion rule in computational chemistry, as it shows that the matrix represen-
tation of a totally symmetric operator is block diagonal by irrep in a basis of
symmetry-adapted functions. Hence the storage requirements for such
matrix representations can be dramatically reduced as only the diagonal
blocks will be nonzero. In the specific case of the antisymmetrized two-
electron integral in Eq. (4), for example, if the molecular orbitals, ¢, ¢,,
¢, and ¢, transform as the irreducible representations (irreps) I'y, I', T,
and Iy, respectively, then the antisymmetrized two-electron integral,
(pq|| rs), must be zero unless

A, CT,@l,&,QT, (18)

where we have used the Mulliken symbol A; to represent the totally sym-
metric irrep.

Most quantum chemistry programs can take advantage only of point
groups containing nondegenerate irreps, specifically D, and its subgroups
(Csyy Copy O, Dy, Cy, C, and Cy), for which all characters are &= 1. (A nota-
ble exception is the SCF module in the Turbomole package [4].) As a result,
direct products between the irreps of such groups are much easier to com-
pute than for groups with complex characters, such as the cyclic groups C;
or higher, or groups with degenerate irreps, where direct products can lead
to direct sums of irreps (e.g., ¢® ¢ = a; B a, ® ¢ in the Cs, group). Fur-
thermore, as first demonstrated in 1974 by Almlof [5, 6], for Dy, and its sub-
groups direct products can be computed trivially and efficiently using the
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bitwise exclusive-or (XOR) logical operation.” For example, for D, if we
use the irrep ordering of Cotton [3] and number them starting from 0 with
the totally symmetric irrep first, we have

Irrep Decimal Binary
a, 0 000
b, 1 001
boe 2 010
b, 3 011
a, 4 100
b1, 5 101
bs, 6 110
bs,, 7 111

Then we may take any direct product without consulting a character
table simply by computing the XOR between the binary representations
of the two irreps in question, e.g.,

b1 @a, = XOR(001,100) =101 =5= by, (19)
or
b2y @bz, = XOR(110,111) =001 =1 = by, (20)

The XOR approach also maintains the requirement that, for D,;, and its
subgroups, the direct product of any irrep with itself must yield the totally
symmetric irrep, because XOR of any bit with itself is zero, e.g.,

boy®br, = XOR(010,010) = 000 = 0 = a,. (21)

This technique has long been employed in the DALTON [7] and PSI [§]
programs (and likely others) and XOR is just one of many examples in
which bitwise logic operators have found use in efficient quantum chemical
programs [5, 6].

We may simultaneously take advantage of both the vanishing integral
rule and the matrix-based algorithms described in the previous section by

" The bitwise XOR can be thought of as “one or the other, but not both,” and thus gives the single-bit
values XOR(0,0) = XOR(1,1) = 0, and XOR(0,1) = XOR(1,0) = 1.
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grouping the molecular orbitals by irrep. Taking the two irreps of the C;
point group as an example, assume that the three occupied orbitals in our
earlier example transform such that the first two (orbitals 0 and 1) belong
to the d irrep and the last (orbital 2) belongs to a”. Similarly, let us assume
that the four unoccupied orbitals are evenly divided with orbitals O and 1 in
d and orbitals 2 and 3 in ¢”. With these symmetry assignments in mind, we

may augment the matrix storage for the SZb tensor used as an example from
the previous section as shown in Fig. 2A to include the direct product of the
irreps of each row pair, I'y, =", ® I'}, and column pair, I'; =I'; ® T';. Given
that the tensor represents a totally symmetric quantity, then, in accord with
Eq. (18), the only possible nonzero entries in the matrix are those for which
', =I';. In the figure, dark squares represent symmetry-allowed tensor ele-
ments and the white squares represent zeroes, revealing substantial sparsity in
the matrix, with exactly half of the 108 possible tensor elements vanishing
due to symmetry. If we were to sort the rows and columns to collect all

