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ABSTRACT: We propose a modified coupled cluster Monte Carlo
algorithm that stochastically samples connected terms within the
truncated Baker−Campbell−Hausdorff expansion of the similarity-
transformed Hamiltonian by construction of coupled cluster diagrams
on the fly. Our new approachdiagCCMCallows propagation to be
performed using only the connected components of the similarity-
transformed Hamiltonian, greatly reducing the memory cost associated
with the stochastic solution of the coupled cluster equations. We show
that for perfectly local, noninteracting systems diagCCMC is able to
represent the coupled cluster wavefunction with a memory cost that
scales linearly with system size. The favorable memory cost is observed
with the only assumption of fixed stochastic granularity and is valid for
arbitrary levels of coupled cluster theory. Significant reduction in
memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown
not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel
methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.

Over the last half-century, the coupled cluster (CC)
wavefunction Ansatz has proved remarkably effective at

representing the solution of the Schrödinger equation in a
polynomial scaling number of parameters while providing size-
extensive and -consistent results. Despite reducing the full
configuration interaction (FCI) N! factorial scaling to
polynomial, the computational cost of CC methods, measured
in terms of both required CPU floating-point operations and
memory, is still an issue. The CC with single and double
substitutions (CCSD) and CCSD with perturbative triples
correction (CCSD(T)) approximations provide a balance
between computational cost and accuracy that has led to
relatively wide adoption but are eventually precluded for many
large systems.
Recent work has made great progress on this issue through

application of various approximations, which enable calcu-
lations to be performed with reduced memory and computa-
tional costs. In particular, various approximations exploiting
the locality of electron correlation allow calculations with costs
asymptotically proportional to measures of system size. These
include approaches based on orbital localization,1−38 molecular
fragmentation,39−51 and decompositions, such as resolution-of-
the-identity, Cholesky, or singular-value of the two-electron
integrals tensors.19,20,52−57 However, while providing large
efficiencies in CCSD calculations, higher truncation levels will
generally exceed available memory resources before such
approximations are a reasonable proposition.
In this Letter, we propose and demonstrate a CC-based

projector Monte Carlo (MC) algorithm that enables automatic

exploitation of the wavefunction sparsity for arbitrary
excitation orders. Our methodology can be particularly
beneficial for localized representations of the wavefunction,
but it is not limited by assumptions of locality. The approach
can fully leverage the sparsity inherent in the CC amplitudes at
higher excitation levels,58 allowing dramatic reductions in
memory costs for higher levels of theory.
The CC wavefunction is expressed as an exponential

transformation of a reference single-determinant wavefunction
|D0⟩

| ⟩ = | ⟩DCC eT 0 (1)

where the cluster operator T is given as a sum of second-
quantized excitation operators:

∑=T T
k

k
(2)

with the kth order cluster operators expressed as sums of
excitation operators weighted by the corresponding cluster
amplitudes
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in the tensor notation for second quantization proposed by
Kutzelnigg and Mukherjee.59 Upon truncation of the cluster
operator to a certain excitation level l and projection of the
Schrödinger equation onto the corresponding excitation
manifold, one obtains the linked energy and cluster amplitude
equations

⟨ | ̅ | ⟩ =
Ω = ⟨ | ̅ | ⟩ =t

D H D E
D H D

(4a)
( ) 0 (4b)n n

0 N 0 CC

N 0

We have introduced the similarity-transformed Hamiltonian,
H̅N = e−THNe

T, and |Dn⟩ can be any state within the projection
manifold (up to an l-fold excitation of |D0⟩). These CC
equations are manifestly size-extensive order-by-order and
term-by-term and furthermore provide the basis for the
formulation of response theory.60

