
Practical Parallel Hypergraph Algorithms
Julian Shun

jshun@mit.edu
MIT CSAIL

Abstract
While there has been significant work on parallel graph pro-

cessing, there has been very surprisingly little work on high-

performance hypergraph processing. This paper presents

a collection of efficient parallel algorithms for hypergraph

processing, including algorithms for betweenness central-

ity, maximal independent set, k-core decomposition, hyper-

trees, hyperpaths, connected components, PageRank, and

single-source shortest paths. For these problems, we either

provide new parallel algorithms or more efficient implemen-

tations than prior work. Furthermore, our algorithms are

theoretically-efficient in terms of work and depth. To imple-

ment our algorithms, we extend the Ligra graph processing

framework to support hypergraphs, and our implementa-

tions benefit from graph optimizations including switching

between sparse and dense traversals based on the frontier

size, edge-aware parallelization, using buckets to prioritize

processing of vertices, and compression. Our experiments

on a 72-core machine and show that our algorithms obtain

excellent parallel speedups, and are significantly faster than

algorithms in existing hypergraph processing frameworks.

CCS Concepts • Computing methodologies → Paral-
lel algorithms; Shared memory algorithms.

1 Introduction
A graph contains vertices and edges, where a vertex repre-

sents an entity of interest, and an edge between two vertices

represents an interaction between the two corresponding

entities. There has been significant work on developing al-

gorithms and programming frameworks for efficient graph

processing due to their applications in various domains, such

as social network and Web analysis, cyber-security, and sci-

entific computations. One limitation of modeling data using

graphs is that only binary relationships can be expressed, and

can lead to loss of information from the original data. Hyper-

graphs are a generalization of graphs where the relationships,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00

https://doi.org/10.1145/3332466.3374527

v3v2

v1v0

(a) Hypergraph

v3

v2

v1

v0

e2

e1

e0

(b) Bipartite representation

Figure 1. An example hypergraph representing the groups

{v0,v1,v2}, {v1,v2,v3}, and {v0,v3}, and its bipartite repre-

sentation.

represented as hyperedges, can contain an arbitrary number

of vertices. Hyperedges correspond to group relationships

among vertices (e.g., a community in a social network). An

example of a hypergraph is shown in Figure 1a.

Hypergraphs have been shown to enable richer analy-

sis of structured data in various domains, such as protein

network analysis [76], machine learning [100], and image

processing [15, 27]. Various graph algorithms have been

extended to the hypergraph setting, and we list some ex-

amples of algorithms and their applications here. Between-

ness centrality on hypergraphs has been used for hierarchi-

cal community detection [12] and measuring importance

of hypergraphs vertices [77]. k-core decomposition in hy-

pergraphs can be applied to invertible Bloom lookup tables,

low-density parity-check codes, and set reconciliation [45].

PageRank and randomwalks on hypergraphs have been used

for image segmentation and spectral clustering and shown

to outperform graph-based methods [26, 27, 100]. Shortest

paths, hyperpaths, and hypertrees have been used for solv-

ing optimization problems [30, 70], satisfiability problems

and deriving functional dependencies in databases [30], and

modeling information spread and finding important actors

in social networks [31]. Independent sets on hypergraphs

have been applied to routing problems [2] and determining

satisfiability of boolean formulas [48].

Although there are many applications of hypergraphs,

there has been little research on parallel hypergraph process-

ing. The main contribution of this paper is a suite of efficient

parallel hypergraph algorithms, including algorithms for

betweenness centrality, maximal independent set, k-core

https://doi.org/10.1145/3332466.3374527

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

decomposition, hypertrees, hyperpaths, connected compo-

nents, PageRank, and single-source shortest paths. For these

problems, we provide either new parallel hypergraph algo-

rithms (e.g., betweenness centrality and k-core decomposi-

tion) or more efficient implementations than prior work. Ad-

ditionally, we show thatmost of our algorithms are theoretically-

efficient in terms of their work and depth complexities.

We observe that our parallel hypergraph algorithms can

be implemented efficiently by taking advantage of graph pro-

cessing machinery. To implement our parallel hypergraph

algorithms, wemade relatively simple extensions to the Ligra

graph processing framework [81] and we call the extended

framework Hygra. As with Ligra, Hygra is well-suited for

frontier-based algorithms, where small subsets of elements

(referred to as frontiers) are processed in parallel on each

iteration. We use a bipartite graph representation to store

hypergraphs, and use Ligra’s data structures for represent-

ing subsets of vertices and hyperedges as well as operators

for mapping application-specific functions over these ele-

ments. The operators for processing subsets of vertices and

hyperedges are theoretically-efficient, which enables us to

implement parallel hypergraph algorithms with strong the-

oretical guarantees. Separating the operations on vertices

from operations on hyperedges is crucial for efficiency and

requires carefully defining functions for vertices and hyper-

edges to preserve correctness. Hygra inherits from Ligra vari-

ous optimizations developed for graphs, including switching

between different traversal strategies based on the size of

the frontier (direction optimization), edge-aware paralleliza-

tion, bucketing for prioritizing the processing of vertices,

and compression.

Our experiments on a variety of real-world and synthetic

hypergraphs show that our algorithms implemented in Hy-

gra achieve good parallel speedup and scalability with re-

spect to input size. On 72 cores with hyper-threading, we

achieve a parallel speedup of between 8.5–76.5x. We also

find that the direction optimization improves performance

for hypergraphs algorithms compared to using a single tra-

versal strategy. Compared to HyperX [46] and MESH [41],

which are the only existing high-level programming frame-

works for hypergraph processing that we are aware of, our

results are significantly faster. For example, one iteration

of PageRank on the Orkut community hypergraph with 2.3

million vertices and 15.3 million hyperedges [59] takes 0.083s

on 72 cores and 3.31s on one thread in Hygra, while taking

1 minute on eight 12-core machines using MESH [41] and

10s using eight 4-core machines in HyperX [46]. Certain

hypergraph algorithms (hypertrees, connected components,

and single-source shortest paths) can be implemented cor-

rectly by expanding each hyperedge into a clique among

its member vertices and running the corresponding graph

algorithm on the resulting graph. We also compare with this

alternative approach by using the original Ligra framework

to process the clique-expanded graphs, and show the space

usage and performance is significantly worse than that of

Hygra (2.8x–30.6x slower while using 235x more space on

the Friendster hypergraph).

Our work shows that high-performance hypergraph pro-

cessing can be done using just a single multicore machine,

on which we can process all existing publicly-available hy-

pergraphs. Prior work has shown that graph processing

can be done efficiently on just a single multicore machine

(e.g., [24, 25, 67, 69, 81, 87, 96, 101]), and this work extends

the observation to hypergraphs.

The rest of the paper is organized as follows. Section 2

discusses related work on graph and hypergraph process-

ing. Section 3 describes hypergraph notation as well as the

computational model and parallel primitives that we use in

the paper. Section 4 introduces the Hygra framework. Sec-

tion 5 describes our new parallel hypergraph algorithms

implemented using Hygra. Section 6 presents our experi-

mental evaluation of our algorithms, and comparisons with

alternative approaches. Finally, we conclude in Section 7.

2 Related Work

Graph Processing. There has been significant work on de-

veloping graph libraries and frameworks to reduce program-

ming effort by providing high-level operators that capture

common algorithm design patterns (e.g., [19, 21, 22, 28, 33–

35, 38–40, 42, 47, 51, 56, 60, 61, 63–65, 68, 69, 71–73, 75, 78, 81,

84–87, 91, 94, 96, 99, 101], amongmany others; see [66, 79, 93]

for surveys). Many of these frameworks can process large

graphs efficiently, but none of them directly support hyper-

graph processing.

Hypergraph Processing. As far as we know, HyperX [46]

andMESH [41] are the only existing high-level programming

frameworks for hypergraph processing, and they are built

for distributed memory on top of Spark [95]. Algorithms

are written using hyperedge programs and vertex programs

that are iteratively applied on hyperedges and vertices, re-

spectively. HyperX stores hypergraphs using fixed-length tu-

ples containing vertex and hyperedge identifiers, and MESH

stores the hypergraph as a bipartite graph. HyperX includes

algorithms for randomwalks, label propagation, and spectral

learning. MESH includes PageRank, PageRank-Entropy (a

variant of PageRank that also computes the entropy of ver-

tex ranks in each hyperedge), label propagation, and single-

source shortest paths. Both HyperX and MESH do work pro-

portional to the entire hypergraph on every iteration, even if

few vertices/hyperedges are active, which makes them ineffi-

cient for frontier-based hypergraph algorithms. The Chapel

HyperGraph Library [44] is a library for hypergraph pro-

cessing that provides functions for accessing properties of

hypergraphs, but the interface is much lower-level than the

abstractions in HyperX, MESH, and Hygra. It has recently

been used to analyze DNS data [1].

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Hypergraphs are useful in modeling communication costs

in parallel machines, and partitioning can be used to mini-

mize communication. There has been significant work on

both sequential and parallel hypergraph partitioning algo-

rithms (see, e.g., [17, 18, 23, 49, 52, 54, 89]). While we do

not consider the problem of hypergraph partitioning in this

paper, these techniques could potentially be used to improve

the locality of our algorithms.

Algorithms have been designed for a variety of problems

on hypergraphs, including random walks [27], shortest hy-

perpaths [3, 70], betweenness centrality [74], hypertrees [30],

connectivity [30], maximal independent sets [5, 9, 48, 50],

and k-core decomposition [45]. However, there have been

no efficient parallel implementations of hypergraph algo-

rithms, with the exception of [45], which provides a GPU

implementation for a special case of k-core decomposition.

3 Preliminaries
Hypergraph Notation. We denote an unweighted hyper-

graph by H (V ,E), where V is the set of vertices and E is

the set of hyperedges. A weighted hypergraph is denoted

by H = (V ,E,w), wherew is a function that maps a hyper-

edge to a real value (its weight). The number of vertices in

a hypergraph is nv = |V |, and the number of hyperedges

is ne = |E |. Vertices are assumed to be labeled from 0 to

nv − 1, and hyperedges from 0 to ne − 1. For undirected

hypergraphs, we use deg(e) to denote the number of vertices

a hyperedge e ∈ E contains (i.e., its cardinality), and deg(v)
to denote the number of hyperedges that a vertex v ∈ V be-

longs to. In directed hypergraphs, hyperedges contain incom-

ing vertices and outgoing vertices. For a hyperedge e ∈ E,
we use N −(e) and N +(e) to denote its incoming vertices

and outgoing vertices, respectively, and deg−(e) = |N −(e)|
and deg+(e) = |N +(e)|. We use N −(v) and N +(v) to denote

the hyperedges that v ∈ V is an outgoing vertex and in-

coming vertex for, respectively, and deg−(v) = |N −(v)| and
deg+(v) = |N +(v)|. We denote the size |H | of a hypergraph to

be nv +
∑

e ∈E (deg
−(e)+ deg+(e)), i.e., the number of vertices

plus the sum of the hyperedge cardinalities.

Computational Model.We use the work-depth model [43]

to analyze the theoretical efficiency of algorithms. The work
of an algorithm is the number of operations used, and the

depth is the length of the longest sequence dependence. We

assume that concurrent reads and writes are supported.

By Brent’s scheduling theorem [14], an algorithm with

workW and depth D has overall running timeW /P + D,
where P is the number of processors available. A parallel

algorithm iswork-efficient if its work asymptotically matches

that of the best sequential algorithm for the problem, which

is important since in practice theW /P term in the running

time often dominates.

