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Abstract—Imposter devices pose serious threats. The majority
of low-cost edge devices can easily be counterfeited or cloned;
the supply chain is insufficiently secure. Reliability of deployed
devices can be called into question simply because they might be
counterfeit or cloned. It is a must to identify edge devices’ sourc-
ing uniquely and verify their validity periodically at runtime.

We integrate blockchain technology to authenticate resource-
constrained, low-cost edge devices. We use SRAM-based phys-
ically unclonable functions (PUFs) to generate unique ‘‘digital
fingerprints” (device IDs). Registered manufacturers upload a
cryptographic hash of each device ID to a “globally accessible”
blockchain instance (key-value store or smart contract). While
registering/designating a device locally, the end-user verifies
whether the hash is present in that blockchain. We utilize
a “locally permissioned” blockchain infrastructure (which is
still a globally managed blockchain or, in future, a sidechain)
to authenticate edge devices for a defense-in-depth approach.
Devices can authenticated periodically to prevent device cloning.
Target environments can be large and have varied trust among
users and lack a specific perimeter; this ‘“local” blockchain
methodology is thus pertinent, especially since blockchains gain
security over time. Our approach reduces the potential for classes
of information leakage and types of sabotage in a critical infras-
tructure or large-scale deployment (such as a smart city) arising
from imposter devices. This methodology protects against such
imposters in mobile settings within an IoT infrastructure too.

Index Terms—Internet of Things (IoT), Cyber-Physical Sys-
tems (CPS), Physically Unclonable Functions (PUF), Edge Device,
Cloning, Blockchains, Lightweight Mining, Device Identity

I. INTRODUCTION

The Internet of Things (IoT) is the collection of billions
upon billions of devices (“things”) connected to the Internet and
purposed to enable direct interactions between the physical world
as well as computer-based systems. It is estimated that there
will between 20 and 50 billion such Internet-connected devices
by 2020 [1]-[3]. ‘Things” are a wide variety of electronic
and electromechanical devices including smart thermostats,
lights, watches, mobile phones, sensors, and actuators, as well
as microcontrollers, among others [1]. Ensuring security and
authenticity of these devices is challenging since they often
have resource constraints such as low power requirements, low
area budget, limited memory, and/or extremely low-cost. Some
lack MAC addresses in their wireless protocols as well. Trappe
et al. showed that the power constraint in IoT edge devices
limits encryption functionality of sensor nodes, which leads to
poorly encrypted communication or no encryption at all [4]. In
a different study, HP revealed that almost 70% of IoT devices
did not encrypt communications to the Internet or the local
network [5]. These deficits open vulnerabilities for adversaries.
Furthermore, encryption, if present, is no guarantee of identity.
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Figure 1: A standard IoT model with hardware vulnerabilities.

This paper focuses on ensuring the security of CPS/IoT sys-
tems through an information architecture that incorporates a glob-
ally managed blockchain dataset for integrity, availability, and
identity purposes. Most edge devices are manufactured in limited-
trust environments lacking relevant government regulations (e.g.,
to curtail counterfeiting and infiltration of threats at manufacture),
move through supply chains without strong controls, and then
are deployed in critical infrastructures worldwide. Thus, we need
to develop solutions for protecting both hardware and software
that take into account the manifold variety of attacks and threats
inherent in such commodity-off-the-shelf devices. Attacks can
originate from untrusted hardware of a CPS/IoT System and/or
from the Internet by way of exploiting existing communication
protocols and network traffic. Hardware attacks against a system
can occur with physical tampering of a device and/or by the
introduction of a cloned/counterfeit device [6]-[9] into the system.
Software attacks against the system can be performed through
network attacks such as Phishing, Denial of Service (DoS), and
data spoofing [10], [11]. Our approach disallows classes of imper-
sonation (cloning) and counterfeiting, which mitigate man-in-the-
middle attacks against secure connections through unique identity.

Figure 1 shows a CPS/IoT System with various attacks that
can originate from untrusted hardware. An adversary might
create a backdoor and easily bypass existing security measures
implemented in the software/firmware. An adversary could
launch a wide variety of attacks (e.g., Man-in-the-Middle Attack
(MITM), Eavesdropping, Denial-of-Service (DoS and DDoS),
Data Spoofing, Distribution of fake updates, etc.) from the
Internet or the internal network of an organization by exploiting



cloned, tampered, and/or compromised devices.