CC methods have to be carefully derived order-by-order and
their implementation subsequently carried out, a process that
can be rather time-consuming and error-prone.61−63 It has long
been recognized that the use of normal-ordering,64,65 Wick’s
theorem66 and the ensuing diagrammatic techniques67 can be
leveraged to automate both steps,64,68−74 though spin-
adaptation can still pose significant challenges.75−77 Consider
the normal-ordered, electronic Hamiltonian
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its similarity transformation admits a Baker−Campbell−
Hausdorff (BCH) expansion truncating exactly after the 4-
fold nested commutator.65,78 Because all excitation operators
are normal-ordered and commuting, the commutator ex-
pansion lets us reduce the Hamiltonian-excitation operator
products to only those terms that are connected.64,65

Excitation operators will only appear to the right of the
Hamiltonian, and only terms where each excitation operator
shares at least one index with the Hamiltonian will lead to
nonzero terms in the residuals Ωn(t) appearing in eq 4

Moreover, by virtue of Wick’s theorem,59,66 the products of
normal-ordered strings appearing in the connected expansion
will still be expressed as normal-ordered strings, further
simplifying the algebra. The requirement of shared indices
between the Hamiltonian and cluster coefficients enables the
resulting equations to be solved via a series of tensor
contractions between multi-index quantities: the sought-after
cluster amplitudes and the molecular one- and two-electron
integrals. The iterative process required to solve eq 4 is highly
amenable for a rapid evaluation on conventional computing
architectures79,80 but remains nontrivial to parallelize,81

especially for higher truncation orders in the CC hierarchy.76

A proper factorization of intermediates is essential to achieve
an acceptable time to solution and memory requirements.
In recent years, some of us have been involved in developing

a projector MC algorithm to obtain the CC solutions within a
stochastic error bar.82−85 The starting point, as with any

projector MC method, is the imaginary time Schrödinger
equation86−88 obtained after a Wick rotation τ ← it. Repeated
application of the approximate linear propagator to a trial
wavefunction will yield the ground-state solution

τ δτ δτ τ|Ψ + ⟩ = [ − − ]|Ψ ⟩H S( ) 1 ( ) ( ) (7)

where S is a free parameter that is varied to keep the
normalization of Ψ(τ) approximately constant. In the CCMC
and FCI quantum Monte Carlo (FCIQMC) approaches, a
population of particles in Fock space represents the wave-
function and evolves according to simple rules of spawning,
death, and annihilation.82,86 For a CC Ansatz, unit particles
may represent nonunit contributions to CC amplitudes by
letting the intermediate normalization condition vary with the
population on the reference determinant: ⟨D0|CCMC(τ)⟩ =
N0(τ). A factor of

τN
1
( )0

is removed from the definition of T(τ),

and this determines the granularity of amplitude representa-
tion: amplitude values smaller than

τN
1
( )0

are stochastically

rounded during the calculation, vide inf ra. To avoid confusion,
we denote the so-modified cluster operators and amplitudes as
T′ and tn′ , respectively; therefore, | ⟩ = | ⟩′N DCCMC eT N

0
/

0
0 .

Thus, in the unlinked formulation first put forward by Thom,82

the dynamic equation for the amplitudes becomes

δτ τ′ → ′ − ⟨ | [ − ]| ⟩†t t D H S CCMCn n n0 (8)

where we have dropped the τ dependence for clarity. CCMC is
fully general with respect to the truncation level in the cluster
operator and sidesteps the need to store a full representation of
the wavefunction at any point. CCMC should allow for the
effective solution of the CC equations with a much reduced
memory cost, as previously realized in the FCIQMC
method.86,89−91 However, while various cases demonstrate
memory cost reduction, especially in the presence of weak
correlation,92 the corresponding increase in computational cost
was large even by the standards of projector MC methods and
modifications used in related approaches, such as the initiator
approximation,89 proved comparatively ineffective.83

Combination with the linked CC formulation seems to be
one possible remedy for these issues and is furthermore the
basis for decades of theoretical and implementation work in
the deterministic community. Franklin et al.84 have discussed a
CCMC algorithm to sample eq 4 using the update step

δτ τ′ → ′ − ⟨ | ̅ | ⟩ | ⟩ ≠ | ⟩†t t N D H D D D( )n n n n0 0 0 0 (9a)

