Zooming Out on an Evolving Graph

Vera Z. Moffitt

Drexel University

zaychik@drexel.edu

Amir Aghasadeghi
New York University
amirpouya@nyu.edu

ABSTRACT

An evolving graph maintains the history of changes of graph
topology and attribute values over time. Such a graph has a
specific temporal and structural resolution. It is often useful to
modify this resolution during analysis, for example, to consider
communities rather than individual nodes, or to quantify changes
at the level of days rather than hours.

We propose attribute-based zoom and temporal window-based
zoom — two operators that support exploratory analysis of an
evolving graph at different levels of resolution. We develop sev-
eral alternative physical representations of an evolving property
graph — a temporal generalization of a property graph — and
detail how to implement the proposed zoom operators using
dataflow operations. These different physical representations
allow us to explore the trade-offs in temporal and structural lo-
cality with respect to the performance of the zoom operators.
We implement the operators in Apache Spark, evaluate them
on real evolving graph datasets, and demonstrate scalability to
billion-edge graphs.

1 INTRODUCTION

Many social structures and systems can be represented as net-
works or graphs. The phenomena that are represented by these
graphs can change over time, and therefore, many interesting
questions about these graphs are related to their evolution rather
than to their static state. Researchers study graph evolution rate
and mechanisms [1, 9], the impact of specific events on further
evolution [8, 39] and spatio-temporal patterns [27, 28], with most
progress taking place in the last decade [24, 35, 37, 38, 40].

Our focus in this paper is on a temporal generalization of a

property graph, called TGraph, which we recently introduced [37].

Figure 1 shows an example — an interaction network in which
nodes represent people, and, for the students among them, in-
clude information about a school at which they are enrolled,
while edges represent co-authorship. As in conventional prop-
erty graphs [3], nodes and edges of a TGraph are associated with
a set of key-value pairs that represent an assignment of values to
attributes. In addition, TGraph associates a time interval (repre-
senting a set of discrete consecutive time points) with each state
of a node or edge. For example, a person node Ann exists, and is
enrolled at MIT, during the interval T = [1, 7).

TGraph maintains the history of changes of graph topology
and attribute values over time. It has a specific temporal and struc-
tural resolution, which users often want to modify for exploratory
analysis, for example, to look at communities rather than indi-
vidual nodes, or to quantify changes at the level of days rather
than hours. In this paper we focus on two operators, aZoom! and
wZoom?, that allow us to change the structural and temporal

“This work was supported in part by NSF Grant No. 1916505.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Sebastian Schelter Julia Stoyanovich®
New York University New York University
$s12727@nyu.edu stoyanovich@nyu.edu

resolution of a TGraph, respectively. These operators are part
of a compositional evolving graph algebra called TGA, which
we presented in [37], that operates under point semantics [5].} A
consequence of these semantics is that the TGraph must remain
temporally coalesced — vertices and edges in the output of an
operator must be associated with time periods of maximal length
during which no change occurred.

Attribute-based zoom (aZoomT). We may be interested in an-
alyzing evolving graphs at different levels of structural resolution,
to study properties and behavior of individual nodes, of commu-
nities, and of the graph as a whole. An operation that achieves
this, known as node creation, is present in several conventional
(non-temporal) graph query languages [14, 21, 32, 42]. Our fo-
cus is on a temporal generalization of this operation for graphs,
called temporal attribute-based zoom, or aZoom? for short.

Consider TGraph G in Figure 1, where school names are
represented as values of the school property of person nodes.
aZoom? computes the TGraph in Figure 2, where schools become
nodes (actors) rather than values.

aZoomTis evaluated over a TGraph under point semantics and,
specifically, under the principle of snapshot reducibility [5]: we
evaluate the non-temporal variant of the operator over each state
of the graph (also known as a “snapshot”), and then apply tempo-
ral coalescing [4] to represent each vertex or edge in the result
with a single fact, corresponding to the longest interval during
which no change occurred. aZoom is described in Section 2.2.

Temporal window-based zoom (wZoom). This operator
changes the temporal resolution of a TGraph. This operation is
important because it may not be known a priori, at the time when
graph evolution is being recorded, at what time scale interesting
trends can be observed. For example, changes in node centrality
in a social network may be observable on the scale of weeks
but not months. Understanding at what temporal resolution to
consider network evolution is an integral part of exploratory
analysis. Let us return to our running example in Figure 1, and
assume that time points represent months of 2019. We may zoom
out on G temporally, to 3-month windows, retaining nodes and
edges in the result for a particular time window that were present
in the input during all time points of the window. The result is
presented in Figure 3, and described in more detail in Section 2.3.
Next, we explore different physical representations to answer
the following questions: (i) How should we represent a TGraph to
compute the result of aZoom” and wZoom? efficiently? Should
we use a snapshot-based representation, storing graph evolution
as a sequence of conventional graphs, that is easy to parallelize
but lacks compactness, or should we leverage a more compact
representation, as suggested by Figure 1? (ii) What representation
should we use to efficiently execute a sequence of these operators?
We address these questions, making the following contributions:

e We propose different physical representations of a TGraph
and detail how to define aZoomT and wZoomT using dataflow
operations for these representations (Section 3).

! The focus of [37] is on defining the TGraph model and algebra, while this paper
focuses on system and implementation aspects.

Ann Bob
type=person | [co--=--o ([) (L2 _J -
school=MIT — type=person | type=person | | type=co-author | | type=person
_ T=[2,7) school=CMU T=[7,9) school=MIT
T=[1,7) T=12,5) | T=[5, 9) T=[1,9)

Figure 1: Evolving property graph (TGraph) G;.

o We describe how to efficiently implement aZoom” and wZoom”
in Apache Spark (Section 4).

e We conduct an extensive experimental evaluation of aZoomTand
wZoom”and demonstrate scalability to billion-edge graphs.
We find that a physical representation that balances temporal
and structural locality outperforms other representations in
most cases (Section 5).

2 TGRAPH MODEL AND ZOOM OPERATORS

We provide the background on the evolving property graph model
called TGraph, and define the operators aZoom” and wZoom! that
take a valid TGraph as input, and output a TGraph.

2.1 Evolving property graphs

In [37] we proposed a logical model of an evolving graph called
TGraph that represents a single graph (such as the Web, or a large
collaboration network), and models the evolution of its topology,
and vertex and edge properties. A TGraph is a directed multi-
graph: its nodes and edges have identity, and multiple edges may
connect a given pair of nodes. Each entity (node and edge) has
a required type label, and is associated with a (possibly empty)
set of key-value pairs that represent its properties, each in the
form of a property label (key) and a corresponding value. The set
of properties for an entity is not fixed: it can be different among
entities of the same type, and for the same entity over time.

We now recall the definition of TGraph from [37], simplifying
it slightly. This definition extends the static property graph defi-
nition of Angles et al. [3] by associating periods of validity with
graph nodes, edges, and their properties. Time is drawn from a
linearly ordered discrete domain Q7.

Definition 2.1. A TGraph G = (V,E, L, p, €T, AT) is a six-tuple:

o V is a finite set of nodes (or vertices), E is a finite set of edges,
VNE =0, and L is a finite set of property labels;

e p: E— (VXxYV)is a total function that maps an edge to its
source and destination nodes;

o T (VUE)x QT — Bis a total function that maps a node or
an edge and time point to a Boolean, indicating existence of
the node or edge at that time point; and

o AT (VUE)x Lx QT — val is a partial function that maps a
node or an edge, a property label, and a time point to a value
of the property at that time point.

A valid TGraph conceptually corresponds to a sequence of
valid conventional (non-temporal) graphs. This imposes the fol-
lowing conditions: (i) a condition on &7 that an edge can only
exist at a time when both of the nodes it connects exist; and (ii)
a condition on AT that a property can only take on a value at a
time when the corresponding node or edge exists. Finally, we
require that the property set of an entity not be empty at any
time point when it exists. Practically, we require that each node
and edge assign a value to a property called type.

Definition 2.1 associates graph nodes, edges and attribute val-
ues with time points. In the remainder of this paper, we will rep-
resent temporally adjacent time points by intervals, for syntactic
compactness, as illustrated in Figure 1. Following the SQL:2011

T=1[5, 7)
type=collaborate

type=school Y type=school
student=2 student=1
T=[1,7) T=[7,9)

type=school
student=1
T=[1,7)

type=collaborate
T=(7,9)

Figure 2: Result of aZoom”over G| (Figure 1). Semanti-

cally, this operation is executed over every snapshot of
G1 to: (i) create school nodes for each value of the school
property of person nodes in Gi; (ii) count the number of
persons enrolled at a school, set the value of the student
property of the school node to that count; (iii) create edges
of type collaborate between school nodes for which co-
author edges were present in G;; and (iv) temporally coa-
lesce the result across snapshots, due to point semantics.

standard, we use closed-open intervals, representing a discrete
contiguous set of time points from Q7 . This representation does
not add expressiveness to a point-based representation, and is
purely a syntactic device [10].

