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Abstract

Butterflies are the smallest non-trivial subgraph in bipartite
graphs, and therefore having efficient computations for an-
alyzing them is crucial to improving the quality of certain
applications on bipartite graphs. In this paper, we design a
framework called PARBUTTERFLY that contains new parallel
algorithms for the following problems on processing butter-
flies: global counting, per-vertex counting, per-edge counting,
tip decomposition (vertex peeling), and wing decomposition
(edge peeling). The main component of these algorithms is
aggregating wedges incident on subsets of vertices, and our
framework supports different methods for wedge aggregation,
including sorting, hashing, histogramming, and batching. In
addition, PARBUTTERFLY supports different ways of ranking
the vertices to speed up counting, including side ordering,
approximate and exact degree ordering, and approximate and
exact complement coreness ordering. For counting, PAR-
BUTTERFLY also supports both exact computation as well as
approximate computation via graph sparsification. We prove
strong theoretical guarantees on the work and span of the
algorithms in PARBUTTERFLY.

We perform a comprehensive evaluation of all of the
algorithms in PARBUTTERFLY on a collection of real-world
bipartite graphs using a 48-core machine. Our counting
algorithms obtain significant parallel speedup, outperforming
the fastest sequential algorithms by up to 13.6x with a
self-relative speedup of up to 38.5x. Compared to general
subgraph counting solutions, we are orders of magnitude
faster. Our peeling algorithms achieve self-relative speedups
of up to 10.7x and outperform the fastest sequential baseline
by up to several orders of magnitude.

1 Introduction

A fundamental problem in large-scale network analysis is
finding and enumerating basic graph motifs. Graph motifs
that represent the building blocks of certain networks can
reveal the underlying structures of these networks. Impor-
tantly, triangles are core substructures in unipartite graphs,
and indeed, triangle counting is a key metric that is widely ap-
plicable in areas including social network analysis [41], spam
and fraud detection [8], and link classification and recommen-
dation [57]. However, many real-world graphs are bipartite
and model the affiliations between two groups. For example,
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bipartite graphs are used to represent peer-to-peer exchange
networks (linking peers to the data they request), group mem-
bership networks (e.g., linking actors to movies they acted
in), recommendation systems (linking users to items they
rated), factor graphs for error-correcting codes, and hyper-
graphs [11, 35]. Bipartite graphs contain no triangles; the
smallest non-trivial subgraph is a butterfly (also known as
rectangles), which is a (2, 2)-biclique (containing two vertices
on each side and all four possible edges among them), and
thus having efficient algorithms for counting butterflies is cru-
cial for applications on bipartite graphs [5, 48, 59]. Notably,
butterfly counting has applications in link spam detection [22]
and document clustering [17]. Moreover, butterfly counting
naturally lends itself to finding dense subgraph structures in
bipartite networks. Zou [65] and Sariyiice and Pinar [49]
developed peeling algorithms to hierarchically discover dense
subgraphs, similar to the k-core decomposition for unipartite
graphs [39, 50]. An example bipartite graph and its butterflies
is shown in Figure 1.

There has been recent work on designing efficient
sequential algorithms for butterfly counting and peeling [13,
48, 49, 59, 64, 65]. However, given the high computational
requirements of butterfly computations, it is natural to study
whether we can obtain performance improvements using
parallel machines. This paper presents a framework for
butterfly computations, called PARBUTTERFLY, that enables
us to obtain new parallel algorithms for butterfly counting
and peeling. PARBUTTERFLY is a modular framework that
enables us to easily experiment with many variations of our
algorithms. We not only show that our algorithms are efficient
in practice, but also prove strong theoretical bounds on their
work and span. Given that all real-world bipartite graphs fit
on a multicore machine, we design parallel algorithms for
this setting.

For butterfly counting, the main procedure involves
finding wedges (2-paths) and combining them to count
butterflies. See Figure 1 for an example of wedges. In
particular, we want to find all wedges originating from each
vertex, and then aggregate the counts of wedges incident
to every distinct pair of vertices forming the endpoints of
the wedge. With these counts, we can obtain global, per-
vertex, and per-edge butterfly counts. The PARBUTTERFLY
framework provides different ways to aggregate wedges in
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Figure 1: The butterflies in this graph are {u1,v1,u2,v2},
{u1,v1,u2,v3}, and {u1,v2,u2,vs}. The red, blue, and green
edges each produce a wedge, which share the same endpoints, w1
and u2. Any two of these wedges form a butterfly. However, the
dashed edges produce another wedge, {u2, vs, us}, which has dif-
ferent endpoints, u2 and us. This wedge does not form a butterfly
with any of the previous wedges.

parallel, including sorting, hashing, histogramming, and
batching. Also, we can speed up butterfly counting by
ranking vertices and only considering wedges formed by a
particular ordering of the vertices. PARBUTTERFLY supports
different parallel ranking methods, including side-ordering,
approximate and exact degree-ordering, and approximate and
exact complement-coreness ordering. These orderings can
be used with any of the aggregation methods. To further
speed up computations on large graphs, PARBUTTERFLY also
supports parallel approximate butterfly counting via graph
sparsification based on ideas by Sanei-Mehri et al. [48] for
the sequential setting.

In addition, PARBUTTERFLY provides parallel algo-
rithms for peeling bipartite networks based on sequential
dense subgraph discovery algorithms developed by Zou [65]
and Sariyiice and Pinar [49]. Our peeling algorithms itera-
tively remove the vertices (tip decomposition) or edges (wing
decomposition) with the lowest butterfly count until the graph
is empty. Each iteration removes vertices (edges) from the
graph in parallel and updates the butterfly counts of neigh-
boring vertices (edges) using the parallel wedge aggregation
techniques that we developed for counting. We use a parallel
bucketing data structure by Dhulipala ef al. [18] and a new
parallel Fibonacci heap to efficiently maintain the butterfly
counts.

We prove theoretical bounds showing that some vari-
ants of our counting and peeling algorithms are highly
parallel and match the work of the best sequential algo-
rithm. For a graph G(V, FE) with m edges and arboricity
a,' PARBUTTERFLY gives a counting algorithm that takes
O(am) expected work and O (logm) span with high prob-
ability (w.h.p.).> Using a parallel Fibonacci heap that we
design, PARBUTTERFLY gives a vertex-peeling algorithm
that takes O (min(max-b,, p, logn) + >, .y deg(v)?) ex-
pected work and O(pv log? n) span w.h.p., and an edge-
peeling algorithm that takes O(min(max-be, pelogn) +

> (ww)el DureN () Min(deg(u), deg(u))) expected work

and O(pe log® m) span w.h.p., where max-b, and max-b,
TThe arboricity of a graph is defined to be the minimum number of
disjoint forests that a graph can be partitioned into.
2By “with high probability” (w.h.p.), we mean that the probability is at
least 1 — 1/n¢ for any constant ¢ > 0 for an input of size n.

are the maximum number of per-vertex and per-edge butter-
flies and p,, and p. are the number of vertex and edge peeling
iterations required to remove the entire graph. Our work
bounds for vertex-peeling and edge-peeling significantly im-
prove upon Sariyiice and Pinar’s sequential algorithms, which
take work proportional to the maximum number of per-vertex
and per-edge butterflies.

We present a comprehensive experimental evaluation of
all of the different variants of counting and peeling algorithms
in the PARBUTTERFLY framework. On a 48-core machine,
our counting algorithms achieve self-relative speedups of up
to 38.5x and outperform the fastest sequential baseline by
up to 13.6x. Our peeling algorithms achieve self-relative
speedups of up to 10.7x and due to their improved work
complexities, outperform the fastest sequential baseline by
up to several orders of magnitude. Compared to PGD [2], a
state-of-the-art parallel subgraph counting solution that can
be used for butterfly counting as a special case, we are 349.6—
5169x faster. We find that although the sorting, hashing,
and histogramming aggregation approaches achieve better
theoretical complexity, batching usually performs the best in
practice due to lower overheads.

In summary, the contributions of this paper are as follows.

(1) New parallel algorithms for butterfly counting and peel-
ing.

