Practical Parallel Hypergraph Algorithms

Julian Shun
jshun@mit.edu
MIT CSAIL

Abstract

While there has been significant work on parallel graph pro-
cessing, there has been very surprisingly little work on high-
performance hypergraph processing. This paper presents
a collection of efficient parallel algorithms for hypergraph
processing, including algorithms for betweenness central-
ity, maximal independent set, k-core decomposition, hyper-
trees, hyperpaths, connected components, PageRank, and
single-source shortest paths. For these problems, we either
provide new parallel algorithms or more efficient implemen-
tations than prior work. Furthermore, our algorithms are
theoretically-efficient in terms of work and depth. To imple-
ment our algorithms, we extend the Ligra graph processing
framework to support hypergraphs, and our implementa-
tions benefit from graph optimizations including switching
between sparse and dense traversals based on the frontier
size, edge-aware parallelization, using buckets to prioritize
processing of vertices, and compression. Our experiments
on a 72-core machine and show that our algorithms obtain
excellent parallel speedups, and are significantly faster than
algorithms in existing hypergraph processing frameworks.

CCS Concepts +« Computing methodologies — Paral-
lel algorithms; Shared memory algorithms.

1 Introduction

A graph contains vertices and edges, where a vertex repre-
sents an entity of interest, and an edge between two vertices
represents an interaction between the two corresponding
entities. There has been significant work on developing al-
gorithms and programming frameworks for efficient graph
processing due to their applications in various domains, such
as social network and Web analysis, cyber-security, and sci-
entific computations. One limitation of modeling data using
graphs is that only binary relationships can be expressed, and
can lead to loss of information from the original data. Hyper-
graphs are a generalization of graphs where the relationships,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6818-6/20/02...$15.00
https://doi.org/10.1145/3332466.3374527

D>

(a) Hypergraph

()

P o
o
o (=)

(b) Bipartite representation

Figure 1. An example hypergraph representing the groups
{vo, v1, 02}, {v1, 02,03}, and {vy, v3}, and its bipartite repre-
sentation.

represented as hyperedges, can contain an arbitrary number
of vertices. Hyperedges correspond to group relationships
among vertices (e.g., a community in a social network). An
example of a hypergraph is shown in Figure 1a.

Hypergraphs have been shown to enable richer analy-
sis of structured data in various domains, such as protein
network analysis [76], machine learning [100], and image
processing [15, 27]. Various graph algorithms have been
extended to the hypergraph setting, and we list some ex-
amples of algorithms and their applications here. Between-
ness centrality on hypergraphs has been used for hierarchi-
cal community detection [12] and measuring importance
of hypergraphs vertices [77]. k-core decomposition in hy-
pergraphs can be applied to invertible Bloom lookup tables,
low-density parity-check codes, and set reconciliation [45].
PageRank and random walks on hypergraphs have been used
for image segmentation and spectral clustering and shown
to outperform graph-based methods [26, 27, 100]. Shortest
paths, hyperpaths, and hypertrees have been used for solv-
ing optimization problems [30, 70], satisfiability problems
and deriving functional dependencies in databases [30], and
modeling information spread and finding important actors
in social networks [31]. Independent sets on hypergraphs
have been applied to routing problems [2] and determining
satisfiability of boolean formulas [48].

Although there are many applications of hypergraphs,
there has been little research on parallel hypergraph process-
ing. The main contribution of this paper is a suite of efficient
parallel hypergraph algorithms, including algorithms for
betweenness centrality, maximal independent set, k-core

https://doi.org/10.1145/3332466.3374527

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

decomposition, hypertrees, hyperpaths, connected compo-
nents, PageRank, and single-source shortest paths. For these
problems, we provide either new parallel hypergraph algo-
rithms (e.g., betweenness centrality and k-core decomposi-
tion) or more efficient implementations than prior work. Ad-

ditionally, we show that most of our algorithms are theoretically-

efficient in terms of their work and depth complexities.

We observe that our parallel hypergraph algorithms can
be implemented efficiently by taking advantage of graph pro-
cessing machinery. To implement our parallel hypergraph
algorithms, we made relatively simple extensions to the Ligra
graph processing framework [81] and we call the extended
framework Hygra. As with Ligra, Hygra is well-suited for
frontier-based algorithms, where small subsets of elements
(referred to as frontiers) are processed in parallel on each
iteration. We use a bipartite graph representation to store
hypergraphs, and use Ligra’s data structures for represent-
ing subsets of vertices and hyperedges as well as operators
for mapping application-specific functions over these ele-
ments. The operators for processing subsets of vertices and
hyperedges are theoretically-efficient, which enables us to
implement parallel hypergraph algorithms with strong the-
oretical guarantees. Separating the operations on vertices
from operations on hyperedges is crucial for efficiency and
requires carefully defining functions for vertices and hyper-
edges to preserve correctness. Hygra inherits from Ligra vari-
ous optimizations developed for graphs, including switching
between different traversal strategies based on the size of
the frontier (direction optimization), edge-aware paralleliza-
tion, bucketing for prioritizing the processing of vertices,
and compression.

Our experiments on a variety of real-world and synthetic
hypergraphs show that our algorithms implemented in Hy-
gra achieve good parallel speedup and scalability with re-
spect to input size. On 72 cores with hyper-threading, we
achieve a parallel speedup of between 8.5-76.5x. We also
find that the direction optimization improves performance
for hypergraphs algorithms compared to using a single tra-
versal strategy. Compared to HyperX [46] and MESH [41],
which are the only existing high-level programming frame-
works for hypergraph processing that we are aware of, our
results are significantly faster. For example, one iteration
of PageRank on the Orkut community hypergraph with 2.3
million vertices and 15.3 million hyperedges [59] takes 0.083s
on 72 cores and 3.31s on one thread in Hygra, while taking
1 minute on eight 12-core machines using MESH [41] and
10s using eight 4-core machines in HyperX [46]. Certain
hypergraph algorithms (hypertrees, connected components,
and single-source shortest paths) can be implemented cor-
rectly by expanding each hyperedge into a clique among
its member vertices and running the corresponding graph
algorithm on the resulting graph. We also compare with this
alternative approach by using the original Ligra framework
to process the clique-expanded graphs, and show the space

Julian Shun

usage and performance is significantly worse than that of
Hygra (2.8x-30.6x slower while using 235x more space on
the Friendster hypergraph).

Our work shows that high-performance hypergraph pro-
cessing can be done using just a single multicore machine,
on which we can process all existing publicly-available hy-
pergraphs. Prior work has shown that graph processing
can be done efficiently on just a single multicore machine
(e.g., [24, 25, 67, 69, 81, 87, 96, 101]), and this work extends
the observation to hypergraphs.

The rest of the paper is organized as follows. Section 2
discusses related work on graph and hypergraph process-
ing. Section 3 describes hypergraph notation as well as the
computational model and parallel primitives that we use in
the paper. Section 4 introduces the Hygra framework. Sec-
tion 5 describes our new parallel hypergraph algorithms
implemented using Hygra. Section 6 presents our experi-
mental evaluation of our algorithms, and comparisons with
alternative approaches. Finally, we conclude in Section 7.

2 Related Work

Graph Processing. There has been significant work on de-
veloping graph libraries and frameworks to reduce program-
ming effort by providing high-level operators that capture
common algorithm design patterns (e.g., [19, 21, 22, 28, 33-
35,38-40, 42, 47, 51, 56, 60, 61, 63-65, 68, 69, 71-73,75, 78, 81,
84-87,91, 94, 96, 99, 101], among many others; see [66, 79, 93]
for surveys). Many of these frameworks can process large
graphs efficiently, but none of them directly support hyper-
graph processing.

Hypergraph Processing. As far as we know, HyperX [46]
and MESH [41] are the only existing high-level programming
frameworks for hypergraph processing, and they are built
for distributed memory on top of Spark [95]. Algorithms
are written using hyperedge programs and vertex programs
that are iteratively applied on hyperedges and vertices, re-
spectively. HyperX stores hypergraphs using fixed-length tu-
ples containing vertex and hyperedge identifiers, and MESH
stores the hypergraph as a bipartite graph. HyperX includes
algorithms for random walks, label propagation, and spectral
learning. MESH includes PageRank, PageRank-Entropy (a
variant of PageRank that also computes the entropy of ver-
tex ranks in each hyperedge), label propagation, and single-
source shortest paths. Both HyperX and MESH do work pro-
portional to the entire hypergraph on every iteration, even if
few vertices/hyperedges are active, which makes them ineffi-
cient for frontier-based hypergraph algorithms. The Chapel
HyperGraph Library [44] is a library for hypergraph pro-
cessing that provides functions for accessing properties of
hypergraphs, but the interface is much lower-level than the
abstractions in HyperX, MESH, and Hygra. It has recently
been used to analyze DNS data [1].

Practical Parallel Hypergraph Algorithms

Hypergraphs are useful in modeling communication costs
in parallel machines, and partitioning can be used to mini-
mize communication. There has been significant work on
both sequential and parallel hypergraph partitioning algo-
rithms (see, e.g., [17, 18, 23, 49, 52, 54, 89]). While we do
not consider the problem of hypergraph partitioning in this
paper, these techniques could potentially be used to improve
the locality of our algorithms.

Algorithms have been designed for a variety of problems
on hypergraphs, including random walks [27], shortest hy-
perpaths [3, 70], betweenness centrality [74], hypertrees [30],
connectivity [30], maximal independent sets [5, 9, 48, 50],
and k-core decomposition [45]. However, there have been
no efficient parallel implementations of hypergraph algo-
rithms, with the exception of [45], which provides a GPU
implementation for a special case of k-core decomposition.

3 Preliminaries

Hypergraph Notation. We denote an unweighted hyper-
graph by H(V,E), where V is the set of vertices and E is
the set of hyperedges. A weighted hypergraph is denoted
by H = (V, E, w), where w is a function that maps a hyper-
edge to a real value (its weight). The number of vertices in
a hypergraph is n,, = |V|, and the number of hyperedges
is n, = |E|. Vertices are assumed to be labeled from 0 to
n, — 1, and hyperedges from 0 to n, — 1. For undirected
hypergraphs, we use deg(e) to denote the number of vertices
a hyperedge e € E contains (i.e., its cardinality), and deg(v)
to denote the number of hyperedges that a vertex v € V be-
longs to. In directed hypergraphs, hyperedges contain incom-
ing vertices and outgoing vertices. For a hyperedge e € E,
we use N~ (e) and N*(e) to denote its incoming vertices
and outgoing vertices, respectively, and deg (e) = [N~ (e)|
and deg*(e) = [N*(e)|. We use N™(v) and N*(v) to denote
the hyperedges that v € V is an outgoing vertex and in-
coming vertex for, respectively, and deg” (v) = [N~ (v)| and
deg*(v) = |N"(v)|. We denote the size |H| of a hypergraph to
be ny, + Y. cp(deg™(e) + deg*(e)), i.e., the number of vertices
plus the sum of the hyperedge cardinalities.

Computational Model. We use the work-depth model [43]
to analyze the theoretical efficiency of algorithms. The work
of an algorithm is the number of operations used, and the
depth is the length of the longest sequence dependence. We
assume that concurrent reads and writes are supported.

By Brent’s scheduling theorem [14], an algorithm with
work W and depth D has overall running time W /P + D,
where P is the number of processors available. A parallel
algorithm is work-efficient if its work asymptotically matches
that of the best sequential algorithm for the problem, which
is important since in practice the W /P term in the running
time often dominates.