We now describe aZoom”and wZoom”in detail using our
running example, and refer to [37] for a formal treatment.

2.2 Attribute-Based Zoom

Temporal attribute-based zoom, denoted aZoom", is a temporal
generalization of the graph node creation operation [42]. Node
creation over non-temporal graphs takes a graph pattern as input,
and computes a new node for each occurrence of a match of
the pattern in the input. To assign identity to new nodes, it is
customary to extend this operation with a Skolem function fs.
aZoomT will similarly create nodes in the output TGraph from
disjoint groups of nodes in the input, such that nodes within a
group agree on the values of all grouping attributes.

Conceptually, aZoomT is executed over every snapshot of the
input TGraph, and new nodes are assigned identity by a Skolem
function fs, which generates consistent assignments across time.
In addition to creating new nodes, aZoom? will also optionally
compute values of node attributes using the aggregation function
fagg, including count, sum, min, max, average, and user-specified
functions that are required to be commutative and associative.
Next, aZoom” computes edges as follows. Suppose that input
nodes n and n’ corresponds to output nodes g and ¢’ respectively,
and that edge e connects n to n’. Then, the output will contain
the edge e, with g as its source and g’ as its target. Essentially,
the input edge is re-created in the output, and re-pointed.

Node creation, computation of node attribute values, and re-
pointing of the edges, is executed over each snapshot of the input
TGraph, under point semantics. As the final step, the result is
then coalesced, associating a time interval of maximal length
during which no change occurred with every newly-computed
node and edge. We now illustrate aZoom? with an example.

T

Example 2.2. Node Ann in Figure 1 is associated with a closed-
open interval T = [1,7), signifying that the node existed in the
graph for six consecutive time points with no change. Bob exists
in the graph during T = [2, 9), but with a change to its attributes
at time 5, when school=CMU was added. School names are
represented as values of the school property of person nodes.

We invoke aZoom”to compute from G; a TGraph where
schools become nodes rather than values, as shown in Figure 2

c, " Bob | Cat
type=person type=co-author type=person type=person
school=MIT T=1[4,7) school=CMU school=MIT

T=[1, 7) T=[4, 7 T=[1,7)

Figure 3: wZoomT(Ql, window=3-months, nodes=all,
edges=all, node.school=last(school)) over G; (Figure 1).

with school nodes MIT and CMU. Note that the number of stu-
dents at MIT changes over time: both Ann and Cat study there
during T = [1, 7), while only Cat studies there during T = [7,9).
Note that both edge e1 and ez have been redirected to newly cre-
ated nodes and their validity period is updated to correct values
based on when those were valid in the graph: While e; is valid
during T = [2,7) in Figure 1, it is only valid during T = [5,7) in
Figure 2, because Bob was not at CMU during T = [2, 5).

2.3 Temporal Window-Based Zoom

The wZoom” operator is analogous to moving window temporal
aggregation in temporal relational algebra. This operator is in-
spired by stream aggregation of Li et al. [29] (adopted to graphs),
and by generalized quantifiers [22].

The wZoom? operator modifies validity periods of TGraph
nodes and edges, by mapping different states of a node or an
edge to a single representative state. This mapping is based on a
specification of a temporal window, such as 2 months or 10 years.
If the specified window is finer than the temporal resolution of the
input TGraph, the operation has no effect. For example, applying
wZoom! with 1-month windows to a TGraph in which evolution
isrecorded across years will simply return the input TGraph. Note
that, because wZoom? is required to produce a valid TGraph as
output, this operation does not support overlapping windows.

Window specification is of the form n {unit|changes}, where
n is an integer, and unit is a time unit (e.g., 10 min, 3 years).
Window specification generates a temporal relation W with the
schema (d | T), where each tuple associates a window number d
with its period of validity T. We additionally require node and
edge existence quantifiers {all|most|at least n|exists}, where n is
a decimal representing the percentage of the time during which
a node or an edge existed, relative to the duration of the window.
Quantifiers are useful for observing different kinds of temporal
evolution. For example, to observe strong connections over a
volatile evolving graph we may include nodes that span the
entire window (nodes=all), and edges that span a large portion of
the window (edges=most). We refer to all and exists as universal
and existential quantification, respectively.

A related point is that a given node or edge should exist at
most once at any given time point, and so we must specify how
conflicts in attribute values are resolved by wZoom?”. The an-
swer to this question is determined by the window aggregation
functions, which specify, for each attribute of a node or an edge,
which of its values to accept as a representative for the given
temporal window. We support the window aggregation functions
first, last, and any (the default).

Example 2.3. Consider again TGraph G in Figure 1, and sup-
pose that time points represent the months of 2018, and are di-
vided into fiscal year quarters as follows: window W 1: time points
1,2,3; T =[1,4), window W2: time points 4, 5, 6; T = [4, 7), win-
dow W3: time points 7, 8, 9; T = [7, 10). How might we quantify
the state of G during each quarter, a 3-month temporal window?

Figure 3 shows the temporally coalesced results of zooming out
to quarters over G with nodes=all and edges=all.

Ann is present in windows W1 and W2 in the input in Figure 1,
and so is associated with T = [1, 7) in the result for both universal
and existential quantification. In contrast, Bob is present in the
input for all of W2 but for only part of W1, and so is returned
with T = [4, 7) in the result for nodes=all, and with T = [1, 7) for
nodes=exists. Finally, Cat is present for all of W1 and W2, but for
only part of W3 in the input (it is missing at time point 9), and
so is associated with T = [1, 7) in the output undernodes=all and
with T = [1, 10) under nodes=exists. Quantification is applied to
edges analogously: e; is mapped to window W2 and ey is absent
in the output in Figure 3, because there does not exist a quarter
during which ey exists continuously in the input.

3 EVOLVING GRAPH REPRESENTATIONS
AND DATAFLOW OPERATORS

In this section, we introduce several physical representations
for a TGraph and detail how to define the zoom operations ac-
cording to these representations. We express the zoom opera-
tors using general dataflow operations — directed acyclic graphs
of operators resembling parallelizable second-order functions
that execute user-defined first order functions. This is a popular
programming model for distributed computations supported by
systems such as Apache Spark [43] and Apache Flink [2].

We use the term snapshot to refer to a conventional (non-
temporal) graph that represents the state of a TGraph during
some interval in which no change occurred. Figure 4 shows the
TGraph in our running example as a sequence of snapshots. When
storing and accessing evolving graphs, we are concerned with
preserving two kinds of locality: temporal and structural. Adopt-
ing the terminology of [19], with structural locality, neighboring
vertices (resp. edges) of the same snapshot are laid out together,
while with temporal locality, consecutive states of the same ver-
tex (resp. edge) are laid out together. We develop four TGraph
representations that differ in compactness and in the kind of
locality (structural or temporal) they prioritize.

Representative Graphs (RG). RG represents a TGraph by a
sequence of snapshots (conventional graphs), associating them
with time intervals, see Figure 4 for an example. The snapshot
sequence is by far the most common representation in the litera-
ture [15, 20, 24-26, 38, 40]. RG has the following schema:

TemporalGraph { interval: Interval,
snapshots: array(Snapshot) }

Snapshot { vertices: array(Vertex), edges: array(Edge) }
Interval { start: Date, end: Date }
Vertex { vid: long, type: string, attributes: dictionary }
Edge { eid: long, type: string, v1: Vertex, v2: Vertex,
attributes: dictionary }
Note that vertices and edges of each snapshot store the attribute
values for the interval represented by the snapshot. This represen-
tation is simple, and lends itself well to parallelizing operations
in a distributed environment, as we can simply assign differ-
ent snapshots to different workers. An advantage of RG is that
it naturally preserves structural locality, and so is efficient for
snapshot-based operations. An important drawback of RG is that
it is not compact: in many real-world evolving graphs there is an
80% or larger overlap between consecutive snapshots [8].

Vertex Edge (VE). Asillustrated in Figure 5, VE is a nested tempo-
ral relational representation of TGraph, with one relation storing
vertices and the other edges, together with the corresponding

=[1, 2)

type=person
school=MIT

type=person
school=MIT

=[7,9)

T
type=person }7 7”‘;
school=CMU L&

”””” type person
type=co-author | | school=CMU

1

I ,,,,,,,,

1 ts‘ﬁ‘e:ji;?: type=co-author | | type=person
|

|

|

Cat

type=person |1
school=MIT

type=person

school=MIT

type=co-author

[Cat [

type=person
school=MIT

Cat
type=person

school=MIT

Figure 4: Representative-Graphs (RG): a “sequence of snapshots” representation of the TGraph G; of Figure 1.

