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Abstract

The Tayler instability (TI) is a non-axisymmetric linear instability of an axisymmetric toroidal magnetic field in
magnetohydrostatic equilibrium (MHSE). In a differentially rotating radiative region of a star, the TI could drive
the Tayler—Spruit dynamo, which generates magnetic fields that can significantly impact stellar structure and
evolution. Heuristic prescriptions disagree on the efficacy of the dynamo, and numerical simulations have yet to
definitively agree upon its existence. The criteria for the TI to develop were derived using fully compressible
magnetohydrodynamics, while numerical simulations of dynamical processes in stars frequently use an anelastic
approximation. This motivates us to derive new anelastic Tayler instability criteria. We find that some MHSE
configurations are unstable in the fully compressible case but become stable in the anelastic case. We find and
characterize the unstable modes of a simple family of cylindrical MHSE configurations using numerical
calculations, and we discuss the implications for fully nonlinear anelastic simulations.
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1. Introduction

The Tayler instability (TT; Markey & Tayler 1973, 1974;
Tayler 1973; Acheson 1978; Pitts & Tayler 1985) is a local
non-axisymmetric linear instability of an axisymmetric toroidal
magnetic field in magnetohydrostatic equilibrium (MHSE).
Spruit (1999) has argued that this instability is particularly
important because it can manifest when other instabilities are
suppressed by thermal stratification. Growth rates are on the
order of the global Alfvén-wave crossing time, which is
generally short compared to other stellar timescales, even for
weak magnetic fields. These two qualities make the TI the most
relevant magnetic instability of a toroidal magnetic field in
MHSE, at least in a non-rotating star.

The TI has been proposed as a mechanism for significantly
affecting a stars’ structure and rotational evolution. Auriere
et al. (2007) proposed the TI as a mechanism to explain the
observed dichotomy in the surface magnetic field strengths of
intermediate-mass stars. In stars with a relatively weak poloidal
field, differential rotation generates a toroidal field unstable to
the TI, transforming the field components from low-order to
high-order, and yielding disk-average surface fields that may
fall below observational detection thresholds. Conversely, in
stars with a relatively strong poloidal field, differential rotation
decays before generating a toroidal field unstable to the TI,
preserving the field components, and yielding low order surface
fields seen in Ap/Bp stars.

Spruit (2002) proposed the TI as one half of a dynamo that
could be a significant mechanism of angular momentum
transport inside the radiative regions of stars. A toroidal field
unstable to the TI generates a radial field displacement which is
then rewound by differential rotation back into a toroidal field,
creating a dynamo loop. The magnetic torque generated by this
Tayler—Spruit dynamo could be a missing link in stellar
evolution theory, where there is currently a discrepancy
between the modeled and observed rotation rates of red giant
cores, and of stellar remnants.

Cantiello et al. (2014) showed that the heuristic prescription
for the Tayler—Spruit dynamo implemented in the stellar
evolution code Modules for Experiments in Stellar Astro-
physics (MESA; Paxton et al. 2013, 2015, 2018) increases
angular momentum transport during red giant branch evolution.
Although these results cannot fully explain the slow core
rotation rates of red giant branch stars as observed by Kepler,
the models with the dynamo are in better agreement with
observations than the models without. Recently, Fuller et al.
(2019) demonstrated that a revised prescription implemented
into MESA could largely reproduce observed rotation rates.

Maeder & Meynet (2003, 2004, 2005) showed that a
heuristic prescription for the Tayler—Spruit dynamo, as
implemented in the Geneva stellar evolution code (Meynet &
Maeder 2005), can have a significant effect on the main-
sequence evolution of massive stars. The dynamo imposes near
solid-body rotation that enhances meridional circulation and
efficient mixing, resulting in larger convective cores, longer
main-sequence life times, enriched surface abundances of
nucleosynthesized elements, and elevated stellar luminosities.
Song et al. (2016, 2018) demonstrated that for massive stars in
binary systems, when spun up through tidal interactions,
dynamo-induced solid-body rotation can lead to similar
outcomes.