We propose to use Distributed Ledger Technology (blockchain
technology) to identify each edge device uniquely without the
need for end-users to contact the original device manufacturer
for provenance information (such as identity). Blockchains
are modern distributed data structures designed originally for
cryptocurrencies that achieve strong global consensus (via
mining). Notable are Bitcoin [12] and Ethereum [13], [14], though
there are many others. Key features include: block structure,
lack of centralized control, and a consensus (mining) algorithm.
For cryptocurrencies, this is typically a hard task, Proof-of-Work
(PoW) or Proof-of-Stake (PoS) [15]. These computational proofs
force miners to perform a significant task; the one finalizing the
task first gets rewarded, and mines a new block. That block is then
shared throughout the ledgers (the copies of the blocks in each
miner’s server). Because of the sequential, cryptographic hashing
in a given block of the previous block, it is computationally
infeasible to rewrite history. Stability is maintained in case of
simultaneous mining; for instance, a longest-chain methodology
is used in Bitcoin if two miners should both produce a valid
block within a short time interval. Certain Blockchains support
smart contracts [13], [14]; a smart contract is a script run across
the Blockchain as a side-effect of mining that allows calculations
suitable for creating escrow-like operations, key-value data sets,
and many emerging and complex financial instruments. Some
systems allow Turing-complete scripts.

One of the authors of this paper and others have introduced
Scrybe [16], [17], a lightweight mining alternative to blockchains
used for cryptocurrencies. As described below, there is no
expensive computational task such as PoW/PoS in the Scrybe
blockchain; for secure provenance, it is unneeded and wasteful of
resources (we have no inflationary pressure in non-cryptocurrency
applications, which is a principle driver for PoW/PoS).

The authenticity of a low-cost edge device can be ensured
by verifying an unclonable device ID, which can be generated
from an on-board SRAM memory (SRAM PUF [18], [19]) to
avoid the cost of programmable non-volatile memory in low-
cost edge devices. Recently, physically unclonable functions
(PUFs) have received significant attention in the hardware security
community because they can generate unique, unclonable bits for
the identification and authentication of ICs. PUFs use inherently
uncontrollable and unpredictable variations from a manufacturing
process to produce random, unclonable bits. Several PUF
architectures have been proposed over the years that include
the arbiter PUF [20], ring oscillator PUF [21], and SRAM PUF
[18], [19], among others. Since IoT edge devices have SRAM-
based memory and embedded processors, SRAM PUFs offer a
better solution to produce device IDs with no additional cost or
complexity as compared to other options. In our identity approach,
registered manufacturers of a given class of edge devices upload
a cryptographic hash of the ID in the designated “globally
accessible” Blockchain infrastructure for such provenance
information. While registering a device in the IoT infrastructure,
the end-user in turn needs to verify whether the hash is present in
the “global infrastructure” Blockchain. We have also proposed to
implement a “locally permissioned” Blockchain infrastructure for
authenticating edge devices on a regular basis in their deployed
environments primarily to prevent the threat of replacing an edge
device with a cloned/tampered counterpart, or to allow duplicates

to appear in different sectors of a large, mobile environment.
In practice, only one Blockchain need hold both the “globally
accessible” information and “locally permissioned” data per site.

The contributions of this paper are as follows:

1) Architecture of Global Identity Blockchain Infrastructure
(Bg): We create a Global Identity Blockchain infrastructure
in which manufacturers of edge devices register their devices.
Once a device is registered, anyone can access its identity from
anywhere (the Blockchain architecture supports both integrity
and availability). It is unnecessary to contact the original device
manufacturer for device authentication. Manufacturers must
upload a cryptographic hash of the ID to prevent it from
being cloned. During the registration of a device in the IoT
infrastructure, it is necessary to verify whether the hash of
device ID is present in the Global Identity Blockchain. This can
completely eliminate the need for tracking manufacturers.

2) Architecture of a Local Identity Blockchain Infrastructure
(Br): We also designate a Locally Permissioned Blockchain
infrastructure, which supports secure authentication for the local
IoT system. A local administrator can register an authentic
edge device into their data set stored in this Blockchain. Once
devices are registered, the local system can authenticate them
via this Local Identity Blockchain data set. However, before
the Local Registration, the key management of an edge device
should precede in which a secret key is generated and burned
into the on-chip, one-time programmable memory. Once the
key is programmed, direct access of device ID is prohibited to
protect it from being copied, as many of these edge devices
can be deployed in a hostile environment. Note that the local
administrator is responsible for uploading both the cryptographic
hash of the ID and the encrypted secret key into the Local
Identity Blockchain data set.

3) Secure Communication Protocol: We also propose a secure
communication protocol that can be invoked at a regular interval
to authenticate all the edge devices in a CPS/IoT system. Note
that the security of the architecture is ensured so long as the
secret key of the given loT device is safe.