Parallel Primitives. Scan takes an array A of length n, an
associative binary operator &, and an identity element L

PPoPP °20, February 22-26, 2020, San Diego, CA, USA

such that 1 & x = x for any x, and returns the array (L, L &
Al0], Lo A[0] ® A[1], ..., L &2 A[i]) as well as the overall
sum, L ® ' A[i]. Filter takes an array A and a predicate f
and returns a new array containing a € A for which f(a) is
true, in the same order as in A. Scan and filter take O(n) work
and O(log n) depth (assuming @ and f take O(1) work) [43].

A compare-and-swap CAS(&x, o, n) takes a memory loca-
tion x and atomically updates the value at location x to n
if the value is currently o, returning true if it succeeds and
false otherwise. A fetch-and-add FAA(&x, n) takes a memory
location x, atomically returns the current value at x and then
increments the value at x by n. A wRITEMIN(&x, 1) takes a
memory location x, and a value n, and atomically updates x to
be the minimum of the value at x and n; it returns true if the
update was successful and false otherwise. We assume that
these operations take O(1) work and depth in our model, but
note that these operations can be simulated work-efficiently
in logarithmic depth on weaker models [37].

4 Hygra Framework

This section presents the interface and implementation of the
Hygra framework, which extends Ligra [81] to hypergraphs.
The Hygra interface is summarized in Table 1.

4.1 Interface

Hygra contains the basic VertexSet and HyperedgeSet data
structures, which are used to represent subsets of vertices
and hyperedges, respectively. VERTEXMAP takes as input a
boolean function F and a VertexSet U, applies F to all vertices
in U, and returns an output VertexSet containing all elements
from u € U such that F(u) = true. HYPEREDGEMAP is an
analogous function for HyperedgeSets.

VERTEXPRoOP takes as input a hypergraph H, a VertexSet
U, and two boolean functions F and C. It applies F to all
pairs (v, e) such that v € U, e € N*(v), and C(e) = true
(call this subset of pairs P), and returns a HyperedgeSet
U’ where e € U’ if and only if (v,e) € P and F(v,e) =
true. HYPEREDGEPROP takes as input a hypergraph H, a
HyperedgeSet U, and two boolean functions F and C. It
applies F to all pairs (e,v) such that e € U, v € N*(e),
and C(v) = true (call this subset of pairs P), and returns
a VertexSet U’ where v € U’ if and only if (e,v) € P and
F(e,v) = true. For weighted hypergraphs, the F function
takes the weight as the third argument.

We provide a function HyPEREDGEFILTERNGH that takes
as input a hypergraph H, a HyperedgeSet U, and a boolean
function C, and filters out the incident vertices v for each
hyperedge e € U such that C(v) = false. This mutates the hy-
pergraph, so that future computations will not inspect these
vertices. HYPEREDGEPROPCOUNT takes as input a hyper-
graph H, a HyperedgeSet U, and a function F, and applies F
to each neighbor of U in parallel. The function F takes two
arguments, a vertex v and the number of hyperedges in U

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

Julian Shun

Interface Description
VertexSet Represents a subset of vertices V' C V.
HyperedgeSet Represents a subset of hyperedges E’ C E.

VERTEXMAP(U : VertexSet, F : vertex — bool) :
VertexSet

Applies F(u) for each u € U; returns a VertexSet {u € U | F(u) = true}.

HypEREDGEMAP(U : HyperedgeSet,
F : hyperedge — bool) : HyperedgeSet

Applies F(u) for each u € U; returns a HyperedgeSet {u € U | F(u) = true}.

VERTEXPROP(H : hypergraph, U : VertexSet,
F : (vertex X hyperedge) — bool,
C : hyperedge — bool) : HyperedgeSet

Applies F(v, e) for each v € U, e € N*(v) where C(e) = true;
returns a HyperedgeSet {e | v € U,e € N*(v),C(e) = true, F(v, e) = true}.

HyPEREDGEPROP(H : hypergraph, U : HyperedgeSet,
F : (hyperedge X vertex) — bool,
C : vertex — bool) : VertexSet

Applies F(e, v) for each e € U, v € N*(e) where C(v) = true;
returns a VertexSet {v | e € U,v € N*(e), C(v) = true, F(e,v) = true}.

HyPEREDGEFILTERNGH(H : hypergraph,
U : HyperedgeSet, C : vertex — bool)

For each e € U, removes all v € N*(e) where C(v) = false
from the hypergraph.

HyPEREDGEPROPCOUNT(H : hypergraph,
U : HyperedgeSet, F : vertex X int — vertex X int) :
(vertex X int) array

Applies F to pairs (v, cnt), where v € N (U) and cnt is the number of
hyperedges in U that v is an outgoing vertex for; returns an array of
(vertex x int) pairs containing the non-null return values of applications of F.

MAKEBUCKETS(n : int, A: int array, I : ordering) :
buckets

Creates and returns a bucketing structure that iterates in order I storing
n vertices, where vertex v is stored in bucket A[v].

NEXTBUCKET(B : buckets) : (int, VertexSet)

Returns the bucket number of the next bucket in B
and a VertexSet containing the vertices in that bucket.

UPDATEBUCKETS(B : buckets, A : (vertex X int) array)

For each (v, bkt) € A, moves vertex v to bucket bkt in B.

Table 1. Summary of the Hygra interface.

that v is an outgoing vertex for, and returns a pair contain-
ing a vertex and an integer, either of which can be null (1).
The output of HYPEREDGEPROPCOUNT is an array of pairs
containing the non-null return values from applications of
F.

Hygra also supports the bucketing interface developed in
the Julienne framework [24]. Vertices are stored in buckets as-
sociated with bucket IDs, and algorithms can process buckets
in increasing or decreasing order. Vertices can be moved to
different buckets during the computation. The MAKEBUCK-
ETs function takes a size, an integer array A, and an ordering,
and creates a bucketing structure B that stores each vertex
v in bucket A[v]. The NExTBUCKET function takes a buck-
eting structure B and returns the next non-empty bucket in
the specified ordering. The UpDATEBUCKETS function takes
a bucketing structure B and an array of pairs (v, bkt), and
moves each vertex v from its original bucket to the bucket
with ID bkt. Julienne actually groups multiple buckets to-
gether into an overflow bucket and thus has a GETBUCKET
function determines the physical bucket from a logical bucket
ID, but for simplicity we will not use it in our discussion.

4.2 Implementation

A method for representing hypergraphs is to create a clique
among all pairs of vertices in each hyperedge and store the
result as a graph [41, 46]. However, this leads to a loss of

information compared to the original hypergraph as the
groups of vertices in hyperedges are no longer distinguished.
Furthermore, the space required to store the resulting graph
can be significantly higher than that of the original hyper-
graph [41, 46]. Another approach is to use a bipartite graph
representation with vertices in one partition and hyperedges
in the other, where each hyperedge connects to all vertices
belonging to it [41] (an example is shown in Figure 1b). This
is the approach that we adopt in this paper.

In the bipartite representation, there is an edge (u, ngh)
ifu € V and ngh € N*(u), or u € E and ngh € N*(u). The
edges for each element are stored in an adjacency array. We
also store the incoming edges for each vertex and hyperedge
to enable the direction optimization that we discuss in Sec-
tion 4.3. For weighted hypergraphs, we store the weights
interleaved with the edges in the bipartite representation for
cache locality. The hypergraph can be transposed using the
TrANSPOSE function, which swaps the roles of the incoming
and outgoing edges for all elements.

One implementation choice that we considered was to
directly pass bipartite graphs to the Ligra framework. How-
ever, this would either require hyperedges to have distinct
identifiers from vertices, making it unnatural to index arrays
in the application code, or require mapping the hyperedge
identifiers to the range [0, ..., n, — 1] on every array access,
leading to additional overhead on hyperedge accesses and

Practical Parallel Hypergraph Algorithms

more complicated application code. Instead, we modified
the Ligra code to distinguish between vertices and hyper-
edges and represent them using identifiers in the ranges
[0,...,n, —1]and [0, ..., n. — 1], respectively. We borrow
existing data structures and functions from Ligra, which we
describe here for completeness.

VertexSets (HyperedgeSets) have two underlying imple-
mentations: a sparse integer array storing the IDs of the
elements in the set, and a dense boolean array of length |V|
(|E|) storing 1’s in the locations corresponding to the IDs of
the elements in the set, and 0’s everywhere else.

Implementing VERTEXMAP and HYPEREDGEMAP simply
requires mapping the function over the input VertexSet or
HyperedgeSet, and applying a parallel filter on the result.
Assuming that the function takes O(1) work (which is true in
all of our applications), the overall work is O(|U|) and depth
is O(log |U|) for an input set U.

VERTEXPROP and HYPEREDGEPROP map the C function
over the outgoing edges of the input set and for the edges
that return true, applies the F function in parallel. A parallel
scan is applied over the degrees of elements in the input
to determine offsets into an array storing the neighbors. A
parallel filter is applied over the neighbors of F to obtain the
output set. For an input set U, and functions F and C that
take O(1) work (which is true in all of our applications), this
takes O(|U| + Y, ey deg™ (v)) work and O(log |H|) depth. We
can remove duplicates from the output in the same bounds.

HyPEREDGEFILTERNGH can be implemented by inspecting
all neighbors of each hyperedge in the input HyperedgeSet
in parallel and using a parallel filter to remove the vertices
not satisfying C. This takes the same work and depth as
HyPEREDGEPROP. HYPEREDGEPROPCOUNT requires the same
work and depth bounds as HYPEREDGEPROP as the counts
can be implemented using fetch-and-adds or a semisort [36].

We refer the reader to [24] for implementation details of
the bucketing structure. For the complexity of bucketing, we
will use the following lemma from [24]:

Lemma 1 ([24]). For n identifiers, T total buckets, K calls
to UPDATEBUCKETS, each of which updates a set S; of identi-
fiers, and L calls to NEXTBUCKET, bucketing takes O(n + T +
Zﬁo |S:]) expected work and O((K + L) log n) depth with high
probability.

4.3 Optimizations

VERTEXPROP and HYPEREDGEPROP uses the direction opti-
mization [6, 81] to switch between a sparse traversal (de-
scribed in Section 4.2) and a dense traversal based on the
size of the input VertexSet or HyperedgeSet and the sum of
its out-degrees. For VERTEXPROP, the dense traversal loops
over all hyperedges e in parallel, checking if they satisfy
the C function, and if so applying F on its incoming edges
serially, stopping once C(e) returns false. We use the dense
traversal when the input set and sum of its out-degrees is

PPoPP °20, February 22-26, 2020, San Diego, CA, USA

a constant fraction (1/20 in our experiments) of the sum of
in-degrees of hyperedges (which preserves work-efficiency),
and the sparse traversal otherwise. The sum of out-degrees
is computed using a parallel scan. We have an analogous
implementation for HYPEREDGEPROP. The sparse traversals
use the sparse set representation, and the dense traversals
uses the dense set representation. The input set is converted
between the representations based on the traversal type.

For the dense traversals, instead of simply mapping over
the vertices with a parallel-for loop, we added an edge-
aware parallelization scheme that creates tasks containing
a roughly equal number of edges that are managed by the
work-stealing scheduler [98]. We found this optimization to
significantly improve load balancing for hypergraphs with
highly-skewed degree distributions.

As in Ligra, we also provide a push-based dense traversal
that densely represents the input set but loops over their out-
going edges, instead of over incoming edges of all vertices.

For VERTEXPROP and HYPEREDGEPROP, we use optimized
versions that do not remove duplicates that can be used if
the program guarantees that no duplicates will be gener-
ated in the output. When the output of VERTEXMAP, HYPER-
EDGEMAP, VERTEXPROP, and HYPEREDGEPROP is not needed,
we use optimized implementations that do not call filter.

To reduce memory usage, Hygra supports compression of
the underlying bipartite graph using the compression code
from Ligra [83]. The neighbors of vertices and hyperedges
are compressed using variable-length codes, and decoded on-
the-fly when accessed in VERTEXPROP and HYPEREDGEPROP.