Vertices (V)

Vertices (V)

v a T v a
Ann type=person, school-MIT [1,7) Ann { T=[1,7): type=person, school-MIT }
Bob type=person [2,5) Bob { T=[2,5):type=person,
Bob type=person, school=CMU [5,9) { T=[5,9):type=person,school=CMU }
Cat type=person, school=MIT [1,9) Cat { T=[1,9): type=person, school-MIT }
Edges (E) Edges (E)
[vl v2 a T e vl v2 a
el Ann Bob type=co-author [2,7) el Ann Bob { T=[2,7): type=co-author }
e2 Bob Cat type=co-author 7,9) e2 Bob Cat { T=[7,9): type=co-author }

Figure 5: Vertex-Edge (VE): nested relational representa-
tion of the TGraph G; from Figure 1. The relations Vertices
(V) and Edges (E) are temporally coalesced.

time intervals. Both relations are temporally coalesced, giving
rise to a compact representation. VE stores all vertex proper-
ties together as a single nested attribute (and all edge properties
analogously). VE has the following schema:

TemporalGraph { interval: Interval,
vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }

Vertex { vid: long, type: string, interval: Interval,
attributes: dictionary }

Edge { eid: long, type: string, vidil:long, vid2: long,
interval: Interval, attributes: dictionary }

For edges, we store a unique edge identifier eid(long) to support
multi-graphs, as well as the vertex identifiers vid1(long) and
vid2(long) that are foreign keys referring to the vertex relation.
The main advantage of VE’s attribute representation is that it
lends itself to schema evolution. A disadvantage is that different
properties may have different evolution rates, and a change to
a single property requires a new vertex or edge tuple. VE stores
graph vertices and edges in unordered collections, and therefore
does not maintain temporal locality by default in cases where
the state of a vertex or edge changes. For example, two tuples
for vertex Bob in Figure 5 may not be located consecutively, or
even on the same worker, once the data is partitioned across
a cluster. We can reconstruct temporal locality at runtime, by
re-partitioning the data based on vertex or edge identifiers.

One Graph (OG), One Graph Columnar (OGC). These are
two topologically compact representations. OG stores all vertices
and edges once, in a single aggregated data structure, as shown
in Figure 6. In OG, vertices and edges store the history of the
evolution of their attributes as an array of key-value pairs, to-
gether with the corresponding validity periods. Figure 6 shows
the OG representation for our example graph. Note that we have
only one tuple for vertex Bob, which holds two sets of values for
two corresponding validity periods T=[2,5) and T=[5,9). OG has
the following schema:

TemporalGraph { interval: Interval,
vertices: array(Vertex), edges: array(Edge) 3}

Figure 6: One Graph (OG): nested relational representa-
tion of the TGraph G from Figure 1. The relations Vertices
(V) and Edges (E) are temporally coalesced.

Interval { start: Date, end: Date }
HistoryItem { interval: Interval, attributes: dictionary }

Vertex { vid: long, type: string,
history: array(HistoryItem) }

Edge { eid: long, type: string, v1: Vertex, v2: Vertex,
history: array(HistoryItem) }

The schemas for OG and VE are similar in many ways. The main
difference is that the interval and attribute dictionary in VE has
been replaced with a history array that contains HistoryItems.
Each such history item stores an interval as the key and a dictio-
nary of the corresponding attributes. The second difference is
that OG contains a copy of the source and target vertex of each
edge, instead of a foreign key to the vertex relation.

OGC, on the other hand, only stores the graph topology with
validity periods as a graph, as shown in Figure 7. OGC hhas the
following schema:

TemporalGraph { intervals: array(Interval),
vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }
Vertex { vid: long, type:

Edge { eid: long, type: string, v1: Vertex,
v2: Vertex, intervals: Bitset }

string, intervals: Bitset }

OGC is intended for topology-only attribute-less graphs, encod-
ing the presence of a vertex or edge in each interval with a bitset.
Both OG and OGC emphasize temporal locality, while also pre-
serving structural locality, but lead to a much denser graphs than
RG. This, in turn, makes parallelizing computation challenging.

In the remainder of this section, we describe how to define
aZoomTand wZoomTin terms of dataflow operations according
to our proposed representations.

3.1 Attribute-Based Zoom

We now describe aZoom for each TGraph representation. In the
algorithms we present, V and E are overloaded to refer to the
vertex and edge relations of a given snapshot (in the case of RG)
or of the overall TGraph. In aZoom?
fs to produce new vertex ids. fs is a user-provided function that

we use a Skolem function

Bitset (b): T={[1,2),[2,7),[7,9)}

Vertices (V) Edges (E)

v b e vl v2 b
Ann [1,1,0] el | Ann|Bob | [0, 1, 0]
Bob [0,1,1] e2 | Bob | Cat | [0, 0, 1]
Cat [L1,1]

Figure 7: One Graph Column (OGC): nested relational rep-
resentation of the TGraph G; of Figure 1. Vertices (V) and
Edges (E) are temporally coalesced. Bitsets represent va-
lidity during periods of T={[1,2),[2,7),[7,9)}.

takes the vertex id and all attributes as an input and produces a
long identifier as output. We additionally apply the commutative
and associative aggregation function f,44 to resolve cases where
we have a series of vertices with identical identifiers but multiple
values for the same attribute in the same snapshot. This is an
important step that ensures that each snapshot in the result
corresponds to a valid graph (see [36] for details).

RG. Recall thatRG maintains a collection of snapshots. We apply
the same set of operations in an embarrassingly parallel manner
to each snapshot, as there are no dependencies between them in
this case (Algorithm 1). We iterate over each snapshot (lines 3-10)
and return an RG (line 11) containing the aZoom result. We
apply fs to each vertex using a map (line 5) in order to compute a
new identifier for each vertex. The copyWithVid function updates
each vertex identifier while keeping other attributes unchanged.
We then group vertices by id (line 7) and apply the aggregation
function fu44 (line 8).

To redirect edges to the newly created vertices, we apply the
function f; to the vertices v1 and v2 of each edge in a map (line 9).
The copyWithVids function updates the id of the vertices to the
new identifiers. The edges contain a copy of their source and
target vertices in RG, which obliviates the need for a join here.

Algorithm 1 aZoom? over RG

Require: Skolem function fs : V = N; Aggregation function fu44 :
VXV=V
1: newSnapshots «— @
2: >Aggregate each snapshot
3: for (V.E) in graph.snapshots do
4 VeV >Update of vertex identifiers
5: .map{v = v.copyWithVid(fs(v))}
6: > Vertex aggregation for identity-equivalence
7 .groupBy{v = v.vid}
8 .reduce{(vqa, vp) = fagg(vVa, vp)}
»Edge redirection to new vertices
9: E’ «— E.map{e = e.copyWithVids(fs(e.v1), fs(e.v2))}
10: Add (V’, E’) to newSnaphots

11: return new TGraph G(newSnapshots)

VE. VE consists of two temporal relational tables for vertices
and edges, which contain tuples for each vertex or edge history.
Algorithm 2 details our implementation of aZoom” for VE. We
first calculate non-overlapping intervals (lines 2-5) based on the
temporal splitter concept introduced in [11]. We join intervals
and vertices (lines 7- 9), assign new identifiers (line 10), and
enforce identity-equivalence in each interval with the aggrega-
tion function (line 12). Since VE edges only contain a foreign
key to the corresponding vertices, we need to join the edges

with their corresponding vertices for the edge redirection pro-
cess (lines 14 and 15), before we can apply the f; function to each
corresponding vertex to redirect the edge (line 18).

Algorithm 2 aZoom over VE

Require: Skolem function fs : V = N; Aggregation function fa44 :
VXV=V
1<V >Non-overlapping intervals for each new vertex identifier
2 .map{v = (fs(v), v.interval)}
3 .groupBy{(vid,) = vid}
4 .foldLeft(EmptyInterval)
5 {(i, v) = mergeNonOverlapping(i, v.interval)}
6: V' «—V > Vertex aggregation for non-overlapping intervals
7 Join(I).on{(v, id) = v.id == i.vid}
8 flatMap{(v, i) = verticesForIntervals(v, i)}
9: .map{(v, i) =
10: v.copyWithldAndInterval(fs(v), i) }

11: .groupBy{v = v.id}

12: .reduce{(va, vp) = fagg(vVa, vp)}

13: E « E >Edge redirection to new vertices
14: Join(V).on{(e, v) = e.vidl == v.id}

15: Join(V).on{((e, _), v) = e.vid2 == v.id}

16: .map{(e, v1, v2) =

17: i « recomputelnterval(e, v1, v2)

18: e.copyWithVidsAndInterval(fs(v1), fs(v2), i) }

return new TGraph G(V’, E’)

OG. We implement aZoom? for One Graph (OG) analogously to
RG, with the difference that we compute over the entire TGraph
rather than over each individual snapshot (Algorithm 3). We split
each vertex in OG based on its history, and apply the fs func-
tion to each element of the history array individually. We use a
flatMap function on vertices combined with a map on the his-
tory elements of each vertex for this (lines 1-3). We again enforce
identity-equivalence with our aggregation function (lines 4 and 5).
The vertext computation portion of Algorithm 3 is illustrated in
Figure fig:az-og. For edge redirection in OG, we split the edges by
expanding the history of each corresponding vertex in that edge,
as OG stores each edge only once. Next, we apply the Skolem
function fs to each element of the history (line 6-9).