Despite the potential significance of the Tayler—Spruit
dynamo in stellar structure and evolution, the existence and
nature of the dynamo is currently debated through both
analytical and numerical calculations. Analytically, various
heuristic prescriptions have been developed to predict the
magnitude of the magnetic torque (Spruit 1999, 2002; Maeder
& Meynet 2003, 2004; Heger et al. 2005; Braithwaite 2006a;
Denissenkov & Pinsonneault 2007). Numerically, nonlinear
MHD simulations have been unable to agree whether the
dynamo actually operates as envisaged (Braithwaite 2006b;
Zahn et al. 2007).

In light of the potential importance of the Tayler—Spruit
dynamo for stars, the disagreement between the analytical
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predictions and the numerical results is unsettling. The
discrepancy motivates us to look at the basic assumptions
used in the original TI criteria and in the nonlinear MHD
simulations investigating the Tayler—Spruit dynamo. Tayler
(1973) developed criteria for the TI using fully compressible
ideal MHD, while numerical MHD simulations of stellar
interiors frequently use anelastic MHD (e.g., Brown et al.
2012). This approximation filters out sound waves, which are
very short-period relative to stellar timescales and are therefore
prohibitively expensive to compute.

The goal of this paper is to re-examine the TI in the anelastic
approximation. We derive new anelastic TI (anTI) stability
criteria and we then apply them to a family of simple MHSE
models to determine which are subject to the instability. We
verify our results numerically using a modified version of the
GYRE stellar oscillation code (Townsend & Teitler 2013),
which solves a system of linearized anelastic MHD equations
to calculate growth rates and eigenfunctions of unstable modes.
We conclude that the anelastic case is more restrictive but that
the TI should be present in anelastic MHD simulations if the
models used are unstable under the anTI criteria.

This paper is structured as follows. In Section 2, we give an
overview of the energy principle, which is the method that,
following Tayler (1973), we have used to develop the
instability criteria. In Section 3, we introduce the fully
compressible MHD equations and the Lantz—Braginsky—
Roberts (LBR) anelastic approximation for MHD, which is a
form that is valid in the isothermal atmosphere that we assume
in our later analysis. In Section 4, we summarize the original TI
stability criteria derived from the energy principle and we
derive the new anTI criteria. In Section 5, we compare the
original and anTT criteria to GYRE’s numerically calculated
growth rates and eigenfunctions for unstable modes in our
models, showing that the anTI criteria are correct in anelastic
MHD. In Section 6, we conclude with considerations for future
analytical and numerical work.

2. Energy Principle

The instability analysis in Tayler (1973) was developed
using the MHD energy principle of Bernstein et al. (1958),
which gives the necessary and sufficient condition for an
energy-conserving, ideal system in MHSE to be unstable to
small displacements. Although the energy principle is widely
used in studies of laboratory and natural plasmas, we will need
to modify it to accommodate the anelastic equations, so we will
briefly review it here.

The energy principle is based on being able to write the
linearized equation of motion for the fluid displacement
perturbation, &, in the form

0%

ZS _F(8), 1

o =F© M
where £ is related to velocity perturbations u’ by

23
u ==, 2
o (2)
and F is a linear, self-adjoint operator.* Since Equation (1)

does not explicitly depend on time, we look for separable

4 By self adjointness we mean | & - F(n) dr = fn - F(§) dr for displace-
ment vectors &, 17 that obey suitable boundary conditions.
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solutions of the form
£(1) x exp iwt, 3)

where w is an angular frequency. It follows from the self
adjointness property that w” is real; w”> < 0 signifies instability,
with an exponential growth rate A = |w|.