5 Parallel Hypergraph Algorithms

We have designed a collection of parallel hypergraph algo-
rithms using Hygra: betweenness centrality (BC), maximal
independent set (MIS), k-core decomposition, hypertrees, hy-
perpaths, connected components (CC), PageRank, and single-
source shortest paths (SSSP). Our algorithms for betweenness
centrality and k-core decomposition are new, while the con-
nected components, PageRank, and single-source shortest
paths algorithms are more efficient variants of previously
described hypergraph algorithms [41, 46] and are similar
to the corresponding graph algorithms in Ligra. The hy-
pertrees and hyperpaths algorithms are similar to parallel
breadth-first search on graphs. The maximal independent
set algorithm is the first practical implementation for finding
maximal independent sets in hypergraphs. We provide pseu-
docode for several of the algorithms and the pseudocode uses
partially evaluated functions, i.e., invoking a function with
fewer than all of its arguments gives a function that takes
the remaining arguments as input. The reader may skip any
of the algorithms in this section without loss of continuity.

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

5.1 Betweenness Centrality

The betweenness centrality (BC) [29] of a vertex v measures
the fraction of shortest paths between all pairs of vertices
that pass through v. In this paper, we consider BC on un-
weighted hypergraphs, although the definition extends to
weighted hypergraphs. More formally, let o5, ; be the num-
ber of shortest paths between vertices s and ¢, o5 ;(v) be the
number of shortest paths between s and ¢ that pass through
v, and & ;(v) = 05,+(v)/0s,+. The betweenness centrality
of vertex v is defined to be . .;cv Js,:(v). Brandes [13]
presents a sequential algorithm for computing BC on graphs
that takes O(|V||E|) work, where each vertex v does a for-
ward traversal to compute the number of shortest paths from
v to every other vertex, and a backward traversal to com-
pute the betweenness centrality contributions for all vertices
from shortest paths starting at v. Each traversal takes O(|E|)
work. Brandes defines the dependency of a vertex s on v as
0se(V) = 2 sev Is.+(v), and the traversals from s compute Je
values for all other vertices. The betweenness centrality of a
vertex v will then be Y .y dse(v). This algorithm has been
parallelized in the literature (see, e.g., [69, 81, 88, 90]).

Puzis et al. [74] present a sequential algorithm for comput-
ing betweenness centrality in hypergraphs based on Bran-
des’ algorithm. In the forward phase, a breadth-first search-
like procedure is run, generating a predecessor set for each
vertex and hyperedge containing all elements in the pre-
vious level of the search. Let Py (v) be the predecessor hy-
peredges of vertex v and Pg(e) be the predecessor vertices
of hyperedge e for the search from source s. o5, will be
computed as 3\, epy(e) : ecpy (v) Os.u- Lhis phase takes O(n,, +
Yeck (deg*(e) - deg™(e))) work as each hyperedge is expanded
once per incoming vertex. Note that this work complexity
can be super-linear in the size of the hypergraph. The back-
ward phase computes the dependency scores by iteratively
propagating values from vertices to their predecessor hy-
peredges, and from hyperedges to their predecessor vertices
starting from the furthest elements from the source. The
update equation for a hyperedge e is shown in Equation 1
and for a vertex v is shown in Equation 2.

Ose (V)

b=) = m
v:eePy(v) ¢
Se@) =1+ > (o5,0-b5(e))
e : vePg(e)

By separating the vertex and hyperedge updates, each
hyperedge and vertex only needs to be processed once, and
the total work of the backward phase is O(|H|). Puzis et
al. [74] also propose a heuristic for merging vertices belong-
ing to only a single hyperedge together, but the theoretical
complexity remains the same.

In this section, we present a new parallel BC algorithm on
hypergraphs that takes linear work per source vertex. We

Julian Shun

represent vertices and hyperedges at equal distance from
the source as frontiers using VertexSets and HyperedgeSets,
and process each frontier in parallel. We split the updates
in the forward phase into separate update steps for vertices
and hyperedges, so that each hyperedge only needs to be
expanded once, giving linear work. The backward phase pro-
cesses the frontiers in decreasing distance from the source,
using fetch-and-adds to update the 35 and J;, values. Com-
puting exact BC scores would require running the algorithm
from all sources, although in practice a subset of sources are
used to compute approximate BC scores [4, 32]. As far as we
know, this is the first parallel BC algorithm on hypergraphs.
Our algorithm also uses direction optimization, in contrast
to the original sequential algorithm of Puzis et al. [74].

The pseudocode for our BC algorithm from a single source
is shown in Algorithm 1. We initialize auxiliary arrays as
well as the DependenciesV array storing the final dependency
scores on Lines 1-6. The forward phase of the algorithm is
shown on Lines 22-37. We first set the number of paths
for the source vertex to 1, mark it as visited, and place it
on the initial frontier, represented as a VertexSet (Lines 22—
23). While there are still reachable hyperedges and vertices,
we repeatedly propagate the number of paths from vertices
to hyperedges via VERTEXPROP on Line 27 and from hy-
peredges to vertices via HYPEREDGEPROP on Line 31. The
function PATHUPDATE (Lines 8-9) passed to VERTEXPROP
and HYPEREDGEPROP increments the number of paths of a
successor element using a fetch-and-add. In contrast to [74],
we first gather the number of paths at a hyperedge from all
of its predecessor vertices before passing it to its successor
vertices. In this way, a hyperedge only needs to visit each of
its successor vertices once, passing the sum of all contribu-
tions from predecessor vertices. Duplicates in the output do
not need to be removed as PATHUPDATE returns true only for
the first update on the target. The CHECK function (Lines 10-
11) passed to VERTEXPROP and HYPEREDGEPROP guarantees
that only unexplored vertices and hyperedges are visited.
We mark visited hyperedges and vertices on Lines 29 and 33,
respectively, to ensure that each hyperedge and vertex is vis-
ited at most once. Each frontier that is explored is placed in
the Levels array, so that we can explore them in a backward
fashion in the second phase of the algorithm.

The backward phase of the algorithm is shown on Lines 35-
44. We reuse the arrays VisitedV and VisitedE (Line 35). We
transpose the hypergraph (Line 36) and explore the frontiers
from the first phase in a backward fashion. Line 40 uses a
VERTEXMAP with the VIsITVERTEXBACK function (Lines 14—
16) to mark vertices on the frontier as visited and add 1 to
their dependency score, as required in Equation 2. Line 41
uses a VERTEXPRoP with the VTOE function (Lines 17-18)
on predecessors (obtained by considering unexplored ver-
tices via the CHECK function), which implements Equation 1.
Line 43 marks hyperedges on the frontier as visited with

Practical Parallel Hypergraph Algorithms

Algorithm 1 Pseudocode for BC in Hygra

1: NumPathsV = {0, ...,0}
2: NumPathsE = {0, ...,0}
3: VisitedV = {0, ...,0}
4: VisitedE = {0, ..., 0}
5: DependenciesV = {0, ...,0}
6: DependenciesE = {0, ..., 0}
7: Levels = []
8: procedure PATHUPDATE(NumPathsSrc, NumPathsDst, s, d)
9: return (FAA(&NumPathsDst[d], NumPathsSrc[s]) == 0)
10: procedure CHECK(Visited, i)
11: return (Visited[i] == 0)
12: procedure Visit(Visited, i)
13: Visited[i] = 1
14: procedure VISITVERTEXBACK(v)
15: Visited[v] = 1
16: DependenciesV[v]+=1
17: procedure VTOE(v, e)
18: FAA(&DependenciesE[e], DependenciesV[v]/NumPathsV[v])
19: procedure EToV(e, v)
20: FAA(&DependenciesV[v], DependenciesE[e] X NumPathsV[v])
21: procedure BC(H, src) > src is the source vertex
22: NumPathsV|src] = 1, VisitedV[src] = 1
23: VertexSet FrontierV = {src}
24: HyperedgeSet FrontierE = {}
25: currLevel = 0
26: while (true) do
27: FrontierE = VERTEXPROP(H, FrontierV,
ParaUppAaTE(NumPathsV, NumPathsE), Cueck(VisitedE))
28: if |FrontierE| == 0 then break
29: HyPEREDGEMAP(FrontierE, VisiT(VisitedE))
30: Levels| currLevel++] = FrontierE
31: FrontierV = HYPEREDGEPROP(H, FrontierE,
PaTHUPDATE(NumPathsE, NumPathsV'), CHECK(VisitedV))
32: if |FrontierV| == 0 then break
33: VERTEXMAP(FrontierV, VisiT(VisitedV))
34: Levels[currLevel++] = FrontierV
35: VisitedV = {0, ..., 0}, VisitedE = {0, ..., 0}
36: TrANSPOSE(H)
37: currLevel = currLevel — 1
38: while currLevel > 0 do
39: FrontierV = Levels| currLevel--]
40: VERTEXMAP(FrontierV, VISITVERTEXBACK)
41: VERTEXPROP(H, FrontierV, VToE, CHECK(VisitedE))
42: FrontierE = Levels| currLevel--]
43: HYPEREDGEMAP(FrontierE, VisIT(VisitedE))
44: HyPEREDGEPROP(H, FrontierE, EToV, CHECK(VisitedV))
45: return DependenciesV

a HYPEREDGEMAP. Finally, Line 44 implements the sum in
Equation 2 with the EToV function (Lines 19-20) on prede-
cessors.

Analysis. We analyze the complexity for a single source ver-
tex. In the forward phase of BC, each vertex and hyperedge
will appear in at most one frontier because once a vertex
or hyperedge has been visited, its VisitedV or VisitedE en-
try will be marked, and it will fail the check by the CHECk
function in subsequent iterations. Therefore the sum of the

PPoPP °20, February 22-26, 2020, San Diego, CA, USA

sizes of all frontiers plus their out-degrees will be O(|H|). As
VERTEXPROP and HYPEREDGEPROP do work proportional to
the size of the input set plus the sum of its out-degrees, the
overall work performed by the algorithm is O(|H|), which
is work-efficient. Each call to VERTEXPROP and HYPEREDGE-
Prop takes O(log |H|) depth, and so the overall depth is
O(D log |H|) where D is the diameter of the hypergraph. The
backward phase processes each frontier exactly once, giving
the same work and depth bounds. Thus, the overall work is

O(|H|) and depth is O(D log |H|).

5.2 Maximal Independent Set

Given an undirected, unweighted hypergraph, an indepen-
dent set is a subset of vertices U C V such that no hyperedge
has all of its incident vertices in U. In a graph, this defini-
tion is equivalent to the condition that no two vertices in an
independent set are neighbors, although this does not hold
for hypergraphs (a hyperedge may have multiple incident
vertices included in an independent set as long as not all of
its incident vertices are included). A maximal independent
set (MIS) is an independent set that is not contained in a
larger independent set. Finding maximal independent sets
in parallel has been widely studied for graphs, and there ex-
ists linear-work parallel algorithms for the problem [10, 62].
However, the problem is much harder to solve on hyper-
graphs, and the total work of known parallel algorithms is
super-linear [5, 9, 48, 50]. These algorithms have only been
described in theory, and as far as we know, there have been
no implementations of parallel MIS algorithms on hyper-
graphs.

This paper implements a variant of the Beame-Luby MIS
algorithm [5], which is a core component of a more recent
algorithm by Bercea et al. [9]. The algorithm is iterative and
performs the following steps in each iteration:

(1) Generate a sample of vertices I, each sampled with prob-
ability p = 1/(24*1A), where d = max,c deg(e) and A is
the normalized degree as defined in [5, 9].