Algorithm 3 aZoom” over OG

Require: Skolem function fs : V = N; Aggregation function f,44 :
VXxV=V
1: V' « V flatMap{v =
2 v.history.map{(_, attr) =
3 v.copyWithIldAndAttributes(fs(v.vid), attr) }}
4: .groupBy{v = v.vid}
5: .reduce{(vq, vp) => fagg(va, vp)}
6: E' «— E .map{e =
7 h « recompute_history(e)
8 e.copyWithVidsAndHistory(fs(e.v1.vid),
9

: fs(e.v2.vid), h)}
return new TGraph G(V’, E’)

OGC does not represent attributes and so does not support

aZoom?.

3.2 Temporal Window-Based Zoom

As we did for aZoom?, we express wZoom? differently for each
representation, with some common aspects. The first step is to

type = person
School = MIT

T=[1,7]

School = MIT
T=[1,9]

Figure 8: Illustration of the vertex computation portion of Algorithm 3, aZoom

type = person
School = CMU | group

T-075)
type = school
count =2
T=[5,9]

, over TGraph in Figure 6, with count as

{type = person School = MIT},
{type = person School = MIT
= T=[1,7] type = school | type = school
> count =2 count=1
{type = person School = MIT} T=([1,7] T=[7,9]
|
o)
=
[}

T=[5,9]

{type = person School = CMU} }

T

fagg- The first two steps correspond to the call to flatMap on lines 1-3: splitting nodes based on their history array, and
then calling the Skolem function f; to generate ids for new nodes. In this example, f; outputs the value of the school
property. The next step groups vertices by id (line 4). The final step (line 5) applies the aggregation function count, storing

the computed value as a vertex property.

compute the temporal window relation based on the window
specification. We split the total graph lifetime temporally by
applying the function computeNewlIntervals to the graph. This
function takes an interval as an input and returns a tuple con-
taining the old and the recomputed interval.

A major difference to aZoom! is that the TGraph must be coa-
lesced before wZoom can be applied, in order to guarantee the
correctness of the zoom operation. This is because aZoom” exe-
cutes over each snapshot (under snapshot reducibility), while the
computation of wZoom is across snapshots. Consequently, if
the input to wZoom? is not coalesced, we cannot properly apply
existence quantifiers and compute results of aggregation.

We additionally need to handle potential dangling edges for all
representations in wZoom? to ensure that every snapshot of the
resulting TGraph is a valid graph, as specified in the condition
over £7 in Definition 2.1. Recall that wZoom” supports the quan-
tifiers all, most, at least n, and exists, which can be translated
to a threshold on the percentage of the time during which an
entity (a vertex or an edge) existed, relative to the duration of
the window: t = 1 for all, t > 0.5 for most, ¢t > 0 for exists and
t > nfor at least n. If an entity’s existence meets the threshold,
it will be retained in the result of the operation. A dangling edge
check is only required if r;, is more restrictive than r,, because
a particular edges may pass the check, but one or more of the
vertices it connects may not.

RG implements wZoom? as shown in Algorithm 4. We again
use the computeNewlInteval function to compute the new inter-
vals based on the window specification (line 2). Next, we apply
join, groupBy, and flatMap to map each vertex to one or more
snapshots from the specification (lines 4-9). Then, vertices are
grouped by their id within each new interval (line 10). Next, we fil-
ter vertices and edges based on the existence quantifier (line 11).
We apply the math_threshold function to vertices with their
respective thresholds (r) to filter vertices that do not meet the
criteria of our quantifier. Finally, we apply the resolve function
fo to compute the new attribute values (line 12). We treat edges
analogously (lines 14-18). At the end, we merge snapshots into a
TGraph and remove dangling edges.

VE implements wZoom” using Algorithm 5. Figure 9 illus-
trates this algorithm for vertex Bob from Figure 5. We first need
to calculate the new intervals using computeNewlInterval (lines 2-
3). Then we join V with the intervals to align each vertex with
each temporal window (lines 4-6) to split the vertices. Next, we
group by interval and vertex (line 7), and filter vertices that do
not pass the quantifier threshold (line 8). Finally, we resolve the
vertices’ final attributes (line 12). We apply the same operations

Algorithm 4 wZoom over RG

Require: resolve functions f,, fe; quantifiers ro,, re

1: >Computation of new intervals
2: I’ « I.map{i = (i, computeNewlInterval(i)) }
3: >Grouping of snapshots by new interval

4: S « G.snapshots.join(I")

5: .on{(s, interval) = s.i == interval.i}

6: .groupBy{(s, interval) = interval.newlInterval}

7: >Aggregation of vertices for new snapshots
8: V' « S.flatMap{(i, snapshot) =

9: (i, snapshots.map{s = s.vertices})}

10: .groupBy{(i, v) = (i, v.id)}

11: ilter{(i, vertices) = match_threshold(vertices, r,,)}

12: .reduceByKey{((vq), (vp)) = fo(va, vp)}

13: > Aggregate edges for new snapshots
14: E' « S.flatMap{(i, snapshot) =

15: (i, snapshots.map{s = s.edges})}

16: .groupBy{(i, e) = (i, e.id)}
17: filter{(i, edges) = match_threshold(edges, re)}

18 .reduceByKey{((ea), (€5)) = fe(ea, €p)} '
>Recreate RG representation

19: G' « merge(I’, V', E’)

to edges (lines 11-18). We remove dangling edges (given that
ry > re) with two semijoins (lines 17-19).

OG implements wZoom” using Algorithm 6. Recall that in
OG each vertex stores its interval information in a history array.
We process each element of this array separately and rebuild
the array afterwards (lines 1-4) for this process. We first invoke
recomputelntervals (line 2) to recompute the history array with
updated intervals. Next, we leverage the aggregateAndFilterAt-
tributes function (line 3) to group, filter and resolve vertices
analogous to previous algorithms, and apply the same transfor-
mations to the edges as well (lines 5-8).

We again remove dangling edges with semijoins (lines 9-15).
The only difference here is that joining edges with vertices is not
enough, as we also need to update the history arrays. We achieve
this with a map function which updates every edge history with
the intersection of the edge history and the corresponding vertex
history (lines 12 and 15) using the copyWithHistory function.

OGC implements wZoom similarly to OGC, but working
with a bitset instead of a history array. Removing dangling edges
in OGC is as simple as computing the logical and between the
edge bitset and the corresponding vertex bitsets.

a T

I<

L 2 T Bob 0 1,4]
Align with window

Bob {} 2,34 12,3 [1,4) Bob {} [4,7)

4,5,6 = [4,7) Bob | {s=CMU} [4,7)

Bob | {s=CMU} | 56,7, 7,8,9 = [7,10)

Bob | {s=CMU} | [7,10)

Group by

interval

v a T r_v
Bob [{} [1,4) | 0.66
o Filter by L a T
Bob e [4,7): 1.0 r.v
{s=cmMu] R Bob | {s=CMU} | [4,7)
Bob | [{s=cMU}] | [7,10) | 033 Jast

Figure 9: Illustration of Algorithm 5, wZoom?, for vertex Bob in Figure 5, with window size 3 and last as f,. The first step
aligns each vertex with each temporal window (lines 4-6 of the algorithm). Next we create a single nested representation
of each vertex per window and compute r,, the fraction of the window during which the vertex was observed (line 7).
Finally, we filter vertices by r,, and resolve their attribute values with f;, =last (lines 8, 9).

Algorithm 5 wZoom over VE

Require: resolve functions f3,, fe; quantifiers ro,, re
1: >Computation of new intervals

: I’ < I.map{ i = (i, computeNewlInterval(i)) }
: > Vertex aggregation for new intervals
: V'« V. join(I").on{ (v, (i, n)) > v.n==1i}

.map { (v, (i, newlnterval)) =

.groupBy{ v = (v.id, v.interval) }
ilter{(i, vertices) = match_threshold(vertices, ry,)}
-reduceByKey{((va), (vp)) = fo(va, vp)}
10: >Edge aggregation for new intervals
11: E' « E_join(I").on{ (e, (i, n)) = e.interval ==n}

2
3
4
5
6: v.copyWithNewlInterval(newInterval)}
7
8
9

12: .map { (e, (i, newInterval)) =
13: e.copyWithNewlInterval(newInterval)}
14: .groupBy{ e = (e.id, e.interval) }

15: filter{(i, edges) = match_threshold(edges, r¢)}
le: .reduceByKey{((eq), (ep)) = fe(ea, ep)}

17: if r, > re then >Dangling edge removal
18: E” « E’.semijoin(V")

.on{ (e, v) = e.vidl == v.id and in_interval(e, v) }
19: E"” « E”.semijoin(V’)

.on{ (e, v) = e.vid2 == v.id and in_interval(e, v) }
20: return new TGraph (V’, E")

Algorithm 6 wZoom” over OG

Require: resolve functions f3,, fe; quantifiers ro,, re
1: V'« V.map{v =

2: h « recomputelntervals(v.history)
3: h « aggregateAndFilterAttributes(h, fo, rv)
4: v.copyWithHistory(h) }
5: E/ « E.map{e =
6: h « recomputelntervals(e.history)
7: h « aggregateAndFilterAttributes(h, fe, re)
8: e.copyWithHistory(h) }
9: if ri, > re then >Dangling edge removal
10: E” « E’.semijoin(V’)
.on{ (e, v) = e.vidl == v.id and in_interval(e, v)}
11: .map{(e, v) =
12: e.copyWithHistory(intersect(e.history, v.history)) }
13: E"” «— E”.semijoin(V’)
.on{ (e, v) = e.vid2 == v.id and in_interval(e, v)}
14: .map{(e, v) =
15: e.copyWithHistory(intersect(e.history, v.history)) }

16: return new TGraph G(V’, E”)

4 IMPLEMENTATION

We defined our zoom operators in Section 3 using general dataflow
operations and UDFs that are implemented by a variety of popu-
lar systems. Apache Spark with GraphX [17] and Apache Flink
with Gelly [7] are natural candidates for such workloads, as is
Differential Dataflow [33]. We choose Apache Spark for our im-
plementation due to its maturity and popularity.