Parallel Primitives. Scan takes an array A of length n, an
associative binary operator ⊕, and an identity element ⊥

such that ⊥ ⊕ x = x for any x , and returns the array (⊥,⊥ ⊕

A[0],⊥ ⊕A[0] ⊕A[1], . . . ,⊥ ⊕n−2
i=0 A[i]) as well as the overall

sum, ⊥ ⊕n−1
i=0 A[i]. Filter takes an array A and a predicate f

and returns a new array containing a ∈ A for which f (a) is
true, in the same order as inA. Scan and filter takeO(n)work
and O(logn) depth (assuming ⊕ and f take O(1) work) [43].
A compare-and-swap CAS(&x ,o,n) takes a memory loca-

tion x and atomically updates the value at location x to n
if the value is currently o, returning true if it succeeds and
false otherwise. A fetch-and-add FAA(&x ,n) takes a memory

location x , atomically returns the current value at x and then

increments the value at x by n. A writeMin(&x ,n) takes a
memory locationx , and a valuen, and atomically updatesx to
be the minimum of the value at x and n; it returns true if the
update was successful and false otherwise. We assume that

these operations takeO(1) work and depth in our model, but

note that these operations can be simulated work-efficiently

in logarithmic depth on weaker models [37].

4 Hygra Framework
This section presents the interface and implementation of the

Hygra framework, which extends Ligra [81] to hypergraphs.

The Hygra interface is summarized in Table 1.

4.1 Interface
Hygra contains the basic VertexSet and HyperedgeSet data

structures, which are used to represent subsets of vertices

and hyperedges, respectively. VertexMap takes as input a

boolean function F and a VertexSetU , applies F to all vertices

inU , and returns an output VertexSet containing all elements

from u ∈ U such that F (u) = true. HyperedgeMap is an

analogous function for HyperedgeSets.

VertexProp takes as input a hypergraph H , a VertexSet

U , and two boolean functions F and C . It applies F to all

pairs (v, e) such that v ∈ U , e ∈ N +(v), and C(e) = true
(call this subset of pairs P), and returns a HyperedgeSet

U ′
where e ∈ U ′

if and only if (v, e) ∈ P and F (v, e) =
true. HyperedgeProp takes as input a hypergraph H , a

HyperedgeSet U , and two boolean functions F and C . It
applies F to all pairs (e,v) such that e ∈ U , v ∈ N +(e),
and C(v) = true (call this subset of pairs P), and returns

a VertexSet U ′
where v ∈ U ′

if and only if (e,v) ∈ P and

F (e,v) = true. For weighted hypergraphs, the F function

takes the weight as the third argument.

We provide a functionHyperedgeFilterNgh that takes

as input a hypergraph H , a HyperedgeSet U , and a boolean

function C , and filters out the incident vertices v for each

hyperedge e ∈ U such thatC(v) = false. This mutates the hy-

pergraph, so that future computations will not inspect these

vertices. HyperedgePropCount takes as input a hyper-

graph H , a HyperedgeSetU , and a function F , and applies F
to each neighbor of U in parallel. The function F takes two

arguments, a vertex v and the number of hyperedges in U

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

Interface Description
VertexSet Represents a subset of vertices V ′ ⊆ V .

HyperedgeSet Represents a subset of hyperedges E ′ ⊆ E.

VertexMap(U : VertexSet, F : vertex → bool) : Applies F (u) for each u ∈ U ; returns a VertexSet {u ∈ U | F (u) = true}.
VertexSet

HyperedgeMap(U : HyperedgeSet, Applies F (u) for each u ∈ U ; returns a HyperedgeSet {u ∈ U | F (u) = true}.
F : hyperedge → bool) : HyperedgeSet

VertexProp(H : hypergraph, U : VertexSet, Applies F (v, e) for each v ∈ U , e ∈ N+(v) where C(e) = true;
F : (vertex × hyperedge) → bool, returns a HyperedgeSet {e | v ∈ U , e ∈ N+(v),C(e) = true, F (v, e) = true}.
C : hyperedge → bool) : HyperedgeSet

HyperedgeProp(H : hypergraph, U : HyperedgeSet, Applies F (e,v) for each e ∈ U , v ∈ N+(e) where C(v) = true;
F : (hyperedge × vertex) → bool, returns a VertexSet {v | e ∈ U ,v ∈ N+(e),C(v) = true, F (e,v) = true}.
C : vertex → bool) : VertexSet

HyperedgeFilterNgh(H : hypergraph, For each e ∈ U , removes all v ∈ N+(e) where C(v) = false
U : HyperedgeSet, C : vertex → bool) from the hypergraph.

HyperedgePropCount(H : hypergraph, Applies F to pairs (v, cnt), where v ∈ N+(U) and cnt is the number of

U : HyperedgeSet, F : vertex × int → vertex × int) : hyperedges in U that v is an outgoing vertex for; returns an array of

(vertex × int) array (vertex × int) pairs containing the non-null return values of applications of F .

MakeBuckets(n : int, A : int array, I : ordering) : Creates and returns a bucketing structure that iterates in order I storing

buckets n vertices, where vertex v is stored in bucket A[v].

NextBucket(B : buckets) : (int, VertexSet) Returns the bucket number of the next bucket in B

and a VertexSet containing the vertices in that bucket.

UpdateBuckets(B : buckets, A : (vertex × int) array) For each (v, bkt) ∈ A, moves vertex v to bucket bkt in B.

Table 1. Summary of the Hygra interface.

that v is an outgoing vertex for, and returns a pair contain-

ing a vertex and an integer, either of which can be null (⊥).

The output of HyperedgePropCount is an array of pairs

containing the non-null return values from applications of

F .
Hygra also supports the bucketing interface developed in

the Julienne framework [24]. Vertices are stored in buckets as-

sociated with bucket IDs, and algorithms can process buckets

in increasing or decreasing order. Vertices can be moved to

different buckets during the computation. The MakeBuck-

ets function takes a size, an integer arrayA, and an ordering,
and creates a bucketing structure B that stores each vertex

v in bucket A[v]. The NextBucket function takes a buck-

eting structure B and returns the next non-empty bucket in

the specified ordering. TheUpdateBuckets function takes

a bucketing structure B and an array of pairs (v, bkt), and
moves each vertex v from its original bucket to the bucket

with ID bkt. Julienne actually groups multiple buckets to-

gether into an overflow bucket and thus has a GetBucket

function determines the physical bucket from a logical bucket

ID, but for simplicity we will not use it in our discussion.

4.2 Implementation
A method for representing hypergraphs is to create a clique

among all pairs of vertices in each hyperedge and store the

result as a graph [41, 46]. However, this leads to a loss of

information compared to the original hypergraph as the

groups of vertices in hyperedges are no longer distinguished.

Furthermore, the space required to store the resulting graph

can be significantly higher than that of the original hyper-

graph [41, 46]. Another approach is to use a bipartite graph

representation with vertices in one partition and hyperedges

in the other, where each hyperedge connects to all vertices

belonging to it [41] (an example is shown in Figure 1b). This

is the approach that we adopt in this paper.

In the bipartite representation, there is an edge (u, ngh)
if u ∈ V and ngh ∈ N +(u), or u ∈ E and ngh ∈ N +(u). The
edges for each element are stored in an adjacency array. We

also store the incoming edges for each vertex and hyperedge

to enable the direction optimization that we discuss in Sec-

tion 4.3. For weighted hypergraphs, we store the weights

interleaved with the edges in the bipartite representation for

cache locality. The hypergraph can be transposed using the

Transpose function, which swaps the roles of the incoming

and outgoing edges for all elements.

One implementation choice that we considered was to

directly pass bipartite graphs to the Ligra framework. How-

ever, this would either require hyperedges to have distinct

identifiers from vertices, making it unnatural to index arrays

in the application code, or require mapping the hyperedge

identifiers to the range [0, . . . ,ne − 1] on every array access,

leading to additional overhead on hyperedge accesses and

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

more complicated application code. Instead, we modified

the Ligra code to distinguish between vertices and hyper-

edges and represent them using identifiers in the ranges

[0, . . . ,nv − 1] and [0, . . . ,ne − 1], respectively. We borrow

existing data structures and functions from Ligra, which we

describe here for completeness.

VertexSets (HyperedgeSets) have two underlying imple-

mentations: a sparse integer array storing the IDs of the

elements in the set, and a dense boolean array of length |V |

(|E |) storing 1’s in the locations corresponding to the IDs of

the elements in the set, and 0’s everywhere else.

Implementing VertexMap and HyperedgeMap simply

requires mapping the function over the input VertexSet or

HyperedgeSet, and applying a parallel filter on the result.

Assuming that the function takesO(1)work (which is true in
all of our applications), the overall work isO(|U |) and depth

is O(log |U |) for an input setU .

VertexProp and HyperedgeProp map the C function

over the outgoing edges of the input set and for the edges

that return true, applies the F function in parallel. A parallel

scan is applied over the degrees of elements in the input

to determine offsets into an array storing the neighbors. A

parallel filter is applied over the neighbors of F to obtain the

output set. For an input set U , and functions F and C that

takeO(1) work (which is true in all of our applications), this

takesO(|U |+
∑
u ∈U deg+(u))work andO(log |H |) depth. We

can remove duplicates from the output in the same bounds.

HyperedgeFilterNgh can be implemented by inspecting

all neighbors of each hyperedge in the input HyperedgeSet

in parallel and using a parallel filter to remove the vertices

not satisfying C . This takes the same work and depth as

HyperedgeProp. HyperedgePropCount requires the same

work and depth bounds as HyperedgeProp as the counts

can be implemented using fetch-and-adds or a semisort [36].

We refer the reader to [24] for implementation details of

the bucketing structure. For the complexity of bucketing, we

will use the following lemma from [24]:

Lemma 1 ([24]). For n identifiers, T total buckets, K calls
to UpdateBuckets, each of which updates a set Si of identi-
fiers, and L calls to NextBucket, bucketing takes O(n +T +∑K

i=0 |Si |) expected work andO((K +L) logn) depth with high
probability.

4.3 Optimizations
VertexProp and HyperedgeProp uses the direction opti-

mization [6, 81] to switch between a sparse traversal (de-

scribed in Section 4.2) and a dense traversal based on the

size of the input VertexSet or HyperedgeSet and the sum of

its out-degrees. For VertexProp, the dense traversal loops

over all hyperedges e in parallel, checking if they satisfy

the C function, and if so applying F on its incoming edges

serially, stopping once C(e) returns false. We use the dense

traversal when the input set and sum of its out-degrees is

a constant fraction (1/20 in our experiments) of the sum of

in-degrees of hyperedges (which preserves work-efficiency),

and the sparse traversal otherwise. The sum of out-degrees

is computed using a parallel scan. We have an analogous

implementation for HyperedgeProp. The sparse traversals

use the sparse set representation, and the dense traversals

uses the dense set representation. The input set is converted

between the representations based on the traversal type.

For the dense traversals, instead of simply mapping over

the vertices with a parallel-for loop, we added an edge-

aware parallelization scheme that creates tasks containing

a roughly equal number of edges that are managed by the

work-stealing scheduler [98]. We found this optimization to

significantly improve load balancing for hypergraphs with

highly-skewed degree distributions.