(2) For any hyperedge e that has all of its vertices in I, re-
move all vertices in e from I.

(3) Add the remaining vertices in I to the MIS and delete
them from V.

(4) Remove the vertices in I from all remaining hyperedges.

(5) Remove hyperedges whose vertices is a subset of another
hyperedge’s vertices.

(6) Remove hyperedges that contain only one vertex, and
remove those vertices from V.

Our implementation picks vertices with a constant proba-
bility p = 1/3 as we found that it performs better in practice,
and does not perform Step (5), which is not needed for cor-
rectness. The pseudocode is shown in Algorithm 2.

Our implementation uses a Flags array to represent the
status of vertices, with a value of Flags[v] = 0 meaning
that v is undecided, Flags[v] = 1 indicating that v is not

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

Algorithm 2 Pseudocode for MIS in Hygra

1: Flags={0,...,0}
2: Counts = {0, ...,0}
3: procedure SAMPLE(round, v)
4: With probability p, set Flags[v] = round
5: procedure CounT(e, v)
6: FAA(&Counts[e], 1)
7: procedure RESETNGH(e, v)
8: Flags[v] =0
9: procedure FILTERV(v)
10: return (Flags[v] == 0)
11: procedure FILTERE(e)
12: if (deg(e) == 1 and Flags[ngh(e)] == 0) then
13: Flags[nghy(e)] = 1
14: return (deg(e) > 1)
15: procedure IND(e)
16: return (Counts[e] == deg(e))
17: procedure RESET(e)
18: Counts[e] = 0
19: procedure CHECKF(round , v)
20: return (Flags[v] == round)
21: procedure MIS(H)
22: VertexSet FrontierV = {0, ..., n, — 1} > all vertices
23: HyperedgeSet FrontierE = {0, . . ., ne — 1} > all hyperedges
24: round = 1
25: while (|FrontierV| > 0) do
26: round++
27: VERTEXMAP(FrontierV, SAMPLE(round))
28: HyPEREDGEMAP(FrontierE, RESET)
29: HyPEREDGEPROP(H, FrontierE, COUNT, CHECKF(round))
30: HyperedgeSet FullEdges = HYPEREDGEMAP(FrontierE, IND)
31: HyPEREDGEPROP(H, FullEdges, RESETNGH, CHECKF(round))
32: HyPEREDGEFILTERNGH(H, FrontierE, FILTERV)
33: FrontierE = HYPEREDGEMAP(FrontierE, FILTERE)
34: FrontierV = VERTEXMAP(FrontierV, FILTERV)

35: return Flags

in the MIS, and any other value indicating that v is in the
MIS. Flags is initialized to all 0’s on Line 1. We also initial-
ize an auxiliary array Counts, which will be used to count
the number of incident vertices of hyperedges selected in
the random sample (Line 2). We create initial frontiers con-
taining all vertices and hyperedges (FrontierV and FrontierE
on Lines 22-23). We also keep track of the round number
(Lines 24 and 26). Line 27 uses a VERTEXMAP with the func-
tion SAMPLE (Lines 3-4) to sample vertices by marking their
Flags value with the round number with probability p. We
reset the Counts values for hyperedges on the frontier on
Line 28. On Line 29, we count for each hyperedge the num-
ber of its vertices that were selected in the sample for this
round using HYPEREDGEPROP with the CounT (Lines 5-6)
and CHECKF (Lines 19-20) functions. We then check which
hyperedges had all of their vertices selected in the sample
on Line 30 with a HYPEREDGEMAP with the IND function
that checks if the count is equal to the hyperedge’s cardi-
nality (Lines 15-16). The HyperedgeSet FullEdges contains

Julian Shun

the hyperedges where this is true, and we unmark the Flags
values of their vertices on Line 31 using HYPEREDGEPROP
with the RESETNGH function (Lines 7-8). On Line 32, we
remove vertices that have been selected in the MIS from the
hyperedges using HYPEREDGEFILTERNGH with the FILTERV
function (Lines 9-10), so that we do not need to process them
in future rounds. Line 33 updates the hyperedge frontier by
filtering out hyperedges with cardinality 0 and 1 using the
FiLTERE function (Lines 11-14). For hyperedges with cardi-
nality 1 we mark their only vertex (ngh,) as not being in the
MIS. Line 34 updates the vertex frontier with the FILTERV
function by filtering out vertices whose status has already
been decided. The algorithm terminates when the status of
all vertices have been decided, at which point FrontierV will
be empty.

5.3 k-core Decomposition

For an undirected, unweighted hypergraph, a k-core is a
maximal connected sub-hypergraph where every vertex has
induced degree at least k. The coreness problem is to compute
for each vertex the largest value of k for which it is part of the
k-core. A simple parallel algorithm for coreness iteratively
removes all vertices with degree at most k along with their
incident hyperedges starting with k = 0, assigning removed
vertices a coreness value of k, and incrementing k when all
remaining vertices have induced degree greater than k [45].
Since each iteration requires scanning over all remaining
vertices, this algorithm requires a total of O(|H|+ p|V|) work,
where p is the number of iterations required by the algorithm,
also known as the peeling complexity [24].

This section presents a new linear-work algorithm for
computing coreness on hypergraphs based on the linear-
work algorithm for graphs by Dhulipala et al. [24]. We have
also implemented the O(|H| + p|V|) work coreness algorithm
in Hygra, and compare the performance of the O(p|H|) work
algorithm and the work-efficient algorithm in Section 6. To
obtain work-efficiency, our algorithm uses the bucketing
data structure described in Section 4. The pseudocode of our
algorithm is shown in Algorithm 3.

An array D is initialized with the degrees of the vertices
(Line 1). This array will keep track of the induced degrees of
the vertices, and also store the final coreness value of the ver-
tices. An array Flags (Line 2) is used to keep track of whether
a hyperedge has been deleted (0 means not deleted and 1
means deleted). Line 13 initializes the bucketing structure,
specifying that they should be processed in increasing order.
Line 15 gets the next non-empty bucket in increasing order,
and returns k, which corresponds to the current k-core be-
ing processed, as well as vertices with degree at most k in a
VertexSet FrontierV. Line 17 marks the neighboring vertices
of FrontierV as deleted using VERTEXPROP with the func-
tions REMOVEHYPEREDGE (Lines 3-4) and CHECKREMOVED
(Lines 5-6). Hyperedges that are deleted will be returned in
the HyperedgeSet FrontierE, and duplicates do not need to

Practical Parallel Hypergraph Algorithms

Algorithm 3 Pseudocode for Coreness in Hygra

1: D = {deg(vy), . . ., deg(vn,-1)} > initialized to vertex degrees
2: Flags={0,...,0} > initialized to all 0
3: procedure REMOVEHYPEREDGE(v, e)

4: return CAS(&Flags[e], 0, 1)

5: procedure CHECKREMOVED(e)

6: return (Flags[e] == 0)

7: procedure UpDATED(k, v, numNghs)

8: if D[v] > k then

9: Dl[v] = max (D[v] — numNghs, k)
10: return (v, D[v])
11: else return (L, 1)
12: procedure COrRENEsS(H)
13: B = MAKEBUCKETS(n,, D, INCREASING), finished = 0
14: while (finished < ny) do
15: (k, VertexSet FrontierV) = NEXTBUCKET(B)
16: finished+=|FrontierV|
17: HyperedgeSet FrontierE = VERTEXPROP(H, FrontierV,

REMOVEHYPEREDGE, CHECKREMOVED)

18: Moved = HYPEREDGEPROPCOUNT(H, FrontierE, UPDATED(k))
19: UrpATEBUCKETS(B, Moved)

20: return D

be removed, since the CAS on Line 4 will return true exactly
once per hyperedge. On Line 18, we update the induced de-
grees of the vertices due to the removal of hyperedges using
a HyPEREDGEPROPCOUNT. The UPDATED function (Lines 7—
11) will decrement the induced degree of each vertex v by
its number of neighbors in FrontierE (numNghs), and set it
to k if it falls below k, since this means v will have a core-
ness value of k. UPDATED returns a pair indicating the target
bucket of the vertex v, which is its new induced degree D[v]
(Line 10). For vertices whose coreness value have already
been determined, the null pair (L, 1) is returned (Line 11).
The non-null pairs are stored in the Moved array output by
HypPEREDGEPROPCOUNT. Line 19 moves the vertices to new
buckets using UPDATEBUCKETS with the Moved array as in-
put. The algorithm terminates when all vertices have been
extracted from the bucket structure and processed.

Analysis. Each hyperedge will place each of its incident
vertices in the Moved array only when it is deleted. There-
fore the total size of the sets passed to UPDATEBUCKETS
is O(3 . < deg(e)). The number of identifiers in the bucket
structure is n, and the number of buckets is at most the
maximum vertex degree, which is O(n,.). The total number
of calls to UpDATEBUCKETS and NEXTBUCKET is the peeling
complexity p. Using Lemma 1, we obtain an expected work

of O(|H|) and depth of O(p log |H|) with high probability.

5.4 Hypertrees

Given an unweighted hypergraph and a source vertex src,
a hypertree contains all vertices and hyperedges reachable
from src [30]. An algorithm that computes a hypertree out-
puts predecessor arrays for vertices and hyperedges, which
specify one of its predecessors in a shortest path from src.

PPoPP °20, February 22-26, 2020, San Diego, CA, USA

The predecessor of a hyperedge is a vertex, and vice versa.
The sequential algorithm for generating hypertrees is similar
to a breadth-first search, and takes linear work in the size
of the hypergraph [30]. Vertices are visited in order of their
distance from the source, and each hyperedge is processed
only the first time that a vertex visits it.

A parallel algorithm can be obtained by processing all ver-
tices or hyperedges at the same distance from the source in
parallel. This algorithm can be naturally implemented in Hy-
gra using the VERTEXPROP and HYPEREDGEPROP functions.
The frontier of vertices or hyperedges at the same distance
from src are maintained using VertexSets and Hyperedge-
Sets. The algorithm is similar to Ligra’s parallel breadth-first
search implementation.

Each vertex and hyperedge will appear in at most one
frontier and therefore the sum of the sizes of all frontiers
plus their out-degrees is O(|H|). As VERTEXPROP and HYPER-
EDGEPROP do work proportional to the size of the input set
plus the sum of its out-degrees, the overall work performed
by the algorithm is O(|H|), which is work-efficient. Each
call to VERTEXPROP and HYPEREDGEPROP takes O(log |H|)
depth, and so the overall depth is O(Dlog |H|) where D is
the diameter of the hypergraph.

5.5 Hyperpaths

Given an unweighted hypergraph and a source vertex src, a
hyperpath tree is a maximal hypergraph containing all ver-
tices reachable from src via cycle-free paths (i.e., no vertex
appears in more than one hyperedge along any particular
path) [30]. The sequential algorithm for computing hyper-
path trees [30] visits a hyperedge only when all incoming
vertices of the hyperedge have visited it (instead of the first
time an incoming vertex visits it). The algorithm takes linear
work in the size of the hypergraph.

We implement a parallel algorithm for computing a hy-
perpath tree in Hygra, which requires minor changes to our
hypertree algorithm so that a hyperedge is added to a fron-
tier only when all of its incoming vertices have visited it.
The overall work of the algorithm is O(|H|) and depth is
O(Llog |H|), where L is the length of the longest simple path
in the resulting hyperpath tree.

5.6 Connected Components

Given an undirected, unweighted hypergraph, a connected
component is a maximal set of vertices that can all reach
one another via incident hyperedges. The label propagation
technique can be used to compute the connected components
of a hypergraph [41, 46]. The idea is to initialize vertices with
unique IDs and iteratively propagate IDs of vertices to their
neighbors, having each vertex store the minimum ID among
the IDs that it receives and its own. At convergence, the IDs
on the vertices partition them into connected components.