Our implementation includes a TGraph API, several graph rep-
resentations as discussed in Section 3, and several optimizations
such as lazy coalescing. Our API supports chaining multiple op-
erations together and switching between graph representations
during query execution.

The VE representation is implemented directly over Spark’s
Resilient Distributed Datasets (RDDs) [43] while RG, OG and
OGC leverage the GraphX library for static graphs [17]. We
use the long datatype to represent node and edge identifiers to
maintain interoperability with GraphX.

GraphX-specificimplementation details. GraphX implements
vertex-cut-based partitioning that reduces communication over-
head [17] for certain aggregations on graphs. GraphX also pro-
vides an optimized implementation of a distributed triplet view,
a concept originating from Resource Description Frameworks
(RDF) [31]. The triplet view provides fast access to each edge
and its corresponding source and destination vertex properties.
The triplet view requires a materialized three-way join, which
GraphX optimizes by implementing vertex-mirroring and a mul-
ticast join [17]. We leverage the implementation of the triplet
view to efficiently access edges’ vertex attributes in RG, OG and
OGC. We implement RG as sequence of GraphX graphs, while
OG and OGC are modeled as a single GraphX graph. GraphX
mechanisms such as vertex-cut partitioning and the triplet view
enabled us to implement graph operations more efficiently.

Data loading. The data is read from the Hadoop Distributed File
System (HDFS). Our on-disk data layout uses Apache Parquet, a
columnar data format for HDFS based on the Dremel project [34].
Apache Parquet does not have a mechanism for indexing, but it
supports filter pushdown on any column by which the data is
sorted on disk. We store and load vertices and edges as separate
vertex and edge Parquet files. The default schema to store a graph
on disk is similar to the VE schema described in Section 3. We
load two of our representations (VE and RG) from this format.
To apply a filter pushdown, the data on disk need to be sorted.
For VE, we use the vertex/edge identifier as the first sort key, and
the interval start time as the second key. Storing data in this way
preserves temporal locality, and places the history of changes
in a vertex or an edge together. Parquet does not support filter
pushdown for datetime formats, hence we store time as UNIX
timestamps (long).

We use a similar schema for RG, however, we sort vertices
and edges by the interval start time first, and then by their vertex
(resp. edge) identifier, to preserve structural locality. During our
experiments we learned that RG can be loaded 30% faster using
the structural locality instead of temporal locality (experiment
omitted due to space constraints). While OG and OGC could be
loaded in the same way as VE, we experimentally validated that
it is significantly faster to pre-compute nested versions of the
graphs with schemas described in Section 3, and then convert
to OG or OGC during load time. A problem with this approach
is that Parquet’s filter pushdown will not work, since interval
information is stored in a nested column. We resolve this issue by
storing the first and last time a vertex/edge existed as a separate
column on disk, and sorting on these columns.

We provide a GraphLoader utility that can initialize any of
our physical representations from Apache Parquet files on HDFS
or on local disk. This loader accepts a date range and filters
the data through Parquet’s filter pushdown. For datasets with a
long evolution history, this optimization provides a substantial
performance improvement (see [36]).

Coalescing. The coalesce primitive for merges adjacent and
overlapping time periods for value-equivalent tuples. Several
implementations have been suggested for the coalesce operation
over temporal SQL relations [5]. In our implementation for VE,
we use the partitioning method: grouping the vertex and the edge
relation by key, then sorting by start time, and folding tuples
within each group and checking pairs of adjacent tuples for value-
equivalence. The effect of this operation is that a single tuple is
produced for each period of maximum length during which no
change occurred.

To further optimize performance, we coalesce lazily for se-
quences of two or more operations. Recall that aZoom” com-
putes in each snapshot, and so it does not require its input to be
temporally coalesced to produce the correct output. In contrast,
wZoom! does require its input to be coalesced for correctness,
because it computes across snapshots. This means that, in a se-
quence of aZoom” and wZoom? operators, the system does not
need to temporally coalesce before invoking aZoom?, but it must
coalesce before invoking wZoomT and at the end of the operator
sequence, when the final result is produced.

5 EXPERIMENTAL EVALUATION

We conduct an experimental evaluation to study the performance
of aZoom” and wZoom? . Our goal is to understand how different
representations and their corresponding operator implementa-
tions perform for different datasets and workloads. We present
three different categories of experiments: aZoom? experiments
(Section 5.1), wZoomTexperiments (Section 5.2), and experiments
combining both operations (Section 5.3).

Cluster. All experiments are conducted on a 16-worker in-house
Cloudera cluster, using Linux CentOS 14.04 and Spark v2.2. Each
machine has 4 cores and 32 GB of RAM. Spark standalone cluster
manager and Hadoop 2.6 were used. In each experiment, we
report the mean runtime of three executions, each with a cold
start. The runtime includes the setup time of submitting a job
to the cluster manager, reading the data from disk, executing
the operation, and materializing the results in memory. We set a
30-minute time-out for all experiments.

Datasets. We evaluate the performance on two real world datasets,
WikiTalk and NGrams, and a family of synthetic datasets SNB,

with different scale factors. All datasets are summarized in the ta-
ble below, and differ in size, in the number and type of attributes,
and in evolution rates, calculated as the average graph edit sim-
ilarity [38] between consecutive snapshots (the edit similarity
between snapshots i and j is the ratio of the number of common
edges to the sum of the number edges: 2 * |[E; N Ej|/(|E;| + |Ej])).
In contrast to WikiTalk and NGrams, SNB is a growth-only graph,
and so it shows a higher evolution rate.

vertices | edges | snaps | ev. rate
WikiTalk 2.9M 10.7M 179 14.4
SNB:10 65K 1.9M 36 39
SNB:100 448K 20M 36 90
SNB:300 1.1M 59M 36 90
SNB:1000 3.3M 202M 36 91
NGrams:M 28M 606M 287 16.6
NGrams:L 48M 1.32B 328 18.2

WikiTalk is a real dataset that contains over 10 million mes-
saging events (edges) among 3 million wiki-en users (vertices) at
a 1-month resolution, from 2000 through 2016 [41]. Vertices have
two attributes: name is a unique username for each account and
editCount is the number of edits committed by the user (around
15K unique values). Edges have no attributes. WikiTalk is a very
sparse dataset with short-lived edges and growth-only vertices:
once added, a vertex persists for the lifetime of the graph and its
attributes do not change.

NGrams is a real dataset that contains word co-occurrence
pairs, with 88 million word vertices (3.2 unique words in all) and
over 2.8 billion undirected co-occurrence edges. In our experi-
ments we use two versions of this dataset: NGrams:L, with 328
yearly snapshots from 1520 through 1920, and NGrams:M, with
287 yearly snapshots from 1520 through 1870. NGrams is denser
than WikiTalk; its vertices persist over time, while edges can
appear and disappear. This dataset exhibits a linear relationship
between the number of nodes and the number of edges.

The LDBC Social Network Benchmark (SNB) [12] is a synthetic
graph generator that produces realistic networks with different
types of entities and different attributes. We focus on SNB person
entities (vertices) and on friendship relationships (edges), and
generate datasets at four scale factors: SNB:10, SNB:100, SNB:300,
and SNB:1000, with 36 monthly snapshots in each. SNB:1000 is
the largest dataset that can be created without changing the gen-
erator source code. SNB does not generate a temporal benchmark
but, since entities and relationships have timestamps, it can be
viewed as a growth-only evolving graph. We use the vertices
attribute firstName (5300 unique values in SNB:1000), edges
have no attributes. The friendship network generated using SNB
is growth-only graph, a graph where every vertex and edge is
added once and never goes away.

5.1 Evaluation of aZoom”

We now evaluate the performance of attribute-based zoom. Ex-
periments are executed with RG, VE and OG, as described in
Section 2, but not with OGC, which does not support aZoom?.