(2) A framework PARBUTTERFLY with different ranking and
wedge aggregation schemes that can be used for parallel
butterfly counting and peeling.

(3) Strong theoretical bounds on algorithms obtained using
PARBUTTERFLY.

(4) A comprehensive experimental evaluation on a 48-core
machine demonstrating high parallel scalability and fast
running times compared to the best sequential baselines,
as well as significant speedups over the state-of-the-art
parallel subgraph counting solution.

The PARBUTTERFLY code can be found at https://
github.com/jeshi96/parbutterfly. Due to space
constraints, we have omitted some details from this version
of the paper, and the full version can be found on arXiv [51].

2 Preliminaries

Graph Notation. We take every bipartite graph G =
(U,V,E) to be simple and undirected. For any vertex
v € UUV,let N(v) denote the neighborhood of v, let No(v)
denote the 2-hop neighborhood of v (the set of all vertices
reachable from v by a path of length 2), and let deg(v) denote
the degree of v. For added clarity when working with multiple
graphs, we let N (v) denote the neighborhood of v in G and
let N§(v) denote the 2-hop neighborhood of v in G. We use
n = |U| 4 |V] to denote the number of vertices in G, and
m = | E| to denote the number of edges in G.

A butterfly is a set of four vertices uy,us € U and
v1,v9 € V with edges (u1,v1), (u1,vs), (uz,v1), (ug,vs) €
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E. A wedge is a set of three vertices uq,us € U andv € V,
with edges (u1,v), (ug,v) € E. We call the vertices u1, us
endpoints and the vertex v the center. Symmetrically, a
wedge can also consist of vertices vy,v; € V and u € U,
with edges (v, u), (v2,u) € E. We call the vertices v1, vo
endpoints and the vertex u the center. We can decompose a
butterfly into two wedges that share the same endpoints but
have distinct centers.

The arboricity « of a graph is the minimum number of
spanning forests needed to cover the graph. In general, « is
upper bounded by O (/m) and lower bounded by Q(1) [13].
Importantly, Y-, ) Min(deg(u), deg(v)) = O(am).

We store our graphs in compressed sparse row (CSR)
format, which requires O (m—|—n) space. We initially maintain
separate offset and edge arrays for each vertex partition U
and V, and assume that all arrays are stored consecutively in
memory.

Model of Computation. We use the work-span model of
parallel computation, with arbitrary forking, to analyze our
algorithms. The work of an algorithm is defined to be the total
number of operations, and the span is defined to be the longest
dependency path [15, 31]. We aim for algorithms to be work-
efficient, that is, a work complexity that matches the best-
known sequential time complexity. We assume concurrent
reads and writes and atomic adds are supported in O (1) work
and span.

Parallel primitives. We use the following primitives in this
paper. Prefix sum takes as input a sequence A of length n, an
identity €, and an associative binary operator @, and returns
the sequence B of length n where Bli] = ;_; A[j] @ «.
Filter takes as input a sequence A of length n and a predicate
function f, and returns the sequence B containing a € A
such that f(a) is true, in the same order that these elements
appeared in A. Both algorithms take O(n) work and
O(logn) span [31].

We also use several parallel primitives in our algorithms
for aggregating equal keys. Semisort groups together equal
keys but makes no guarantee on total order. For a sequence
of length n, parallel semisort takes O (n) expected work and
O(logn) span with high probability [26]. Additionally, we
use parallel hash tables and histograms for aggregation, which
have the same bounds as semisort [18, 19, 52].

3 PARBUTTERFLY Framework

In this section, we describe the PARBUTTERFLY framework
and its components. Section 3.1 describes the procedures for
counting butterflies and Section 3.2 describes the butterfly
peeling procedures. Section 4 goes into more detail on the
parallel algorithms that can be plugged into the framework,
as well as their theoretical bounds.

3.1 Counting Framework Figure 2 shows the high-level
structure of the PARBUTTERFLY framework. Step 1 assigns a
global ordering to the vertices, which helps reduce the overall

PARBUTTERFLY Framework for Counting
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Rank vertices: Assign a global ordering, rank, to the vertices.
Retrieve wedges: Retrieve a list W of wedges (z, y, z) where
rank(y) > rank(z) and rank(z) > rank(z).

Count wedges: For every pair of vertices (z1, z2), how many
distinct wedges share 1 and x2 as endpoints.

Count butterflies: Use the wedge counts to obtain the global
butterfly count, per-vertex butterfly counts, or per-edge butterfly
counts.

3
@

Figure 2: PARBUTTERFLY Framework for Counting

work of the algorithm. Step 2 retrieves all the wedges in
the graph, but only where the second and third vertices of
the wedge have higher rank than the first. Step 3 counts for
every pair of vertices the number of wedges that share those
vertices as endpoints. Step 4 uses the wedge counts to obtain
global, per-vertex, or per-edge butterfly counts. For each
step, there are several options with respect to implementation,
each of which can be independently chosen and used together.
Figure 3 shows an example of executing each of the steps. The
options within each step of PARBUTTERFLY are described in
the rest of this section.

3.1.1 Ranking The ordering of vertices when we retrieve
wedges is significant since it affects the number of wedges
that we process. As we discuss in Section 4.1, Sanei-Mehri
et al. [48] order all vertices from one bipartition of the
graph first, depending on which bipartition produces the least
number of wedges, giving them practical speedups in their
serial implementation. We refer to this ordering as side order.
Chiba and Nishizeki [13] achieve a lower work complexity for
counting by ordering vertices in decreasing order of degree,
which we refer to as degree order.

For practical speedups, we also introduce approximate
degree order, which orders vertices in decreasing order
of the logarithm of their degree (log-degree). Since the
ordering of vertices in many real-world graphs have good
locality, approximate degree order preserves the locality
among vertices with equal log-degree. We show in the full
paper that butterfly counting using approximate degree order
is work-efficient.

Degeneracy order, also known as the ordering given
by vertex coreness, is a well-studied ordering of vertices
given by repeatedly finding and removing vertices of smallest
degree [39, 50]. This ordering can be obtained serially in
linear time using a k-core decomposition algorithm [39], and
in parallel in linear work by repeatedly removing (peeling)
all vertices with the smallest degree from the graph in
parallel [18]. The span of peeling is proportional to the
number of peeling rounds needed to reduce the graph to an
empty graph. We define complement degeneracy order to be
the ordering given by repeatedly removing vertices of largest
degree. This mirrors the idea of decreasing order of degree,
but encapsulates more structural information about the graph.
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Step 1 Step 2 Step 3 Step 4
1. vs v3,V1), U1 ((vs,v1),u1) +(?) butterflies on v1, U3
= 2
2. u1 ((v3,v2),u1) ((v3,v1), u2) +(2 — 1) butterflies on u1, uz
v3
3. uz ((v3,v1),u2) ((vs,v2),u1) N +(§) butterflies on vs, vs
4. v ((v3,v2),u2) ((v3,v2), u2) +(5'— 1) butterflies on 11, us
5. g w4 ((ur,u2),01) )
6. us "1 ((ur,uz), 02) ((u1, u2),v1) N +(3) butterflies on w1, ua
((u1,u2),v2) +(2 — 1) butterflies on v1, v

Figure 3: We execute butterfly counting per vertex on the graph in Figure 1. In Step 1, we rank vertices in decreasing order of degree. In
Step 2, for each vertex v in order, we retrieve all wedges where v is an endpoint and where the other two vertices have higher rank (the
wedges are represented as ((z, z), y) where x and z are endpoints and y is the center). In Step 3, we aggregate wedges by their endpoints,
and this produces the butterfly counts for Step 4. Note that if we have w wedges that share the same endpoint, this produces (7“2”) butterflies
for each of the two endpoints and w — 1 butterflies for each of the centers of the w wedges.