4) Scrybe — A Blockchain-Based Provenance Scheme: The
Scrybe blockchain can optionally be used to create the Global
and/or Local Identity Blockchain data sets. This saves effort,
power, and money at the global level by removing the need
to use relatively expensive blockchain store for the identity
information associated with new IoT devices. Proofs of resilience
to attacks are given below and elsewhere. For using of Scrybe
in the global data structure, a hypothetical trade association
(management group) that maintains the service can use Ethereum
smart contracts to front end this service specifically to manage
the financial stability of the service (that is, charge registered
vendors each time they wish to add new device identities).
(That would represent a third, economic blockchain use in the
architecture.)

For the local Blockchain data set, the same Scrybe blockchain
described above can also be used. Scrybe is an efficient
option because there is no need for a PoW/PoS blockchain to
maintain strong consensus over the local identities. Without
“hacking” a cryptocurrency blockchain (such as reducing its
PoW effort), Scrybe can be used reliably here to deliver the
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required blockchain B;, while maintaining security guarantee®.

The remainder of this paper is organized as follows. Section II
describes our proposed authentication scheme, which can be
adapted into both the global supply chain and to the local IoT
infrastructure. We present the implementation of the proposed
scheme in Section III. We perform a security evaluation in
Section IV and we conclude the paper in Section V.

II. PROPOSED AUTHENTICATION
SCHEME USING BLOCKCHAIN TECHNOLOGY

Bitcoin [12], the first Blockchain-based decentralized system
proposed by Satoshi Nakamoto in 2008, was mainly used for
digital currency transaction instead of data storage. Although
users are able to use the OP_RETURN field to store up to 40
bytes of a chain within one transaction, the idea and performance
of storing data into the Bitcoin Blockchain is still unrealistic [22].
Now, 10 years after 2008, a number of Blockchain-based
platforms and services raised in this past decade and many
of them can provide better on-chain data storage, such as
Ethereum, Storj, Filecoin, Maidsafe, and DADI [23]-[27].

By using one of these public Blockchain platforms plus a
smart front-end to support the identity API, we can build and
maintain a consortium-enabled, fully decentralized Blockchain,
or directly use existing public chain as the infrastructure for the
Global Blockchain data set. The ownership of the information
relies on the owners of the smart contracts and private keys
if, for instance, Ethereum is used. Manufacturers do not control
the Blockchain; it lacks vulnerability to subversion from such
organizations so long as the service is implemented by a neutral
third party or group, whose smart contracts are audited. The
Blockchain itself makes permanent records of the data.

Note that storing large amounts of data into public
Blockchains is expensive and it also has a latency that depends
on the particular system and the amount of reward provided to
miners to add data. However, a consortium-enabled Blockchain
can cut down the storage cost. Regardless of the type of
Blockchain-based service used, the data stored in the Blockchain
is always transparent and accessible as well as immutable and not
susceptible to being forged or subverted. Though it has excellent
durability and availability, there is no data privacy at all, namely
the adversary is also able to read the data in the Blockchain.
And, our proposed novel registration and authentication scheme
can prevent sensitive identity data leaking from the chain.

A. Proposed Global Blockchain Infrastructure (Bg) for
implementing Traceabilty of Edge Devices

The identification of a edge device for IoT applications is
absolutely necessary because there are billions of devices already
in the systems, and will continue to grow at an astonishing
rate. These devices are produced by hundreds of different
manufacturers, located across the globe. Traceabilty for an edge
device is the key for verifying authentic hardware. We propose to
implement a global Blockchain Infrastructure (B¢) that contains
the necessary information to track the origin of an edge device.

Figure 2 shows our proposed Blockchain infrastructure to
provide traceability for edge devices. Every device fabricated

*This is not a local blockchain copy; we use a real blockchain (in future,
a sidechain) to retain the core value of a decentralized digital ledger.
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Figure 2: Global Blockchain instance (smart contract or
key-value store) for verifying edge device identity.

by the authentic manufacturer will be equipped with a public
ID (serial number) and a private ID, which can be generated
from an SRAM PUF [18], [19]. Note that an edge device can
also have other types of PUFs (such as an arbiter PUF [20], a
ring oscillator PUF [21], or a butterfly PUF [28]) for generating
the ID. All authentic edge devices must be registered on the
global Blockchain B¢ before they are sent to the market. Since
the Blockchain ledger contains public entries, which can be
accessed by anyone, an adversary can read the private ID and
store this in a clone device. To prevent this, we propose to store a
cryptographically secure hash [29] of the private ID in B¢, which
prevents an attacker from constructing this private ID. The ledger
for B¢ contains the public ID, hash value of the private ID, plus
relevant information (not shown in the figure) for identifying the
manufacturer. Note that the small circles in the figure represent
edge devices and we follow this notation throughout the paper.
The edge device registration process in B¢ is as follows:

1) A manufacturer (the producer of device A) provides a
challenge to the PUF of an edge device (e.g., A1) to obtain
its response. This response is the private ID (e.g., [D41)
of that edge device. It then computes a cryptographically
secure hash (e.g., HID 41).