δτ→ − ⟨ | ̅ − | ⟩N N N D H S D0 0 0 0 0 (9b)

The authors however noted that the use of the similarity-
transformed Hamiltonian required an ad hoc modification

δτ τ δτ′ → ′ − ⟨ | [ ̅ − ]| ⟩ − −†t t N D H E D E S t( )n n n n0 0 CC 0 CC
(10)

to deal with convergence issues with the projected energy prior
to the initialization of population control. In addition, due to
evaluation of H̅ via the commutator expansion of the bare
Hamiltonian, rather than the sum of connected Hamiltonian-
excitation operator products (eq 6), some disconnected terms
were included. These extraneous terms in the algorithm of
Franklin et al.84 have been observed to correctly cancel out on
average but render unnecessarily complex the sampling of
connected contributions only. Eventually, it is difficult to
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develop stochastic counterparts to approximations, such as the
CCn hierarchy,93,94 proposed within deterministic CC theory.
We here reconsider the implementation of the linked

CCMC algorithm in light of the diagrammatic techniques used
in deterministic CC, an approach we name diagrammatic
coupled cluster Monte Carlo (diagCCMC). The update
equation can be easily derived as a finite difference
approximation to the exact imaginary time dynamics of the
CC wavefunction under the assumption of constant
intermediate normalization

τ δτ τ δτ τ τ+ = − ⟨ | ̅ | ⟩†t t D H D( ) ( ) ( )n n n0 N 0 (11)

This has been noted elsewhere,95 and we will discuss its
implications in greater detail in a subsequent communica-
tion,96 but for now, it will suffice to observe that because this is
a projector MC approach it will eventually converge to the
lowest-energy solution of the CC equations. The existence of
multiple solutions to the nonlinear CC equations is well-
documented,97−99 and a projector MC approach could result
in a different solution to the CC equations than the one found
via a deterministic procedure, where iteration stabilizes upon
whichever solution is approached first from a given starting
point. In practice, a difference is only observed if a highly
truncated form of CC has been applied inappropriately to a
system and even then only in the worst cases.
The second term on the right-hand side is the contribution

to the CC vector function Ωn(t) resulting from the projection
upon the determinant |Dn⟩ and is representable as a finite sum

of enumerable diagrams. Thus, at each iteration, we wish to
randomly select na diagrams from ⟨D0|τn

†H̅N|D0⟩. Each of these
will be in the form of an excitation operator, τi, and
corresponding weight, wi, selected with some known,
normalized probability, pdiagram, such that we expect to select
any given contributing diagram pdiagram × na times at each
iteration. As by construction ⟨D0|τj

†τi|D0⟩ = δij, a selected term
can be found to contribute to the update of a single coefficient
with no additional sign considerations. Rather than explicitly
introduce a particulate representation of the coefficients, as in
FCIQMC and previous CCMC approaches, we stochastically
round all coefficients tn with magnitude below some strictly
positive granularity parameter Δ. If |tn| < Δ, then |tn| is

rediscretized to either Δ (with probability Δ
tn ) or 0 (with

probability − Δ1 tn ).96,100 This can be shown to be equivalent

to a representation with unit particles and constant
intermediate normalization

Δ
1 .

We perform diagram selection by reading off terms from
right to left in ⟨D0|τn

†H̅N|D0⟩:

1. Select a random cluster of excitation operators with
probability pselect utilizing the even selection scheme85

restricted to clusters of at most four excitation operators.
This corresponds to simultaneously selecting a term in
the BCH expansion (eq 6) and the excitation level of
each excitation operator in the commutator.

Figure 1. Graphical depiction of the diagCCMC algorithm. This example shows the steps involved in the generation of one of the possible
diagrams contributing to the T3 equations.
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2. Select 1 of the 13 possible HN vertices64,65 with some
probability phvertex.

3. Select the contraction pattern of the chosen cluster and
Hamiltonian vertex. This identifies a specific Kucharski−
Bartlett sign sequence64,65,67 for the diagram we are
considering and which excitation operators are associ-
ated with which term within the sign sequence with
probability pcontract.