However, using complement degeneracy order is not
efficient. The span of finding complement degeneracy order
is limited by the number of rounds needed to reduce a graph
to an empty graph, where each round deletes all maximum
degree vertices of the graph. As such, we define approximate
complement degeneracy order, which repeatedly removes
vertices of largest log-degree. This reduces the number
of rounds needed and closely approximates the number of
wedges that must be processed using complement degeneracy
order. We show in the full paper that using complement
degeneracy order and approximate complement degeneracy
order give the same work-efficient bounds as using degree
order. We implement both of these using the parallel
bucketing structure of Dhulipala et al. [18].

In total, the options for ranking are side order, degree
order, approximate degree order, complement degeneracy
order, and approximate complement degeneracy order.

3.1.2 Wedge aggregation We obtain wedge counts by ag-
gregating wedges by endpoints. PARBUTTERFLY implements
fully-parallel methods for aggregation including sorting, hash-
ing, and histogramming, as well as a partially-parallel batch-
ing method.

We can aggregate the wedges by semisorting key-value
pairs where the key is the two endpoints and the value
is the center. Then, all elements with the same key are
grouped together, and the size of each group is the number
of wedges shared by the two endpoints. We implemented
this approach using parallel sample sort from the Problem
Based Benchmark Suite (PBBS) [9, 53] due to its better cache-
efficiency over parallel semisort.

We can also use a parallel hash table to store key-value
pairs where the key is two endpoints and the value is a
count. We insert the endpoints of all wedges into the table
with value 1, and sum the values on duplicate keys. The
value associated with each key then represents the number
of wedges that the two endpoints share. We use a parallel
hash table based on linear probing with an atomic addition
combining function [52].

Another option is to insert the key-value pairs into a
parallel histogramming structure which counts the number of
occurrences of each distinct key. The parallel histogramming
structure that we use is implemented using a combination of
semisorting and hashing [18].

Finally, in our partially-parallel batching method we
process a batch of vertices in parallel and find the wedges
incident on these vertices. Each vertex aggregates its wedges
serially, using an array large enough to contain all possible
second endpoints. The simple setting in our framework fixes
the number of vertices in a batch as a constant based on the
space available, while the wedge-aware setting determines
the number of vertices dynamically based on the number of
wedges that each vertex processes.

In total, the options for combining wedges are sorting,
hashing, histogramming, simple batching, and wedge-aware
batching.

3.1.3 Butterfly aggregation There are two main methods
to translate wedge counts into butterfly counts, per-vertex or
per-edge.> One method is to make use of atomic adds, and
add the obtained butterfly count for the given vertex/edge
directly into an array, allowing us to obtain butterfly counts
without explicit re-aggregation.

The second method is to reuse the aggregation method
chosen for the wedge counting step and use sorting, hashing,
or histogramming to combine the butterfly counts per-vertex
or per-edge.*

3.1.4 Other options There are a few other options for
butterfly counting in PARBUTTERFLY. First, butterfly counts
can be computed per vertex, per edge, or in total. For wedge
aggregation methods apart from batching, since the number
of wedges can be quadratic in the size of the original graph,
it may not be possible to fit all wedges in memory at once; a

parameter in our framework takes into account the number
3For total counts, butterfly counts can simply be computed and summed
in parallel directly.
“#Note that this is not feasible for partially-parallel batching, so in that
case, the only option is to use atomic adds.
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of wedges that can be handled in memory and processes
subsets of wedges using the chosen aggregation method until
they are all processed. Similarly, for wedge aggregation
by batching, a parameter takes into account the available
space and appropriately determines the number of vertices
per batch.

PARBUTTERFLY also implements both edge and colorful
sparsification as described by Sanei-Mehri et al. [48] to obtain
approximate total butterfly counts. For approximate counting,
the sub-sampled graph is simply passed to the framework
shown in Figure 2 using any of the aggregation and ranking
choices, and the final result is scaled appropriately. Note that
this can only be used for total counts. Due to space constraints,
we describe and analyze the sparsification algorithms in the
full version of the paper.

Finally, Wang et al. [60] independently describe an
algorithm for butterfly counting using degree ordering, as
done in Chiba and Nishizeki [13], and also propose a cache
optimization for wedge retrieval. Their cache optimization
involves retrieving precisely the wedges given by Chiba
and Nishizeki’s algorithm, but instead of retrieving wedges
by iterating through the lower ranked endpoint (for every
v, retrieve wedges (v, w,u) where w,u have higher rank
than v), they retrieve wedges by iterating through the higher
ranked endpoint (for every u, retrieve wedges (v, w, u) where
w, v have higher rank than v). Inspired by their work,
we have augmented PARBUTTERFLY to include this cache
optimization for all of our orderings.

3.2 Peeling Framework Butterfly peeling classifies in-
duced subgraphs by the number of butterflies that they contain.
Formally, a vertex induced subgraph is a k-tip if it is a maxi-
mal induced subgraph such that for a bipartition, every vertex
in that bipartition is contained in at least & butterflies and
every pair of vertices in that bipartition is connected by a se-
quence of butterflies. Similarly, an edge induced subgraph is
a k-wing if it is a maximal induced subgraph such that every
edge is contained within at least k butterflies and every pair
of edges is connected by a sequence of butterflies.

The tip number of a vertex v is the maximum % such
that there exists a k-tip containing v, and the wing number
of an edge (u, v) is the maximum k such that there exists a k-
wing containing (u, v). Vertex peeling, or tip decomposition,
involves finding all tip numbers of vertices in a bipartition U,
and edge peeling, or wing decomposition, involves finding
all wing numbers of edges.

PARBUTTERFLY Framework for Peeling

(1) Obtain butterfly counts: Obtain per-vertex or per-edge butterfly
counts from the counting framework.

(2) Peel: Iteratively remove vertices or edges with the lowest
butterfly count from the graph until an empty graph is reached.

Figure 4: PARBUTTERFLY Framework for Peeling

The sequential algorithms for vertex peeling and edge
peeling involve finding butterfly counts and in every round,
removing the vertex or edge contained within the fewest
number of butterflies, respectively. In parallel, instead of
removing a single vertex or edge per round, we remove all
vertices or edges that have the minimum number of butterflies.

The peeling framework is shown in Figure 4, and
supports vertex peeling (tip decomposition) and edge peeling
(wing decomposition). Because it also involves iterating over
wedges and aggregating wedges by endpoint, it contains
similar parameters to those in the counting framework.
However, there are a few key differences.

First, ranking is irrelevant, because all wedges containing
a peeled vertex must be accounted for regardless of order.
Also, using atomic add operations to update butterfly counts
is not work-efficient with respect to our peeling data structure
(see Section 4.3), so we do not have this as an option in our
implementation. Finally, vertex or edge peeling can only be
performed if the counting framework produces per-vertex or
per-edge butterfly counts, respectively.

Thus, the main parameter for the peeling framework
is the choice of method for wedge aggregation: sorting,
hashing, histogramming, simple batching, or wedge-aware
batching. These are precisely the same options described in
Section 3.1.2.

4 PARBUTTERFLY Algorithms

We describe in detail here our parallel algorithms for butterfly
counting and peeling, and state their theoretical bounds. Due
to space constraints, we defer the proofs of the bounds to the
full version of this paper. Our theoretically-efficient parallel
algorithms are based on the work-efficient sequential butterfly
listing algorithm, introduced by Chiba and Nishizeki [13].
Wang et al. [59] proposed the first algorithm for butterfly
counting per vertex, which is not work-efficient. They also
give a simple parallelization of their counting algorithm that
is not work-efficient. Moreover, Sanei-Mehri et al. [48] and
Sariyiice and Pinar [49] give sequential butterfly counting and
peeling algorithms respectively, but neither are work-efficient.