It can be shown that Equation (1), together with the self
adjointness property, leads to a conservation law which we
identify with conservation of perturbation energy:

oL pog 0 1 1. _
at[prat o dr zfg F(g)dT] 0. @

The first term in brackets in Equation (4) is the kinetic energy
0K, while the second represents the potential energy

1
W = —Efs . F (&) dr. (5)

Equation (4) shows that 6K + 6W is constant in time. For an
unstable mode, both 6K and 6W grow exponentially in
magnitude with time, and 6K is positive definite; therefore,
OW must be negative. This is the basis of the energy principle.

The energy principle has both advantages and disadvantages
when compared to solving for the eigenvalues w® of
Equation (1). The advantage is that it is often easier to
minimize 6W, or even evaluate it for a set of trial functions,
than to solve the coupled set of differential equations
corresponding to the eigenvalue problem and hope to capture
all modes. The disadvantage is that the energy principle yields
at best the lowest-eigenvalue mode (obtained by rigorous
minimization of W) rather than the whole spectrum of stable
and unstable modes.

3. Fully Compressible and Anelastic Ideal MHD

Fully compressible, isentropic, ideal MHD is described by
the conservation equations for mass, momentum, and entropy,
together with Faraday—Maxwell’s Law (combined with Ohm’s
Law), Ampere’s Law, and Gauss” Law for magnetism,

9 v (ouy =0, ©)

ot
M wvu=—typigsI*B )

ot P pc

9 L w.vs=o, (8)

ot
a—B=Vx(u><B), 9)

ot
J=-LV xB, (10)

4

V- -B=0. (11

Here, u, p, P, S, g, B and J are the fluid velocity, density,
pressure, specific entropy, gravitational acceleration, magnetic
field and current density, respectively. The pressure, density
and specific entropy are assumed to be related by the equation
of state

p = p(S, P), (12)

which for simplicity we assume to follow ideal-gas behavior.
To model the evolution of small perturbations of a static
equilibrium state, we decompose the dependent variables into
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the sum of a background value (denoted by the subscript 0),
and a perturbed value (denoted by a prime):

u=u,

P=Py+ P,

p=py+p,

S =358+ 9,

B=B,+ B,

J=J+J (13)

(we neglect any perturbations to the gravity g). The back-
ground values obey the MHSE condition

VP X B
():g—&-JO 0

(14)
Po Poc
the equilibrium current equation
Jo ==V x By, (15)
47

and a gradient relation that follows from the equation of state
12),

Vpo _ VP() o VS()
Po 7Po e

(16)

where cp is the specific heat at constant pressure and + is the
ratio of specific heats. Likewise, the perturbed values satisfy
the linearized ideal MHD equations that follow when we
substitute the expressions (13) into Equations (6)—(11)),
subtract the background state, and discard terms that are
second- or higher-order in perturbed quantities:

op'
T () = 0, a7)
! ! ! lA !
@L:_VP4~&g+f’XB“+hXB), (18)
ot Po Po PoC
!
LA VS, = 0, (19)
ot
!
9B _ G« @' x By, 20)
ot
J ="V x B, Q1)
47
V.B =0 (22)

Numerical MHD simulations that are relevant on stellar
scales of interest frequently use an anelastic approximation,

V - (pot') = 0, (23)

that filters out fast, high-frequency sound waves unimportant
on stellar scales, while keeping slower internal gravity waves.
The anelastic approximation is technically valid only for
adiabatically stratified systems (V.Sy; = 0), but is now used to
study problems such as penetrative convection and interface
dynamos that include stably stratified regions. In such contexts,
Brown et al. (2012) studied energy conservation in three widely
used forms of the anelastic equations. They showed that one,
the so-called LBR formulation (Lantz 1992; Braginsky &
Roberts 1995) conserves energy, while the others conserve a
related but distinct pseudo-energy. Therefore, we consider the
LBR formulation to be the best candidate for analyzing the
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Taylor instability in the anelastic approximation, and study
only that version in this paper. However, as we will see, the
energy principle has to be modified, even for the LBR
formulation.