We implement the label propagation algorithm in Hygra,
but we note that there are more efficient parallel algorithms

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

for connected components for graphs (e.g., [80, 82]) that
could be applied to hypergraphs. Our implementation itera-
tively propagates vertex IDs to hyperedges and hyperedge
IDs to vertices using VERTEXPROP and HYPEREDGEPROP, re-
spectively, with the wRITEMIN function until the frontier
becomes empty. The output frontier of VERTEXPROP and
HyPEREDGEPROP contain only the elements whose IDs have
changed. The vertex IDs are initialized to be unique integers,
and the hyperedge IDs are initialized to co. Each iteration of
the algorithm takes O(|H|) work and O(log |H|) depth as the
calls to VERTEXPROP and HYPEREDGEPROP could potentially
process all vertices and hyperedges. For a hypergraph with
diameter D, the overall work is O(D|H|) and overall depth
is O(Dlog |H|).

5.7 PageRank

PageRank is an algorithm for computing the importance
of vertices in a graph [16], and can be extended to hyper-
graphs [8, 41, 46]. We consider PageRank on unweighted,
connected hypergraphs. The following update equations de-
fines the algorithm for a damping factor 0 < o < 1:

1 -
PR[v] (3
ve NZ(U) deg*(e)
PR[v]
PR[e] = — (4)
v (o) P97 (@)

Vertices spread their ranks equally to hyperedges for which
they are incoming vertices for in Equation 4, and hyperedges
spread their ranks equally to outgoing vertices in Equation 3.
The update equations are applied iteratively until some con-
vergence criterion is met (e.g., a maximum number of itera-
tions is reached or the error falls below some threshold).

We implement PageRank in Hygra by iteratively calling
VERTEXPROP to pass PageRank values from vertices to hy-
peredges and HYPEREDGEPROP to pass PageRank values from
hyperedges to vertices. We also use VERTEXMAP to normalize
the PageRank scores as required in Equation 3, and use VER-
TEXMAP and HYPEREDGEMAP to reset arrays. We can also im-
plement the PageRank-Entropy algorithm from MESH [41],
which computes the entropy of the ranks of vertices in each
hyperedge. This can be done with a VERTEXPRoP call that
passes the entropy contribution of each vertex’s rank to each
hyperedge that it is an incoming vertex for.

Each iteration of PageRank (and PageRank-Entropy) pro-
cesses all vertices and hyperedges using VERTEXPROP and
HypPeREDGEPROP. Therefore, the per-iteration work is O(|H|)
and depth is O(log |H]|).

5.8 Single-Source Shortest Paths

Given a weighted hypergraph and a source vertex src, the
goal of single-source shortest paths (SSSP) is to compute the
distance of the shortest path from src to every other reachable
vertex in the hypergraph. We implement a parallel SSSP

Julian Shun

algorithm for hypergraphs in Hygra based on the Bellman-
Ford algorithm for SSSP on graphs [20].

The algorithm initializes tentative shortest path distances
(SP) of all vertices and hyperedges to co, except for the source
vertex which has a distance of 0. Each iteration processes
the active vertices, which are the vertices whose SP value
changed in the previous iteration. Initially, only the source
vertex is active. On each iteration, the algorithm calls VER-
TEXPROP with a RELAX function, which uses WRITEMIN to
update the SP values of all hyperedges with active incoming
vertices to the minimum of their original SP value and the SP
value of the incoming vertex plus the weight of the hyper-
edge. It then calls HYPEREDGEPROP to update the SP values
of outgoing vertices of hyperedges that were just updated
using the same RELAX procedure. If no SP values change
in an iteration then the shortest path distances have been
found, and the algorithm terminates. If the algorithm hasn’t
terminated after n,, — 1 iterations, then that means there is
a negative weight cycle, and the algorithm reports this and
terminates. The work of this algorithm is O(n,,|H|) as each
iteration can process all vertices and hyperedges, and the

depth is O(n,, log |H|).

6 Experiments

Experimental Setup. We run all of our experiments on a 72-
core Dell PowerEdge R930 (with two-way hyper-threading)
with four 2.4GHz 18-core E7-8867 v4 Xeon processors, each
with a 45MB cache. The machine has a total of 1TB of RAM.
Our programs use Cilk Plus [58] for parallelism and are com-
piled with the g++ compiler (version 5.5.0) with the -03 flag.
By using Cilk’s work-stealing scheduler we are able obtain
an expected running time of W/P + O(D) for an algorithm
with W work and D depth on P processors [11]. Hygra also
supports compilation with OpenMP.

For the parallel experiments, we use the command numactl
-i all to balance the memory allocations across the sock-
ets. All of the parallel speedup numbers that we report are
based on the running time on 72-cores with hyper-threading
compared to the running time on a single thread.

Data Sets. Our input hypergraphs are shown in Table 2. com-
Orkut and Friendster are constructed using the community
data from the Stanford Large Network Dataset Collection
(SNAP) [59], where each community is a hyperedge con-
taining its members as vertices. These are the largest real-
world datasets used by prior work on hypergraph process-
ing [41, 46]. We also include three larger real-world datasets,
orkut-groups, Web, and LiveJournal, which are constructed
from bipartite graphs from the Koblenz Network Collec-
tion (KONECT) [55]. To test on larger inputs, we also con-
structed synthetic random hypergraphs. Rand1 and Rand2
have 10% and 10° vertices/hyperedges, respectively, where
the cardinality of each hyperedge is 10 and its member
vertices are chosen uniformly at random. Rand3 has 10’

Practical Parallel Hypergraph Algorithms

PPoPP °20, February 22-26, 2020, San Diego, CA, USA

Hypergraph V] |E| eEE deg(e) max deg(v) max deg(e) | Num. peeling rounds (p) | Num. clique-expanded edges
com-Orkut | 232 x10° | 1.53 x107 | 1.07 x10° 2958 9120 1698 3.87 X101
Friendster | 7.94 X10° | 1.62 x10% | 2.35 x107 1700 9299 351 5.53 x10°
Orkut-group | 2.78 x10° | 8.73 x10° | 3.27 x108 40425 3.18x10° 2923 2.45 x1012
Web 2.77 X107 | 1.28 x107 | 1.41 x10® 1.1 x10° 1.16x107 3.18 x10° 1.06 x10™
LiveJournal | 3.20 x10° | 7.49 x10° | 1.12 x108 300 1.05%10° 820 2.7 X102
Rand1 108 108 10° 34 10 30 4.45 x10?
Rand2 10° 10° 1010 35 10 33 4.5 x101°
Rand3 107 107 10° 153 100 109 4.95 x101°
Table 2. Hypergraph inputs.
vertices/hyperedges, and the cardinality of each hyperedge 1000 ‘ ‘ ‘ " Thypertree
is 100 with its member vertices chosen uniformly at ran- _ BG -
dom. For input size scalability experiments, we also gen- B 100 PageSRSaSnIP< —
erated random hypergraphs with varying sizes and hyper- g MIS
edge cardinalities. For SSSP, we use weighted versions of % ~ Y_’E k-core =~
the hypergraphs with random hyperedge weights from 1 to E 10¢f IAEEEEEEEEE
|log,(max (n, ny))]. The inputs are all undirected. g —
j L .
Results. Table 3 shows the sequential and parallel running & !
times of our algorithms, as well as their parallel speedup. The
BC times are for a single source, and PageRank times are for 0.1 ‘ ‘ ‘ e
1 2 4 8 16 2432 48 72 72h

1 iteration. For k-core, we include times for both the work-
efficient (WE) version and the work-inefficient (WI) version.
We did not include hyperpaths in our experiments because
the hyperpaths found in the inputs are too small to give
meaningful running times. For the Orkut-group, Web, and
LiveJournal inputs, we used the edge-aware parallelization
scheme due to their highly skewed degree distributions.

Overall, the algorithms get good parallel speedup, rang-
ing from 8.5-76.5x, and the parallel times on the real-world
inputs are usually under 1 second. The random hypergraphs
are larger than hypergraphs used in prior work, and we are
able to achieve parallel running times on the order of seconds
for Rand1 and Rand3 and tens of seconds for Rand2. The
lower speedups for k-core on the real-world inputs are due
to the large number of peeling rounds (see Table 2), many of
which have few active vertices and hyperedges.

We see that our work-efficient k-core algorithm is usually
much faster than the work-inefficient version, by a factor
of up to 733x in parallel, as it does less work. The benefit
is higher for the inputs with more peeling rounds (e.g., the
Web hypergraph).

Figure 2 shows the running time vs. number of threads
for all of the algorithms on Rand1. We see good parallel
scalability for all of the algorithms, with speedups ranging
from 31-53x on 72 cores with hyper-threading.

Figure 3 shows the running time vs. hyperedge count
for all of the algorithms on random hypergraphs with 107
vertices and cardinality-10 hyperedges (we also tried fixing
the vertex and hyperedge count and varying the cardinality,
and found similar trends). We see a near-linear increase in
running time on all of the algorithms except hypertree and
k-core, which have a sub-linear increase. For hypertree, the

Number of threads

Figure 2. Running time vs. number of threads on Rand1.
“72h” refers to 144 hyper-threads.

4.5
4t
cC

3.5 PageRank —
SSSP -~

3T MIS
o5 | WE k-core ~
2
1.5
1

Running time (seconds)

Millions of hyperedges

Figure 3. Running time vs. number of hyperedges on 72
cores with hyper-threading.

number of edges traversed increases sub-linearly due to the
direction optimization that avoids many edge traversals. For
k-core, the peeling complexity, and hence running time, does
not increase linearly with the number of hyperedges.
Figures 4 and 5 show the impact of the direction optimiza-
tion on com-Orkut and LiveJournal. We plot the running
time using all sparse traversals, all dense traversals, and hy-
brid traversals with the default threshold of 1/20 fraction of
the sum of in-degrees of the hyperedges for VERTEXPROP
and sum of in-degrees of vertices for HYPEREDGEPROP. For

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

com-Orkut

Friendster

Rand1

Rand2

Rand3

Orkut-group

Web

Julian Shun

LiveJournal

Algorithm

Ti [T5o1 [SU

Ty [Tpn | SU

T [Tpn[SU

T; [Tpon[SU

T; [Tpn [SU

Ti [Tpn|SU

Ti [Tpn|SU

Ti [Tpn|SU

Hypertree
BC
cC
PageRank
SSSp
MIS
WE k-core
WI k-core

1.04(0.03133.5
5.31|0.12 |44.3
7.87(0.162148.6
3.31|0.083|39.9
8.81]0.157|56.1
7.7310.227|34.1
7.09(0.738(9.61
33.9| 1.88 |18.0

0.803(0.022{36.5
2.7 |10.07 |38.6
3.34 |10.08240.5
0.941(0.026(36.2
3.54 |0.107|76.5
3.26 | 0.11 {29.6
2.09 |0.08125.8
9.7210.421|23.1

24.3 10.676|35.9
131.0| 3.72 |35.2
330.0] 9.88 |33.4
84.1|2.61 (32.2
290.0| 6.76 |43.3
154.0| 4.19 {36.8
116.0| 2.17 |53.5
133.0| 3.4 [39.1

321(8.9735.8
1890 39.4 |48.0
4190 121 |34.6
955 |28.6(33.4
5730|79.8|71.8
1680(44.5|37.8
2210|31.8|69.5
1150{33.6 |34.2

40.8
70.5
57.3| 1.6
54.0| 1.0
68.0
41.0/0.866(47.3
87.3

2.18]0.047|46.4
49.8
65.9
35.8
54.0
62.4

0.82
1.07

1.09

1.18

74.0

0.551{0.021{26.2
7.58 10.141(53.8
11.6 | 0.18 |64.4
6.88 10.119(57.8
14.7 10.261{56.3
9.86 10.411|24.0
13.7 [0.831{16.5
96.6 | 3.34 |28.9

2.71 10.068(39.9
10.7 {0.517(20.7
11.0 |0.478|23.0
5.27 | 0.27 [19.5
7.04 10.245(28.7
17.8 | 2.09 (8.52
12.5 |0.965(13.0
23500(707.0{33.2

0.754(0.022|34.3
3.66 {0.099(37.0
4.01 |0.081(49.5
2.66 0.062142.9
5.560.118(47.1
4.9210.434(11.3
6.13 |0.325(18.9
16.9 (0.905|18.7

Table 3. Sequential times (T;) and 72-core with hyper-threading (77,;,) times (seconds), as well as the parallel speedup (SU).