4.1 Preprocessing The main subroutine in butterfly count-
ing involves processing a subset of wedges of the graph;
previous work differ in the way in which they choose wedges
to process. As mentioned in Section 3.1.1, Chiba and
Nishizeki [13] choose wedges by first ordering vertices by
decreasing order of degree and then for each vertex in or-
der, obtaining all wedges with said vertex as an endpoint and
deleting the vertex. The ordering of vertices does not affect
the correctness of the algorithm — in fact, Sanei-Mehri et
al. [48] use this precise algorithm but with all vertices from
one bipartition of the graph ordered before all vertices from
the other bipartition. Importantly, Chiba and Nishizeki’s [13]
decreasing degree ordering gives the work-efficient bounds
O(am) on butterfly counting.
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Algorithm 1 Preprocessing

1: procedure PREPROCESS(G = (U,V, E), )

2: V'’ <= SsORT(U UV, f) © Sort vertices in increasing order of rank
according to function f

3: Let w’s rank R[u] be its index in V"’

4: E’' + {(R[u], R[v]) | (u,v) € E}
rank

5: G = (V',E")

> Rename vertices to their

6: parfory e V'do

7: NG& (u) + sort({v | (u,v) € E'}) > Sort neighbors by
decreasing order of rank

8: Store deg,, (u) and deg,, (u) for all (u,v) € E’

9: return G’

Throughout this section, we use decreasing degree
ordering to obtain the same work-efficient bounds in our
parallel algorithms. However, using approximate degree
ordering, complement degeneracy ordering, and approximate
complement degeneracy ordering also gives us these work-
efficient bounds; we defer a proof of the work-efficiency of
these orderings to the full paper. Furthermore, our exact and
approximate counting algorithms work for any ordering; only
the theoretical analysis depends on the ordering.

We use rank to denote the index of a vertex in some
ordering, in cases where the ordering that we are using is
clear or need not be specified. We define a modified degree,
deg, (u), to be the number of neighbors v’ € N (u) such that
rank(u') > rank(v). We also define a modified neighborhood,
N,(u), to be the set of neighbors '/ € N(u) such that
rank(u’) > rank(v).

We give a preprocessing algorithm, PREPROCESS (Algo-
rithm 1), which takes as input a bipartite graph and a ranking
function f, and renames vertices by their rank in the ordering.
The output is a general graph (we discard bipartite informa-
tion). Note that when we mention vertices u and v on this
general graph in the rest of this section, they have not nec-
essarily originated from bipartitions U and V' respectively.
PREPROCESS also sorts neighbors by decreasing rank.

The following lemma summarizes the complexity of
preprocessing.

LEMMA 4.1. Preprocessing can be implemented in O(m)
expected work and O (log m) span w.h.p.

4.2 Counting algorithms In this section, we present our
parallel algorithms for butterfly counting.

The following equations describe the number of butter-
flies per vertex and per edge. Sanei-Mehri et al. [48] de-
rived and proved the per-vertex equation, based on Wang et
al.’s [59] equation for the total number of butterflies. We give
a short proof of the per-edge equation.

LEMMA 4.2. For a bipartite graph G = (U,V, E), the
number of butterflies containing a vertex u is given by

3 (N(U) ﬂN(U’))

4.1
4.1) 5
u’€Na(u)

The number of butterflies containing an edge (u,v) € E is
given by

4.2)

>

uw' €N (v)\{u}

(IN(u) NN ()] = 1).

Proof. The proof for the number of butterflies per vertex is
given by Sanei-Mebhri et al. [48]. For the number of butterflies
per edge, we note that given an edge (u,v) € E, each butter-
fly that (u,v) is contained within has additional vertices v’ €
U,v" € V and additional edges (v, v), (u,v’), (u/,v") € E.
Thus, iterating over all ' € N(v) (where v’ # w), it suf-
fices to count the number of vertices v # v such that v’
is adjacent to v and to u’. In other words, it suffices to
count v/ € N(u) N N(u')\ {v}. This gives us precisely
2 weN@nfuy (N (W) NN (u')] — 1) as the number of butter-
flies containing (u, v). 0

Note that in both equations given by Lemma 4.2, we
iterate over wedges with endpoints u and v’ to obtain our
desired counts (Step 4 of Figure 2). We now describe how to
retrieve the list of wedges (Step 2 of Figure 2).

4.2.1 Wedge retrieval There is a subtle point to make in
retrieving all wedges. Once we have retrieved all wedges with
endpoint u, Equation (4.1) gives the number of butterflies
that v contributes to the second endpoints of these wedges,
and Equation (4.2) gives the number of butterflies that u
contributes to the centers of these wedges. As such, given the
wedges with endpoint u, we can count not only the number
of butterflies on u, but also the number of butterflies that
u contributes to other vertices of our graph. Thus, after
processing these wedges, there is no need to reconsider u.

From Chiba and Nishizeki’s [13] work, we must retrieve
all wedges containing endpoints u in decreasing order of
degree, and then delete u from the graph (i.e., do not consider
any other wedge containing u).

We introduce here a parallel wedge retrieval algorithm,
GET-WEDGES (Algorithm 2) that takes as input a prepro-
cessed (ranked) graph. It iterates through all vertices v and
retrieves all wedges with endpoint u such that the center and
second endpoint both have rank greater than u (Lines 4-9).

Algorithm 2 Parallel wedge retrieval

1: procedure GET-WEDGES(G = (V, E))

2: Use PREFIX-SUM to compute a function I that maps wedges to
indices in order

3 Initialize W to be an array of wedges

4 parfor u; € V do

5 parfor i < 0 to deg,, (u1) do

6: v < N(u1)[i]

7

8

9

> v = i neighbor of u;
parfor j < 0 todeg,, (v) do
uz + N(v)[j] > ug = j® neighbor of v
WL, 5)] + ((u1,u2),1,v) > (u1,usg) are the
endpoints, v is the center of the wedge
10: return W
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Algorithm 3 Parallel work-efficient butterfly counting per
vertex
1: procedure COUNT-V-WEDGES(WW)

2: (R, F) < GET-FREQ(W) > Aggregate W and retrieve wedge
frequencies

3: Initialize B to store butterfly counts per vertex

4: parfor i < Oto |[F| — 1 do

5: ((u1,u2),d) < R[i]  >wuq and ug are the wedge endpoints

6: Store (u1, (g)) and (u2, (g)) in B 1> Store butterfly counts per
endpoint

7 parfor j < F[i] to F'[i + 1] do

8: (5,5 v) « W] > v is the wedge center

9: Store (v,d — 1)in B > Store butterfly counts per center

10 (B,.) + GET-FREQ(B) > Aggregate B and get butterfly counts

11 return B

12: procedure COUNT-V(G = (U,V, E))
13: G’ = (V',E’) + PREPROCESS(G)
14: W < GET-WEDGES(G")

15: return COUNT-V-WEDGES(W)

> Array of wedges

This is equivalent to Chiba and Nishizeki’s algorithm which
deletes vertices from the graph, but we do not modify the
graph to allow all wedges to be processed in parallel. We pro-
cess exactly the wedges that Chiba and Nishizeki process, and
they prove that they process O (am) wedges. GET-WEDGES
(Algorithm 2) takes O (am) work and O (log m) span.

After retrieving our wedges, we group wedges that share
the same endpoints. We define a subroutine GET-FREQ that
takes a sequence S, rearranges S to group entries with the
same key, and returns two arrays: a list of keys and their
frequencies, and the indices of S where entries of the same
key are grouped. This can be implemented using semisorting,
hashing, or histogramming, as discussed in Section 3.1. For
an input of length n, GET-FREQ takes O(n) expected work
and O(log n) span w.h.p. using any of the three aggregation
methods [18, 23, 26]. We have O(am) wedges, and so GET-
FREQ takes O (am) expected work and O (log m) span w.h.p.

The following lemma summarizes the complexity of
wedge retrieval and counting.

LEMMA 4.3. Retrieving a list of all wedges and counting
the number of wedges that share the same endpoints can be
implemented in O (am) expected work and O(log m) span
w.h.p.

Note that this is a better worst-case work bound than the
work bound of O(3", . deg(v)?) using side order. In the
worst-case O(am) = O(m*?) while O(}, .y deg(v)?) =
O(mn). We have that mn = Q(m*5), since n = Q(m??).

4.2.2 Per vertex We now describe the butterfly counting
per vertex algorithm, which is given as COUNT-V in Algo-
rithm 3. We implement preprocessing and wedge retrieval in
Lines 13 and 14, respectively.