As in Ligra, we also provide a push-based dense traversal

that densely represents the input set but loops over their out-

going edges, instead of over incoming edges of all vertices.

For VertexProp and HyperedgeProp, we use optimized

versions that do not remove duplicates that can be used if

the program guarantees that no duplicates will be gener-

ated in the output. When the output of VertexMap, Hyper-

edgeMap, VertexProp, and HyperedgeProp is not needed,

we use optimized implementations that do not call filter.

To reduce memory usage, Hygra supports compression of

the underlying bipartite graph using the compression code

from Ligra [83]. The neighbors of vertices and hyperedges

are compressed using variable-length codes, and decoded on-

the-fly when accessed in VertexProp and HyperedgeProp.

5 Parallel Hypergraph Algorithms
We have designed a collection of parallel hypergraph algo-

rithms using Hygra: betweenness centrality (BC), maximal

independent set (MIS), k-core decomposition, hypertrees, hy-

perpaths, connected components (CC), PageRank, and single-

source shortest paths (SSSP). Our algorithms for betweenness

centrality and k-core decomposition are new, while the con-

nected components, PageRank, and single-source shortest

paths algorithms are more efficient variants of previously

described hypergraph algorithms [41, 46] and are similar

to the corresponding graph algorithms in Ligra. The hy-

pertrees and hyperpaths algorithms are similar to parallel

breadth-first search on graphs. The maximal independent

set algorithm is the first practical implementation for finding

maximal independent sets in hypergraphs. We provide pseu-

docode for several of the algorithms and the pseudocode uses

partially evaluated functions, i.e., invoking a function with

fewer than all of its arguments gives a function that takes

the remaining arguments as input. The reader may skip any

of the algorithms in this section without loss of continuity.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

5.1 Betweenness Centrality
The betweenness centrality (BC) [29] of a vertex v measures

the fraction of shortest paths between all pairs of vertices

that pass through v . In this paper, we consider BC on un-

weighted hypergraphs, although the definition extends to

weighted hypergraphs. More formally, let σs,t be the num-

ber of shortest paths between vertices s and t , σs,t (v) be the
number of shortest paths between s and t that pass through
v , and δs,t (v) = σs,t (v)/σs,t . The betweenness centrality

of vertex v is defined to be

∑
s,v,t ∈V δs,t (v). Brandes [13]

presents a sequential algorithm for computing BC on graphs

that takes O(|V | |E |) work, where each vertex v does a for-

ward traversal to compute the number of shortest paths from

v to every other vertex, and a backward traversal to com-

pute the betweenness centrality contributions for all vertices

from shortest paths starting at v . Each traversal takesO(|E |)
work. Brandes defines the dependency of a vertex s on v as

δs•(v) =
∑

t ∈V δs,t (v), and the traversals from s compute δs•
values for all other vertices. The betweenness centrality of a

vertex v will then be

∑
s ∈V δs•(v). This algorithm has been

parallelized in the literature (see, e.g., [69, 81, 88, 90]).

Puzis et al. [74] present a sequential algorithm for comput-

ing betweenness centrality in hypergraphs based on Bran-

des’ algorithm. In the forward phase, a breadth-first search-

like procedure is run, generating a predecessor set for each

vertex and hyperedge containing all elements in the pre-

vious level of the search. Let PV (v) be the predecessor hy-
peredges of vertex v and PE (e) be the predecessor vertices
of hyperedge e for the search from source s . σs,v will be

computed as

∑
u ∈PE (e) : e ∈PV (v) σs,u . This phase takesO(nv +∑

e ∈E (deg
+(e) · deg−(e)))work as each hyperedge is expanded

once per incoming vertex. Note that this work complexity

can be super-linear in the size of the hypergraph. The back-

ward phase computes the dependency scores by iteratively

propagating values from vertices to their predecessor hy-

peredges, and from hyperedges to their predecessor vertices

starting from the furthest elements from the source. The

update equation for a hyperedge e is shown in Equation 1

and for a vertex v is shown in Equation 2.

ˆδs (e) =
∑

v : e ∈PV (v)

δs•(v)

σs,v
(1)

δs•(v) = 1 +
∑

e : v ∈PE (e)

(σs,v · ˆδs (e)) (2)

By separating the vertex and hyperedge updates, each

hyperedge and vertex only needs to be processed once, and

the total work of the backward phase is O(|H |). Puzis et

al. [74] also propose a heuristic for merging vertices belong-

ing to only a single hyperedge together, but the theoretical

complexity remains the same.

In this section, we present a new parallel BC algorithm on

hypergraphs that takes linear work per source vertex. We

represent vertices and hyperedges at equal distance from

the source as frontiers using VertexSets and HyperedgeSets,

and process each frontier in parallel. We split the updates

in the forward phase into separate update steps for vertices

and hyperedges, so that each hyperedge only needs to be

expanded once, giving linear work. The backward phase pro-

cesses the frontiers in decreasing distance from the source,

using fetch-and-adds to update the
ˆδs and δs• values. Com-

puting exact BC scores would require running the algorithm

from all sources, although in practice a subset of sources are

used to compute approximate BC scores [4, 32]. As far as we

know, this is the first parallel BC algorithm on hypergraphs.

Our algorithm also uses direction optimization, in contrast

to the original sequential algorithm of Puzis et al. [74].

The pseudocode for our BC algorithm from a single source

is shown in Algorithm 1. We initialize auxiliary arrays as

well as theDependenciesV array storing the final dependency

scores on Lines 1–6. The forward phase of the algorithm is

shown on Lines 22–37. We first set the number of paths

for the source vertex to 1, mark it as visited, and place it

on the initial frontier, represented as a VertexSet (Lines 22–

23). While there are still reachable hyperedges and vertices,

we repeatedly propagate the number of paths from vertices

to hyperedges via VertexProp on Line 27 and from hy-

peredges to vertices via HyperedgeProp on Line 31. The

function PathUpdate (Lines 8–9) passed to VertexProp

and HyperedgeProp increments the number of paths of a

successor element using a fetch-and-add. In contrast to [74],

we first gather the number of paths at a hyperedge from all

of its predecessor vertices before passing it to its successor

vertices. In this way, a hyperedge only needs to visit each of

its successor vertices once, passing the sum of all contribu-

tions from predecessor vertices. Duplicates in the output do

not need to be removed as PathUpdate returns true only for
the first update on the target. The Check function (Lines 10–

11) passed to VertexProp and HyperedgeProp guarantees

that only unexplored vertices and hyperedges are visited.

We mark visited hyperedges and vertices on Lines 29 and 33,

respectively, to ensure that each hyperedge and vertex is vis-

ited at most once. Each frontier that is explored is placed in

the Levels array, so that we can explore them in a backward

fashion in the second phase of the algorithm.

The backward phase of the algorithm is shown on Lines 35–

44. We reuse the arrays VisitedV and VisitedE (Line 35). We

transpose the hypergraph (Line 36) and explore the frontiers

from the first phase in a backward fashion. Line 40 uses a

VertexMap with the VisitVertexBack function (Lines 14–

16) to mark vertices on the frontier as visited and add 1 to

their dependency score, as required in Equation 2. Line 41

uses a VertexProp with the VtoE function (Lines 17–18)

on predecessors (obtained by considering unexplored ver-

tices via the Check function), which implements Equation 1.

Line 43 marks hyperedges on the frontier as visited with

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Algorithm 1 Pseudocode for BC in Hygra

1: NumPathsV = {0, . . . , 0}

2: NumPathsE = {0, . . . , 0}

3: VisitedV = {0, . . . , 0}

4: VisitedE = {0, . . . , 0}

5: DependenciesV = {0, . . . , 0}

6: DependenciesE = {0, . . . , 0}

7: Levels = []

8: procedure PathUpdate(NumPathsSrc, NumPathsDst, s , d)
9: return (FAA(&NumPathsDst[d], NumPathsSrc[s]) == 0)

10: procedure Check(Visited, i)
11: return (Visited[i] == 0)

12: procedure Visit(Visited, i)
13: Visited[i] = 1

14: procedure VisitVertexBack(v)
15: Visited[v] = 1

16: DependenciesV [v]+=1
17: procedure VtoE(v , e)
18: FAA(&DependenciesE[e], DependenciesV [v]/NumPathsV [v])

19: procedure EtoV(e , v)
20: FAA(&DependenciesV [v], DependenciesE[e] × NumPathsV [v])

21: procedure BC(H , src) ▷ src is the source vertex
22: NumPathsV [src] = 1, VisitedV [src] = 1

23: VertexSet FrontierV = {src}
24: HyperedgeSet FrontierE = {}

25: currLevel = 0

26: while (true) do
27: FrontierE = VertexProp(H, FrontierV,

PathUpdate(NumPathsV, NumPathsE), Check(VisitedE))
28: if |FrontierE | == 0 then break

29: HyperedgeMap(FrontierE, Visit(VisitedE))
30: Levels[currLevel++] = FrontierE
31: FrontierV = HyperedgeProp(H, FrontierE,

PathUpdate(NumPathsE, NumPathsV), Check(VisitedV))
32: if |FrontierV | == 0 then break

33: VertexMap(FrontierV, Visit(VisitedV))
34: Levels[currLevel++] = FrontierV
35: VisitedV = {0, . . . , 0}, VisitedE = {0, . . . , 0}

36: Transpose(H)

37: currLevel = currLevel − 1

38: while currLevel ≥ 0 do
39: FrontierV = Levels[currLevel--]
40: VertexMap(FrontierV, VisitVertexBack)
41: VertexProp(H, FrontierV, VtoE, Check(VisitedE))
42: FrontierE = Levels[currLevel--]
43: HyperedgeMap(FrontierE, Visit(VisitedE))
44: HyperedgeProp(H, FrontierE, EtoV, Check(VisitedV))
45: return DependenciesV

a HyperedgeMap. Finally, Line 44 implements the sum in

Equation 2 with the EtoV function (Lines 19–20) on prede-

cessors.

Analysis.We analyze the complexity for a single source ver-

tex. In the forward phase of BC, each vertex and hyperedge

will appear in at most one frontier because once a vertex

or hyperedge has been visited, its VisitedV or VisitedE en-

try will be marked, and it will fail the check by the Check

function in subsequent iterations. Therefore the sum of the

sizes of all frontiers plus their out-degrees will beO(|H |). As

VertexProp and HyperedgeProp do work proportional to

the size of the input set plus the sum of its out-degrees, the

overall work performed by the algorithm is O(|H |), which

is work-efficient. Each call to VertexProp and Hyperedge-

Prop takes O(log |H |) depth, and so the overall depth is

O(D log |H |)where D is the diameter of the hypergraph. The

backward phase processes each frontier exactly once, giving

the same work and depth bounds. Thus, the overall work is

O(|H |) and depth is O(D log |H |).

5.2 Maximal Independent Set
Given an undirected, unweighted hypergraph, an indepen-
dent set is a subset of verticesU ⊆ V such that no hyperedge

has all of its incident vertices in U . In a graph, this defini-

tion is equivalent to the condition that no two vertices in an

independent set are neighbors, although this does not hold

for hypergraphs (a hyperedge may have multiple incident

vertices included in an independent set as long as not all of

its incident vertices are included). A maximal independent
set (MIS) is an independent set that is not contained in a

larger independent set. Finding maximal independent sets

in parallel has been widely studied for graphs, and there ex-

ists linear-work parallel algorithms for the problem [10, 62].