The LBR formulation re-writes the linearized momentum
equation in terms of entropy and a reduced pressure
perturbation

P/
Po

7ﬂ/

) (24)

and neglects a term @’V (S /cp). Although Brown et al. (2012)
neglected the effect of magnetic fields, it can be shown by
recapitulating their analysis that neglecting all terms propor-
tional to w’ (but not its gradient) in the linearized momentum
equation preserves energy conservation in an isothermal
atmosphere, even in the presence of magnetic fields.

We develop an LBR version of the linearized momentum
Equation (18) by eliminating the density perturbation using the
linearized equation of state,

pF_1Pr_ s

, (25)
Po v Po cp

and likewise eliminating the background pressure gradient VP,
using the MHSE condition (14). The linearized momentum
equation then becomes

a—u/:—Vw’—S—/g—l— J' x By +Jo x B
ot cp PoC

], (26)
where, as discussed above, we have dropped all terms
proportional to w’. The linearized LBR anelastic MHD
equations then comprise Equations (19)—(23) and (26).

4. Instability Analysis
4.1. Fully Compressible Analysis

Tayler (1973) derived his criteria for stability by applying a
fully compressible MHD form of the energy principle (see
Section 2) to an equilibrium configuration comprising an
axisymmetric toroidal magnetic field in a non-rotating stratified
plasma. In this configuration, all background quantities are
functions only of the cylindrical radial (r) and axial (z)
coordinates. Here, we briefly recapitulate his analysis. First, we
integrate Equations (17) and (20) with respect to time to obtain
explicit expressions for the density, magnetic field and current
perturbations in terms of the displacement vector &,

p==V-(py6), (27)

B =V x (& X By), (28)

J =V x [V x (& x By)]. (29)
47

The linearized equation of state (25) leads to a corresponding
expression for the pressure perturbation,

P'= APV - £ — £ VP, (30)

By substituting these expressions into the linearized momen-
tum Equation (18), the force operator introduced in
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Equation (1) is found as

F(€) = VPV - £+ £ VP) — V- (n6) g
4 4i[(v x B x By + (V x Bo) x B]. (31
i

Kulsrud (1964) demonstrated that this force operator is self-
adjoint under boundary conditions

€. hA=0, By -i=0, (32)

that correspond to rigid, perfectly conducting walls; here, 7 is
the unit surface normal vector of the boundary.

Taking the scalar product of Equation (31) with &, and
integrating over volume, leads via Equation (5) to the potential
energy

2 L (R!
L Jar [B - RO g

+(E&-VP)V-£+ (-8 V- (p)l. (33)

where we have made use of the boundary conditions (32) to
eliminate surface integrals involving £ - ii and By - i.

Following Tayler (1973), we write the fluid displacement
vector in cylindrical coordinates as

3 X cosmo
& | = —v/m)sinmg |, (34)
&, Z cosme

where X, Y, Z are real functions of r and z, and the integer m is
an azimuthal wavenumber. With these definitions, we evaluate
the ¢ part of the integral in Equation (33) to obtain

6W=éfrdrdz{

m2B2
2 (X2 + 2%
}’2

2
+ [E(qux) + Q(Boa]

- [—(B¢X) o, Z)][l 0 Oy ]

B,
_ ¢ [lﬁ(rBé)X—k 3_2]
r ro 0

Y az]

+ 4mpo[l—( rX) —
0z

+4m(g,X + gZZ)( p°X+ aapoz)
Z

+ 4 X(% + pogr) + Z(% + Pogz)
or 0z

X [la—(rX) Y + G_Z]}

r Or 0z
(35)

where g, and g, are the radial and axial components of the
background gravity g, respectively, and B, is the azimuthal
component of the background field Bj. This expression is
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minimized with respect to Y by solving