We note that following Line 2, by counting the frequency
of wedges by endpoints, for each fixed vertex u; we have
obtained in R all possible endpoints (u1,u2) € V' x V' with

Algorithm 4 Parallel work-efficient butterfly counting per
edge
1: procedure COUNT-E-WEDGES(W)

(R, F) + GET-FREQ(W) > Aggregate W and retrieve wedge
frequencies

»

3 Initialize B to store butterfly counts per edge

4 parfor i <— Oto |F| — 1 do

5 ((u1,u2),d) < R[i] > u1 and ug are the wedge endpoints
6: parfor j <+ F[i] to F[i + 1] do

7 (o - v) < WI4] > v is the wedge center
8 Store ((u1,v),d — 1) and ((u2,v),d — 1) in B

9: (B, -) < GET-FREQ(B)
10: return B

11: procedure COUNT-E(G = (U, V, E))
12: G’ = (V',E’") + PREPROCESS(G)
13: W < GET-WEDGES(G")

14: return COUNT-E-WEDGES(W)

> Aggregate B and get butterfly counts

> Array of wedges

the size [N (u1) N N(uz)|. By Lemma 4.2, for each endpoint
us, uq contributes (lN (“)gN (“/)‘) butterflies, and for each
center v, u; contributes |N(u1) N N(ug)| — 1 butterflies.
Thus, we compute the per-vertex counts by iterating through
R to add the count per endpoint (Line 6) and iterating through
W to add the count per center (Line 9). The total complexity
of butterfly counting per vertex is given as follows.

THEOREM 4.1. Butterfly counting per vertex can be per-
formed in O (am) expected work and O(log m) span w.h.p.

4.2.3 Per edge We now describe the butterfly counting per
edge algorithm, which is given as COUNT-E in Algorithm 4.
We implement preprocessing and wedge retrieval as described
previously.

As we discussed in Section 4.2.2, following Step 3
for each fixed vertex u; we have in R all possible wedge
endpoints (u1,uz) € V' x V' with the size | N (u1) NN (ug)|.
By Lemma 4.2, we compute per-edge counts by iterating
through all of our wedge counts and adding |N(u1) N
N(uz)| — 1 to our butterfly counts for the edges contained
in the wedges with endpoints u; and us. We note that W
has already been aggregated, and ' gives us the sections
of W that hold wedges corresponding with the endpoints
in R. As such, we iterate through R to obtain our count
|N(u1) N N(uz)| — 1, and use F to iterate through W to
obtain the edges contained in the corresponding wedges. As
in Section 4.2.2, we use GET-FREQ to obtain the total sums.
The total complexity of butterfly counting per edge is given
as follows.

THEOREM 4.2. Butterfly counting per edge can be per-
formed in O (am) expected work and O(log m) span w.h.p.

4.3 Peeling algorithms In this section, we present our
parallel algorithms for butterfly peeling. The sequential
algorithm for butterfly peeling [49, 65] is precisely the
sequential algorithm for k-core [39, 50], except instead of
updating the number of neighbors per vertex per round, we
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update the number of butterflies per vertex or edge per round.
Thus, we base our parallel butterfly peeling algorithm on the
parallel bucketing algorithm for k-core in Julienne [18]. In
parallel, our butterfly peeling algorithm removes (peels) all
vertices or edges with the minimum butterfly count in each
round, and repeats until the entire graph has been peeled.

Zou [65] give a sequential butterfly peeling per edge
algorithm that they claim takes O(mQ) work. However,
their algorithm repeatedly scans the edge list up to the max-
imum number of butterflies per edge iterations, so their al-
gorithm actually takes O (m? + m - max-b,) work, where
max-b, is the maximum number of butterflies per edge. This
is improved by Sariyilice and Pinar’s [49] work; Sariyiice
and Pinar state that their sequential butterfly peeling algo-
rithms per vertex and per edge take O (ZU cv deg(v)2) work
and O(X,cp 2 o1 oee N (u) Max(deg(vy), deg(v2))) work,
respectively. They account for the time to update butter-
fly counts, but do not discuss how to extract the vertex or
edge with the minimum butterfly count per round. In their
implementation, their bucketing structure is an array of size
equal to the number of butterflies, and they sequentially scan
this array to find vertices to peel. They scan through empty
buckets, and so the time complexity for their butterfly peeling
implementations is on the order of the maximum number of
butterflies per vertex or per edge.

We design a more efficient bucketing structure, which
stores non-empty buckets in a Fibonacci heap [21], keyed by
the number of butterflies. We have an added O (log n) factor
to extract the bucket containing vertices with the minimum
butterfly count. Note that insertion and updating keys in
Fibonacci heaps take O(l) amortized time per key, which
does not increase our work. We need to ensure that batch
insertions, decrease-keys, and deletions in the Fibonacci are
work-efficient and have low span. We present a parallel
Fibonacci heap and prove its bounds in the full version
of this paper. We show that a batch of k insertions takes
O(k) expected work and O(log n) span w.h.p., a batch of
k decrease-key operations takes O(k) amortized expected
work and O(log2 n) span w.h.p., and a parallel delete-min
operation takes O (log n) amortized work and O (log n) span.

A standard sequential Fibonacci heap gives work-
efficient bounds for sequential butterfly peeling, and our par-
allel Fibonacci heap gives work-efficient bounds for parallel
butterfly peeling. The work of our parallel algorithms improve
over the sequential algorithms of Sariyiice and Pinar [49].

Our actual implementation uses the bucketing structure
from Julienne [18], which is not work-efficient in the context
of butterfly peeling,’ but is fast in practice. Julienne
materializes only 128 buckets at a time, and when all of the
materialized buckets become empty, Julienne will materialize
the next 128 buckets. To avoid processing many empty

SJulienne is work-efficient in the context of k-core.

Algorithm 5 Parallel vertex peeling (tip decomposition)

1: procedure UPDATE-V(G = (U,V, E), B, A)
2 Initialize W to be an array of wedges
3 parfor u; € Ado

4: parfor v € N(u1) do
5

6

parfor ups € N(v) where uz # uq do
: Store ((u1,u2),1,v)in W > (u1,u2) is the key, 1 is
the frequency

7: B’ + COUNT-V-WEDGES(G, W)
8 Subtract corresponding counts B’ from B
9: return B

10: procedure PEEL-V(G = (U,V, E), B)
counts per vertex

> B is an array of butterfly

11: Let K be a bucketing structure mapping U to buckets based on # of
butterflies

12: f+<0

13:  while f < |U|do

14: A < all vertices in next bucket (to be peeled)

15: f< f+14

16: B <UPDATE-V(G, B, A) > Update # butterflies

17: Update the buckets of changed vertices in B
18: return K

buckets, we use an optimization to skip ahead to the next
range of 128 non-empty buckets during materialization.

4.3.1 Per vertex The parallel vertex peeling (tip decom-
position) algorithm is in PEEL-V (Algorithm 5). We peel
vertices considering only the bipartition of the graph that pro-
duces the fewest number of wedges (considering the vertices
in that bipartition as endpoints), which mirrors Sariyiice and
Pinar’s [49] sequential algorithm and gives us work-efficient
bounds for peeling; more concretely, we consider the biparti-
tion X such that }° _ (degz('“)) is minimized. Without loss
of generality, let U be this bipartition.

Vertex peeling takes as input the per-vertex butterfly
counts from the PARBUTTERFLY counting framework. We
create a bucketing structure mapping vertices in U to buckets
based on their butterfly count (Line 11). While not all vertices
have been peeled, we retrieve the bucket containing vertices
with the lowest butterfly count (Line 16), peel them from the
graph, and compute the wedges removed due to peeling (Line
16). Finally, we update the buckets of the remaining vertices
with affected butterfly counts (Line 17).