However, the problem is much harder to solve on hyper-

graphs, and the total work of known parallel algorithms is

super-linear [5, 9, 48, 50]. These algorithms have only been

described in theory, and as far as we know, there have been

no implementations of parallel MIS algorithms on hyper-

graphs.

This paper implements a variant of the Beame-Luby MIS

algorithm [5], which is a core component of a more recent

algorithm by Bercea et al. [9]. The algorithm is iterative and

performs the following steps in each iteration:

(1) Generate a sample of vertices I , each sampled with prob-

ability p = 1/(2d+1∆), where d = maxe ∈E deд(e) and ∆ is

the normalized degree as defined in [5, 9].

(2) For any hyperedge e that has all of its vertices in I , re-
move all vertices in e from I .

(3) Add the remaining vertices in I to the MIS and delete

them from V .

(4) Remove the vertices in I from all remaining hyperedges.

(5) Remove hyperedges whose vertices is a subset of another

hyperedge’s vertices.

(6) Remove hyperedges that contain only one vertex, and

remove those vertices from V .

Our implementation picks vertices with a constant proba-

bility p = 1/3 as we found that it performs better in practice,

and does not perform Step (5), which is not needed for cor-

rectness. The pseudocode is shown in Algorithm 2.

Our implementation uses a Flags array to represent the

status of vertices, with a value of Flags[v] = 0 meaning

that v is undecided, Flags[v] = 1 indicating that v is not

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

Algorithm 2 Pseudocode for MIS in Hygra

1: Flags = {0, . . . , 0}

2: Counts = {0, . . . , 0}

3: procedure Sample(round, v)
4: With probability p , set Flags[v] = round

5: procedure Count(e , v)
6: FAA(&Counts[e], 1)

7: procedure ResetNgh(e , v)
8: Flags[v] = 0

9: procedure FilterV(v)
10: return (Flags[v] == 0)

11: procedure FilterE(e)
12: if (deg(e) == 1 and Flags[ngh

0
(e)] == 0) then

13: Flags[ngh
0
(e)] = 1

14: return (deg(e) > 1)

15: procedure Ind(e)
16: return (Counts[e] == deg(e))

17: procedure Reset(e)
18: Counts[e] = 0

19: procedure CheckF(round , v)
20: return (Flags[v] == round)

21: procedure MIS(H)

22: VertexSet FrontierV = {0, . . . , nv − 1} ▷ all vertices

23: HyperedgeSet FrontierE = {0, . . . , ne − 1} ▷ all hyperedges

24: round = 1

25: while (|FrontierV | > 0) do
26: round++
27: VertexMap(FrontierV, Sample(round))
28: HyperedgeMap(FrontierE, Reset)
29: HyperedgeProp(H, FrontierE, Count, CheckF(round))
30: HyperedgeSet FullEdges = HyperedgeMap(FrontierE, Ind)
31: HyperedgeProp(H, FullEdges, ResetNgh, CheckF(round))
32: HyperedgeFilterNgh(H, FrontierE, FilterV)
33: FrontierE = HyperedgeMap(FrontierE, FilterE)
34: FrontierV = VertexMap(FrontierV, FilterV)
35: return Flags

in the MIS, and any other value indicating that v is in the

MIS. Flags is initialized to all 0’s on Line 1. We also initial-

ize an auxiliary array Counts, which will be used to count

the number of incident vertices of hyperedges selected in

the random sample (Line 2). We create initial frontiers con-

taining all vertices and hyperedges (FrontierV and FrontierE
on Lines 22–23). We also keep track of the round number

(Lines 24 and 26). Line 27 uses a VertexMap with the func-

tion Sample (Lines 3–4) to sample vertices by marking their

Flags value with the round number with probability p. We

reset the Counts values for hyperedges on the frontier on

Line 28. On Line 29, we count for each hyperedge the num-

ber of its vertices that were selected in the sample for this

round using HyperedgeProp with the Count (Lines 5–6)

and CheckF (Lines 19–20) functions. We then check which

hyperedges had all of their vertices selected in the sample

on Line 30 with a HyperedgeMap with the Ind function

that checks if the count is equal to the hyperedge’s cardi-

nality (Lines 15–16). The HyperedgeSet FullEdges contains

the hyperedges where this is true, and we unmark the Flags
values of their vertices on Line 31 using HyperedgeProp

with the ResetNgh function (Lines 7–8). On Line 32, we

remove vertices that have been selected in the MIS from the

hyperedges using HyperedgeFilterNgh with the FilterV

function (Lines 9–10), so that we do not need to process them

in future rounds. Line 33 updates the hyperedge frontier by

filtering out hyperedges with cardinality 0 and 1 using the

FilterE function (Lines 11–14). For hyperedges with cardi-

nality 1 we mark their only vertex (ngh
0
) as not being in the

MIS. Line 34 updates the vertex frontier with the FilterV

function by filtering out vertices whose status has already

been decided. The algorithm terminates when the status of

all vertices have been decided, at which point FrontierV will

be empty.

5.3 k-core Decomposition
For an undirected, unweighted hypergraph, a k-core is a

maximal connected sub-hypergraph where every vertex has

induced degree at least k . The coreness problem is to compute

for each vertex the largest value ofk for which it is part of the

k-core. A simple parallel algorithm for coreness iteratively

removes all vertices with degree at most k along with their

incident hyperedges starting with k = 0, assigning removed

vertices a coreness value of k , and incrementing k when all

remaining vertices have induced degree greater than k [45].

Since each iteration requires scanning over all remaining

vertices, this algorithm requires a total ofO(|H |+ρ |V |)work,

where ρ is the number of iterations required by the algorithm,

also known as the peeling complexity [24].

This section presents a new linear-work algorithm for

computing coreness on hypergraphs based on the linear-

work algorithm for graphs by Dhulipala et al. [24]. We have

also implemented theO(|H |+ρ |V |)work coreness algorithm

in Hygra, and compare the performance of theO(ρ |H |)work

algorithm and the work-efficient algorithm in Section 6. To

obtain work-efficiency, our algorithm uses the bucketing

data structure described in Section 4. The pseudocode of our

algorithm is shown in Algorithm 3.

An array D is initialized with the degrees of the vertices

(Line 1). This array will keep track of the induced degrees of

the vertices, and also store the final coreness value of the ver-

tices. An array Flags (Line 2) is used to keep track of whether
a hyperedge has been deleted (0 means not deleted and 1

means deleted). Line 13 initializes the bucketing structure,

specifying that they should be processed in increasing order.

Line 15 gets the next non-empty bucket in increasing order,

and returns k , which corresponds to the current k-core be-
ing processed, as well as vertices with degree at most k in a

VertexSet FrontierV . Line 17 marks the neighboring vertices

of FrontierV as deleted using VertexProp with the func-

tions RemoveHyperedge (Lines 3–4) and CheckRemoved

(Lines 5–6). Hyperedges that are deleted will be returned in

the HyperedgeSet FrontierE, and duplicates do not need to

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Algorithm 3 Pseudocode for Coreness in Hygra

1: D = {deg(v0), . . . , deg(vnv−1)} ▷ initialized to vertex degrees

2: Flags = {0, . . . , 0} ▷ initialized to all 0

3: procedure RemoveHyperedge(v , e)
4: return CAS(&Flags[e], 0, 1)

5: procedure CheckRemoved(e)
6: return (Flags[e] == 0)

7: procedure UpdateD(k , v , numNghs)
8: if D[v] > k then
9: D[v] = max (D[v] − numNghs, k)
10: return (v, D[v])
11: else return (⊥, ⊥)

12: procedure Coreness(H)

13: B = MakeBuckets(nv , D, Increasing), finished = 0

14: while (finished < nv) do
15: (k, VertexSet FrontierV) = NextBucket(B)
16: finished+= |FrontierV |

17: HyperedgeSet FrontierE = VertexProp(H, FrontierV,
RemoveHyperedge, CheckRemoved)

18: Moved = HyperedgePropCount(H, FrontierE, UpdateD(k))
19: UpdateBuckets(B, Moved)
20: return D

be removed, since the CAS on Line 4 will return true exactly
once per hyperedge. On Line 18, we update the induced de-

grees of the vertices due to the removal of hyperedges using

a HyperedgePropCount. The UpdateD function (Lines 7–

11) will decrement the induced degree of each vertex v by

its number of neighbors in FrontierE (numNghs), and set it

to k if it falls below k , since this means v will have a core-

ness value of k . UpdateD returns a pair indicating the target

bucket of the vertex v , which is its new induced degree D[v]
(Line 10). For vertices whose coreness value have already

been determined, the null pair (⊥,⊥) is returned (Line 11).

The non-null pairs are stored in the Moved array output by

HyperedgePropCount. Line 19 moves the vertices to new

buckets using UpdateBuckets with the Moved array as in-

put. The algorithm terminates when all vertices have been

extracted from the bucket structure and processed.

Analysis. Each hyperedge will place each of its incident

vertices in the Moved array only when it is deleted. There-

fore the total size of the sets passed to UpdateBuckets

is O(
∑

e ∈E deg(e)). The number of identifiers in the bucket

structure is nv and the number of buckets is at most the

maximum vertex degree, which is O(ne). The total number

of calls to UpdateBuckets and NextBucket is the peeling

complexity ρ. Using Lemma 1, we obtain an expected work

of O(|H |) and depth of O(ρ log |H |) with high probability.

5.4 Hypertrees
Given an unweighted hypergraph and a source vertex src,
a hypertree contains all vertices and hyperedges reachable

from src [30]. An algorithm that computes a hypertree out-

puts predecessor arrays for vertices and hyperedges, which

specify one of its predecessors in a shortest path from src.

The predecessor of a hyperedge is a vertex, and vice versa.

The sequential algorithm for generating hypertrees is similar

to a breadth-first search, and takes linear work in the size

of the hypergraph [30]. Vertices are visited in order of their

distance from the source, and each hyperedge is processed

only the first time that a vertex visits it.

A parallel algorithm can be obtained by processing all ver-

tices or hyperedges at the same distance from the source in

parallel. This algorithm can be naturally implemented in Hy-

gra using the VertexProp and HyperedgeProp functions.

The frontier of vertices or hyperedges at the same distance

from src are maintained using VertexSets and Hyperedge-

Sets. The algorithm is similar to Ligra’s parallel breadth-first

search implementation.

Each vertex and hyperedge will appear in at most one

frontier and therefore the sum of the sizes of all frontiers

plus their out-degrees isO(|H |). As VertexProp and Hyper-

edgeProp do work proportional to the size of the input set

plus the sum of its out-degrees, the overall work performed

by the algorithm is O(|H |), which is work-efficient. Each

call to VertexProp and HyperedgeProp takes O(log |H |)

depth, and so the overall depth is O(D log |H |) where D is

the diameter of the hypergraph.

5.5 Hyperpaths
Given an unweighted hypergraph and a source vertex src, a
hyperpath tree is a maximal hypergraph containing all ver-

tices reachable from src via cycle-free paths (i.e., no vertex
appears in more than one hyperedge along any particular

path) [30]. The sequential algorithm for computing hyper-

path trees [30] visits a hyperedge only when all incoming

vertices of the hyperedge have visited it (instead of the first

time an incoming vertex visits it). The algorithm takes linear

work in the size of the hypergraph.

We implement a parallel algorithm for computing a hy-

perpath tree in Hygra, which requires minor changes to our

hypertree algorithm so that a hyperedge is added to a fron-

tier only when all of its incoming vertices have visited it.