The manufacturer uploads the entry {A;, HID 4} into
(Bg) for device Aq, and finishes the registration for that
device (e.g., A1). Note that one can upload the challenge for
a PUF along with its response to the Blockchain. However,
this challenge can be stored internally, since only one
challenge is required to produced an unclonable ID.
Perform Steps 1 and 2 to register other devices (e.g., Ao,
Az, oy Ap).

2)

3)

A user or a distributor could use an Authenticator to access the
global Blockchain B¢ data set and thereby verify the authenticity
of an edge device. The Authenticator can be an API (smart
contract front end or blockchain accessor) or a complete program;
that is, what a user needs to run during verification. Note that
anyone can access an entry in the Global Blockchain dataset since
it is public. The verification process can be described as follows:
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Figure 3: Local Identity Blockchain infrastructure for registering a new edge device and for authenticating edge devices periodically.

1) The authenticator queries the global Blockchain By data
set with the public device ID (e.g., By shown in Figure 2)
of an edge device, and retrieves the hash of the private ID
(e.g., HIDp>).

2) The authenticator provides a challenge to the PUF of the
edge device under authentication, and collects the response,
which is the secret private device ID (e.g., ID%,).

3) The same secure hash is computed on the private ID (e.g.,
HID%,).

4) The verification passes if the received hash from B¢, and
computed hash of PUF response matches for an edge device i.

pass

fail

4 — *
ver(HID;, HID}) = { it HID; = HID;
otherwise;

As mentioned above, economic viability of the global
Blockchain infrastructure is important. If B is implemented
using Ethereum, for instance, then smart contracts can be used
to manage the key-value store added by manufacturers for
each new device. A trade association (consortium, etc) registers
vendors, and lets registered vendors add new device types. Then,
vendors can use Ethereum smart contracts managed by the trade
association to accomplish data registration for the B¢ blockchain.
The trade association makes the system viable by building
payments into the Smart contracts to cover the overheads of
data addition to the blockchain, as well as maintenance of
the smart contracts and governance structure thereof. Unless a
future technology such as sidechains becomes standard [30], the
cost-per registration of this approach may be high, irrespective
of fees that the trade association may level. Of course, the
economics may become more favorable as data use cases grow.

For a global Blockchain By data set implemented via
Scrybe, the Scrybe instance must be maintained across a set
of permissioned miners. This set of miners could be distributed
across several cloud infrastructures, and include trade association
members as “miners” as well as arms-length third parties.
Scrybe does not build in a payment system since it focuses
on secure provenance. It always distributes the mining to active
miners randomly and uniformly. Therefore, the proper economic

model is simply a fee-for-service per miner running the service
for the trade association. Since Scrybe uses lightweight mining,
there is no arduous overhead for providing a miner. Ethereum
smart contracts could be used as a the nominal payment method
for such miners, as a function of their uptime (which can be
measured by the percentage of blocks they mine).

B. Local Edge Device Registration and Authentication

Along with the threat from untrusted manufacturing, threats
can also originate within the [oT/CPS infrastructures. Even
though we screen all the new devices before adding them to
the network, an authentic device can be compromised during
its lifetime. For example, a rogue employee of an organization
can replace an authentic device with its cloned counterpart. It is
thus necessary to authenticate all edge devices in order to verify
their authenticity on a regular basis. A local identity Blockchain
data set, we denote as By, to hold all the public records of all
the edge device connected to the CPS/IoT system, is necessary
for such a purpose.

Figure 3 shows our proposed scheme that consists of two parts
- (i) registration to add an new edge device into the IoT/CPS
systems, and (ii) authentication to verify the identity of an
existing device. Generally, trusted local administrator manage
the IoT system and have the privilege to add an edge device
into the network. In addition, a local administrator can hold
one or multiple trusted devices, and only these devices are
able to register an authentic edge device into the local identity
Blockchain data set, By,. We suggest that all trusted administra-
tive devices remain offline after the local registration phase until
a new edge device goes through the registration. This prevents
a compromised device to register nonauthentic devices into By,.