The main subroutine in PEEL-V is UPDATE-V (Lines 1—
9), which returns a set of vertices whose butterfly counts have
changed after peeling a set of vertices. To compute updated
butterfly counts, we use the equations in Lemma 4.2 and
precisely the same overall steps as in our counting algorithms:
wedge retrieval, wedge counting, and butterfly counting.
Importantly, in wedge retrieval, for every peeled vertex u;, we
must gather all wedges with an endpoint u1, to account for all
butterflies containing u; (from Equation (4.1)). We process
all peeled vertices u; in parallel (Line 3), and for each one we
find all vertices us in its 2-hop neighborhood, each of which
contributes a wedge (Lines 4-6). Finally, we aggregate the
number of deleted butterflies per vertex (Line 7), and update
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the butterfly counts (Lines 8). The wedge aggregation and
butterfly counting steps are precisely as given in our vertex
counting algorithm (Algorithm 3). Like in Algorithm 2, we
also need to compute a mapping from wedges to indices in
W using prefix sums, but we omit this from the pseudocode
for simplicity.

The work of PEEL-V is dominated by the work spent
in the UPDATE-V subroutine, which is precisely the number
of wedges with endpoints in U, or O(}", o,y deg(v)?). The
work analysis for COUNT-V-WEDGES then follows from a
similar analysis as in Section 4.2.2. Using our parallel
Fibonacci heap, extracting the next bucket on Line 14 takes
O (log n) amortized work and updating the buckets on Line
17 is upper bounded by the number of wedges.

To analyze the span of PEEL-V, let p, be the vertex
peeling complexity of the graph, or the number of rounds
needed to completely peel the graph where in each round, all
vertices with the minimum butterfly count are peeled. Then,
the overall span of PEEL-V is O (pv log? m) w.h.p.

If the maximum number of per-vertex butterflies is
Q (pv log n), which is likely true in practice, then the work
of the algorithm described above is faster than Sariyiice and
Pinar’s [49] sequential algorithm, which takes O(max—bv +
> ey deg(v)?) work, where max-b, is the maximum num-
ber of butterflies per-vertex.

We must now handle the case where max-b, is
O(pvlogn). While we do not know p, at the beginning
of the algorithm, we can start running the algorithm as stated
(with the Fibonacci heap), until the number of peeling rounds
q is equal to max-b, /logn. If this occurs, then since ¢ < p,,
we have that max-b, is at most p,, log n (if this does not oc-
cur, we know that max-b,, is greater than p, logn, and we
finish the algorithm as described above). Then, we termi-
nate and restart the algorithm using the original bucketing
structure of Dhulipala et al. [19], which will give an algo-
rithm with O (max-b, + Y, ., deg(v)?) expected work and
O (pv log? n) span w.h.p. The work bound matches the work
bound of Sariyiice and Pinar and therefore, our algorithm is
work-efficient.

The overall complexity of butterfly vertex peeling is as
follows.

THEOREM 4.3. Butterfly vertex peeling can be performed in
O (min(max-b,, p, logn) + 3, oy deg(v)?) expected work
and O(pv log? n) span w.h.p., where max-b,, is the maximum
number of per-vertex butterflies p, is the vertex peeling
complexity.

4.3.2 Per edge While the bucketing structure for butterfly
peeling by edge follows that for butterfly peeling by vertex,
the algorithm to update butterfly counts within each round
is different. Based on Lemma 4.2, in order to obtain all
butterflies containing some edge (u1,v;), we must consider
all neighbors us € N (v1)\{u1} and then find the intersection

Algorithm 6 Parallel edge peeling (wing decomposition)

1: procedure UPDATE-E(G = (U,V, E), B, A)
2 Initialize B’ to store updated butterfly counts
3 parfor (u1,v1) € Ado

4: parfor us € N(v1) where uz # uq do
5 N < INTERSECT(N (u1), N(u2))
6
7
8

Store ((u2,v1), |N| —1,.) in B’
parfor vo € N where va # vy do

: Store ((u1,v2),1,-) in B’
9: Store ((uz2,v2),1,_) in B’

10: (B”,.) + GET-FREQ(B’)
11: Subtract corresponding counts in B” from B

12: return B

13: procedure PEEL-E(G = (U,V, E), B)
counts per edge
14: Let K be a bucketing structure mapping E to buckets based on # of

> B is an array of butterfly

butterflies
15: f+<0
16: while f < m do
17: A < all edges in next bucket (to be peeled)
18: f+— f+14
19: B «UPDATE-E(G, B, A) > Update # butterflies
20: Update the buckets of changed edges in B
21: return K

N (u1) N N(uz). Each vertex vg in this intersection where
vy # vy produces a butterfly (u;, vy, us, v2). Thus, we must
find each butterfly individually in order to count contributions
per edge. This is precisely the serial update algorithm that
Sariyiice and Pinar [49] use for edge peeling.

The algorithm for parallel edge peeling is given in PEEL-
E (Algorithm 6). Edge peeling takes as input the per-edge
butterfly counts from our counting framework. Line 14
initializes a bucketing structure mapping each edge to a
bucket by butterfly count. While not all edges have been
peeled, we retrieve the bucket containing vertices with the
lowest butterfly count (Line 17), peel them from the graph
and compute the wedges that were removed due to peeling
(Line 19). Finally, we update the buckets of the remaining
vertices whose butterfly count was affected due to peeling
(Line 20).

The main subroutine is UPDATE-E (Lines 1-12), which
returns a set of edges whose butterfly counts have changed
after peeling a set of edges. For each peeled edge (u1,v1)
in parallel (Line 3), we find all neighbors uy of v; where
us # uy and compute the intersection of N (u;) and N (us)
(Lines 4-5). All vertices v, # wv; in the intersection
contribute a deleted wedge, and we save the number of deleted
wedges on the remaining edges in B’ (Lines 6-9). Finally,
we aggregate the number of deleted butterflies per edge (Line
10), and update the butterfly counts (Line 11). We need a
mapping from edges to indices in B’ (computed using prefix
sums), but we omit this step for simplicity.

The work of PEEL-E is dominated by the total work spent
in the UPDATE-E subroutine. For intersection (Line 5), we can
use hash tables to store the adjacency lists of the vertices, and
so we perform O (min(deg(u), deg(u’))) work (by scanning
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through the smaller list in parallel and performing lookups
in the larger list). This gives us O(X(, yer 2wen(w)
min(deg(u), deg(u’))) expected work. As in vertex peeling,
to analyze the span of PEEL-E, we define p. to be the edge
peeling complexity of the graph, or the number of rounds
needed to completely peel the graph where in each round,
all edges with the minimum butterfly count are peeled. The
overall span of PEEL-E is O (pe log? m) w.h.p.

Similar to vertex peeling, if the maximum number of per-
edge butterflies is (2 (pe log m) , which is likely true in prac-
tice, then the work of our algorithm is faster than the sequen-
tial algorithm by Sariyiice and Pinar [49]. The work of their
algorithm is O (max-b, + 2 (uw)e B 2ueN (v) Min(deg(u),
deg(u’))), where max-b, is the maximum number of butter-
flies per-edge (assuming that their intersection is optimized).

To deal with the case where the maximum number
of butterflies per-edge is small, we can start running the
algorithm as stated (with the Fibonacci heap), until the
number of peeling rounds ¢ is equal to max-b./logm. If
this occurs, then since ¢ < p., we have that max-b, is
at most p.logm (if this does not occur, we know that
max-b, is greater than p. log m, and we finish the algorithm
as described above). Then, we terminate and restart the
algorithm using the original bucketing structure of Dhulipala
et al. [19], which will give an algorithm with O(max—be +

> (ww)eE DoureN(v) Min(deg(u), deg(u))) expected work
and O(pe log® m) span w.h.p. Our work bound matches
the work bound of Sariyiice and Pinar and therefore, our
algorithm is work-efficient.

The overall complexity of butterfly edge peeling is as
follows.

THEOREM 4.4. Butterfly edge peeling can
be  performed  in (@) (min(max-b67 pelogm) +
Z(u,v)EE Zu/EN(v) mln(deg(u)7 deg(ul))) expeCtEd
work and O(p6 log? m) span w.h.p., where max-b, is the
maximum number of per-edge butterflies and p. is the edge
peeling complexity.