The overall work of the algorithm is O(|H |) and depth is

O(L log |H |), where L is the length of the longest simple path

in the resulting hyperpath tree.

5.6 Connected Components
Given an undirected, unweighted hypergraph, a connected
component is a maximal set of vertices that can all reach

one another via incident hyperedges. The label propagation

technique can be used to compute the connected components

of a hypergraph [41, 46]. The idea is to initialize vertices with

unique IDs and iteratively propagate IDs of vertices to their

neighbors, having each vertex store the minimum ID among

the IDs that it receives and its own. At convergence, the IDs

on the vertices partition them into connected components.

We implement the label propagation algorithm in Hygra,

but we note that there are more efficient parallel algorithms

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

for connected components for graphs (e.g., [80, 82]) that

could be applied to hypergraphs. Our implementation itera-

tively propagates vertex IDs to hyperedges and hyperedge

IDs to vertices using VertexProp and HyperedgeProp, re-

spectively, with the writeMin function until the frontier

becomes empty. The output frontier of VertexProp and

HyperedgeProp contain only the elements whose IDs have

changed. The vertex IDs are initialized to be unique integers,

and the hyperedge IDs are initialized to ∞. Each iteration of

the algorithm takesO(|H |) work andO(log |H |) depth as the

calls to VertexProp and HyperedgeProp could potentially

process all vertices and hyperedges. For a hypergraph with

diameter D, the overall work is O(D |H |) and overall depth

is O(D log |H |).

5.7 PageRank
PageRank is an algorithm for computing the importance

of vertices in a graph [16], and can be extended to hyper-

graphs [8, 41, 46]. We consider PageRank on unweighted,

connected hypergraphs. The following update equations de-

fines the algorithm for a damping factor 0 ≤ α ≤ 1:

PR[v] =
1 − α

nv
+ α

∑
e ∈N −(v)

PR[e]

deд+(e)
(3)

PR[e] =
∑

v ∈N −(e)

PR[v]

deд+(v)
(4)

Vertices spread their ranks equally to hyperedges forwhich

they are incoming vertices for in Equation 4, and hyperedges

spread their ranks equally to outgoing vertices in Equation 3.

The update equations are applied iteratively until some con-

vergence criterion is met (e.g., a maximum number of itera-

tions is reached or the error falls below some threshold).

We implement PageRank in Hygra by iteratively calling

VertexProp to pass PageRank values from vertices to hy-

peredges andHyperedgeProp to pass PageRank values from

hyperedges to vertices.We also useVertexMap to normalize

the PageRank scores as required in Equation 3, and use Ver-

texMap and HyperedgeMap to reset arrays. We can also im-

plement the PageRank-Entropy algorithm from MESH [41],

which computes the entropy of the ranks of vertices in each

hyperedge. This can be done with a VertexProp call that

passes the entropy contribution of each vertex’s rank to each

hyperedge that it is an incoming vertex for.

Each iteration of PageRank (and PageRank-Entropy) pro-

cesses all vertices and hyperedges using VertexProp and

HyperedgeProp. Therefore, the per-iteration work isO(|H |)

and depth is O(log |H |).

5.8 Single-Source Shortest Paths
Given a weighted hypergraph and a source vertex src, the
goal of single-source shortest paths (SSSP) is to compute the

distance of the shortest path from src to every other reachable
vertex in the hypergraph. We implement a parallel SSSP

algorithm for hypergraphs in Hygra based on the Bellman-

Ford algorithm for SSSP on graphs [20].

The algorithm initializes tentative shortest path distances

(SP) of all vertices and hyperedges to∞, except for the source

vertex which has a distance of 0. Each iteration processes

the active vertices, which are the vertices whose SP value

changed in the previous iteration. Initially, only the source

vertex is active. On each iteration, the algorithm calls Ver-

texProp with a Relax function, which uses writeMin to

update the SP values of all hyperedges with active incoming

vertices to the minimum of their original SP value and the SP

value of the incoming vertex plus the weight of the hyper-

edge. It then calls HyperedgeProp to update the SP values

of outgoing vertices of hyperedges that were just updated

using the same Relax procedure. If no SP values change

in an iteration then the shortest path distances have been

found, and the algorithm terminates. If the algorithm hasn’t

terminated after nv − 1 iterations, then that means there is

a negative weight cycle, and the algorithm reports this and

terminates. The work of this algorithm is O(nv |H |) as each

iteration can process all vertices and hyperedges, and the

depth is O(nv log |H |).

6 Experiments

Experimental Setup.We run all of our experiments on a 72-

core Dell PowerEdge R930 (with two-way hyper-threading)

with four 2.4GHz 18-core E7-8867 v4 Xeon processors, each

with a 45MB cache. The machine has a total of 1TB of RAM.

Our programs use Cilk Plus [58] for parallelism and are com-

piled with the g++ compiler (version 5.5.0) with the -O3 flag.

By using Cilk’s work-stealing scheduler we are able obtain

an expected running time ofW /P +O(D) for an algorithm

withW work and D depth on P processors [11]. Hygra also

supports compilation with OpenMP.

For the parallel experiments, we use the command numactl
-i all to balance the memory allocations across the sock-

ets. All of the parallel speedup numbers that we report are

based on the running time on 72-cores with hyper-threading

compared to the running time on a single thread.

Data Sets.Our input hypergraphs are shown in Table 2. com-
Orkut and Friendster are constructed using the community

data from the Stanford Large Network Dataset Collection

(SNAP) [59], where each community is a hyperedge con-

taining its members as vertices. These are the largest real-

world datasets used by prior work on hypergraph process-

ing [41, 46]. We also include three larger real-world datasets,

orkut-groups,Web, and LiveJournal, which are constructed

from bipartite graphs from the Koblenz Network Collec-

tion (KONECT) [55]. To test on larger inputs, we also con-

structed synthetic random hypergraphs. Rand1 and Rand2
have 10

8
and 10

9
vertices/hyperedges, respectively, where

the cardinality of each hyperedge is 10 and its member

vertices are chosen uniformly at random. Rand3 has 10
7

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Hypergraph |V | |E |
∑
e∈E

deg(e) max

v∈V
deg(v) max

e∈E
deg(e) Num. peeling rounds (ρ) Num. clique-expanded edges

com-Orkut 2.32 ×106 1.53 ×107 1.07 ×108 2958 9120 1698 3.87 ×1010

Friendster 7.94 ×106 1.62 ×106 2.35 ×107 1700 9299 351 5.53 ×109

Orkut-group 2.78 ×106 8.73 ×106 3.27 ×108 40425 3.18×105 2923 2.45 ×1012

Web 2.77 ×107 1.28 ×107 1.41 ×108 1.1 ×106 1.16×107 3.18 ×105 1.06 ×1014

LiveJournal 3.20 ×106 7.49 ×106 1.12 ×108 300 1.05×106 820 2.7 ×1012

Rand1 10
8

10
8

10
9

34 10 30 4.45 ×109

Rand2 10
9

10
9

10
10

35 10 33 4.5 ×1010

Rand3 10
7

10
7

10
9

153 100 109 4.95 ×1010

Table 2. Hypergraph inputs.

vertices/hyperedges, and the cardinality of each hyperedge

is 100 with its member vertices chosen uniformly at ran-

dom. For input size scalability experiments, we also gen-

erated random hypergraphs with varying sizes and hyper-

edge cardinalities. For SSSP, we use weighted versions of

the hypergraphs with random hyperedge weights from 1 to

⌊log
2
(max (nv ,nh))⌋. The inputs are all undirected.

Results. Table 3 shows the sequential and parallel running

times of our algorithms, as well as their parallel speedup. The

BC times are for a single source, and PageRank times are for

1 iteration. For k-core, we include times for both the work-

efficient (WE) version and the work-inefficient (WI) version.

We did not include hyperpaths in our experiments because

the hyperpaths found in the inputs are too small to give

meaningful running times. For the Orkut-group, Web, and

LiveJournal inputs, we used the edge-aware parallelization

scheme due to their highly skewed degree distributions.

Overall, the algorithms get good parallel speedup, rang-

ing from 8.5–76.5x, and the parallel times on the real-world

inputs are usually under 1 second. The random hypergraphs

are larger than hypergraphs used in prior work, and we are

able to achieve parallel running times on the order of seconds

for Rand1 and Rand3 and tens of seconds for Rand2. The

lower speedups for k-core on the real-world inputs are due

to the large number of peeling rounds (see Table 2), many of

which have few active vertices and hyperedges.

We see that our work-efficient k-core algorithm is usually

much faster than the work-inefficient version, by a factor

of up to 733x in parallel, as it does less work. The benefit

is higher for the inputs with more peeling rounds (e.g., the

Web hypergraph).

Figure 2 shows the running time vs. number of threads

for all of the algorithms on Rand1. We see good parallel

scalability for all of the algorithms, with speedups ranging

from 31–53x on 72 cores with hyper-threading.

Figure 3 shows the running time vs. hyperedge count

for all of the algorithms on random hypergraphs with 10
7

vertices and cardinality-10 hyperedges (we also tried fixing

the vertex and hyperedge count and varying the cardinality,

and found similar trends). We see a near-linear increase in

running time on all of the algorithms except hypertree and

k-core, which have a sub-linear increase. For hypertree, the

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 24 32 48 72 72h

R
u
n
n
in
g

tim

e

(s
e
c
o
n
d
s
)

Number of threads

Hypertree
BC
CC

PageRank
SSSP
MIS

WE k-core

Figure 2. Running time vs. number of threads on Rand1.

“72h” refers to 144 hyper-threads.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 20 30 40 50 60 70 80 90 100

R
u
n
n
in
g

tim

e

(s
e
c
o
n
d
s
)

Millions of hyperedges

Hypertree
BC
CC

PageRank
SSSP
MIS

WE k-core

Figure 3. Running time vs. number of hyperedges on 72

cores with hyper-threading.

number of edges traversed increases sub-linearly due to the

direction optimization that avoids many edge traversals. For

k-core, the peeling complexity, and hence running time, does

not increase linearly with the number of hyperedges.