1) Registration of an Edge Device to the [oT/CPS
infrastructure: Once the identity of a new edge device is
verified (see Section II-A), the local admin performs the
registration. The steps for the registration are as follows:

o The local admin first verifies whether the device is already
registered in the local identity Blockchain data set By. No

two devices have the same private ID.
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o A random secret key is generated (e.g., K 4o for new edge
device Ay shown in Figure 3). The local admin programs that
key into a one-time programmable (OTP) memory [31] of that
edge device. Once the key is programmed into an edge device,
direct access of the ID is blocked. One can only access the
encrypted (see the communication protocol in Section II-C),
which is required to prevent an adversary from copying this ID
and launching an attack during authentication. Note that OTPs
are resistant to tampering, and the contents remain unchanged
once programmed. A one-time programming capability is pro-
vided primarily to prevent an attack arising when an adversary
may gain direct access to an edge device (device capture).

e The secret device ID can be obtained from the SRAM-based
PUF, and then the hash of that ID is computed.

o This new device is now added to the IoT system and directly
communicates with a gateway (G shown in Figure 3).

e The local admin communicates with (; using a secure
communication protocol (e.g., TLS [32]). It sends the key K 42
to the gateway (. The gateway returns the encrypted key.

EK a2 = e, (Ka2)

where e() represents encryption process (e.g., AES [33]) and

K¢ is the secret key of the gateway.

o The admin uploads the public ID, the hash of the secret ID
and the encrypted key (e.g., {As, HID 2, EK 42}) into the
By, data set.

Once an edge device is registered into By, one gateway will
be responsible to authenticate that device*. Note that we can do
“damage control” if a gateway should be compromised. All edge
device connected to it will be compromised, not all edge devices
in the IoT environment. An adversary can access B, through
a compromised gateway. However, he/she can only read the
hash of the private ID (e.g., HI Dp) and encrypted secret key
(e.g., EKp1). The identity of an edge device will be protected
unless the secret key of the gateway (e.g., K1) is compromised.
However, the access to these keys are often restricted from the
software/firmware. It is thus safe to say that an adversary can im-
personate a cloned device by compromising a gateway; however,
the gateway will detect it once it returns to its normal state.

2) Authentication of an Edge Device in the 1oT/CPS in-
frastructure: The objective is to perform authentication on a
registered device. This is to verify its recent identity as it can be
replaced or tampered while in operation. We plan to authenticate
every edge device at a regular interval primarily in order to
verify their actual identity. Note that the whole IoT/CPS system
automatically initiates the authentication depending on the type
of application and its criticality. Figure 3 shows the overview of
this authentication process, which can be described as follows:
o The gateway queries the local Blockchain data set By with

the public ID of an edge device (e.g., D3 shown in Figure

3). By, returns the hash of the private ID (e.g., HIDp3) and

encrypted key (e.g., EKp3).

o Gateway recovers the secret key (e.g., K p3) by using the
following equation:

Kps = e (EKps)
where, e~1() is the decryption function and Kg3 is the
secret key of the gateway Gf.

*We will loosen this restriction in future.

o The gateway uses a secure communication protocol, SCP (see
the following Section II-C), to authenticate an edge device.

C. SCP: Secure Communication Protocol for Edge Device
Authentication

We use a secure communication protocol [34] to transfer the
secret ID of the edge device to the gateway for authentication.
Figure 4 shows the secure communication protocol. Note that
the gateway must be equipped with a cryptographically secure
random number generator (CSPRNG) [35], [36] for generating
random nonces (n). While implementing the protocol, it is nec-
essary to use lightweight encryption for transferring the ID. The
gateway and the edge device use a one-time-pad (OTP) [37], [38]
for such purposes. Note that we need to provide the cryptographic
hash computation support at the software level at the edge device.

Gateway Edge Device (ED;)

1) Generate n , ne {0,1}"

i 4) Receive m;
2) Compute m; m; = K; B n

i 5) Recovern, m; @ K;

3) Send m; | =K®n®K=n
i 6) Compute H, H = hash(n)
10) Receive r; i 7) ID;< PUF Response
11) Compute H, H = hash(n) i 8) Compute r;
12) Reconstruct secret device ID T r=H® ID;
ID,=r®H hammB
D OHOH | 9) Send r;

= [D’
13) Compare the hashes of
reconstructed ID (HID,) and stored ID
(HID)

Figure 4: SCP: Secure communication protocol for edge device
authentication [34].