5 Experiments

5.1 Environment We run our experiments on an
m5d.24xlarge AWS EC2 instance, which consists of 48 cores
(with two-way hyper-threading), with 3.1 GHz Intel Xeon
Platinum 8175 processors and 384 GiB of main memory.
We use Cilk Plus’s work-stealing scheduler [10, 36] and we
compile our programs with g++ (version 7.3.1) using the —03
flag. We test our algorithms on real-world bipartite graphs
from the Koblenz Network Collection (KONECT) [34]. We
remove self-loops and duplicate edges. Figure 5 describes
the properties of these graphs.

We compare our algorithms against Sanei-Mehri et
al.’s [48] and Sariyiice and Pinar’s [49] work, which are
the state-of-the-art sequential butterfly counting and peeling

implementations, respectively.

When discussing aggregation methods, we use the prefix
“A” to refer to using atomic adds for butterfly aggregation, and
we take a lack of prefix to mean that the wedge aggregation
method was used for butterfly aggregation. “BatchS” is
simple batching and “BatchWA” is wedge-aware batching.

5.2 Results

5.2.1 Butterfly counting Figure 6 shows runtimes over
different aggregation methods for counting per vertex (per-
edge count and total count runtimes are in the full version of
this paper), for the seven datasets in Figure 5 with sequential
counting times exceeding 1 second. The times are normalized
to the fastest combination of aggregation and ranking methods
per graph. We find that simple batching and wedge-aware
batching give the best runtimes for butterfly counting in
general. Among the work-efficient aggregation methods,
hashing and histogramming with atomic adds are often faster
than sorting, particularly for larger graphs due to increased
parallelism and locality, respectively. Our fastest parallel
runtimes for each dataset for total, per-vertex, and per-edge
counts are shown in Figure 7.

We also implemented sequential algorithms for butterfly
counting in PARBUTTERFLY that do not incur any parallelism
overheads. Figure 7 includes the runtimes for our sequential
counting implementations, as well as runtimes for imple-
mentations from previous works, all of which we tested on
the same machine. The code from Sanei-Mehri et al. and
Sariyiice and Pinar [49] are serial implementations for global
and local butterfly counting, respectively. PGD [2] is a par-
allel framework for counting subgraphs of up to size 4 and
ESCAPE is a serial framework for counting subgraphs of up
to size 5. We timed only the portion of the codes that counted
butterflies. Our configurations achieve parallel speedups be-
tween 6.3—13.6x over the best sequential implementations for
large enough graphs.® We also improve upon the previous
best parallel implementations by 349.6-5169x due to having
a work-efficient algorithm.

We examined self-relative speedups on livejournal for
per-vertex and per-edge counting, respectively, and across
all rankings, we achieve self-relative speedups between 10.4—
30.9x for per vertex counting, between 9.2-38.5x for per edge
counting, and between 7.1-38.4x for in total counting.

5.2.2 Ranking We defer a full discussion of the effect of
different rankings to the full version of the paper. In brief,
different rankings change the number of wedges that we
must process, and complement degeneracy and approximate
complement degeneracy minimizes the number of wedges
that we process across all of the real-world graphs considered.
However, complement degeneracy is not feasible in practice,
since the time for ranking often exceeds the time for the actual

6By “large enough,” we mean graphs for which the sequential counting

algorithms take more than 2 seconds to complete.
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Dataset Abbreviation  |U]| V] |E] # butterflies P Pe
DBLP dblp 4,000,150 1,425,813 8,649,016 21,040,464 4,806 1,853
Github github 120,867 56,519 440,237 50,894,505 3,541 14,061
Wikipedia edits (it) itwiki 2,225,180 137,693 12,644,802 298,492,670,057 — —
Discogs label-style discogs 270,771 1,754,823 5,302,276 3,261,758,502 10,676 123,859
Discogs artist-style discogs_style 383 1,617,943 5,740,842 77,383,418,076 374 602,142
LiveJournal livejournal 7,489,073 3,201,203 112,307,385  3,297,158,439,527 — —
Wikipedia edits (en)  enwiki 21,416,395 3,819,691 122,075,170  2,036,443,879,822 — —
Delicious user-item delicious 33,778,221 833,081 101,798,957  56,892,252,403 165,850 —
Orkut orkut 8,730,857 2,783,196 327,037,487  22,131,701,213,295 — —

Web trackers web 27,665,730 12,756,244 140,613,762  20,067,567,209,850 —

Figure 5: These are relevant statistics for the KONECT [34] graphs that we experimented on. Note that we only tested peehng algorithms
on graphs for which Sariyiice and Pinar’s [49] serial peeling algorithms completed in less than 5.5 hours. As such, there are certain graphs
for which we have no available p, and p. data, and these entries are represented by a dash.

3 ‘ ‘ ‘ ‘

CJASort ESort 1AHash E2  Hash
[ZIAHist EHist EZBatchS EZBatchWA

=1

Mulitplicative slowdown

[

itwiki* discogs® livejournal* % enwiki® delicious® orkut” § E web®
(fastest: 0.13 s) (fastest: 0.93 s) (fastest: 5.65 s) (fastest: 11.75 s) (fastest: 18.36 s) (fastest: 66.19 s) (fastest: 15.89 s)
Figure 6: These are the parallel runtimes for butterfly counting per vertex, considering different wedge aggregation and butterfly aggregation
methods. We consider the ranking that produces the fastest runtime for each graph; * refers to side ranking, # refers to approximate
complement degeneracy ranking, and ° refers to approximate degree ranking. All times are scaled by the fastest parallel time, as indicated
in parentheses.

Total Counts Per-Vertex Counts Per-Edge Counts

Sanei-Mehri ESCAPE Sariyiice and Sariyiice and
PB PB etal. [48] PGD [2] [46] PB PB Pinar [49] PB PB Pinar [49]

Dataset  Tysn Th T Tysn Ty Tysn T T Tash T T

itwiki 0.10* 1.38* 1.63 1798.43 4.97 0.13*  1.43* 6.06 0.37* 3.24° 19314.87
discogs  0.90%° 1.36° 4.12 23448 208  0.93%° 1.53°  96.09 0.59°  5.01*  1089.04

livejournal 3.83* 35.41* 37.80 > 55hrs 139.06 5.65% 36.22* 158.79 10.26° 105.65* > 5.5 hrs
enwiki 8.29°  68.73* 69.10 > 55hrs 151.63  11.75° 75.10* 608.53 16.73° 167.69* > 5.5hrs
delicious 13.52° 165.03* 162.00 > 5.5hrs 286.86 18.36° 182.00* 1027.12 23.58° 321.02° > 5.5hrs
orkut 35.07* 423.02* 403.46 > 5.5hrs 1321.20 66.19* 439.02* 2841.27 131.07*C 1256.83* > 5.5 hrs
web 12.18° 115.53° 4340 >55hrs 172.77  15.89° 195.43° > 5.5 hrs 17.40# 218.15° > 5.5hrs

Figure 7: These are best runtimes in seconds for parallel and sequential butterfly counting from PARBUTTERFLY (PB), as well as runtimes
from previous work. Note that PGD [2] is parallel, while the rest of the implementations are serial. Also, for the runtimes from our
framework, we have noted the ranking used; * refers to side ranking, # refers to approximate complement degeneracy ranking, and ° refers
to approximate degree ranking. The wedge aggregation method used for the parallel runtimes was simple batching, except the cases labeled
with ¢, which used wedge-aware batching.

counting. Side ordering often outperforms the other rankings
due to better locality, especially if the number of wedges
processed by the other rankings does not greatly exceed the
number of wedges given by side ordering.

5.2.3 Approximate counting Figure 8 shows runtimes for
both colorful sparsification and edge sparsification on orkut,
as well as the corresponding single-threaded times. We see
that over a variety of probabilities p we achieve self-relative

speedups between 4.9-21.4x.

5.2.4 Cache optimization Using Wang et al.’s [60] cache
optimization for total, per-vertex, and per-edge parallel
butterfly counting gives speedups between 1.0-1.7x of our
parallel butterfly counting algorithms without the cache
optimization, considering the best aggregation and ranking
methods for each case. We did not see speedups using the
cache optimization on some small graphs, with runtimes
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under 4 seconds. More detailed experimental results are
provided in the full version of the paper.