Figures 4 and 5 show the impact of the direction optimiza-

tion on com-Orkut and LiveJournal. We plot the running

time using all sparse traversals, all dense traversals, and hy-

brid traversals with the default threshold of 1/20 fraction of

the sum of in-degrees of the hyperedges for VertexProp

and sum of in-degrees of vertices for HyperedgeProp. For

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

com-Orkut Friendster Rand1 Rand2 Rand3 Orkut-group Web LiveJournal

Algorithm T1 T
72h SU T1 T

72h SU T1 T
72h SU T1 T

72h SU T1 T
72h SU T1 T

72h SU T1 T
72h SU T1 T

72h SU

Hypertree 1.04 0.031 33.5 0.803 0.022 36.5 24.3 0.676 35.9 321 8.97 35.8 2.18 0.047 46.4 0.551 0.021 26.2 2.71 0.068 39.9 0.754 0.022 34.3

BC 5.31 0.12 44.3 2.7 0.07 38.6 131.0 3.72 35.2 1890 39.4 48.0 40.8 0.82 49.8 7.58 0.141 53.8 10.7 0.517 20.7 3.66 0.099 37.0

CC 7.87 0.162 48.6 3.34 0.082 40.5 330.0 9.88 33.4 4190 121 34.6 70.5 1.07 65.9 11.6 0.18 64.4 11.0 0.478 23.0 4.01 0.081 49.5

PageRank 3.31 0.083 39.9 0.941 0.026 36.2 84.1 2.61 32.2 955 28.6 33.4 57.3 1.6 35.8 6.88 0.119 57.8 5.27 0.27 19.5 2.66 0.062 42.9

SSSP 8.81 0.157 56.1 3.54 0.107 76.5 290.0 6.76 43.3 5730 79.8 71.8 54.0 1.0 54.0 14.7 0.261 56.3 7.04 0.245 28.7 5.56 0.118 47.1

MIS 7.73 0.227 34.1 3.26 0.11 29.6 154.0 4.19 36.8 1680 44.5 37.8 68.0 1.09 62.4 9.86 0.411 24.0 17.8 2.09 8.52 4.92 0.434 11.3

WE k-core 7.09 0.738 9.61 2.09 0.081 25.8 116.0 2.17 53.5 2210 31.8 69.5 41.0 0.866 47.3 13.7 0.831 16.5 12.5 0.965 13.0 6.13 0.325 18.9

WI k-core 33.9 1.88 18.0 9.72 0.421 23.1 133.0 3.4 39.1 1150 33.6 34.2 87.3 1.18 74.0 96.6 3.34 28.9 23500 707.0 33.2 16.9 0.905 18.7

Table 3. Sequential times (T1) and 72-core with hyper-threading (T72h) times (seconds), as well as the parallel speedup (SU).

 0

 0.2

 0.4

 0.6

 0.8

 1

H
ypertree

BC C
C

PageR
ank

SSSP

M
IS

W
E
 k-core

11.4

R
u
n
n
in
g

tim

e

(s
e
c
o
n
d
s
)

Dense
Sparse
Hybrid

Figure 4. Running times of dense, sparse, and hybrid traver-

sals on com-Orkut using 72 cores with hyper-threading.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

H
ypertree

BC C
C

PageR
ank

SSSP

M
IS

W
E
 k-core

3.09

R
u
n
n
in
g

tim

e

(s
e
c
o
n
d
s
)

Dense
Sparse
Hybrid

Figure 5. Running times of dense, sparse, and hybrid traver-

sals on LiveJournal using 72 cores with hyper-threading.

all of the algorithms, we see that the hybrid traversal is the

the fastest or tied for the fastest among the three cases.

We found the default threshold to work reasonably well

across all our applications and inputs. We show the running

time as a function of threshold for several applications on

com-Orkut and LiveJournal in Figures 6 and 7. We see that

the performance is similar across a wide range of thresholds.

In Table 4, we report the memory, percentage of cycles

stalled due to memory accesses, and LLC local miss rate for

several algorithms on com-Orkut, Rand1, and LiveJournal.

We see that the cache miss rate andmemory bandwidth is the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1

R
u
n
n
in
g

 t
im
e

Threshold (fraction of sum of in-degrees)

Hypertree
BC
CC

SSSP

Figure 6. Running times as a function of threshold on com-

Orkut using 72 cores with hyper-threading.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1

R
u
n
n
in
g

 t
im
e

Threshold (fraction of sum of in-degrees)

Hypertree
BC
CC

SSSP

Figure 7. Running times as a function of threshold on Live-

Journal using 72 cores with hyper-threading.

highest for the random hypergraph, Rand1, as the edges have

very little locality. The memory bandwidth is close to the

peak bandwidth of the machine, and the algorithms on Rand1

are memory bandwidth-bound. com-Orkut and LiveJournal

exhibit locality in their structure, and thus have lower cache

miss rates, and require fewer requests to DRAM, thereby

lowering the memory bandwidth. However, a decent fraction

of the cycles are still stalled waiting for memory accesses,

making the algorithms memory latency-bound. All of the

algorithms benefit from spatial locality when traversing the

adjacency list in the bipartite representation.

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

com-Orkut Rand1 LiveJournal

Fraction of LLC Memory Fraction of LLC Memory Fraction of LLC Memory

Algorithm Cycles Stalled Miss Rate Bandwidth Cycles Stalled Miss Rate Bandwidth Cycles Stalled Miss Rate Bandwidth

Hypertree 0.364 0.122 144.7 0.726 0.551 161.7 0.28 0.161 135.5

BC 0.462 0.111 131.1 0.804 0.808 161.8 0.35 0.097 120.1

CC 0.444 0.089 134.4 0.837 0.833 147.5 0.40 0.044 126.1

PageRank 0.79 0.24 123.1 0.927 0.933 146.6 0.69 0.163 104.0

SSSP 0.5 0.098 132.1 0.842 0.781 146.2 0.49 0.057 123.2

WE k-core 0.367 0.358 53.86 0.573 0.422 140.1 0.39 0.286 72.5

Table 4. Fraction of cycles stalled on memory requests, LLC local miss rate, and memory bandwidth (GB/s). All experiments

use 72 cores with hyper-threading.

Comparison with Alternatives.While it is difficult to di-

rectly compare with HyperX and MESH as they are designed

for distributed memory, we first perform a rough comparison

in terms of the running times reported in their papers [41, 46].

MESH reports a running time of about 1 minute per itera-

tion on com-Orkut using a cluster of eight 12-core machines,

and HyperX reports a running time of about 10s using a

cluster of eight 4-core machines (HyperX’s algorithm is for

random walks, which does less work than PageRank per

iteration). In contrast, one iteration of Hygra’s PageRank on

com-Orkut takes 0.083s on 72 cores and 3.31s on one thread.

Even adjusting for differences in processor specifications, we

are significantly faster than their reported parallel numbers

using just a single thread, and orders of magnitude faster

in parallel. The large difference in performance of MESH

and HyperX compared to Hygra is due to the higher com-

munication costs of distributed memory and overheads of

Spark.

We also ran MESH on our 72-core machine, and did a

sweep of the parameter space (partition strategy and num-

ber of partitions), and the best running time we obtained for

one iteration of PageRank on com-Orkut was over 2 min-

utes, which is much slower than Hygra’s time. MESH reports

competitive performance with HyperX [41], and so we ex-

pect the performance of HyperX to be in the same ballpark.

For frontier-based algorithms our speedups would be even

higher as HyperX and MESH require work proportional to

the hypergraph size on every iteration whereas we only do

work proportional to the frontier size plus the sum of its

out-degrees. We ran the single-source shortest paths algo-

rithm from MESH (which works on unit weights and so is

similar to our hypertree algorithm) on our 72-core machine

and observed that for com-Orkut just the first iteration takes

over 1 minute. This is much slower than the Hygra time for

running the algorithm to convergence.

As mentioned in Section 4.2, another method for repre-

senting a hypergraph is to create a clique among all vertices

for each hyperedge, store the result as a graph (known as

the clique-expanded graph), and apply graph algorithms on

it. This approach would work for algorithms that do not

treat hyperedges differently from vertices, such as hypertree,

connected components, and single-source shortest paths (for

algorithms that treat the hyperedges specially, this approach

would generate incorrect results).We show the number edges

in the clique-expanded graph for each of our inputs in Table 2.

We see that the sizes are several orders of magnitude greater

than the corresponding hypergraph using the bipartite graph

representation. As a baseline, we ran Ligra’s breadth-first

search, connected components, and SSSP implementations

on the clique-expanded graph for Friendster (which is 235x

larger than the bipartite representation) on 72 cores. Breadth-

first search took 0.061s, which is 2.8x slower than Hygra’s

hypertree implementation (see Table 3). Connected compo-

nents took 2.35s, which is 28.7x slower than Hygra. SSSP

took 3.27s, which is 30.6x slower than Hygra. The overhead

is due to additional edge traversals in the clique-expanded

graph. However, the running time overhead is not as high as

the space overhead, since the clique-expanded graph is much

denser and has better locality. The overhead is only 2.8x for

breadth-first search since the dense traversal optimization

allows many edges to be skipped.

7 Conclusion
We have presented a suite of parallel hypergraph algorithms

with strong theoretical guarantees. We implemented the

algorithms by extending the Ligra graph processing frame-

work to handle hypergraphs. Our experiments show that the

algorithms achieve good parallel scalability and significantly

better performance than prior work. Future work includes

extending graph optimizations for locality and scalability

(e.g., [7, 53, 57, 85, 92, 96, 97, 101]) to hypergraphs.

Acknowledgements
We thank the anonymous reviewers for their helpful feed-

back. This research was supported by DOE Early Career

Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,

MIT Research Support Committee Award, DARPA SDHAward

#HR0011-18-3-0007, and Applications Driving Architectures

(ADA) Research Center, a JUMP Center co-sponsored by SRC

and DARPA.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

References
[1] Sinan Aksoy, Dustin Arendt, Louis S Jenkins, Brenda Praggastis,

Emilie Purvine, and Marcin Zalewski. 2019. High Performance Hy-

pergraph Analytics of Domain Name System Relationships. In HICSS
Symposium on Cybersecurity Big Data Analytics.

[2] Noga Alon, Uri Arad, and Yossi Azar. 1999. Independent Sets in

Hypergraphs with Applications to Routing via Fixed Paths. In Inter-
national Workshop on Approximation Algorithms for Combinatorial
Optimization Problems: Randomization, Approximation, and Combina-
torial Algorithms and Techniques (RANDOM-APPROX). 16–27.

[3] Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. 1998. Hy-

pergraph traversal revisited: Cost measures and dynamic algorithms.

In Mathematical Foundations of Computer Science. 1–16.
[4] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail.

2007. Approximating betweenness centrality. InWorkshop on Algo-
rithms and Models for the Web-Graph (WAW). 124–137.

[5] Paul Beame and Michael Luby. 1990. Parallel Search for Maximal

Independence Given Minimal Dependence. In ACM-SIAM Symposium
on Discrete Algorithms (SODA). 212–218.

[6] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-

optimizing breadth-first search. InACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC). Article 12, 12:1–12:10 pages.

[7] S. Beamer, K. Asanovic, and D. Patterson. 2017. Reducing Pager-

ank Communication via Propagation Blocking. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 820–831.

[8] Abdelghani Bellaachia and Mohammed Al-Dhelaan. 2013. Random

Walks in Hypergraph. In International Conference on Applied Mathe-
matics and Computational Methods. 187–194.

[9] Ioana O. Bercea, Navin Goyal, David G. Harris, and Aravind Srini-

vasan. 2017. On Computing Maximal Independent Sets of Hyper-

graphs in Parallel. ACM Trans. Parallel Comput. 3, 1, Article 5 (Jan.
2017), 5:1–5:13 pages.

[10] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy

sequential maximal independent set and matching are parallel on

average. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA). 308–317.

[11] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multi-

threaded Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999),

720–748.

[12] Cecile Bothorel and Mohamed Bouklit. 2011. An Algorithm for De-

tecting Communities in Folksonomy Hypergraphs. In International
Conference on Innovative Internet Community Services. 159–168.

[13] Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality.

Journal of Mathematical Sociology 25 (2001), 163–177.

[14] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic

Expressions. J. ACM 21, 2 (April 1974), 201–206.

[15] Alain Bretto, Hocine Cherifi, and Driss Aboutajdine. 2002. Hyper-

graph imaging: an overview. Pattern Recognition 35, 3 (2002), 651–658.
[16] S. Brin and L. Page. 1998. The Anatomy of a Large-Scale Hypertextual

Web Search Engine. In Computer Networks and ISDN Systems. 107–
117.