1
Dense 1
D Sparse
T 0.8 [Hybric m—m
3
[0
L 06
(0]
£
> 04r
£
C
S o2f
g O
0 P & @
/?éo (@ OO 2. 629 @{9 %
)) 0 £
% '%)
QQ /)'f O,.@

Figure 4. Running times of dense, sparse, and hybrid traver-
sals on com-Orkut using 72 cores with hyper-threading.

3.09

1.4 Dense == b
. Sparse =
T 1.2 [Hybrid m— 7]
e}
g 1r .
<2
> L i
g 0.8
> 06 [b
£
S 04r 7
>
T o2r II 1

Figure 5. Running times of dense, sparse, and hybrid traver-
sals on LiveJournal using 72 cores with hyper-threading.

all of the algorithms, we see that the hybrid traversal is the
the fastest or tied for the fastest among the three cases.

We found the default threshold to work reasonably well
across all our applications and inputs. We show the running
time as a function of threshold for several applications on
com-Orkut and LiveJournal in Figures 6 and 7. We see that
the performance is similar across a wide range of thresholds.

In Table 4, we report the memory, percentage of cycles
stalled due to memory accesses, and LLC local miss rate for
several algorithms on com-Orkut, Rand1, and LiveJournal.
We see that the cache miss rate and memory bandwidth is the

0.35 T T T T T T T
Hypertree -
L BC 4
0.3 cé —

0.25 [g

0.2

0.15

Running time

011 7

0.0 [.

0 1 1 1 1 1 1 1
10% 107 10® 10% 10* 10%® 102 107 1

Threshold (fraction of sum of in-degrees)

Figure 6. Running times as a function of threshold on com-
Orkut using 72 cores with hyper-threading.

1 T T
09
08
07 h
06 [3
05 §
04 8
03 8
0.2 oo el 7
o1f 0 T———mmmerrcniocs R *
0 1 } . AR MR d ERRRRRLLLLLL AR
10% 107 10® 10® 10* 10° 102 107 1

Threshold (fraction of sum of in-degrees)

Running time

Figure 7. Running times as a function of threshold on Live-
Journal using 72 cores with hyper-threading.

highest for the random hypergraph, Rand1, as the edges have
very little locality. The memory bandwidth is close to the
peak bandwidth of the machine, and the algorithms on Rand1
are memory bandwidth-bound. com-Orkut and LiveJournal
exhibit locality in their structure, and thus have lower cache
miss rates, and require fewer requests to DRAM, thereby
lowering the memory bandwidth. However, a decent fraction
of the cycles are still stalled waiting for memory accesses,
making the algorithms memory latency-bound. All of the
algorithms benefit from spatial locality when traversing the
adjacency list in the bipartite representation.

Practical Parallel Hypergraph Algorithms

PPoPP °20, February 22-26, 2020, San Diego, CA, USA

com-Orkut Rand1 LiveJournal
Fraction of LLC Memory Fraction of LLC Memory Fraction of LLC Memory

Algorithm | Cycles Stalled | Miss Rate | Bandwidth | Cycles Stalled | Miss Rate | Bandwidth | Cycles Stalled | Miss Rate | Bandwidth
Hypertree 0.364 0.122 144.7 0.726 0.551 161.7 0.28 0.161 135.5
BC 0.462 0.111 131.1 0.804 0.808 161.8 0.35 0.097 120.1
CcC 0.444 0.089 134.4 0.837 0.833 147.5 0.40 0.044 126.1
PageRank 0.79 0.24 123.1 0.927 0.933 146.6 0.69 0.163 104.0
SSSP 0.5 0.098 132.1 0.842 0.781 146.2 0.49 0.057 123.2
WE k-core 0.367 0.358 53.86 0.573 0.422 140.1 0.39 0.286 72.5

Table 4. Fraction of cycles stalled on memory requests, LLC local miss rate, and memory bandwidth (GB/s). All experiments

use 72 cores with hyper-threading.

Comparison with Alternatives. While it is difficult to di-
rectly compare with HyperX and MESH as they are designed
for distributed memory, we first perform a rough comparison
in terms of the running times reported in their papers [41, 46].
MESH reports a running time of about 1 minute per itera-
tion on com-Orkut using a cluster of eight 12-core machines,
and HyperX reports a running time of about 10s using a
cluster of eight 4-core machines (HyperX’s algorithm is for
random walks, which does less work than PageRank per
iteration). In contrast, one iteration of Hygra’s PageRank on
com-Orkut takes 0.083s on 72 cores and 3.31s on one thread.
Even adjusting for differences in processor specifications, we
are significantly faster than their reported parallel numbers
using just a single thread, and orders of magnitude faster
in parallel. The large difference in performance of MESH
and HyperX compared to Hygra is due to the higher com-
munication costs of distributed memory and overheads of
Spark.

We also ran MESH on our 72-core machine, and did a
sweep of the parameter space (partition strategy and num-
ber of partitions), and the best running time we obtained for
one iteration of PageRank on com-Orkut was over 2 min-
utes, which is much slower than Hygra’s time. MESH reports
competitive performance with HyperX [41], and so we ex-
pect the performance of HyperX to be in the same ballpark.
For frontier-based algorithms our speedups would be even
higher as HyperX and MESH require work proportional to
the hypergraph size on every iteration whereas we only do
work proportional to the frontier size plus the sum of its
out-degrees. We ran the single-source shortest paths algo-
rithm from MESH (which works on unit weights and so is
similar to our hypertree algorithm) on our 72-core machine
and observed that for com-Orkut just the first iteration takes
over 1 minute. This is much slower than the Hygra time for
running the algorithm to convergence.

As mentioned in Section 4.2, another method for repre-
senting a hypergraph is to create a clique among all vertices
for each hyperedge, store the result as a graph (known as
the clique-expanded graph), and apply graph algorithms on
it. This approach would work for algorithms that do not
treat hyperedges differently from vertices, such as hypertree,

connected components, and single-source shortest paths (for
algorithms that treat the hyperedges specially, this approach
would generate incorrect results). We show the number edges
in the clique-expanded graph for each of our inputs in Table 2.
We see that the sizes are several orders of magnitude greater
than the corresponding hypergraph using the bipartite graph
representation. As a baseline, we ran Ligra’s breadth-first
search, connected components, and SSSP implementations
on the clique-expanded graph for Friendster (which is 235x
larger than the bipartite representation) on 72 cores. Breadth-
first search took 0.061s, which is 2.8x slower than Hygra’s
hypertree implementation (see Table 3). Connected compo-
nents took 2.35s, which is 28.7x slower than Hygra. SSSP
took 3.27s, which is 30.6x slower than Hygra. The overhead
is due to additional edge traversals in the clique-expanded
graph. However, the running time overhead is not as high as
the space overhead, since the clique-expanded graph is much
denser and has better locality. The overhead is only 2.8x for
breadth-first search since the dense traversal optimization
allows many edges to be skipped.

7 Conclusion

We have presented a suite of parallel hypergraph algorithms
with strong theoretical guarantees. We implemented the
algorithms by extending the Ligra graph processing frame-
work to handle hypergraphs. Our experiments show that the
algorithms achieve good parallel scalability and significantly
better performance than prior work. Future work includes
extending graph optimizations for locality and scalability
(e.g., [7, 53, 57, 85, 92, 96, 97, 101]) to hypergraphs.

Acknowledgements

We thank the anonymous reviewers for their helpful feed-
back. This research was supported by DOE Early Career
Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,
MIT Research Support Committee Award, DARPA SDH Award
#HR0011-18-3-0007, and Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC
and DARPA.

PPoPP °20, February 22-26, 2020, San Diego, CA, USA Julian Shun

References [20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. 2009. Introduction to Algorithms (3. ed.). MIT Press.

[1] Sinan Aksoy, Dustin Arendt, Louis S Jenkins, Brenda Praggastis,
Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex

Emilie Purvine, and Marcin Zalewski. 2019. High Performance Hy- e 5))
pergraph Analytics of Domain Name System Relationships. In HICSS Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon:
Symposium on Cybersecurity Big Data Analytics. A Communication-optimizing Substrate for Distributed Heteroge-

[2] Noga Alon, Uri Arad, and Yossi Azar. 1999. Independent Sets in neous Graph Analytics. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 752-768.

[21

—

Hypergraphs with Applications to Routing via Fixed Paths. In Inter- " - - . .
national Workshop on Approximation Algorithms for Combinatorial (22] Roshan Datbathn, Gurbinder G111‘, _LOC Hf)ar}g, and Keshav ngfih'
Optimization Problems: Randomization, Approximation, and Combina- 2019. Phoenix: A Substrate for Resilient Distributed Graph Analytics.

torial Algorithms and Techniques (RANDOM-APPROX). 16-27. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 615-630.

Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling,
and Umit V. Catalyurek. 2006. Parallel Hypergraph Partitioning

[3] Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. 1998. Hy-
pergraph traversal revisited: Cost measures and dynamic algorithms.
In Mathematical Foundations of Computer Science. 1-16.

[4] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. for Scientific Computing. In International Conference on Parallel and
Distributed Processing (IPDPS). 124-124.

Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne:

[23

—_

2007. Approximating betweenness centrality. In Workshop on Algo-

rithms and Models for the Web-Graph (WAW). 124-137. [24 ! : :
[5] Paul Beame and Michael Luby. 1990. Parallel Search for Maximal A Framework for Parallel Graph Algorithms Using Work-efficient
Bucketing. In ACM Symposium on Parallelism in Algorithms and Ar-

flan?

Independence Given Minimal Dependence. In ACM-SIAM Symposium)
on Discrete Algorithms (SODA). 212-218. chitectures (S}?AA)' 293-304.))

[6] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction- [25] Laxman D}luhpala, Guy E. Blelloch, fmd Julian Shun. 2018. Theoreti-
optimizing breadth-first search. In ACM/IEEE International Conference cally Efficient Pa.rallel Graph Al.gorl'thms an Be Fast and §calable.
for High Performance Computing, Networking, Storage and Analysis In ACM Symposium on Parallelism in Algorithms and Architectures
(SC). Article 12, 12:1-12:10 pages. (SPAA). 393-404. ' '

[7] S. Beamer, K. Asanovic, and D. Patterson. 2017. Reducing Pager- [26] L. Ding and A. Yilmaz. 2008. Image Segmentation as Learning on
ank Communication via Propagation Blocking. In IEEE International Hype?rgr?phs. In International Conference on Machine Learning and
Parallel and Distributed Processing Symposium (IPDPS). 820-831. Appllc.atlons‘ 247-252.) o

[8] Abdelghani Bellaachia and Mohammed Al-Dhelaan. 2013. Random [27] Aurelien Ducournau and Alain Bretto. 2014. Random walks in di-
Walks in Hypergraph. In International Conference on Applied Mathe-
matics and Computational Methods. 187-194.