5.2.5 Butterfly peeling Figure 9 shows the runtimes over
different wedge aggregation methods for vertex peeling (the
runtimes do not include the time for counting butterflies).
Edge peeling runtimes are in the full version of the paper. We
only report times for the datasets for which finished within
5.5 hours. We find that for vertex peeling, aggregation by
histogramming largely gives the best runtimes, while for edge
peeling, all of our aggregation methods give similar results.

We compare our parallel peeling times to our single-
threaded peeling times and serial peeling times from Sariyiice
and Pinar’s [49] implementation, which we ran in our
environment and which are in Figure 10. Compared to
Sariyiice and Pinar [49], we achieve speedups between
1.3-30696x for vertex peeling and between 3.4-7.0x for
edge peeling. Our speedups are highly variable because
they depend heavily on the peeling complexities and the
number of empty buckets processed. Our largest speedup
of 30696x occurs for vertex peeling on discogs_style where
we efficiently skip over many empty buckets, while the
implementation of Sariyiice and Pinar sequentially iterates
over the empty buckets.

Moreover, comparing our parallel peeling times to their
corresponding single-threaded times, we achieve speedups
between 1.0-10.7x for vertex peeling and between 2.3-10.4x
for edge peeling. We did not see self-relative parallel
speedups for vertex peeling on discogs_style, because the
total number of vertices peeled (383) was too small.

6 Related Work

There have been several sequential algorithms designed for
butterfly counting and peeling. Wang et al. [59] propose
the first algorithm for butterfly counting over vertices in
O (>, deg(v)?) work, and Sanei-Mehri ef al. [48] intro-
duce a practical speedup by choosing the vertex partition with
fewer wedges to iterate over. Sanei-Mehri et al. [48] also
introduce approximate counting algorithms based on sam-
pling and graph sparsification. Later, Zhu et al. [64] present a
sequential algorithm for counting over vertices based on or-
dering vertices (although they do not specify which order) in
O (>, v deg(v)?) work. They extend their algorithm to the
external-memory setting and also design sampling algorithms.
Chiba and Nishizeki’s [13] original work on counting 4-cycles
in general graphs applies directly to butterfly counting in bi-
partite graphs and has a better work complexity. Chiba and
Nishizeki [13] use a ranking algorithm that counts the total
number of 4-cycles in a graph in O(am) work, where a
is the arboricity of the graph. While they only give a total
count in their work, their algorithm can easily be extended to
obtain counts per-vertex and per-edge in the same time com-
plexity. Butterfly counting using degree ordering was also
described by Xia [62]. Sariyiice and Pinar [49] introduce algo-

rithms for butterfly counting over edges, which similarly takes
O (>, ey deg(v)?) work. Zou [65] develop the first algo-
rithm for butterfly peeling per edge, with O (m?-+m-max-b.)

work. Sariyiice and Pinar [49] give algorithms for butterfly
peeling over vertices and over edges, which take O (max-bv +

ZUGV deg(v)z) work and O(max-be + ZU,GU Z’Ul ,2EN (u)

max (deg(vy ), deg(v2))) work, respectively.

In terms of prior work on parallelizing these algorithms,
Wang et al. [59] implement a distributed algorithm using
MPI that partitions the vertices across processors, and each
processor sequentially counts the number of butterflies for
vertices in its partition. They also implement a MapReduce
algorithm, but show that it is less efficient than their MPI-
based algorithm. The largest graph they report parallel times
for is the deli graph with 140 million edges and 1.8 x 101©
butterflies (the delicious tag-item graph in KONECT [34]).
On this graph, they take 110 seconds on 16 nodes, whereas
on the same graph we take 5.17 seconds on 16 cores.

Very recently, and independently of our work, Wang et
al. [60] describe an algorithm for butterfly counting using
degree ordering, as done in Chiba and Nishizeki [13], and
also propose a cache optimization for wedge retrieval. Their
parallel algorithm is our parallel algorithm with simple batch-
ing for wedge aggregation, except they manually schedule
the threads, while we use the Cilk scheduler. They use their
algorithm to speed up approximate butterfly counting, and
also propose an external-memory variant.

There has been recent work on algorithms for finding
subgraphs of size 4 or 5 [2, 16, 20, 28, 46], which can
be used for butterfly counting as a special case. Marcus
and Shavitt [38] design a sequential algorithm for finding
subgraphs of up to size 4. Hocevar and Demsar [28]
present a sequential algorithm for counting subgraphs of
up to size 5. Pinar et al. [46] also present an algorithm
for counting subgraphs of up to size 5 based on degree
ordering as done in Chiba and Nishizeki [13]. Elenberg
et al. [20] present a distributed algorithm for counting
subgraphs of size 4. Ahmed et al. [2] present the PGD
shared-memory framework for counting subgraphs of up to
size 4. The work of their algorithm for counting 4-cycles is
O (X (4 vy (deg(v) + 32, e n(y) deg(u’))), which is higher
than that of our algorithms. Aberger et al. [1] design the
EmptyHeaded framework for parallel subgraph finding based
on worst-case optimal join algorithms [42]. For butterfly
counting, their approach takes quadratic work. We were
unable to obtain runtimes for EmptyHeaded because it ran
out of memory in our environment. Dave et al. [16] present a
parallel method for counting subgraphs of up to size 5 local
to each edge. For counting 4-cycles, their algorithm is the
same as PGD, which we compare with. There have also
been various methods for approximating subgraph counts via
sampling [3, 4, 12, 30, 32, 40, 47, 61]. Finally, there has also
been significant work in the past decade on parallel triangle
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Figure 8: These are the runtimes for col-
orful and edge sparsification over probabil-
ities p. We considered both the runtimes
on 48 cores hyperthreaded and on a single
thread. We ran these on orkut, using simple
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(fastest: 0.91 s) (fastest: 0.87 s) (fastest: 26.0 s) (fastest: 0.483 s) (fastest: 853 s)

Figure 9: These are the parallel runtimes for butterfly vertex peeling with different wedge
aggregation methods (these runtimes do not include the time taken to count butterflies). All
times are scaled by the fastest parallel time, as indicated in parentheses. Also, note that the
runtimes for discogs_style represent single-threaded runtimes; this is because we did not see
any parallel speedups for discogs_style, due to the small number of vertices that were peeled.

batch aggregation and side ranking.

Vertex Peeling Edge Peeling
Sariyiice and Sariyiice and
PARBUTTERFLY = PARBUTTERFLY Pinar [49] PARBUTTERFLY  PARBUTTERFLY Pinar [49]
Dataset Tash T Ty Tasn Ty T
dblp 0.91° 2.40° 2.06 2.06° 16.90° 6.93
github 0.87° 1.03° 1.15 5.25% 18.00* 18.82
discogs 26° 53.10* 157.14 306* 2160* 2149.54
discogs_style ~ 0.48* 0.48* 14826.16 2380%# 15600* 16449.56
delicious 853° 1900* 2184.27 — — —

Figure 10: These are runtimes in seconds for parallel and single-threaded butterfly peeling from PARBUTTERFLY and serial butterfly
peeling from Sariyiice and Pinar [49]. Note that these runtimes do not include the time taken to count butterflies. For the runtimes
from PARBUTTERFLY, we have noted the aggregation method used; * refers to simple batching, # refers to sorting and ° refers to

histogramming.

counting (e.g., [6, 7, 14, 19, 24, 25, 27, 29, 33, 37, 43, 44, 45,
54, 55, 56, 58, 63], among many others).

7 Conclusion

We have designed a framework PARBUTTERFLY that pro-
vides efficient parallel algorithms for butterfly counting
(global, per-vertex, and per-edge) and peeling (by vertex and
by edge). We have also shown strong theoretical bounds
in terms of work and span for these algorithms. The PAR-
BUTTERFLY framework is built with modular components
that can be combined for practical efficiency. PARBUTTER-
FLY outperforms the best existing parallel butterfly counting
implementations, and we outperform the fastest sequential
baseline by up to 13.6x for butterfly counting and by up to
several orders of magnitude for butterfly peeling.
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