[17] U. V. Catalyurek and C. Aykanat. 1999. Hypergraph-partitioning-

based decomposition for parallel sparse-matrix vector multiplication.

IEEE Transactions on Parallel and Distributed Systems 10, 7 (Jul 1999),
673–693.

[18] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdaag,

Robert T. Heaphy, and Lee Ann Riesen. 2009. A repartitioning hy-

pergraph model for dynamic load balancing. J. Parallel and Distrib.
Comput. 69, 8 (2009), 711–724.

[19] L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal. 2015. Efficient and

Simplified Parallel Graph Processing over CPU and MIC. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
819–828.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-

ford Stein. 2009. Introduction to Algorithms (3. ed.). MIT Press.

[21] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex

Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon:

A Communication-optimizing Substrate for Distributed Heteroge-

neous Graph Analytics. InACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 752–768.

[22] Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.

2019. Phoenix: A Substrate for Resilient Distributed Graph Analytics.

In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 615–630.

[23] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling,

and Umit V. Catalyurek. 2006. Parallel Hypergraph Partitioning

for Scientific Computing. In International Conference on Parallel and
Distributed Processing (IPDPS). 124–124.

[24] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne:

A Framework for Parallel Graph Algorithms Using Work-efficient

Bucketing. In ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA). 293–304.

[25] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoreti-

cally Efficient Parallel Graph Algorithms Can Be Fast and Scalable.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 393–404.

[26] L. Ding and A. Yilmaz. 2008. Image Segmentation as Learning on

Hypergraphs. In International Conference on Machine Learning and
Applications. 247–252.

[27] Aurelien Ducournau and Alain Bretto. 2014. Random walks in di-

rected hypergraphs and application to semi-supervised image seg-

mentation. Computer Vision and Image Understanding 120 (2014),

91–102.

[28] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER: High

performance data structure for streaming graphs. In IEEE Conference
on High Performance Extreme Computing (HPEC). 1–5.

[29] Linton Freeman. 1977. A set of measures of centrality based upon

betweenness. Sociometry 40 (1977), 35–41.

[30] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen.

1993. Directed hypergraphs and applications. Discrete Applied Math-
ematics 42, 2 (1993), 177 – 201.

[31] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, and A. Bar-

Noy. 2012. Dynamic shortest path algorithms for hypergraphs. In

International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt). 238–245.

[32] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better

Approximation of Betweenness Centrality. In Algorithms Engineering
and Experiments (ALENEX). 90–100.

[33] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and

Keshav Pingali. 2018. Abelian: A Compiler for Graph Analytics on

Distributed, Heterogeneous Platforms. In Euro-Par. 249–264.
[34] Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computa-

tion on Natural Graphs. In USENIX Symposium on Operating System
Design and Implementation (OSDI). 17–30.

[35] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making

Pull-based Graph Processing Performant. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
246–260.

[36] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-

Down Parallel Semisort. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 24–34.

[37] Torben Hagerup. 1992. Fast and optimal simulations between CRCW

PRAMs. In Annual Symposium on Theoretical Aspects of Computer
Science (STACS). 45–56.

[38] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauch-

werger. 2012. The STAPL Parallel Graph Library. In Languages and

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Compilers for Parallel Computing (LCPC). 46–60.
[39] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauch-

werger. 2014. KLA: a new algorithmic paradigm for parallel graph

computations. In International Conference on Parallel Architectures
and Compilation (PACT). 27–38.

[40] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauchw-

erger. 2015. An Algorithmic Approach to Communication Reduction

in Parallel Graph Algorithms. In International Conference on Parallel
Architecture and Compilation (PACT). 201–212.

[41] Benjamin Heintz, Rankyung Hong, Shivangi Singh, Gaurav Khandel-

wal, Corey Tesdahl, and Abhishek Chandra. 2019. MESH: A Flexible

Distributed Hypergraph Processing System. In IEEE International
Conference on Cloud Engineering (IC2E). 12–22.

[42] C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan. 2017.

MultiGraph: Efficient Graph Processing on GPUs. In International
Conference on Parallel Architectures and Compilation Techniques
(PACT). 27–40.

[43] J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley

Professional.

[44] Louis Jenkins, Tanveer Hossain Bhuiyan, Sarah Harun, Christopher

Lightsey, DavidMentgen, Sinan G. Aksoy, Timothy Stavcnger, Marcin

Zalewski, Hugh R. Medal, and Cliff Joslyn. 2018. Chapel HyperGraph

Library (CHGL). In IEEE High Performance Extreme Computing Con-
ference (HPEC). 1–6.

[45] Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. 2017. Parallel

Peeling Algorithms. ACM Trans. Parallel Comput. 3, 1, Article 7 (Jan.
2017), 7:1–7:27 pages.

[46] W. Jiang, J. Qi, J. X. Yu, J. Huang, and R. Zhang. 2019. HyperX: A

Scalable Hypergraph Framework. IEEE Transactions on Knowledge
and Data Engineering 31, 5, 909–922.

[47] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2011.

PEGASUS: mining peta-scale graphs. Knowl. Inf. Syst. 27, 2 (2011),
303–325.

[48] Richard M. Karp, Eli Upfal, and Avi Wigderson. 1988. The Complexity

of Parallel Search. J. Comput. Syst. Sci. 36, 2 (April 1988), 225–253.
[49] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. 1999. Multilevel

hypergraph partitioning: applications in VLSI domain. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 7, 1 (March 1999),

69–79.

[50] Pierre Kelsen. 1992. On the Parallel Complexity of Computing a

Maximal Independent Set in a Hypergraph. In ACM Symposium on
Theory of Computing (STOC). 339–350.

[51] Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydin Buluç, Franz

Franchetti, John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew

Lumsdaine, Henning Meyerhenke, Scott McMillan, Carl Yang, John D.

Owens, Marcin Zalewski, Timothy G. Mattson, and José E. Moreira.

2016. Mathematical foundations of the GraphBLAS. In IEEE High
Performance Extreme Computing Conference (HPEC). 1–9.

[52] Gaurav Khanna, Nagavijayalakshmi Vydyanathan, T. Kurc, U.

Catalyurek, P. Wyckoff, J. Saltz, and P. Sadayappan. 2005. A hy-

pergraph partitioning based approach for scheduling of tasks with

batch-shared I/O. In IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID). 792–799.

[53] Vladimir Kiriansky, Yunming Zhang, and Saman P. Amarasinghe.

2016. Optimizing Indirect Memory References with milk. In Interna-
tional Conference on Parallel Architectures and Compilation (PACT).
299–312.

[54] Sriram Krishnamoorthy, Umit Catalyurek, Jarek Nieplocha, Atanas

Rountev, and P. Sadayappan. 2006. Hypergraph Partitioning for

Automatic Memory Hierarchy Management. In ACM/IEEE Conference
on Supercomputing (SC).

[55] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection.

In International Conference on World Wide Web (WWW). 1343–1350.

[56] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:

Large-Scale Graph computation on Just a PC. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 31–46.

[57] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2018. Ac-

celerating PageRank using Partition-Centric Processing. In USENIX
Annual Technical Conference (ATC). 427–440.

[58] Charles E. Leiserson. 2010. The Cilk++ concurrency platform. J.
Supercomputing 51, 3 (2010).

[59] Jure Leskovec and Andrej Krevl. 2019. SNAP Datasets: Stanford Large

Network Dataset Collection. http://snap.stanford.edu/data.
[60] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wen-

guang Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu,

Weimin Zheng, and Jingfang Xu. 2018. ShenTu: Processing Multi-

trillion Edge Graphs on Millions of Cores in Seconds. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC). 56:1–56:11.

[61] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M. Hellerstein. 2010. GraphLab: A New Parallel

Framework for Machine Learning. In Conference on Uncertainty in
Artificial Intelligence (UAI). 340–349.

[62] Michael Luby. 1986. A simple parallel algorithm for the maximal

independent set problem. SIAM J. Comput. 15, 4 (November 1986),

1036–1055.

[63] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. 2015. LLAMA:

Efficient graph analytics using Large Multiversioned Arrays. In IEEE
International Conference on Data Engineering (ICDE). 363–374.

[64] Saeed Maleki, G. Carl Evans, and David A. Padua. 2015. Tiled Linear

Algebra a System for Parallel Graph Algorithms. In Languages and
Compilers for Parallel Computing. 116–130.

[65] Grzegorz Malewicz, MatthewH. Austern, Aart J.C Bik, James C. Dehn-

ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:

a system for large-scale graph processing. In ACM Conference on
Management of Data (SIGMOD). 135–146.

[66] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Think-

ing Like a Vertex: A Survey of Vertex-Centric Frameworks for Large-

Scale Distributed Graph Processing. ACM Comput. Surv. 48, 2, Article
25 (Oct. 2015), 39 pages.

[67] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scala-

bility! But at What COST?. In USENIX Conference on Hot Topics in
Operating Systems (HotOS).

[68] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A pattern

based algorithmic autotuner for graph processing on GPUs. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP). 201–213.

[69] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A

Lightweight Infrastructure for Graph Analytics. In ACM Symposium
on Operating Systems Principles (SOSP). 456–471.

[70] Lars Relund Nielsen, Kim Allan Andersen, and Daniele Pretolani.

2005. Finding the K Shortest Hyperpaths. Comput. Oper. Res. 32, 6
(June 2005), 1477–1497.

[71] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr:

Transforming Irregular Graphs for GPU-Friendly Graph Processing.

In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 622–636.

[72] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Through-

put Optimization of Graph Algorithms on GPUs. In ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 1–19.

[73] Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and Bin Ren.

2018. Graphphi: efficient parallel graph processing on emerging

throughput-oriented architectures. In International Conference on
Parallel Architectures and Compilation Techniques (PACT). 9:1–9:14.

[74] Rami Puzis, Manish Purohit, and V. S. Subrahmanian. 2013. Between-

ness computation in the single graph representation of hypergraphs.

http://snap.stanford.edu/data

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

Social Networks 35, 4 (2013), 561–572.
[75] S. Riazi and B. Norris. 2016. GraphFlow: Workflow-based big graph

processing. In IEEE International Conference on Big Data (Big Data).
3336–3343.

[76] A. Ritz, B. Avent, and T. M. Murali. 2017. Pathway Analysis with

Signaling Hypergraphs. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 14, 5 (Sept 2017), 1042–1055.

[77] Sanjukta Roy and Balaraman Ravindran. 2015. Measuring Network

Centrality Using Hypergraphs. In ACM IKDD Conference on Data
Sciences. 59–68.

[78] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. 2015. GraphRe-

duce: processing large-scale graphs on accelerator-based systems.

In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). 1–12.

[79] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He,

Bo Liu, and Qiang-Sheng Hua. 2018. Graph Processing on GPUs:

A Survey. ACM Comput. Surv. 50, 6, Article 81 (Jan. 2018), 81:1–

81:35 pages.

[80] Yossi Shiloach and Uzi Vishkin. 1982. An O (logn) Parallel Connec-
tivity Algorithm. J. Algorithms 3, 1 (1982), 57–67.

[81] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph

Processing Framework for Shared Memory. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
135–146.

[82] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2014. A Sim-

ple and Practical Linear-Work Parallel Algorithm for Connectivity.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 143–153.

[83] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller

and Faster: Parallel Processing of Compressed Graphs with Ligra+.