Fixed number of groups, varying data size. Dataset size
plays an important role in the performance of aZoom” . We sim-
ulated different data sizes by using three datasets and varying
the number of snapshots in each dataset. In this experiment and
all other experiment in this section, we used aZoom? with a hash
function as the Skolem function fg that generate new ids based
on one of the attributes of the graph. In WikiTalk we group by

of nodes+edges(M) # of nodes+edges(M) # of nodes+edges(M)
0.0 8.7 12.9 1|5 5|4 1?6 2(|)6 0.|7 1q.3 136|9,1
i i | 30

20 20

=
S)

10

time (min)

0

T i i 0 ' (i | 0 T = i
50 400 450 10 20 30 100 200 300

of snapshots
—8—RG —4-VE —<4+0G

of snapshots
—8—RG —9-VE —+0G

of snapshots
——RG —4-VE —<0G

(a) WikiTalk (b) SNB:1000 (c) NGrams:L
Figure 10: aZoom”: The effect of dataset size on the run-
time for each dataset. OG and VE perform on par, while

RG quickly times out.

username (2.9M output groups), In NGrams— by word (3.2M out-
put groups), and in SNB— by firstName (5,300 output groups).

Figure 10 shows the runtime of aZoom” on different datasets.
As expected, increasing the data size increases the execution time.
OG is the best-performing representation, and VE is second-best.
Both VE and OG exhibit sub-minute runtimes on WikiTalk: at
most 0.54 min for OG and at most 1.09 min for VE (Figure 10a).
The runtime of VE for SNB:1000 is at most 2.21 min for this
graph with over 200M edges, where OG takes up to 2.53 minutes.
(Figure 10b). Notably, OG scales well, even for NGrams, where
OG computes in 4.8 min for 400 years worth of data and VE in
9.3, in a graph with 1.3 billion edges (Figure 10c). In contrast, RG
is much slower than VE and OG, and it does not scale for the full
SNB:1000 and NGrams:L dataset. It takes 26 minutes for WikiTalk,
14 minutes for 12 snapshots of SNB, timing out for anything larger
and taking 29.55min to compute for 200 snapshots of NGrams,
and timing out for 300 snapshots.

Fixed number of groups and graph size, varying number
of snapshots. Another important factor in evolving property
graphs that can impact operator performance is the number
of snapshots (intervals during which no change occurred in
the TGraph). We generate experimental datasets to measure
this effect by merging consecutive snapshots of WikiTalk and
NGrams:L, where we gradually decrease the number of intervals,
while we keep the size of the dataset (in terms of the number
of nodes and edges) fixed. For SNB:1000, we directly generate
datasets with the desired number of snapshots. For WikiTalk,
we select the last 160 months of history, and create graphs with
between 2 and 160 snapshots. For NGrams, we select the last 320
years of the graph’s history, and again generate datasets with
between 2 and 320 snapshots. For SNB, we generate between
12 and 360 snapshots, corresponding to between 1 and 30 years
worth of network evolution. Note that generating graphs in this
way does neither change the number of nodes and edges, nor the
group-by cardinality.

Figure 11 shows the runtime of aZoom" as a function of the
number of snapshots. OG and VE exhibit comparable perfor-
mance for WikiTalk, executing in under 2 minutes, with OG
being slightly more efficient. The trends are different in SNB: the
runtime of aZoom” on both OG and VE is near-constant, but VE
is more efficient: 2.3 minutes for VE, compared to 2.9 minutes for
OG. OG outperforms VE for NGrams; their runtime increases
linearly with an increasing number of intervals.

The difference in performance across datasets is due to the
nature of data evolution. WikiTalk and SNB only have one tuple
per node, since attributes do not change over time, therefore an

T

—e—RG —4-VE —<-0G —9-VE —-0G

—8—RG —4-VE —«-0G

time (min)
= N
o o
- N

50 400 150
of snapshots

o

100 700 300 s} 100 200 300
of snapshots # of snapshots

(a) WikiTalk (b) SNB:1000 (c) NGrams:L

Figure 11: aZoom”: Fixed dataset size and group-by car-
dinality, varying number of snapshots. The number of
nodes and edges is fixed to the largest graph size, and the
group-by cardinality is fixed to the natural group-by car-

dinality of each dataset.

~4-VE —<4-0G —9-VE —-0G 4-VE —<-0G

——— _
1.00 '\//\ 4 ¢

1

<
£06 0.75 3
E e — o '/4\4/‘\
0.4 0.50 2
€
0.2 0.25 1
0.0 0.00 0
100 0 10 100 100 a0 10 0 4O
of groups # of groups # of groups
(a) WikiTalk (b) SNB:300 (c) NGrams:M

Figure 12: aZoom : Fixed dataset size and number of snap-
shots, with varying group-by cardinality.

increase in the number of intervals does not change the number
of tuples (which is not the case for NGrams). We observe that
RG is the least efficient representation for this operation, except
for the smallest number of intervals in WikiTalk, where all repre-
sentations have roughly similar performance. The running time
of RG grows linearly with the number of intervals, with a high
slope. We timed out this experiment at 30 minutes per execution,
and RG failed to complete for SNB and NGrams at 80 intervals.

Fixed size and number of snapshots, varying group-by
cardinality. In this aZoom” experiment, we investigate the ef-
fect of group-by cardinality — the number of new nodes being
created by the aZoom operation, on performance. We work with
the WikiTalk, SNB:300 and NGrams:300 datasets at their original
temporal resolution. We vary the number of groups in the output
by assigning a group identifier to each node in the input. Group
identifiers are drawn uniformly at random from a given integer
range. We varied the range to control group-by cardinality, set-
ting it to 10, 100, 1,000, 100,000, and 1,000,000. Figure 12 shows
the results of this experiment. We observe that the runtime of
aZoomT over OG, VE and RG is not affected by group-by cardi-
nality. For visibility purpose, we did not include RG in Figure 12.
On WikiTalk, RG showed an execution time of about 29 minutes
for all the group-by cardinality values.

Frequency of change. In our final aZoom” experiment, we
study the effect of the frequency of change on performance.
Therefore, we synthetically change vertex attributes values with
a fixed frequency. While this intervention does not change the
size of the graph in terms of the number of nodes and edges, it
does change the storage requirements (e.g., the number of tuples
for VE, or the length of the array in OG) for each vertex.

—8—RG —9-VE —<-0G
T ——(

4-VE —4-0G

PSRN}
u o

time (min)
—
o

v

-—a—a «—

0 0
10 20 30 1

frequency of change

2 3 A S ©
frequency of change

(a) WikiTalk (b) SNB:1000
Figure 13: aZoom : Fixed dataset size and number of snap-
shots, varying frequency of change of vertex attributes

Figure 13 shows the effect of the frequency of change on the
performance for WikiTalk (Figure 13a) and SNB:1000 (Figure 13b).
The size of each graph and the contained number of snapshots is
fixed to the full dataset size. While the group-by cardinality does
vary, the number of new groups is of the same order of magni-
tude as in the original graphs. We observe that the frequency of
change has no effect on the performance of RG. This is because
RG stores each vertex once per snapshot, irrespective of whether
there was a change between consecutive snapshots. The runtime
of aZoom”on OG is higher when more changes occur. This is
expected: Recall that OG stores attributes with their correspond-
ing validity intervals in an array, and so a higher frequency of
change results in longer arrays, which slows down operations on
OG. VE stores each change as a new tuple,and a higher frequency
of change results in more tuples, slowing down VE as well.

Summary. We studied the effects of data size, the number of
snapshots, the frequency of attribute change, and the group-by
cardinality (e.g., the number of newly-computed nodes) on the
performance. We observed that OG is the best representation for
aZoom, followed by VE. For our largest experimental datasets,
with over 1.3 billion edges, aZoom” can be executed in less than 5
minutes with OG. The dataset size (the total number of nodes and
edges) affects operator performance on all datasets. The number
of representative graphs (snapshots) has a small effect on VE and
OG, and a significant effect on RG. We did not observe an effect
of the group-by cardinality on the runtime in any representation.
The frequency of change has a small effect on RG, but it affects
VE and OG significantly.

5.2 Evaluation of wZoom”

We now investigate the performance of wZoom? . In all experi-
ments, we load RG from disk enforcing structural locality, and
VE enforcing temporal locality. For OG and OGC we load data
from nested format described in Section 4.

Fixed time window, changing data size. In this experi-
ment, we fix the zoom window size to 3 snapshots for Wik-
iTalk (grouping into up to 60 temporal windows) and SNB:1000
(grouping into up to 12 temporal windows), and 25 snapshots
for NGrams:L (grouping into up to 16 temporal windows). We
load different temporal slices of each graph and measure the
execution time of wZoom” . Figure 14 shows the results of this
experiment. We applied “exists“ quantifiers for both nodes and
edges. We observed similar results for “all“ quantifiers (except
that they make wZoom? slightly faster as fewer nodes and edges
have to be kept in the result), which we omit for space reasons.