4. Select which indices of each excitation operator will be
contracted with the Hamiltonian vertex. Having selected
the contraction pattern, this is a matter of simple
combinatorics, with a given set of indices selected with
probability pinternal.

5. Select the external indices of the Hamiltonian vertex
with probability pexternal.

6. Evaluate the index of the resulting projection determi-
nant in the update step, i.e., ⟨D0|τn

†, and the
diagrammatic amplitude including all parity factors.

This obtains a single specific diagram with probability
=p p p p p pdiagram select hver cont int ext (12)

where the obvious abbreviations have been used to refer to
each of the previously stated probabilities. These are
conditional probabilities as the various events leading to the
computed pdiagram are not independent. This procedure to
select diagrams can be visualized as graphically building the
diagram bottom-up; see Figure 1.
To evaluate the contribution of a selected diagram to our

propagation, we slightly modify the standard rules of
diagrammatic interpretation. Instead of summing over all
indices, and thus having to correct for any potential double
counting, our algorithm selects a specific diagram along with a
specific set of indices for all lines.
To ensure proper normalization of our sampling probability,

we require there be only a single way to select diagrams related
by

• The antipermutation of antisymmetrised Goldstone
vertex indices.

• The antipermutation of cluster operator particle or hole
indices.

• The commutation of cluster operators.

All these modifications can be viewed as replacing sums
∑ij

1
2

with δ∑ +>i j ij
1
2

. In the first two cases, summation runs

over equivalent indices and the i = j term must be zero, while
in the third case summation runs over excitation operators and
the i = j term corresponds to a diagram with additional
symmetry that as such must be treated more carefully to ensure
unique selection of a Kucharski−Bartlett sign sequence.64,65,67

Specifically, we do not require an additional factor of 1
2
for

• each pair of equivalent internal or external lines
• two cluster operators of the same rank but with different

specific indices, provided they have a well-determined
ordering on selection.

Additionally, to include the effect of permutation operators P̂
for inequivalent external lines, we must permute the hole and
particle indices of a resulting excitation operator to a unique
antisymmetrized ordering for storage. This ensures proper
cancellation between all equivalent orderings, which could
otherwise differ due to the stochastic sampling. Eventually, the
amplitude of the contribution of the selected diagram, wdiagram,

is given as the product of the cluster amplitude, wclus = ∏i ti,
and Hamiltonian element, whamil, with appropriately deter-
mined parity (−1)σ. The overall contribution of a single
selected diagram to the coefficient tn determined by the open
lines of the diagram will be

=
− σw

p
w w

p p p p p
( 1)diagram

diagram

clus hamil

select hver cont int ext (13)

Wherever possible we aspire to have pdiagram ∝ |wdiagram|.
85

We will now demonstrate the ability of diagCCMC to
recover energies at high levels of CC theory on the nitrogen
molecule in a stretched geometry (rNN = 3.6 a0). It has
previously been shown that connected contributions up to
hextuples are vital to obtaining high accuracy for this
system.101 Correlation energies for a range of basis sets and
truncation levels are reported in Table 1, showing agreement

within error bars with deterministic results102 and the existing
literature in all but the most extreme cases, where convergence
to a different solution is observed as noted previously.
We then turn our attention to test systems of beryllium and

neon atoms at a variety of truncation levels. Extending these
systems by introducing noninteracting replicas illustrates the
behavior of our approach in the presence of locality in
comparison to previous Fock space stochastic methods,
namely, the original unlinked CCMC (hereafter simply
referred to as CCMC) and FCIQMC.
To allow reasonable comparison among diagCCMC,

CCMC, and FCIQMC, all calculations were performed with

• granularity parameter Δ equal to 10−4; this is the
threshold for the stochastic rounding of the cluster
amplitudes

• δτ and nattempts such that, on each iteration, a spawning
event may have maximum size of 3 × 10−4.