1
o
—.
1
S

N NN N - - = = O O O© Ofx

~
~

~
~

I
~

X
~

~
~

X
X

X
X

X
N

I
I

~
I

~
X

Q 9 9 9 9 9 9 9 9 9 9 9

W N - O W N — O W NN - O
N N = —m— © O NN = = O O|x
- O W N W N W N - O = O|c

Q 9 9 9 9 9 9 9 9 9 9 9

Fig.2 An example of matrix-based storage of the SZb tensor, including point group sym-
metry. The molecule belongs to the C; point group with the three occupied orbitals dis-
tributed between the irreps as {0, 1, 2} = {d’, @, @"} and the four unoccupied orbitals as
{0,1,2,3}=1{d, d, d’, d"}. Dark squares indicate symmetry-allowed elements and white
squares indicate vanishing elements. In (A) the rows and columns are ordered exactly
as in Fig. 1, while in (B) kb and ij pairs have been sorted such that all binary products
of orbitals yielding a’ and a” are grouped separately, leading to a more efficient
symmetry-blocked structure.
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a and d” irrep products together, we arrive at the blocked structure indicated
in Fig. 2B. Thus, we may reduce the memory and/or disk requirements for
storing the elements by a factor of two by retaining only the two symmetry-
allowed submatrices of dimensions 6 X 5 and 6 X 4, respectively. In general,
the reduction in storage costs of elements, amplitudes, and other symmetry-
adapted intermediates scales approximately as the square order of the point
group, I, with the eight symmetry operations of the D, group yielding
an impressive factor of 64 reduction [9, 10].

Note also that the storage of the SZb tensor from the kb X ij arrangement
shown in Fig. 2B may also be viewed as equivalent to a k X bij arrangement
analogous to that in Fig. 1B, with the additional caveat that each nonvan-
1shing submatrix 1s subsequently decomposed into h blocks of elements. For
example, consider the upper-left submatrix of kb X ij elements in Fig. 2B, for
whichI'y, =I';; = d. If we isolate the index, k, to the left, we see that the two
d occupied orbitals can be grouped together, followed by the @’ occupied
orbital. Therefore, this I'y, =I';; = a submatrix may be viewed as two con-
secutive matrices, one with I'y, =I"y; = d and one with I}, =T = d’, with
no movement of the elements in memory, as shown in Fig. 3A. Similarly,
the 'y, =I";; = d” submatrix of Fig. 2B may be viewed as two submatrices,
each distinguished by again isolating the index k to left within each irrep, as
shown in Fig. 3B.

The use of symmetry not only reduces disk and memory storage require-
ments, it also reduces the number of floating-point operations required to
evaluate tensor contractions appearing in electronic structure formulations.
For example, for a molecule with C,, symmetry, if we were to make use of
cd  da

i Vs and w{, tensors

from Eq. (2), the schematic diagram given earlier could be modified for

symmetry-blocking of the tensors representing the x

the four irreps as

ka jd ka
ar a b1 b2 ar a b1 b2 ar a b1 b2
ar ar art
. az b, . az ) az ,
/cb1 Y/ -« /cb1 X jdb1 7%
b2 b2 b2

The irrep labels denote direct products of pairs of irreps associated with
spin-adapted indices, I';, I'j4, or I'y,, and thus the dark squares indicate
groups of symmetry-allowed elements and the white squares groups of
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~
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Fig. 3 Rearrangement of the SZb tensor into matrix-blocked k x bij ordering, including
point group symmetry. The molecule belongs to the C; point group with the same
orbital groups as in Fig. 2. In (A) the T'y, =I'j; = @’ submatrix is decomposed into two
smaller submatrices based on the two possible irreps of orbital index k, while in (B),
the same decomposition is carried out on the I'y, =I'; = @” submatrix. In each case,
if the tensor is stored in a row-wise, contiguous fashion in memory, no sorting of the
data is necessary.

elements that must be zero.” The diagram reveals the useful factor of four
(= h tor C,,) reduction in storage of the residuals, amplitudes, and integrals,
as well as the reduction in the number of floating-point operations by a
factor of 16 (= h”), because we only need carry out matrix-matrix multipli-
cations between corresponding nonzero subblocks of the tensor factors.

¢ The perfect blocking in this schematic diagram in which each irrep contains the same number of tensor
elements occurs only if the number of orbitals in each irrep is identical. This often occurs for cyclic
groups, such as C, or for the inversion group, C;, but not for groups with mirror planes, such as Cs,.
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While the vanishing integral rule holds for the Hamiltonian and wave
functions, some nonzero tensor quantities appearing in electronic structure
methods may, in fact, be nontotally symmetric, i.e., transform as an irrep
other than A;." For example, wave function derivatives with respect to a
symmetric/symmetrized perturbation such as an external Cartesian field
or symmetry-adapted geometrical coordinate can be nontotally symmetric,
as can excitation vectors, e.g., tensors representing difterences or gradients
between diftferent electronic states. In such cases, the schematic view of the
contraction above takes on a somewhat difterent layout if, for example, the

irrep of the xfjl and Vﬁ: factors were A, and By, respectively, within C,,:

ka jd ka
ar a b1 b2 ar a br b2 ar a b1 b2
ai ai ai
. az Ly . az ) az AP
/cb7 4 - /cb1 X /dm 1
b2 b2 b2

In this case, the same storage and computational advantages appear as in
the totally symmetric case, but the implementation requires additional logic
for the ordering of the nonzero data blocks. One could choose to order
the submatrix storage based on either the row irrep or the column irrep,
and, ultimately the decision is arbitrary, provided one maintains a consistent

standard [8].