As expected, increasing the size of the graph increases the
runtime on all representations. Our implementation based on

of nodes+edges(M)
1|5 54 136 206

of nodes+edges(M)
0.7 10.3 1369.1
1 |] 1 1 1
20

15

10

time (min)

1 1 1
100 900 300
of snapshots

4-VE —+-0GC
—8—RG —<4-0G

[i |
50 100 450
of snapshots

~4-VE —+—0GC
—8—-RG —+0G

A
of snapshots

—-VE —+—0GC
—8—RG —<4-0G

(a) WikiTalk (b) SNB:1000 (c) NGrams:L

Figure 14: wZoom ! : Fixed window size, changing data size,
nodes=exists, edges=exists
4-VE —+-0GC —<-0G

9-VE —RG —+-0GC —<4-0G 4-VE —+-0GC —<-0G

N
o

£15 4\
5 >
010 \7, .
e 2 <
=] 5 \
0 0
10 20 10 20 50 100
window size window size window size
(a) WikiTalk (b) SNB:1000 (c) NGrams:L

Figure 15: wZoom: Fixed data size and number of inter-
vals with varying window size, nodes=all, edges=all. OG
and OGC outperform other representations.

OGC is the clear winner for all datasets, taking 0.41 minutes for
WikiTalk, 1.25 minutes for SNB and 1.12 minutes for NGrams. For
WikiTalk and SNB, OG is the second winner while VE performs
better for NGrams:L, particularly for larger TGraph sizes. Finally,
RG performs worst for all datasets. The reason for VE’s significant
performance drop on SNB is window size. We look at the impact
of window size on wZoom in the next section.

Fixed data size, varying temporal window size. In the
previous experiment, we used a fixed zoom window size and
increased the size of the graph. In this experiment, the size of
the graph is fixed and we vary the size of the temporal window.
Figure 15 shows the corresponding results. RG does not scale for
temporal window-based zoom on large datasets, therefor we only
report performance numbers for RG on WikiTalk. We observe
that the performance of OG and OGC does not depend on the
window size, while the operations on VE take longer to execute
for smaller temporal windows. OGC is the winner among all
datasets followed by OG; VE exhibits longer runtimes for smaller
window sizes especially. This is because VE creates copies of each
tuple in order to align them with the computed time windows.
The smaller the window, the more tuples are created in the inter-
mediate stage. This effect is more visible for WikiTalk and SNB
because of their growth-only nature. In SNB, each vertex or edge
exists from its start date to the life time of the graph, therefore
VE needs to create a large amount of copies as each of those long
intervals is split into intervals corresponding to the window size.

Summary. We studied the effect of data size and of temporal
window size on performance. Our experiments showed that OGC
performs best, followed by OG and VE. RG was the slowest rep-
resentation in all cases. We also observed that smaller temporal
window sizes (and thus more windows to compute) lead to longer
execution time for RG and VE.

-®-VE(wz-az) —-VE(az-wz)
-#-0G(wz-az) —9-0G(az-wz)

e = ———— |

-®-VE(wz-az) —®-VE(az-wz)
-9-0G(wz-az) ~9-0G(az-wz)

4)---0--o----- &

_——e—+
r—o——

-®-VE(wz-az) —eVE(az-wz)
-49-0G(wz-az) —4-0G(az-wz)
12.5 N

/
y 2
10.0

—<4-0G —-VE —0G ~-VE —4-0G 4-VE
OG-VE VE-OG OG-VE VE-OG OG-VE VE-OG
6
15 t
= 15
= 4 ™ — -
Elo0 foe o o < 1 ———
o4 . \
e g
0.0 0 0
5 10 15 20 5 10 15 20 5 10 15 20
window size window size window size
(a) WikiTalk (b) SNB:300 (c) NGrams:M

Figure 16: aZoom” - wZoom” combination and switching

between memory representations. Fixed data size, group-
by cardinality and number of intervals, varying the size of
windows, node quantifier ‘all’, edge quantifier ‘all’.

5.3 Operation Chaining

In this section we chain together aZoom” to a wZoom” and in-
vestigate whether switching between representations improves
performance. Since OGC does not support attribute-based oper-
ation and due to the high memory usage and scalability issues of
RG, we only run our experiments on VE and OG.

In the first experiment we run aZoom? then wZoom? with
different windows sizes on WikiTalk, SNB:300 and NGrams:M.
For aZoom? on WikiTalk, we use edit count as the zoom attribute,
for SNB we use first name, and for NGrams we use the word
attribute. Figure 16 shows the results of this experiment. The
x-axis lists window sizes for wZoom? (in months for WikiTalk
and SNB, and in years for NGrams), while the y-axis denotes the
running time in minutes. Each line shows which representation
is used. On WikiTalk, OG is the winner while OG-VE, VE-OG
and VE are slightly slower. On SNB:300, VE-OG, and OG are
fastest, and OG-VE is slowest, followed by VE.

In the previous section we saw that VE performs slightly better
for aZoomT on SNB, and OG performs significantly better for
wZoomT, so it makes sense for VE-OG and OG to show the
best performance and for VE and OG-VE to show the worst. For
NGrams, OG is the clear winner followed by OG-VE. The worst-
performing combination here is VE-OG, followed by VE. On
NGrams, OG performs significantly better for both aZoom? and
wZoom”, and this can explain the results we are observing here.

In the next experiment we change the order of aZoom” and
wZoom! . While this reordering does not always produce the
same result, we can safely reorder the operations for WikiTalk
and SNB, since no attributes change in these datasets, and so
applying wZoom” or aZoom first produces the same result with
the “exist” quantifier for both vertices and edges.

Figure 17 shows the effect of group-by cardinality on wZoom” -
T_ wZoomT. In this experiments, we load
the full graph for each dataset, project each node attribute to a
random value based on group-by cardinality, and then perform
the operations, with window size set to 6 months for WikiTalk
and SNB, and 10 years for NGrams. We vary group-by cardinality
from 10 to 1 million. We observe an increase in the execution
time as the group-by cardinality increases, which we attribute
to the fact that aZoom” produces a larger intermediate graph
for cases where we perform aZoom! first. In contrast, we see
no significant change in the execution time when wZoom? is
executed first. Interestingly, performing wZoom? first in NGrams
yields faster running time. Unlike in WikiTalk and SNB, vertices
in NGrams are not growth-only, and they also span over a longer

aZoomTand aZoom

Z10
= 75) oo
2
g 5.0
= @@
! 25, e g e
0.0 0 0.0
10\ ,‘-03 Xo‘l XD‘ XD" XQS XOX XO’! 105
of groups # of groups # of groups
(a) WikiTalk (b) SNB:300 (¢) NGrams:M

Figure 17:aZoom” and wZoom? performance for different
group-by cardinalities with different zoom orders. Fixed
data size and number of intervals. OG-based implementa-
tions perform best in most cases.

period of time. wZoom? will reduce the number of snapshots and
vertex tuples, which explains why wZoom”- aZoom? is faster

than aZoomT - wZoom?.

Summary. We studied combining aZoom” and wZoom? for dif-
ferent combinations of parameters. Our experiments show that,
while OG alone performs best in most cases, switching between
representations does not significantly affect the running time.
We also found that running aZoom” before wZoom?is fastest
for growth-only datasets.

5.4 Summary

In this section, we first studied the effects of data size, the number
of snapshots, the frequency of attribute change, and the group-by
cardinality on the running time of aZoom? . We observed that
OG is the best performing representation for aZoom?, followed
by VE. We showed that representing the TGraph as a sequence
of independent snapshots in RG results in the by far worst per-
formance. The second part of this section focused on wZoom? .
We varied graph size and window size, and observed that OGC
is the best-performing representation, followed by OG and VE.
RG again exhibited the worst performance for wZoom? . The last
part of this section focused on combining aZoom” and wZoom? .

Overall, we found that OG, which balances temporal and struc-

tural locality, outperforms other representations in most cases.

6 RELATED WORK

Temporal models and languages in the relational literature
are very mature (see, e.g., [10, 16, 23]). However, the same cannot
be said for evolving graphs, where models differ in what time
representation they adopt (point or interval), what top-level enti-
ties they model (graphs or sets of nodes and edges), whether they
represent topology only or attributes or weights as well, and what
types of evolution they support. Harary and Gupta [20] were,
to the best of our knowledge, the first to informally propose to
model graph evolution as a sequence of static graphs. This model
has been predominant in the literature [15, 24-26, 38, 40], with
various restrictions on the kinds of changes that can take place
during graph evolution. In contrast to existing work, TGraph
assigns periods of validity to nodes, edges and their properties,
capturing evolution of graph topology and of node and edge
attributes, and supports point-based semantics [37].

The attribute-based zoom operator is a temporal general-
ization of the node creation operator that is present in several
conventional (non-temporal) graph query languages [42]. For
example, StruQL outputs new nodes in a create clause, corre-
sponding to the node creation operation with a Skolem function

to create the object ids [13], while GOOD provides an abstraction
operator that allows to create new nodes to represent multiple
nodes based on shared properties [18]. To the best of our knowl-
edge, a temporal generalization of this operator has not been
considered except in our own prior work [37], and also has not
been implemented in systems.