For CCMC and FCIQMC, this corresponds to a stable
calculation with reference population of N0 = 104 and a time
step such that no spawning event produces more than three
particles. CCMC and FCIQMC calculations were performed
with the HANDE-QMC code103,104 using the default, uniform

Table 1. Correlation Energy for Different Levels of Theory
and Basis Sets for N2 with rNN = 3.6 a0

a

STO-3G 6-31G

SD CC −0.589163 −0.491480
diagCCMC −0.799 (2)b −0.4921(7)

SDT CC −0.589923 −0.533600
diagCCMC −0.6092 (8)b −0.5341(9)

SDTQ CC −0.523049 c
diagCCMC −0.5244(9)

SDTQ5 CC −0.523036 c
diagCCMC −0.5249(6)

SDTQ56 CC −0.527863 c
diagCCMC −0.5271(8)

aMolecular integrals were generated in FCIDUMP format with the
Psi4 program package.106 The deterministic results were computed
using MRCC.102 The canonical restricted Hartree−Fock orbitals were
used, giving Eref = −106.937562 and −108.360046 Eh in the STO-3G
and 6-31G bases, respectively. bIn these cases, the stochastic,
imaginary time propagation was found to initially converge to the
conventional CC solution, before relaxing to another, lower-energy
solution.99 cValue not computed due to computational constraints.
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excitation generators. For CCMC, we adopted the even
selection scheme of Scott and Thom.85 The molecular integrals
were generated in FCIDUMP format using the Q-Chem105

and Psi4106 quantum chemistry program packages; see the
Supporting Information for more details.107

We report the correlation energies obtained for an isolated
Be atom and the noninteracting replica systems in Table 2. We
compare CC results up to and including quadruple excitations
with FCIQMC. For these systems, CCSDTQ is equivalent to
FCI, thus providing a good sanity check for the diagCCMC
approach. In addition, results at each level of theory are
expected to agree within statistical errors due to the size
consistency of all considered approaches, as is observed.
In order to assess the computational performance of

diagCCMC, we compare two measures of efficiency:

• nattempts/δτ, that is, the number of stochastic samples
performed per unit imaginary time. This metric is a
measure of the minimum CPU cost, provided that the
length of propagation in imaginary time is roughly

constant between approaches or equivalently a roughly
constant inefficiency between the approaches.108

• nstates, that is, the number of occupied excitation
operators. This metric is a measure of the minimum
memory cost. For a deterministic calculation, this would
amount to the Hilbert space size for the selected
truncation level.

The promise of stochastic methods is to greatly reduce the
cost of high-level correlated calculations by naturally exploiting
the wavefunction sparsity. Figure 2 reports the ratio of nstates
per replica and the size of the Hilbert space for an isolated
atom at the given truncation level. For an isolated Be atom, the
reduction in memory footprint is clearly evident: all methods
compared require significantly less than the full size of the
Hilbert space (ratio < 1) to successfully achieve convergence
and recover the deterministic results. Unsurprisingly and
correctly, diagCCMC requires the same amount of storage as
its unlinked counterparts. Notice also that the ratio decreases
in going from CCSD to CCSDTQ, showing how stochastic
methods single out the important portions of the Hilbert space.

Table 2. Correlation Energy for Different Levels of Theory Using 1, 2, and 4 Be Replicas in a cc-pVDZ Basis Seta

nreplicas

1 2 4

SD CCMC −0.045032(2) −0.09007(2) −0.1799(1)
diagCCMC −0.04500(5) −0.09011(7) −0.1801(3)

SDT CCMC −0.045067(2) −0.09012(2) −0.18034(7)
diagCCMC −0.04512(4) −0.0902(2) −0.1802(3)

SDTQ CCMC −0.045070(2) −0.09015(2) −0.18044(9)
diagCCMC −0.04504(4) −0.0902(3) −0.1807(3)

FCI −0.0450721(7) −0.090151(5) −0.18036(6)
aNote that for these systems CCSDTQ is equivalent to FCI. Molecular integrals were generated in FCIDUMP format with the Q-Chem program
package.105 The canonical Hartree−Fock orbitals for a single-atom calculation were used, and no spin symmetry breaking was observed, giving Eref
= −14.572341 Eh.