4., Modern implementations

Quantum chemistry is an integral part of the toolbox of researchers, in
part because of the development of efficient and robust implementations of
reliable ab initio methods that can leverage existing medium- and large-scale
computer architecture. In addition, the formulation and application of new
electronic structure methods that can enable new discoveries and new sci-
ence critically depends on the ease with which quantum chemists can cor-
rectly and efficiently implement the equations inherent to these methods.
The complexity of many of the highly accurate theories available makes this

4 Such quantities still obey the vanishing integral rule, but they should be considered factors in a product
of terms that ultimately must contain the totally symmetric irrep.
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a nontrivial task, especially when one hopes to also achieve maximum per-

formance on the available computing resources.

Tensor contraction libraries are among the core components, together
with molecular integral evaluation engines, of quantum chemistry programs.
On modern distributed-memory parallel computing systems, the efficiency
of a tensor contraction hinges on minimization of communication overhead
among nodes. Tensor libraries should ideally provide a number of key per-
formance capabilities [11]:

1. They must be able to accommodate arbitrary tensors, with storage strat-
egies that minimize the need for noncontiguous data movement oper-
ations, such as transpositions and sortings.

2. They should handle arbitrary contractions between tensors using opti-
mized and parallelizable computational kernels.

3. They should transparently and adaptively manage memory usage by
processing tensors in chunks as required by the available amounts of core
memory and disk space.

4. The shouldleverage all the symmetries that the quantum chemical theory
at hand enforces, such as permutational, spin, and point group, which can
lead to significant savings in terms of computational time and storage, as
discussed in the previous sections.

Tensor library developers attempting to fulfill this list of requirements

also strive in keeping the inherent complexities of the code properly

encapsulated from the end-users of their tensor library: the design of the

applications programmer interface (API) is extremely important. At a

glance, many of the existing implementations conform to the so-called

transpose-transpose- GEMM-transpose (TTGT) paradigm [12] such as those
described in Section 2 above and are thus structured according to the
tollowing scheme:

* A low-level foundation that specifies the layout of the tensor data struc-
ture in memory and the basic operations on such a data structure, such as
allocation, deallocation, assignment, element access, and arithmetic
operations. This low-level layer, being “closer to the metal” will also
take care of the chunking operations. The latter will be discussed shortly.

* A middle-level layer that handles contractions. In the TTGT paradigm,
one will resort to optimized BLAS-like libraries for matrix-matrix and
matrix-vector multiplication.

* A high-level layer that is ultimately intended as the library API for user
consumption. This layer should allow for easy creation and manipulation
of tensors and the expression in code of the working equations of the
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theory in a form that is as close as possible to the derived equations. This
task 1s easily achieved with the definition and implementation of domain-
specific languages (DSLs). Automatic code generators [13, 14] might also
be part of the high-level layer, but their discussion is beyond the scope of
this article.
We emphasize that this design overview does not imply that there exists a
one-size-fits-all approach to the problem. Whereas the basic requirements
for a library will largely remain unchanged, the target problems (small and
medium vs large) and architectures (single- vs multiple-node, homogeneous
vs heterogeneous) will perforce guide the implementation choices.

In many medium-sized applications on single-node, homogeneous
architectures, the available core memory might be exceeded by the required
tensors. An efficient library must be able to process tensors in chunks and
switch between disk-based and memory-based algorithms with little to no
additional overhead. For this class of problems the existing implementations
fall in the TTGT paradigm: the cost of transposition/sorting is still negligible
with respect to that for matrix multiplications. Storage schemes where sym-
metry packing is easily implemented are favored, as they afford significant
savings in the I/O operations for disk-based algorithms.

The direct product decomposition (DPD) approach [9, 10] (components
of which are described in detail in Section 3.3) was devised to enforce point
group symmetry in the solution of the coupled cluster equations. The stor-
age format emphasizes space savings: only nonzero, nonredundant symme-
try blocks of amplitudes, integrals, and intermediates will be stored. This will
incur transposition/sorting overhead during some of the contractions, but it
still 1s very well suited for medium-sized applications, especially if coupled to
disk-based storage and chunking strategies that overlap disk I/O with matrix
multiplies to hide latency.