That said, the G* system supports SQL-style aggregation using
the AggregateOperator per graph snapshot, supporting a limited
version of summarization [26]. G* ingests evolving graph data
one snapshot at a time, replicated across all machine without any
compression, and is most similar to our RG. Our experiments
showed that G* is not capable of loading graphs with a large num-
ber of intervals and does not scale for large size graphs [36]. We
were not able to fully ingest any of our datasets used in Section 5
into G*. Chronograph, a system designed for temporal graph
traversal [6], implements a version of temporal aggregation for
the purpose of converting point-based to period-based semantics
for edges, but not for nodes.

Temporal aggregation operators over relational data can
be found in the literature, typically as an extension of non-
temporal relational aggregation (see, e.g., example 10 in [11]). Li
et al. proposed a general window aggregate for data streams [29]
that can be applied to temporal relational data. Window aggre-
gate semantics is based on a sliding window specification — a
range and a slide — based on the desired data attribute that has a
domain with a total order. The range specifies the width of the
window e.g., 100 seconds or 100 rows, and the slide specifies how
windows are formed. We are not aware of any proposal for an
operator capable of changing the temporal resolution of evolving
graphs, besides our own, introduced in [37], and no systems work
on such an operator.

In our work we implement aZoom” and wZoom” operators
in a dataflow system, and instantiate our ideas over Apache
Spark [43], using the GraphX [17] library. We leverage the graph-
specific optimizations provided by GraphX, as described in our
implementation section, and incorporate temporal semantics into
data representations and operators.

7 CONCLUSION

In this paper we proposed an implementation of two zoom oper-
ators — aZoom! and wZoom? — on evolving graphs. We detailed
four physical representations — RG, VE, OG, and OGC, and
described how to define the zoom operators using distributed
dataflow operations, tailored to the corresponding data represen-
tation. We discussed how to efficiently implement the operators
in Apache Spark with its GraphX library, and explained that
our operator definitions could easily be implemented in other
dataflow systems such as Apache Flink. In an extensive experi-
mental evaluation on several real datasets with up to 1.3 billion
edges, we explored the trade-offs in terms of temporal and struc-
tural locality with respect to zoom operator performance. We
find that OG, which balances temporal and structural locality,
outperforms the other representations in most cases.

In our future work we will extend our system to support addi-
tional operations on evolving graphs, such as Pregel-style analyt-
ics [30]. We will propose query optimization techinques for our
workloads. Finally, we will design a query language with support
for the proposed temporal zoom operators, among others.

REFERENCES

[1] CharuC. Aggarwal and Karthik Subbian. 2014. Evolutionary Network Analysis.

ACM Comput. Surv. 47, 1 (2014), 10:1-10:36.
[2] Alexander Alexandrov et al. 2014. The stratosphere platform for big data

analytics. VLDB 23, 6 (2014), 939-964.
[3] Renzo Angles et al. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5 (2017), 68:1-68:40.
[4] Michael H. Bohlen. 2009. Temporal Coalescing. In Encyclopedia of Database
Systems. 2932-2936.
[5] Michael H Béhlen et al. 2009. Temporal Compatibility. In Encyclopedia of
Database Systems. 2936-2939.
Jaewook Byun et al. 2019. ChronoGraph: Enabling temporal graph traversals
for efficient information diffusion analysis over time. IEEE TKDE (2019).
[7] Paris Carbone et al. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28-38.
[8] Jeffrey Chan et al. 2008. Discovering correlated spatio-temporal changes in
evolving graphs. Knowl. Inf. Syst. 16, 1 (2008), 53-96.
[9] Junghoo Cho and H Garcia-Molina. 2000. The evolution of the web and
implications for an incremental crawler. VLDB (2000), 200-209.
[10] Jan Chomicki. 1994. Temporal Query Languages: A Survey. In ICTL.
[11] Dignés et al. 2012. Temporal Alignment. In SIGMOD.
[12] Orri Erling et al. 2015. The LDBC Social Network Benchmark: Interactive
Workload. In Proceedings of the 2015 ACM SIGMOD. 619-630.
[13] Mary F. Fernandez et al. 1997. A Query Language for a Web-Site Management
System. SIGMOD Record 26, 3 (1997), 4-11.
[14] Mary F. Fernandez et al. 2000. Declarative Specification of Web Sites with
Strudel. VLDB 7.9, 1 (2000), 38-55.
[15] Afonso Ferreira. 2004. Building a reference combinatorial model for MANETSs.
IEEE Network 18, 5 (2004), 24-29. https://doi.org/10.1109/MNET.2004.1337732
[16] Shashi K Gadia and Chuen-Sing Yeung. 1988. A generalized model for a
relational temporal database. In ACM SIGMOD Record, Vol. 17. ACM, 251-259.
[17] Joseph E. Gonzalez et al. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In 11th USENIX. 599-613.
[18] Marc Gyssens et al. 1994. Decomposing Constraint Satisfaction Problems
Using Database Techniques. Artif. Intell. 66, 1 (1994), 57-89.
[19] Wentao Han et al. 2014. Chronos : A Graph Engine for Temporal Graph
Analysis. In EuroSys.
[20] F. Harary and G. Gupta. 1997. Dynamic graph models. Mathematical and
Computer Modelling 25, 7 (1997).
[21] Huahai He and Ambuj K. Singh. 2008. Graphs-at-a-time: query language and
access methods for graph databases. In Proceedings of the SIGMOD. 405-418.
[22] Ping-yu Hsu and D Stott Parker. 1995. Improving SQL with Generalized
Quantifiers. In ICDE.
[23] Christian S. Jensen and Richard T. Snodgrass. 2009. Temporal Data Models.
In Encyclopedia of Database Systems. 2952-2957.
[24] Andrey Kan et al. 2009. A Query Based Approach for Mining Evolving Graphs.
In AusDM 2009, Vol. 101.
[25] Udayan Khurana and Amol Deshpande. 2016. Storing and Analyzing Historical
Graph Data at Scale. In EDBT.
[26] Alan G. Labouseur et al. 2014. The G* graph database: efficiently managing
large distributed dynamic graphs. Distrib. and Parallel Databases 33, 4 (2014).
[27] M. Lahiri and Berger-Wolf. 2008. Mining Periodic Behavior in Dynamic Social
Networks. In 2008 Eighth IEEE ICDM. 373-382.
[28] Timothy LaRock et al. 2019. Detecting Path Anomalies in Time Series Data
on Networks. arXiv preprint arXiv:1905.10580 (2019).
[29] Jin Li et al. 2005. Semantics and evaluation techniques for window aggregates
in data streams. In SIGMOD.
[30] Grzegorz Malewicz et al. 2010. Pregel: a system for large-scale graph process-
ing. In ACM SIGMOD. 135-146.
[31] F Manola et al. 2013. RDF primer. W3C Recommendation 10, 1-107 (2004).
[32] Mauro San Martin et al. 2011. SNQL: A Social Networks Query and Transfor-
mation Language. In AMW.
[33] Frank McSherry et al. 2013. Differential Dataflow. In CIDR 2013,.
[34] Sergey Melnik et al. 2010. Dremel: Interactive Analysis of Web-Scale Datasets.
In VLDB.
[35] Youshan Miao et al. 2015. ImmortalGraph: A System for Storage and Analysis
of Temporal Graphs. ACM Transactions on Storage 11, 3 (2015), 14-34.
[36] Vera Z. Moffitt. 2017. Framework for Querying and Analysis of Evolving Graphs.
Ph.D. Dissertation. Drexel University.
[37] Vera Zaychik Moffitt and Julia Stoyanovich. 2017. Temporal graph algebra. In
Proceedings of DBPL 2017. 10:1-10:12.
[38] Chenghui Ren et al. 2011. On Querying Historical Evolving Graph Sequences.
Proceedings of the VLDB Endowment 4, 11 (2011), 726-737.
Ingo Scholtes et al. 2016. Higher-order aggregate networks in the analysis of
temporal networks: path structures and centralities. The European Physical
Journal B 89, 3 (2016), 61.
[40] Konstantinos Semertzidis et al. 2015. TimeReach: Historical Reachability
Queries on Evolving Graphs. In EDBT.
[41] Jun Sun and Jérome Kunegis. 2016. Wiki-talk Datasets.
[42] Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Record
41,1 (2012), 50-60.
[43] Matei Zaharia et al. 2016. Apache Spark: a unified engine for big data process-
ing. Commun. ACM 59, 11 (2016), 56-65.

6

[39

https://doi.org/10.1109/MNET.2004.1337732

	Abstract
	1 Introduction
	2 TGraph Model and Zoom Operators
	2.1 Evolving property graphs
	2.2 Attribute-Based Zoom
	2.3 Temporal Window-Based Zoom

	3 Evolving Graph Representations and Dataflow Operators
	3.1 Attribute-Based Zoom
	3.2 Temporal Window-Based Zoom

	4 Implementation
	5 Experimental Evaluation
	5.1 Evaluation of aZoomT
	5.2 Evaluation of wZoomT
	5.3 Operation Chaining
	5.4 Summary

	6 Related Work
	7 Conclusion
	References