PW _ (36)
oY
to obtain
Y 1 Z
Y _ 190 x4+ %2 + (g,x + 8.2). 37)
r r or 0z

By substituting this back into Equation (35), the minimized
potential energy is found as

2
Whia = [ r dr dz 32[;»1(5) + d—Z]
8 dr\r dz

+ 47[AX? + BXZ + CZ?]} (38)

where we introduce

10
A= —pogr(pog’ - —ﬁ]

P py Or
B? B,
+ m— 2
4nr? 2712 Or ( 8)
Po& 1 dp
B = _pOgr( e
7Po py 0z
Pog 1 Opg By 0B,
~ Po&; -
YPy  py Or 2mr 0z
2
_ Po8; 1 dpy 2 B
C=— ———— |+ m . 39)
pogz( YPy po 0z 472 (

The first term in the integrand of Equation (38) is positive
definite. For the remaining terms, which appear as a quadratic
form in X and Z, the sufficient conditions that §W;, > O are
that

A>0, 4AC > B? (40)

everywhere. These are the criteria for stability against the TI.
Since the azimuthal order m appears only in the positive-
definite terms szqf / 47r? in Equation (39), the most unstable
non-axisymmetric modes correspond to |m| = 1. For these
modes, the above expressions reduce to the criteria given by
Tayler (1973, his Equations (2.20)—(2.22), modulo factors of
47 that arise from our choice of electromagnetic units. As
Tayler demonstrates in his Appendix 2, the above criteria are
not only sufficient but also necessary given that violation of
one or more of these inequalities can lead to instability
(OWpin < 0) for a suitable choice of X and Z.

C>0,

4.2. Constrained Analysis

We now consider how to implement the anelastic constraint
in our analysis. This constraint removes the freedom to choose
a Y that minimizes 6W; instead, we must set

Y 10 0Z 1 dp,

1d
ST+ £y =y TPy

(41)
roror 0z py dr po dz

to ensure that Equation (23) is satisfied. We repeat the analysis
of the preceding section, but using this expression in place of
Equation (37) yields a potential energy that is identical to
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Equation (38), save that the quadratic-form coefficients A, B
and C are replaced by

2
10
A=A+ vPo(% - —ﬂ) :
YPy py Or
B. =B + 24P, Pog _ 1.9p | P08 1 9py
c — ’
~YPo po Or \ vPo py Oz
2
0
Co=C 4 ypo| 205 L) “2)
’)/P() Po aZ

respectively (here, the “c” subscripts stand for “constrained”).
The criteria for stability are now that

Ac >0, C.>0, 4A.C. > B2 (43)

As we will demonstrate in Section 5, these constrained TI (cTT)
criteria under-predict the extent of the instability found by
numerical calculations employing the anelastic condition. This
shortcoming motivates a more careful treatment, based on re-
deriving the force operator from the LBR anelastic linearized
momentum Equation (26).

4.3. LBR Anelastic Analysis

To re-derive the force operator in the LBR anelastic case,
first we integrate Equation (19) with respect to time to obtain

S/ = —¢ - VS, (44)

By substituting this expression and Equations (27)—(30) into
the linearized momentum Equation (26), the LBR anelastic
force operator is derived as

VP \V4
Fipr(§) = —pg V@' — pog & - [—0 - ﬂ]

YPo Po
+ 4L[(V x B') x By + (V x By) x B'], (45)
m

where we have used Equation (16) to eliminate the background
entropy gradient VS,. This operator is self-adjoint under the
same boundary conditions (32) as applied before.