The tensor contraction engine [15] (TCE) is another notable example
of the TTGT paradigm. The TCE generates contraction code to be fur-
ther compiled into an executable program. An operation tree is generated
based on the derived equations, intermediates are identified, and the opti-
mal contraction patterns are chosen based on heuristic considerations.
More recently Epifanovsky et al. have described the Tibtensor library
which offers an implementation of the TTGT paradigm with an easy to
understand high-level API for increased programmers productivity [16,
17]. The work of Kaliman and Krylov on Tibxm [18] builds upon

Tibtensor, to allow the use of GPUs and disk-based algorithms. Many

of the more recent implementations of tensor libraries use C++, the
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multiparadigm programming language that makes it possible to achieve
performance without sacrificing expressiveness. Template programming
is one of the essential cornerstones of C++, since it enables static polymor-
phism, compile-time computation, and laziness [19]. For example, with
static polymorphism it is possible to have functions for single-precision
and double-precision floating point numbers without code duplication.
This technology is proving instrumental in reappraising the assumed
necessity of double-precision arithmetic [20] and will be a necessary tool
for any attempt at mixed-precision implementations.

For multiple-node and/or heterogeneous architectures, developers
strive to minimize communication overhead and load imbalances between
the different processing units. Thus, more often than not, transposition and
sorting become bottlenecks as they require slow internode communication.
Authors of this class of libraries emphasize storage formats that maximize
data locality to facilitate distribution and reduce message-passing. Under-
standably, such libraries show greater complexity: assumptions on the lay-
out of the computing facilities need to be implicitly or explicitly coded in
the various algorithms.

The Cyclops tensor framework [21] (CTF) is designed to leverage
multiple-node architectures within the TTGT paradigm. This requires care-
fully tuned storage patterns so that transposition/sorting will not become
a communication bottleneck. The library provides an expressive DSL that
lets users write code that maps one-to-one to derived equations. Under
the hood, the tensors are distributed according to a cyclic decomposition,
and structured communication patterns orchestrate the tensor contractions.
The cyclic decomposition was adopted to preserve symmetry packing of the
tensor in each subtensor while minimizing the need for padding data. The
resulting decomposition is regular enough to allow the use of BLAS-like
subroutines on such distributed blocks.

The ExaTensor library is a relatively new addition to the landscape of ten-
sor contraction libraries for quantum many-body theories [22]. The library is
written in the Fortran programming language and explicitly targets multiple-
node, heterogeneous computing environments. The domain-specific virtual
processor (DSVP) concept is the core abstraction of ExaTensor: a software
processor architecture that is able to execute domain-specific primitives,
such as tensor contractions, natively on the available hardware. This is an idea
reminiscent of the super instruction architecture language (SIAL) framework
[23-25], and strives for a task-based, rather than data-based, parallelism
strategy.
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Ultimately, as the sizes of chemical problems and computing architec-
tures reach extreme scales, the cost of transposition/sorting will adversely
affect performance. Furthermore, the emergence of local quantum many-
body theories—which take advantage of the short-sightedness of the Cou-
lomb two-electron interaction to achieve reduced scaling—poses additional
challenges to the effectiveness of the TTGT paradigm. With locality, sparsity
patterns emerge that are less regular than those imposed by the symmetries
we have so far discussed.

The TBLIS project aims at completely avoiding transposition/sorting in
tensor contractions [12]. Within TBLIS, tensors are stored as matrices, but
according to a logical mapping that is neither column-major nor row-major.
This is termed block-scatter-matrix (BSM) format and the BSM tensor con-
traction (BSMTCQ) is its related contraction algorithm. As the name suggests,
TBLIS is related to the BLAS-like Library Instantiation Software (BLIS)
framework [26].

TiledArray ofters a novel approach to the efficient exploitation of sparsity
and targets multiple-node architectures [27-29]. The basic data type is the
distributed array, which is a collection of tiles, for dense or sparse tensors.
The implementation is templated C++, and different underlying scalar data
types are thus automatically supported. The library can also accommodate
more general sparsity patterns, such as the clustered low-rank [30] (CLR)
format, reminiscent of H-matrices.

We also note that most of what has been discussed above can be adapted,
with minor modifications, to relativistic electronic structure models in the
Kramers unrestricted formalism [31, 32]. Indeed, when the time-reversal
symmetry between large and small component of the 4-spinors is relaxed,
the working equations of relativistic coupled cluster theory, for example,
are the same as in the nonrelativistic spin-orbital case, allowing for efficient
reuse of much of the same infrastructure. Recently Shee et al. have presented
a new implementation of relativistic ground- [33] and excited-state [33]
coupled cluster methods based on an extension of the DPD format [9, 10]
to double group symmetry and complex algebra.

5. Conclusions and prospectus

The quest for the optimum implementation of tensor contraction
algorithms will likely keep researchers occupied for many years to come.
The efficient use of existing computer architectures, programmers’ pro-
ductivity/time, and expansion of the domain of applicability of quantum
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many-body methods pose important challenges. With heterogeneous
computing environments gaining importance, careful hand-optimization
of computational kernels could prove ineffective. Data-based approaches
to systematic optimization, notably based on machine learning, could
become the frontier of performance tuning.
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