The communication protocol for authenticating an edge
device is described as follows:

o At the gateway, an on-chip CSPRNG generates a unique
nonce (n). The gateway stores this in an on-chip memory
for decrypting the secret device ID. A one-time pad (OTP)
now encrypts this nonce with the key (/;). The gateway then
sends this encrypted nonce (n @ K;) (depicted as (m;) in
the figure) to the ith edge device, E'D;, to request for its
identification (Steps 1-3).

o The unique nonce (n) is recovered at the edge device
by XORing the m; with the shared secret key (K;). A
cryptographically secure hash (e.g., SHA-2 or SHA-3 [29])
is computed on this nonce (n) to produce a 256/512 bits
hash output (/). We recommend using the existing hardware
resources (embedded processor and memory [39], [40]) of
the edge devices to compute the hash (Steps 4-6).

o The edge device first reconstructs its secret ID by querying
the PUF, and then encrypts this ID, ID; using the hash, H

Steps 7-8).
(Steps 7-8) ri=1ID; & H

The encrypted edge device ID, r;, is sent to the gateway

for authentication (Step 9).
o After receiving r;, the gateway computes the same hash
(SHA-2 or SHA-3) using the stored random nonce, n. The
gateway now reconstructs the secret device ID (Steps 10-12).

« Finally, the gateway computes the hash of I D; and compares
it with the hash received from the local Blockchain data set
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By,. The verification passes if these two hashes match. Upon
failure, the gateway evicts this edge device from the network.

III. SCRYBE: A BLOCKCHAIN-BASED PROVENANCE SYSTEM

This section overviews Scrybe, the Clemson-UTC-Auburn
secure provenance system [16], [17], [41]. Subsequently,
Section IV-E provides an overview and further references about
how Scrybe supports non-repudiation and is also robust against
distributed denial of service (DDoS) attacks.

There are two main components of Scrybe: blocks and trans-
actions [17]. A blockchain is simply a sequence of linked blocks,
where the current block contains the hash of the previous block.

a) Blocks: Each block contains the hash of the previous
block, which makes the blockchain immutable. Blocks are added
to the blockchain by miners, entities responsible for maintaining
the integrity of the blockchain. Scrybe only allows authorized
entities to mine blocks through the secure LWM algorithm
(comprising the Scrybe “consortium”), which will be discussed
further in Section IV-E. Miners are responsible for aggregating a
list of transactions and calculating the Merkle root. The Merkle
root allows other miners quickly to verify that every transaction is
actually included in the block. When a miner is selected to add a
block to the blockchain, the block is broadcast to all the other min-
ers, and the data are verified (previous hash, Merkle root, and the
miner’s signature). At this stage, other miners will be able to de-
tect if a transaction is omitted from the block, if an unauthorized
miner broadcasts a block, and if the miner’s signature is invalid.

b) Transactions: Transactions are the backbone of
provenance [17]. Transactions can reference previous
transactions, providing a chain of custody, or they can be genesis
events, which register the acquisition of new data. References
to other transactions use the input fields, while genesis events
use output fields. The output fields contain persistent URLs
(PURLS) that point to the data, along with the SHA-3 hash
of the data, ensuring its validity. Additionally, the output fields
contain PURLSs that point to XML provenance of the data along
with the SHA-3 hash of the XML provenance. Note that all
transactions have an output while genesis events only have an
output, with no input; normal transactions have both.

By storing the SHA-3 hash of the transaction instead of the
original transaction, one can drastically reduces the size of the
blockchain, and there will be no penalty for an extensive number
of inputs and outputs in any given transaction. The original
transaction will be stored on a transaction server, which will be
locally maintained, along with the data server and the metadata
server. In the current Scrybe implementation, the transactions
and metadata coreside in the Blocks; for future Scrybe releases,
a fully realized version that segregates the metadata server and
transaction server is planned. However, our present application
described here actually prefers the “lumped model.”

¢) Lightweight Mining: Scrybe introduces a novel way to
mine new blocks in the blockchain [17], which is not a difficult
proof-of-work (PoW) required in cryptocurrency applications.
The lightweight mining algorithm (LWM) introduced in Scrybe
is presented in Algorithm 1.

The purpose of LWM is to provide randomization in miner
selection. In a Denial of Service (DoS) attack against Scrybe,
we assume that a malicious miner targets a particular user by
excluding the victim’s transactions from the block he or she

Algorithm 1: Lightweight Mining Algorithm (LWM)

Input :The number of miners N
for each miner m;, 0 < i < N, do
m; generates a random number 7; ;
m; broadcasts the SHA-3 hash of the r;, denoted by H(r;) ;
Once m;
has collected all N hashes {H (ro), H(r1), -+, H(rny—-1)},
'm; broadcasts the random number r; ;
5 Once m; has collected all N random numbers
{ro,r1, - ,*N—1}, m; calculates [ = >~ .7; mod N ;
6 my is the selected miner to create the next block from the collected
transactions. (Without loss of generality, we map m; = 1,0 <
i < N as a simple rank ordering for the registered miners.) ;

AW =

7 end

creates. The randomization offered by LWM guarantees that the
victim’s transactions will always be integrated sooner or later,
as long as there is at least one honest miner. Formal proofs of
this property will be published separately by the Scrybe authors.