Figure 2. Ratio of states per-replica and corresponding reduced Hilbert space size for 1, 2, and 4 Be replicas in a cc-pVDZ basis set at various levels
of theory. The nstates metric is a measure of the memory cost of the calculation. For a single Be atom the Hilbert space sizes are 121, 529, and 1093
states for CCSD, CCSDT, and CCSDTQ, respectively, and the corresponding reduced Hilbert space multiplies these values by the number of Be
atoms. Note that for these systems CCSDTQ is equivalent to FCI. Solid, dotted and dash-dotted lines are used for diagCCMC, CCMC and
FCIQMC results, respectively. Molecular integrals were generated in FCIDUMP format with the Q-Chem program package.105 The canonical
Hartree−Fock orbitals for a single-atom calculation were used, and no spin symmetry breaking was observed.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.9b00067
J. Phys. Chem. Lett. 2019, 10, 925−935

929

http://dx.doi.org/10.1021/acs.jpclett.9b00067


For perfectly local systems, such as the noninteracting two- and
four-atom replicas, one also expects the number of states per

replica to roughly stay constant. This expectation stems from
the linked diagram theorem65 and is met by the diagCCMC

Figure 3. Number of stochastic samples performed (nattempts) per unit imaginary time per replica for 1, 2, and 4 Be replicas in a cc-pVDZ basis set at
various levels of theory. Assuming that the length of propagation in imaginary time is roughly constant between approaches this metric is a measure
of the CPU cost of the calculation. Note that for these systems CCSDTQ is equivalent to FCI. Solid, dotted and dash-dotted lines are used for
diagCCMC, CCMC and FCIQMC results, respectively. Molecular integrals were generated in FCIDUMP format with the Q-Chem program
package.105 The canonical Hartree−Fock orbitals for a single-atom calculation were used, and no spin symmetry breaking was observed.

Figure 4. Ratio of states per replica and corresponding reduced Hilbert space size for 1, 2, and 4 Ne replicas in a cc-pVDZ basis set at various levels
of theory. The nstates metric is a measure of the memory cost of the calculation. For a single Ne atom, the Hilbert space sizes are 393, 4647, 30861,
116129, 265790, and 502099 for CCSD, CCSDT, CCSDTQ, CCSDTQ5, CCSDTQ56, and FCI, respectively, and the corresponding reduced
Hilbert space multiplies these values by the number of Ne atoms. Solid, dotted, and dashed−dotted lines are used for diagCCMC, CCMC, and
FCIQMC results, respectively. Molecular integrals were generated in FCIDUMP format with the Q-Chem program package.105 The canonical
restricted Hartree−Fock orbitals for a single-atom calculation were used.
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approach where at each iteration only connected diagrams are
sampled. The same is, quite emphatically, not true for either
FCIQMC or CCMC: the number of states per replica
approaches and surpasses the size of the single-atom Hilbert
space.
In Figure 3, we can see that diagCCMC outperforms each of

the corresponding CCMC approaches also when estimating
the CPU cost of the calculations on the Be systems considered
here. It is particularly striking to note the order of magnitude
difference between the diagrammatic and unlinked approaches
at the CCSD level of theory even for this tiny system.

The same observation also holds true for higher orders of
CC theory, as can clearly be seen from Figure 4 where we plot
the nstates metric for an isolated Ne atom and its corresponding
two- and four-atom noninteracting replicas system. Table 3
reports the correlation energies per replica for a system of
noninteracting Ne atoms. diagCCMC affords calculations
practically at constant memory cost per replica, in contrast
with CCMC for which the increasing cost exceeded available
computational resources for the higher-order excitations.
Finally, we studied the dissociation of a chain of five helium

atoms as an example of an interacting system. The
diagrammatic algorithm shows favorable CPU and memory