In IEEE Data Compression Conference (DCC). 403–412.
[84] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and

Lizy K. John. 2018. Start Late or Finish Early: A Distributed Graph

Processing System with Redundancy Reduction. PVLDB 12, 2 (2018),

154–168.

[85] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.

2017. GraphGrind: Addressing Load Imbalance of Graph Partitioning.

In International Conference on Supercomputing (ICS). Article 16, 16:1–
16:10 pages.

[86] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.

2019. VEBO: a vertex- and edge-balanced ordering heuristic to load

balance parallel graph processing. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP). 391–392.

[87] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary,

Subramanya R. Dulloor, Michael J. Anderson, Satya Gautam Vad-

lamudi, Dipankar Das, and Pradeep Dubey. 2015. GraphMat: High

Performance Graph Analytics Made Productive. Proc. VLDB Endow.
8, 11 (July 2015), 1214–1225.

[88] Guangming Tan, Dengbiao Tu, and Ninghui Sun. 2009. A Parallel

Algorithm for Computing Betweenness Centrality. In International
Conference on Parallel Processing (ICPP). 340–347.

[89] Aleksandar Trifunovic and William J. Knottenbelt. 2008. Parallel

multilevel algorithms for hypergraph partitioning. J. Parallel and
Distrib. Comput. 68, 5 (2008), 563–581.

[90] Dengbiao Tu and Guangming Tan. 2009. Characterizing Between-

ness Centrality Algorithm on Multi-core Architectures. In IEEE In-
ternational Symposium on Parallel and Distributed Processing with
Applications (ISPA). 182–189.

[91] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying

Liu, and Xiaobing Feng. 2018. Lazygraph: lazy data coherency for

replicas in distributed graph-parallel computation. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).
276–289.

[92] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup

Graph Processing by Graph Ordering. In ACM International Confer-
ence on Management of Data (SIGMOD). 1813–1828.

[93] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big

Graph Analytics Platforms. Foundations and Trends in Databases 7,
1-2 (2017), 1–195.

[94] Jie Yan, Guangming Tan, ZeyaoMo, and Ninghui Sun. 2016. Graphine:

Programming Graph-Parallel Computation of Large Natural Graphs

for Multicore Clusters. IEEE Trans. Parallel Distrib. Syst. 27, 6 (2016),
1647–1659.

[95] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-

aramVenkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,

Scott Shenker, and Ion Stoica. 2016. Apache Spark: A Unified Engine

for Big Data Processing. Commun. ACM 59, 11 (Oct. 2016), 56–65.

[96] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware

Graph-structured Analytics. In ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP). 183–193.

[97] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Matei Zaharia,

and Saman P. Amarasinghe. 2017. Making Caches Work for Graph

Analytics. In IEEE International Conference on Big Data (BigData).
293–302.

[98] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,

Julian Shun, and Saman Amarasinghe. 2018. GraphIt: A High-

performance Graph DSL. Proc. ACM Program. Lang. 2, OOPSLA,
Article 121 (Oct. 2018), 121:1–121:30 pages.

[99] Peng Zhao, Chen Ding, Lei Liu, Jiping Yu,Wentao Han, and Xiao-Bing

Feng. 2019. Cacheap: Portable and Collaborative I/O Optimization

for Graph Processing. Journal of Computer Science and Technology
34, 3 (01 May 2019), 690–706.

[100] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006.

Learning with Hypergraphs: Clustering, Classification, and Embed-

ding. In International Conference on Neural Information Processing
Systems (NIPS). 1601–1608.

[101] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.

2016. Gemini: A Computation-Centric Distributed Graph Processing

System. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 301–316.

A Artifact Description
A.1 Abstract
The artifact contains the code for the Hygra framework and

implementations of the parallel hypergraph algorithms using

Hygra. We provide instructions for obtaining or generating

the datasets used in this paper as well as scripts for running

the experiments in the paper.

A.2 Description
A.2.1 Check-list (artifact meta information)

• Algorithms: The artifact includes parallel hypergr-
pah algorithms for betweenness centrality, maximal

independent set, k-core decomposition, hypertrees,

connected components, PageRank, and single-source

shortest paths.

• Compilation:A compiler with support for Cilk Plus is

used to compile the code. The experiments in the paper

used g++ version 5.5.0, which has support for Cilk Plus.

(While Hygra can also be compiled with OpenMP, the

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

numbers reported in the paper are obtained using Cilk

Plus.)

• Datasets: The datasets consist of real-world hyper-

graphs from the Stanford Large Network Dataset Col-

lection (SNAP) [59] and the Koblenz Network Col-

lection (KONECT) [55], as well as synthetic random

hypergraphs that we generated.

• Run-time environment: A Linux operating system

should be used and numactl should be installed. The

experiments in the paper used Ubuntu 16.04. Python

2.7 is used for running the scripts.

• Hardware: An x86-based multicore machine should

be used. The experiments in the paper used a Dell

PowerEdge R930 with four 2.4GHz 18-core E7-8867 v4

Xeon processors and a total of 1TB of RAM.

• Output: Running times of the algorithms are output

to the console.

• Experiment Workflow: Clone the repository and

use the provided scripts to run the experiments.

• Publicly available? Yes.

A.2.2 How Delivered
The artifact is available on Github at https://github.com/
jshun/ppopp20-ae.

A.2.3 Hardware Dependencies
An x86-based multicore machine should be used for the ex-

periments. To run all experiments, 1TB of RAM is needed.

However, 200GB of RAM is sufficient to run all of the experi-

ments except for the ones on Rand2 and the clique-expanded

graph for Friendster. The total storage required for all of

the datasets is 1TB. Excluding the large datasets (Rand2 and

the clique-expanded graph for Friendster), the total storage

required is 313GB.

A.2.4 Software Dependencies
A Linux operating system with numactl should be used to

run the experiments. The artifact uses Cilk Plus for paral-

lelism, and so a compiler with support for Cilk Plus should

be installed. Python 2.7 is used for running the scripts.

A.2.5 Datasets
The real-world hypergraphs were downloaded from the Stan-

ford Large Network Dataset Collection (SNAP) [59] and

the Koblenz Network Collection (KONECT) [55], and con-

verted to Hygra format using the communityToHyperAdj
and KONECTtoHyperAdj programs, respectively, provided in

the utils/ directory. The synthetic hypergraphs were gen-

erated using the randHypergraph program in the utils/
directory.

For the weighted versions of the hypergraphs, weights

were added using the adjHypergraphAddWeights program

in the utils/ directory.

A.3 Installation
After cloning the repository and installing the software de-

pendencies, the provided scripts can be used to compile and

execute the programs. The code for the hypergraph algo-

rithms is in the apps/hyper/ directory and can be compiled

manually by navigating to that directory and typing “export
CILK=1; make -j”. The programs in the utils/ directory
can be compiled in the same way.

For inputs where the total number of neighbors of vertices

and hyperedges exceeds 2
32 − 1, the LONG environment vari-

able should be defined prior to compilation. For inputs where

the total number of vertices and hyperedges exceeds 2
32 − 1,

the EDGELONG environment variable should be defined prior

to compilation.

A.4 Experiment Workflow
The runall script at the top-level directory will run all ex-

periments without the large Rand2 input and the clique-

expanded Friendster graph. The runall-quick script at the

top-level directory will skip the scalability tests for all of the

inputs except for a small dataset, and will also skip the exper-

iment on varying thread counts on Rand1. These two scripts

will download the necessary datasets for the experiments.

Individual experiments may be run as described below.

To download all of the datasets, navigate to the inputs/
directory and type “./download_datasets”. This will take
a few hours. The following command line arguments may be

passed to the download_datasets script to download only

a subset of the datasets: LARGE will download only the large

datasets (Rand2 and the clique-expanded Friendster graph);

RAND1 will only download the Rand1 dataset for testing per-

formance on varying thread counts; SIZES will only down-

load the random hypergraphs of varying sizes for testing

performance as a function of input size; and DIRECTION will

only download the com-Orkut and LiveJournal datasets for

testing the performance of sparse, dense, and hybrid traver-

sals as well as the performance of using different thresholds

in the direction optimization.

The run_scalability script provided in the apps/hyper/
directory will run all of the hypergraph algorithms both on

a single thread and on all available cores of the machine. By

default, all datasets except Rand2 will be used. This script

will take several days to complete. To include Rand2 in the

experiments, type “./run_scalability LARGE”. To run the

experiments on only a small dataset, which will terminate

quickly, type “./run_scalability QUICK”.
The run_varying_threads script in the apps/hyper/ di-

rectory will run all of the algorithms on a varying number

of threads on the Rand1 dataset.

The run_varying_hyperedges script in the apps/hyper/
directory will run all of the algorithms using all available

cores on random hypergraphs with a varying number of

hyperedges.

https://github.com/jshun/ppopp20-ae
https://github.com/jshun/ppopp20-ae

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

The run_directions script in the apps/hyper/ directory
will test the parallel performance of sparse, dense, and hybrid

traversals for all of the algorithms on the com-Orkut and

LiveJournal datasets.

The run_thresholds script in the apps/hyper/ directory
will test the parallel performance of all of the algorithms

on the com-Orkut and LiveJournal datasets using different

thresholds for the direction optimization.

The run_clique script in the apps/ directory will test

the parallel performance of breadth-first search, connected

components, and SSSP in Ligra on the clique-expanded graph

for Friendster.

A.5 Evaluation and Expected Result
The results of the scalability experiments correspond to the

numbers reported in Table 3 and Figure 2. The results of

the experiments on random hypergraphs of different sizes

correspond to the numbers reported in Figure 3. The results

of the experiments on different traversal modes correspond

to the numbers reported in Figures 4 and 5. The results of

the experiments on different thresholds for the direction

optimization correspond to the numbers reported in Figures 6

and 7.

The running times obtained in the experiments may differ

from the numbers reported in the paper if a different machine

and/or compiler is used.

A.6 Experiment Customization
If numactl is not installed, the scripts can be modified to

run without numactl by deleting the “numactl -i all”
statements (potentially with some performance degradation

on multi-socket machines).

Individual hypergraph algorithms can be tested by run-

ning the executables in apps/hyper/with the desired dataset
as input. The “-s” flag should be passed if the hypergraph is

symmetric. For traversal algorithms, one can pass the “-r”
flag followed by an integer to indicate the ID of the source

vertex (by default, vertex 0 is used as the source). The pro-

grams are run for three trials by default, but one can change

the number of trials by passing the “-rounds” flag followed

by an integer indicating the desired number of trials.

To test on other hypergraphs, datasets with communities

can be downloaded from the Stanford Large Network Dataset

Collection (SNAP) [59] and bipartite graphs can be down-

loaded from the Koblenz Network Collection (KONECT) [55].

SNAP datasets can be converted to Hygra format using

the communityToHyperAdj program in the utils/ directory.
KONECT datasets can be converted to Hygra format using

the KONECTtoHyperAdj program in the utils/ directory.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Hygra Framework
	4.1 Interface
	4.2 Implementation
	4.3 Optimizations

	5 Parallel Hypergraph Algorithms
	5.1 Betweenness Centrality
	5.2 Maximal Independent Set
	5.3 k-core Decomposition
	5.4 Hypertrees
	5.5 Hyperpaths
	5.6 Connected Components
	5.7 PageRank
	5.8 Single-Source Shortest Paths

	6 Experiments
	7 Conclusion
	References
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Result
	A.6 Experiment Customization