The core idea of LWM is “sharing-hash-first” [16]. If every
miner only sends out the random number without sharing
the hashes first, a miner can hold his/her own number until
he or she has received everyone else’s random number. This
allows a malicious miner to manipulate the miner-selection
by choosing a number that produces a m; that is in favor of
a particular miner or deliberately excludes a particular miner.
“Sharing-hash-first” ensures that every miner has to share his/her
own number (in the form of hash) with others before they see
others’ choices. Since hash values are considered impossible
to invert in practice, a miner cannot change the random number
after the fact. Thus, LWM can tolerate up to N — 1 malicious
miners who collude. As long as there is one miner generating
a random number, the modulo operation is randomized.

d) Servers : Locally maintained servers hold the raw data
comprising the ledgers (the blockchains are held in the ledgers)
[17]. The integrity of the transaction server can be verified by
generating a list of all the transactions on the blockchain and
comparing that to all the transactions on the transaction server.
If there is any discrepancy, then the transaction server is deemed
disreputable. The integrity of the data and metadata can be
verified by comparing the SHA-3 hash of the data to the SHA-3
hash stored in the transaction—if these hashes differ, the relevant
server is considered disreputable. The method for storing data on
these servers is configurable, and left to the end-user’s discretion.

IV. THREAT ANALYSIS

We analyze various attacks and solutions to prevent them.

A. lllegitimate Registration

Although we assume that any trusted manufacturer can register
any device in the global Blockchain data set B in the description
of our proposed scheme, we need to provide authorization unless
there may be a potential risk of illegitimate registration on the B¢.
Suppose, manufacturer A produces devices {A1, Aa, ..., 4;},
are only allowed to add these device, similarly another
manufacture B can only add devices {Bi, Ba, ..., B;} into
data set Bg. We need to provide restrictions for manufacturer
A to add devices B;s, and vice versa.

— Prevention of llegitimate Registration: In order to prevent A
from adding device B;s into data set B¢, apparently we should
hold another list that stores the devices that each manufacture
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can add into the Blockchain. Before adding a device into Bg,
permissions will be first checked by querying the list. Compared
to the device adding stream on the B¢, this permission list is
only a tiny piece of data that needs less frequently update, and
it is necessary to make it visible, accessible, and secure. Thus,
storing this list in another Blockchain, or storing it as a part of
the Ledger in the data set B¢ could be taken into consideration.
— Detection of Illegitimate Devices: Suppose A has a piece of
cloned B, we name it B;, and then A registers B into data set
B¢ as As. This registration does not violate the permission list,
however, the fake device has been registered into the Bg and
cannot be detected by the Authenticator. Instead of changing the
data set Bg’s configuration, we suggest that the Authenticator
should not only return whether a device is authentic but also
return detailed registration info of a device. For instance, when
the end user verifies this B3, the Authenticator should return:
“This device is an authentic device registered as As”. So the
user should know that he/she is holding a B but registered as
As. Also, all the registration on the data set B¢ is traceable, the
record of who added a device via illegitimate registration can be
found in the transaction history. The objective of the above dis-
cussion aims to provide a baseline for prevention and detection.

B. Replay Attack on SCP

The objective of an attacker is to pass the authentication
based on prior communication. In this attack, we assume that an
adversary does not have access to the secret key (/(;), which is
programmed in a tamper-proof memory in an edge device. Let
us assume that an adversary observes two prior communications.
First, he/she observes ni & K; from the gateway and H,,, ®I1D;
from the edge device. From this observation, the attacker can
compute K; & ID; & ny & H,,, which is shown below:

(n1 ® K;) ® (Hy, ©1D;) (D
From the second communication, the attacker observes
na(# n1) @ K; from the gateway and H,,, ® ID; from the
edge device, and can compute K; & ID; B ng & H,,.
Now the attacker can perform the following operations:

(n1 & K;) @ (ne @ K;) =n1 ©ng
(Hnl (o) [Dl) () (Hn2 ©® IDz) = Hn1 D H’ﬂz

2
3)

From Equation 3, it is evident that an adversary successfully
replays a prior communication if it becomes zero, when
H,, = H,,. This contradicts the collision property of a
secure hash [29]. Note that ny # no. Thus, the communication
protocol becomes resistant to replay attack, when a system
designer implements a secure hash function (SHA-2 or SHA-3).