=

—

rected hypergraphs and application to semi-supervised image seg-
mentation. Computer Vision and Image Understanding 120 (2014),

[9] Ioana O. Bercea, Navin Goyal, David G. Harris, and Aravind Srini- 91710.2'))
vasan. 2017. On Computing Maximal Independent Sets of Hyper- [28] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER: High
graphs in Parallel. ACM Trans. Parallel Comput. 3, 1, Article 5 (Jan. performance data structure for streaming graphs. In IEEE Conference
2017), 5:1-5:13 pages. on High Performance Extreme Computing (HPEC). 1-5.

[10] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy [29] Linton Freeman. 1977. A set of measures of centrality based upon

sequential maximal independent set and matching are parallel on betweenness. Sociometry 40 (1977), 35-41.

average. In ACM Symposium on Parallelism in Algorithms and Archi- [30] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen.
tectures (SPAA). 308-317. 1993. Directed hypergraphs and applications. Discrete Applied Math-
[11] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multi- ematics 42, 2 (1993), 177 - 201. ‘
threaded Computations by Work Stealing. 7. ACM 46, 5 (Sept. 1999), [31] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, and A. Bar-
720-748. Noy. 2012. Dynamic shortest path algorithms for hypergraphs. In
[12] Cecile Bothorel and Mohamed Bouklit. 2011. An Algorithm for De- International Symposium on Modeling and Optimization in Mobile, Ad
tecting Communities in Folksonomy Hypergraphs. In International Hoc and Wireless Networks (WiOpt). 238-245.
Conference on Innovative Internet Community Services. 159-168. [32] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better
[13] Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality. Approximation of Betweenness Centrality. In Algorithms Engineering
Journal of Mathematical Sociology 25 (2001), 163-177. and L*Txperlm‘ents (ALENEX). 90_‘100'
[14] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic [33] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and
Expressions. J. ACM 21, 2 (April 1974), 201-206. Keshav Pingali. 2018. Abelian: A Compiler for Graph Analytics on
[15] Alain Bretto, Hocine Cherifi, and Driss Aboutajdine. 2002. Hyper- Distributed, Heterogeneous Platforms. In Euro-Par. 249-264.

[34] Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

graph imaging: an overview. Pattern Recognition 35, 3 (2002), 651-658.
Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computa-

[16] S.Brin and L. Page. 1998. The Anatomy of a Large-Scale Hypertextual

Web Search Engine. In Computer Networks and ISDN Systems. 107 tion on Natural Graphs. In USENIX Symposium on Operating System
117. Design and Implementation (OSDI). 17-30.
[35] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making

[17] U. V. Catalyurek and C. Aykanat. 1999. Hypergraph-partitioning-

based decomposition for parallel sparse-matrix vector multiplication. Pull-based Graph Processing Performant. In ACM SIGPLAN Sym-

IEEE Transactions on Parallel and Distributed Systems 10, 7 (Jul 1999), posium on Principles and Practice of Parallel Programming (PPoPP).
673-693. 246-260.
[18] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdaag, [36] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-

Robert T. Heaphy, and Lee Ann Riesen. 2009. A repartitioning hy- Down Parallel Semisort. In ACM Symposium on Parallelism in Algo-

pergraph model for dynamic load balancing. J. Parallel and Distrib. rithms and Architectures (SPAA). 24-34.
Comput. 69, 8 (2009), 711-724. [37] Torben Hagerup. 1992. Fast and optimal simulations between CRCW

[19] L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal. 2015. Efficient and PRAMs. In Annual Symposium on Theoretical Aspects of Computer

Simplified Parallel Graph Processing over CPU and MIC. In IEEE Science (STACS). 45-56.

International Parallel and Distributed Processing Symposium (IPDPS). (38] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauch-
819-828. werger. 2012. The STAPL Parallel Graph Library. In Languages and

—

=

Practical Parallel Hypergraph Algorithms PPoPP °20, February 22-26, 2020, San Diego, CA, USA

Compilers for Parallel Computing (LCPC). 46—60. [56] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:

[39] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauch- Large-Scale Graph computation on Just a PC. In USENIX Symposium
werger. 2014. KLA: a new algorithmic paradigm for parallel graph on Operating Systems Design and Implementation (OSDI). 31-46.
computations. In International Conference on Parallel Architectures [57] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2018. Ac-
and Compilation (PACT). 27-38. celerating PageRank using Partition-Centric Processing. In USENIX

[40] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauchw- Annual Technical Conference (ATC). 427-440.
erger. 2015. An Algorithmic Approach to Communication Reduction [58] Charles E. Leiserson. 2010. The Cilk++ concurrency platform. 7
in Parallel Graph Algorithms. In International Conference on Parallel Supercomputing 51, 3 (2010).

Architecture and Compilation (PACT). 201-212. [59] Jure Leskovec and Andrej Krevl. 2019. SNAP Datasets: Stanford Large

[41] Benjamin Heintz, Rankyung Hong, Shivangi Singh, Gaurav Khandel- Network Dataset Collection. http://snap.stanford.edu/data.

wal, Corey Tesdahl, and Abhishek Chandra. 2019. MESH: A Flexible [60] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wen-

—

—

—

=

-

—

—

[t

[l

Distributed Hypergraph Processing System. In IEEE International
Conference on Cloud Engineering (IC2E). 12-22.

C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan. 2017.
MultiGraph: Efficient Graph Processing on GPUs. In International
Conference on Parallel Architectures and Compilation Techniques
(PACT). 27-40.

J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley
Professional.

Louis Jenkins, Tanveer Hossain Bhuiyan, Sarah Harun, Christopher
Lightsey, David Mentgen, Sinan G. Aksoy, Timothy Stavenger, Marcin
Zalewski, Hugh R. Medal, and Cliff Joslyn. 2018. Chapel HyperGraph
Library (CHGL). In IEEE High Performance Extreme Computing Con-
ference (HPEC). 1-6.

Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. 2017. Parallel
Peeling Algorithms. ACM Trans. Parallel Comput. 3, 1, Article 7 (Jan.
2017), 7:1-7:27 pages.

W. Jiang, J. Qi, J. X. Yu, J. Huang, and R. Zhang. 2019. HyperX: A
Scalable Hypergraph Framework. IEEE Transactions on Knowledge
and Data Engineering 31, 5, 909-922.

U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2011.
PEGASUS: mining peta-scale graphs. Knowl. Inf. Syst. 27, 2 (2011),
303-325.

Richard M. Karp, Eli Upfal, and Avi Wigderson. 1988. The Complexity
of Parallel Search. J. Comput. Syst. Sci. 36, 2 (April 1988), 225-253.
G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. 1999. Multilevel
hypergraph partitioning: applications in VLSI domain. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 7, 1 (March 1999),
69-79.

Pierre Kelsen. 1992. On the Parallel Complexity of Computing a
Maximal Independent Set in a Hypergraph. In ACM Symposium on
Theory of Computing (STOC). 339-350.

Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydin Bulug, Franz
Franchetti, John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, Carl Yang, John D.
Owens, Marcin Zalewski, Timothy G. Mattson, and José E. Moreira.
2016. Mathematical foundations of the GraphBLAS. In IEEE High
Performance Extreme Computing Conference (HPEC). 1-9.

Gaurav Khanna, Nagavijayalakshmi Vydyanathan, T. Kurc, U.
Catalyurek, P. Wyckoff, J. Saltz, and P. Sadayappan. 2005. A hy-
pergraph partitioning based approach for scheduling of tasks with
batch-shared 1/O. In IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID). 792-799.

Vladimir Kiriansky, Yunming Zhang, and Saman P. Amarasinghe.
2016. Optimizing Indirect Memory References with milk. In Interna-
tional Conference on Parallel Architectures and Compilation (PACT).
299-312.

Sriram Krishnamoorthy, Umit Catalyurek, Jarek Nieplocha, Atanas
Rountev, and P. Sadayappan. 2006. Hypergraph Partitioning for
Automatic Memory Hierarchy Management. In ACM/IEEE Conference

—

—

—_

flanr)

=

—

—

[}

[’

=

—

—_

guang Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu,
Weimin Zheng, and Jingfang Xu. 2018. ShenTu: Processing Multi-
trillion Edge Graphs on Millions of Cores in Seconds. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC). 56:1-56:11.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. 2010. GraphLab: A New Parallel
Framework for Machine Learning. In Conference on Uncertainty in
Artificial Intelligence (UAI). 340-349.

Michael Luby. 1986. A simple parallel algorithm for the maximal
independent set problem. SIAM 3. Comput. 15, 4 (November 1986),
1036-1055.

P. Macko, V. J. Marathe, D. W. Margo, and M. L. Seltzer. 2015. LLAMA:
Efficient graph analytics using Large Multiversioned Arrays. In IEEE
International Conference on Data Engineering (ICDE). 363-374.
Saeed Maleki, G. Carl Evans, and David A. Padua. 2015. Tiled Linear
Algebra a System for Parallel Graph Algorithms. In Languages and
Compilers for Parallel Computing. 116-130.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:
a system for large-scale graph processing. In ACM Conference on
Management of Data (SIGMOD). 135-146.

Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Think-
ing Like a Vertex: A Survey of Vertex-Centric Frameworks for Large-
Scale Distributed Graph Processing. ACM Comput. Surv. 48, 2, Article
25 (Oct. 2015), 39 pages.

Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scala-
bility! But at What COST?. In USENIX Conference on Hot Topics in
Operating Systems (HotOS).

Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A pattern
based algorithmic autotuner for graph processing on GPUs. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP). 201-213.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A
Lightweight Infrastructure for Graph Analytics. In ACM Symposium
on Operating Systems Principles (SOSP). 456-471.

Lars Relund Nielsen, Kim Allan Andersen, and Daniele Pretolani.
2005. Finding the K Shortest Hyperpaths. Comput. Oper. Res. 32, 6
(June 2005), 1477-1497.

Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr:
Transforming Irregular Graphs for GPU-Friendly Graph Processing.
In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 622-636.

Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Through-
put Optimization of Graph Algorithms on GPUs. In ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 1-19.

Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and Bin Ren.
2018. Graphphi: efficient parallel graph processing on emerging

on Supercomputing (SC). throughput-oriented architectures. In International Conference on
[55] Jérome Kunegis. 2013. KONECT: The Koblenz Network Collection. Parallel Architectures and Compilation Techniques (PACT). 9:1-9:14.
In International Conference on World Wide Web (WWW). 1343-1350. [74] Rami Puzis, Manish Purohit, and V. S. Subrahmanian. 2013. Between-

ness computation in the single graph representation of hypergraphs.

http://snap.stanford.edu/data

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

Social Networks 35, 4 (2013), 561-572.

[75] S.Riazi and B. Norris. 2016. GraphFlow: Workflow-based big graph
processing. In IEEE International Conference on Big Data (Big Data).
3336-3343.

[76] A. Ritz, B. Avent, and T. M. Murali. 2017. Pathway Analysis with
Signaling Hypergraphs. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 14, 5 (Sept 2017), 1042-1055.

[77] Sanjukta Roy and Balaraman Ravindran. 2015. Measuring Network
Centrality Using Hypergraphs. In ACM IKDD Conference on Data
Sciences. 59-68.

[78] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. 2015. GraphRe-
duce: processing large-scale graphs on accelerator-based systems.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). 1-12.

[79] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He,
Bo Liu, and Qiang-Sheng Hua. 2018. Graph Processing on GPUs:
A Survey. ACM Comput. Surv. 50, 6, Article 81 (Jan. 2018), 81:1-
81:35 pages.

[80] Yossi Shiloach and Uzi Vishkin. 1982. An O(log n) Parallel Connec-
tivity Algorithm. . Algorithms 3, 1 (1982), 57-67.

[81] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
135-146.