Table 3. Correlation Energy for Different Levels of Theory Using 1, 2, and 4 Ne Replicas in a cc-pVDZ Basis Seta

nreplicas

1 2 4

SD CCMC −0.190865(3) −0.38172(3) −0.7633(2)
diagCCMC −0.19094(5) −0.3817(1) −0.7641(5)
CC −0.190861 −0.381723c −0.763446c

SDT CCMC −0.191951(4) −0.38389(4) −0.7676(3)
diagCCMC −0.19185(10) −0.3839(2) −0.7685(7)
CC −0.191945 −0.383891c −0.767781c

SDTQ CCMC −0.192092(4) −0.38418(6) b
diagCCMC −0.1924(1) −0.3843(6) −0.7668(7)
CC −0.192095 −0.384191c −0.768382c

SDTQ5 CCMC −0.192103(4) −0.38436(9) b
diagCCMC −0.1924(2) −0.3840(5) −0.7686(5)
CC −0.192106 −0.384212c −0.768424c

SDTQ56 CCMC −0.192119(5) b b
diagCCMC −0.1919(1) −0.3846(6) −0.7691(5)
CC −0.192106 −0.384211c −0.768422c

FCI −0.192106(5) b b
aMolecular integrals were generated in FCIDUMP format with the Psi4 program package106 and exact CC results obtained using MRCC.102 The
canonical Hartree−Fock orbitals for a single-atom calculation were used, and no spin symmetry breaking was observed, giving Eref = −128.488776
Eh.

bValue not computed due to computational constraints. cValue obtained as a multiple of the single-atom result for comparison.

Figure 5. Number of states (nstates) for a line of five He atoms in a diagCCMC calculation at the CCSD, CCSDT, and CCSDTQ levels of theory.
The nstates metric is a measure of the memory cost of the calculation. Molecular integrals were generated in FCIDUMP format with the Psi4
program package.106 Localized orbitals were used: starting from the restricted Hartree−Fock canonical orbitals, the Foster−Boys109 and the Pipek−
Mezey110 algorithms were used for the occupied and virtual subspaces, respectively. For CCSD, we report 5× the Hilbert space size and
diagCCMC average memory cost for a single He atom using dashed−dotted and dotted horizontal lines, respectively.
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cost for noninteracting systems, further suggesting that it might
also straightforwardly leverage localization in the orbital space
to achieve reduced cost for calculations on interacting systems.
As a preliminary test for this conjecture, Figure 5 shows the
memory cost for the dissociation curve of an interacting chain
of five helium atoms. We localized the occupied and virtual
orbital sets with the Foster−Boys109 and the Pipek−Mezey110

criteria, respectively. We compare the nstates metric with the
memory cost at the dissociation limit for a deterministic and a
diagCCMC CCSD calculation. The former (dotted line) is the
maximum memory cost for performing CCSD calculations on
the isolated atoms: below it, the cost is comparable to that for
a wavefunction with excitations localized to each He atom. The
onset of such behavior is evident from Figure 5, which also
shows the recovery of the noninteracting limit at large
separations.
In conclusion, we have described a stochastic realization of

linked CC theory that fully exploits the connectedness of the
similarity-transformed Hamiltonian, as exemplified in the
diagrammatic expansion of the CC equations. Our stochastic
diagrammatic implementation avoids the computational and
memory cost issues associated with deterministic and unlinked
stochastic approaches by generating diagrams on-the-fly and
accumulating the corresponding amplitudes. Finally, we have
shown how the stochastic and deterministic implementations
can be rationalized within the same framework. This bridges
the existing gap between the two strategies: by clearing
possible misunderstandings on how and why stochastic
methods work and enabling future cross-fertilization.
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J. The orbital-specific-virtual local coupled cluster singles and doubles
method. J. Chem. Phys. 2012, 136, 144105.
(35) Schwilk, M.; Usvyat, D.; Werner, H.-J. Communication:
Improved pair approximations in local coupled-cluster methods. J.
Chem. Phys. 2015, 142, 121102.
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