C. Denial of Service (DoS) Attack

In this scenario, an attacker intentionally makes a genuine
device fail during its authentication. For example, an attacker
disables a security camera in a particular area by invalidating its
registration. An attacker can eavesdrop on the communication
between an edge device and the gateway. It seems possible to
use IP spoofing to send incorrect responses to the gateway to
disrupt authentication. During authentication, a gateway (G)
generates a random number nq, then send m; = K @ n; to
an edge device (FE). The attacker intercepts r1 = H(ny) @ ID
transmitted by the edge device F, and returns 77 (# r1) to the
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gateway (. As a result, the gateway will fail to reconstruct the
edge device /D, and the authentication will fail. Fortunately,
this can be prevented by a minor modification in the secure
communication protocol, SCP described in Section II-C.

In order to prevent a DoS attack, SCP does not directly
reject a device upon a failed authentication. The gateway needs
to authenticate one more time for confirmation. Upon failed
authentication, the gateway G will request the edge device E
for another authentication and will verify the ID received from
previous communication. The two stage verification process
can be described as follows: /) First Authentication:

o The gateway GG generates a random number n1, then sends

m1 = K @ ny to the edge device F.

e E returns r; = H(n1) @ ID to G. Attackers intercepts r1,
and replaces it with r1(# rq).

o G recovers the edge device ID, ID) by computing 7D
=r; @ H(ny).

o Authentication fails as 1D # ID™) due to r}(# r1).

2) Second Authentication.:

o GG generates a random number n2 (% ny), then sends mo
K ®n; to the edge device E.

E returns 7o = H (n2)@®ID to G. Attackers intercepts 75, and
need to replace it with 73 (# 72) to lunch the DoS attack again.
G recovers the edge device ID, 1D by computing D)
=71y @® H(ne).

Authentication fails as 1D # ID®?) due to 735(# r3).
Gateway now verifies /D) and 1D®).

For an attacker, the probability of matching these IDs from
two communications lies on the security strength of the hash
function. Finding a collision for a secure hash (SHA-2 or
SHA-3) is a hard problem. As a result, the attacker will have
out of luck to find a 7 that maps ID().

D. Physical Attacks

The security of our proposed scheme depends largely on the
shared secret key between the gateway and the edge devices that
should be stored in tamper-proof memory and the SRAM PUF
based device IDs for edge devices. These information can be
stolen through sophisticated physical attacks or reverse engineer-
ing. Today’s optical microscopes can produce 3D images of a mi-
crochip with superfine resolution. Scanning Electron Microscopes
(SEM) and Transmission Electron Microscopes (TEM) can gen-
erate images of different inner layers of a microchip. Chipworks
(now Techlnsights) has successfully performed such experiments
legitimately for the purpose of competitive analysis and patent re-
search. The physical layout of a chip can be reconstructed through
destructive physical attacks as well. Data stored in a non-volatile
memory (NVM) can be reconstructed through infrared backside
imaging, which can be used to directly look at the memory
contents. All these physical attacks can definitely be used to find
the secret key or the device ID. However, an adversary can imper-
sonate only one device through such physical attacks, which does
not make any financial motivation for performing such attacks.

E. Scrybe Security Verification

Since Scrybe replaces the resource-intensive Proof of Work
(PoW) mining with LWM, a comprehensive security analysis
must be conducted. The analysis shows that Scrybe provides
data integrity, non-repudiation, and, more importantly, strong



resistance to Distributed Denial of Service (DoS) attacks
resulting from insider threats. A formal verification of the LWM
is given in [42]. A Petri Net [43] is used to model the DoS
attack, which is then transformed into a Markov chain [44].
Further explanation of Scrybe security and robustness is given
in a forthcoming publication as well that builds on [17], [42].

V. CONCLUSION

We presented a blockchain-based architecture for unique
identification of edge devices through registration of hashed PUF
attributes of a given device at manufacture. By accessing our
Global Blockchain data set, a registered device can be verified by
anyone anywhere without tracking the specific manufacturer. The
Local Identity Blockchain data set (scoped to each site, however
large) allows the local IoT/CPS to authenticate all edge devices
robustly; this local approach supports a defense-in-depth architec-
ture. This dual-use blockchain approach counters the counterfeit
and clone problems, enhances the reliability and usability of the
supply chain, and ensures the authenticity of edge devices. We
introduced a novel, low-cost secure communication protocol for
local device authentication. Optionally, we chose to utilize Scrybe,
a new blockchain architecture, with a unique lightweight mining
algorithm, which makes the whole scheme more efficient. Overall,
blockchains gain security with the addition of data blocks, unlike
databases, ensuring that greater security with greater utilization.
As immediate future work, we will provide the means for NV
gateways to register access to a given device when locally provi-
sioned. This justifies the use of the local blockchain data set since
such a generalization can expand to large-scale deployments.
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