[82] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2014. A Sim-
ple and Practical Linear-Work Parallel Algorithm for Connectivity.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 143-153.

[83] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller
and Faster: Parallel Processing of Compressed Graphs with Ligra+.
In IEEE Data Compression Conference (DCC). 403-412.

[84] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and
Lizy K. John. 2018. Start Late or Finish Early: A Distributed Graph
Processing System with Redundancy Reduction. PVLDB 12, 2 (2018),
154-168.

[85] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.
2017. GraphGrind: Addressing Load Imbalance of Graph Partitioning,.
In International Conference on Supercomputing (ICS). Article 16, 16:1—
16:10 pages.

[86] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.
2019. VEBO: a vertex- and edge-balanced ordering heuristic to load
balance parallel graph processing. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP). 391-392.

[87] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary,
Subramanya R. Dulloor, Michael J. Anderson, Satya Gautam Vad-
lamudi, Dipankar Das, and Pradeep Dubey. 2015. GraphMat: High
Performance Graph Analytics Made Productive. Proc. VLDB Endow.
8, 11 (July 2015), 1214-1225.

[88] Guangming Tan, Dengbiao Tu, and Ninghui Sun. 2009. A Parallel
Algorithm for Computing Betweenness Centrality. In International
Conference on Parallel Processing (ICPP). 340-347.

[89] Aleksandar Trifunovic and William J. Knottenbelt. 2008. Parallel
multilevel algorithms for hypergraph partitioning. J. Parallel and
Distrib. Comput. 68, 5 (2008), 563-581.

[90] Dengbiao Tu and Guangming Tan. 2009. Characterizing Between-
ness Centrality Algorithm on Multi-core Architectures. In IEEE In-
ternational Symposium on Parallel and Distributed Processing with
Applications (ISPA). 182-189.

[91] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying
Liu, and Xiaobing Feng. 2018. Lazygraph: lazy data coherency for
replicas in distributed graph-parallel computation. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).
276-289.

Julian Shun

[92] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup
Graph Processing by Graph Ordering. In ACM International Confer-
ence on Management of Data (SIGMOD). 1813-1828.
[93] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big
Graph Analytics Platforms. Foundations and Trends in Databases 7,
1-2 (2017), 1-195.
Jie Yan, Guangming Tan, Zeyao Mo, and Ninghui Sun. 2016. Graphine:
Programming Graph-Parallel Computation of Large Natural Graphs
for Multicore Clusters. IEEE Trans. Parallel Distrib. Syst. 27, 6 (2016),
1647-1659.
Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: A Unified Engine
for Big Data Processing. Commun. ACM 59, 11 (Oct. 2016), 56-65.
Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware
Graph-structured Analytics. In ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP). 183-193.
Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Matei Zaharia,
and Saman P. Amarasinghe. 2017. Making Caches Work for Graph
Analytics. In IEEE International Conference on Big Data (BigData).
293-302.
Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. 2018. Graphlt: A High-
performance Graph DSL. Proc. ACM Program. Lang. 2, OOPSLA,
Article 121 (Oct. 2018), 121:1-121:30 pages.
Peng Zhao, Chen Ding, Lei Liu, Jiping Yu, Wentao Han, and Xiao-Bing
Feng. 2019. Cacheap: Portable and Collaborative I/O Optimization
for Graph Processing. Journal of Computer Science and Technology
34,3 (01 May 2019), 690—706.
Dengyong Zhou, Jiayuan Huang, and Bernhard Schoélkopf. 2006.
Learning with Hypergraphs: Clustering, Classification, and Embed-
ding. In International Conference on Neural Information Processing
Systems (NIPS). 1601-1608.
Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-Centric Distributed Graph Processing
System. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 301-316.

[94

=

[95

=

[96

=

[97

—

[98

=

[99

[

[100

=

[101

—

A Artifact Description
A.1 Abstract

The artifact contains the code for the Hygra framework and
implementations of the parallel hypergraph algorithms using
Hygra. We provide instructions for obtaining or generating
the datasets used in this paper as well as scripts for running
the experiments in the paper.

A.2 Description
A.2.1 Check-list (artifact meta information)

e Algorithms: The artifact includes parallel hypergr-
pah algorithms for betweenness centrality, maximal
independent set, k-core decomposition, hypertrees,
connected components, PageRank, and single-source
shortest paths.

e Compilation: A compiler with support for Cilk Plus is
used to compile the code. The experiments in the paper
used g++ version 5.5.0, which has support for Cilk Plus.
(While Hygra can also be compiled with OpenMP, the

Practical Parallel Hypergraph Algorithms

numbers reported in the paper are obtained using Cilk
Plus.)

e Datasets: The datasets consist of real-world hyper-
graphs from the Stanford Large Network Dataset Col-
lection (SNAP) [59] and the Koblenz Network Col-
lection (KONECT) [55], as well as synthetic random
hypergraphs that we generated.

¢ Run-time environment: A Linux operating system
should be used and numactl should be installed. The
experiments in the paper used Ubuntu 16.04. Python
2.7 is used for running the scripts.

e Hardware: An x86-based multicore machine should
be used. The experiments in the paper used a Dell
PowerEdge R930 with four 2.4GHz 18-core E7-8867 v4
Xeon processors and a total of 1TB of RAM.

e Output: Running times of the algorithms are output
to the console.

e Experiment Workflow: Clone the repository and
use the provided scripts to run the experiments.

e Publicly available? Yes.

A.2.2 How Delivered

The artifact is available on Github at https://github.com/
jshun/ppopp20-ae.

A.2.3 Hardware Dependencies

An x86-based multicore machine should be used for the ex-
periments. To run all experiments, 1TB of RAM is needed.
However, 200GB of RAM is sufficient to run all of the experi-
ments except for the ones on Rand2 and the clique-expanded
graph for Friendster. The total storage required for all of
the datasets is 1TB. Excluding the large datasets (Rand2 and
the clique-expanded graph for Friendster), the total storage
required is 313GB.

A.2.4 Software Dependencies

A Linux operating system with numactl should be used to
run the experiments. The artifact uses Cilk Plus for paral-
lelism, and so a compiler with support for Cilk Plus should
be installed. Python 2.7 is used for running the scripts.

A.2.5 Datasets

The real-world hypergraphs were downloaded from the Stan-
ford Large Network Dataset Collection (SNAP) [59] and
the Koblenz Network Collection (KONECT) [55], and con-
verted to Hygra format using the communityToHyperAdj
and KONECTtoHyperAdj programs, respectively, provided in
the utils/ directory. The synthetic hypergraphs were gen-
erated using the randHypergraph program in the utils/
directory.

For the weighted versions of the hypergraphs, weights
were added using the adjHypergraphAddWeights program
in the utils/ directory.

PPoPP °20, February 22-26, 2020, San Diego, CA, USA

A.3 Installation

After cloning the repository and installing the software de-
pendencies, the provided scripts can be used to compile and
execute the programs. The code for the hypergraph algo-
rithms is in the apps/hyper/ directory and can be compiled
manually by navigating to that directory and typing “export
CILK=1; make -j”. The programs in the utils/ directory
can be compiled in the same way.

For inputs where the total number of neighbors of vertices
and hyperedges exceeds 232 — 1, the LONG environment vari-
able should be defined prior to compilation. For inputs where
the total number of vertices and hyperedges exceeds 2% — 1,
the EDGELONG environment variable should be defined prior
to compilation.

A.4 Experiment Workflow

The runall script at the top-level directory will run all ex-
periments without the large Rand2 input and the clique-
expanded Friendster graph. The runall-quick script at the
top-level directory will skip the scalability tests for all of the
inputs except for a small dataset, and will also skip the exper-
iment on varying thread counts on Rand1. These two scripts
will download the necessary datasets for the experiments.
Individual experiments may be run as described below.

To download all of the datasets, navigate to the inputs/
directory and type “./download_datasets”. This will take
a few hours. The following command line arguments may be
passed to the download_datasets script to download only
a subset of the datasets: LARGE will download only the large
datasets (Rand2 and the clique-expanded Friendster graph);
RAND1 will only download the Rand1 dataset for testing per-
formance on varying thread counts; SIZES will only down-
load the random hypergraphs of varying sizes for testing
performance as a function of input size; and DIRECTION will
only download the com-Orkut and LiveJournal datasets for
testing the performance of sparse, dense, and hybrid traver-
sals as well as the performance of using different thresholds
in the direction optimization.

The run_scalability script provided in the apps/hyper/
directory will run all of the hypergraph algorithms both on
a single thread and on all available cores of the machine. By
default, all datasets except Rand2 will be used. This script
will take several days to complete. To include Rand2 in the
experiments, type “. /run_scalability LARGE”. To run the
experiments on only a small dataset, which will terminate
quickly, type “. /run_scalability QUICK”.

The run_varying_threads script in the apps/hyper/ di-
rectory will run all of the algorithms on a varying number
of threads on the Rand1 dataset.

The run_varying_hyperedges script in the apps/hyper/
directory will run all of the algorithms using all available
cores on random hypergraphs with a varying number of
hyperedges.

https://github.com/jshun/ppopp20-ae
https://github.com/jshun/ppopp20-ae

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

The run_directions script in the apps/hyper/ directory
will test the parallel performance of sparse, dense, and hybrid
traversals for all of the algorithms on the com-Orkut and
LiveJournal datasets.

The run_thresholds script in the apps/hyper/ directory
will test the parallel performance of all of the algorithms
on the com-Orkut and LiveJournal datasets using different
thresholds for the direction optimization.

The run_clique script in the apps/ directory will test
the parallel performance of breadth-first search, connected
components, and SSSP in Ligra on the clique-expanded graph
for Friendster.

A.5 Evaluation and Expected Result

The results of the scalability experiments correspond to the
numbers reported in Table 3 and Figure 2. The results of
the experiments on random hypergraphs of different sizes
correspond to the numbers reported in Figure 3. The results
of the experiments on different traversal modes correspond
to the numbers reported in Figures 4 and 5. The results of
the experiments on different thresholds for the direction
optimization correspond to the numbers reported in Figures 6
and 7.

The running times obtained in the experiments may differ
from the numbers reported in the paper if a different machine
and/or compiler is used.

Julian Shun

A.6 Experiment Customization

If numactl is not installed, the scripts can be modified to
run without numactl by deleting the “numactl -i all”
statements (potentially with some performance degradation
on multi-socket machines).

Individual hypergraph algorithms can be tested by run-
ning the executables in apps/hyper/ with the desired dataset
as input. The “~s” flag should be passed if the hypergraph is
symmetric. For traversal algorithms, one can pass the “-r”
flag followed by an integer to indicate the ID of the source
vertex (by default, vertex 0 is used as the source). The pro-
grams are run for three trials by default, but one can change
the number of trials by passing the “~rounds” flag followed
by an integer indicating the desired number of trials.

To test on other hypergraphs, datasets with communities
can be downloaded from the Stanford Large Network Dataset
Collection (SNAP) [59] and bipartite graphs can be down-
loaded from the Koblenz Network Collection (KONECT) [55].
SNAP datasets can be converted to Hygra format using
the communityToHyperAdj program in the utils/ directory.
KONECT datasets can be converted to Hygra format using
the KONECTtoHyperAdj program in the utils/ directory.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Hygra Framework
	4.1 Interface
	4.2 Implementation
	4.3 Optimizations

	5 Parallel Hypergraph Algorithms
	5.1 Betweenness Centrality
	5.2 Maximal Independent Set
	5.3 k-core Decomposition
	5.4 Hypertrees
	5.5 Hyperpaths
	5.6 Connected Components
	5.7 PageRank
	5.8 Single-Source Shortest Paths

	6 Experiments
	7 Conclusion
	References
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Result
	A.6 Experiment Customization