We repeat the analysis of Section 4.1, but using
Equations (41), (45) in place of (31), (37). The resulting
potential energy is identical to Equation (38), save that the
quadratic-form coefficients A, B and C are now replaced by

L%]

B
ALBR = .A + 2 Q(FBO)(% —

47r Or ~vPy po Or
B, OB, ) 0
Bipg =B + 2220 Lo&r 1 9py
47 0z \ vPo py Or
B.
T e Y |
47r Or Py Py 0z
B OBy 0
Cpp=C+ —2 20 o8 1 o) (46)
4w 9z \ vPo  p, Oz

respectively. The criteria for stability against the TI are now
that

Argr > 0, Cipr > 0, 4 A prCieR > Bigr:  (47)
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Using the same approach as in Appendix 2 of Tayler (1973),
we can show that these anelastic TI (anT]) criteria are necessary
and also sufficient. We note that the most unstable non-
axisymmetric modes still correspond to |m| = 1. Together,
Equations (46) and (47) make up the principal result of this

paper.

5. Numerical Instability Calculations

In this section, we compare the analytic work in the
preceding sections against numerical solutions of the linearized
LBR anelastic MHD equations and boundary conditions.
Details of our numerical technique are given in the Appendix;
in brief, we modify the GYRE stellar oscillation code
(Townsend & Teitler 2013) to find the modal eigenvalues
and eigenfunctions. Because the GYRE code is restricted to
solving 1D eigenproblems, we focus our analysis on a reduced
equilibrium case in which background quantities depend only
on r.

5.1. Equilibrium Model

The 1D equilibrium model that we consider assumes an
isothermal stratification characterized by a constant sound
speed a and a constant ratio § of gas pressure to magnetic
pressure. Radial gravity is provided by a line mass on the
cylindrical axis of symmetry,

g = 4% (48)
r

where g > 0 is a dimensionless gravitational strength para-
meter. Solving the MHSE Equation (14) yields a power-law
background pressure distribution

r —
Py(r) = Po,o(—) , (49)
To
where Py is the pressure at some fiducial radius ry, and
= M (50)
1+0
The background density and azimuthal field strength are
Py(r
potr) = 2 51)
a
and
1/2
8mPy(r
By(r) = [ﬁ] , (52)
B
respectively.

It can be shown that for a < 2, the magnetic tension in this
equilibrium model dominates the magnetic pressure, meaning
that the stratification is both magnetically and gravitationally
confined. To satisfy a < 2, from Equation (50), the gravita-
tional parameter must be ¢ < 1. For stars, of course, we expect
that the magnetic field is relatively weak and that the
equilibrium is close to hydrostatic, whether the magnetic field
provides pressure support through its negative gradient or
confinement through tension.

In the context of the 1D equilibrium model described here,
the quadratic coefficients (39) for the stability criteria in the
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fully compressible case become

q 2 P
A= [Q(Oé - ;) + E(a + m? — 2):|r_§’

B 2m? &

5
The stability criteria (40) then reduce to the requirement that
the bracketed term in the expression for A be positive.

For the constrained anelastic and LBR anelastic cases, the
corresponding expressions are

ACZ[q(a—1)+%(a+m2—2)+w]ﬂ
v) B

B =0, C (53)

v
2
B.=0, c.=22h
g r?
54
and
q 2 2
Agr = |q|la — = |+ =(a + m* = 2)
Y B
n (a =2)(g —ay) | Py
By r2’
2m? P,
Bigr = 0, Cipr = %r—g, (55)

respectively. As before, the stability criteria reduce to the
requirement that the bracketed terms are positive.

5.2. Stable and Unstable Modes

As an initial demonstration of our numerical solution
technique, we calculate eigenvalues and eigenfunctions of
stable and unstable modes for an equilibrium configuration
having 8=5, ¢=0.01 and ~v=5/3. This choice of
parameters ensures that we are looking at a robust instability,
as we shall later show in a parameter study. We solve the
linearized equations and boundary conditions on a spatial grid
of 1000 points, uniformly spanning the domain
[7, 7p] = [1, 1.5] (here, 7 is the dimensionless radius intro-
duced in the Appendix). Assuming an azimuthal wavenumber
m = 1 and an axial wavenumber k = 25, we search for modes
having eigenvalues &2 below the square &3 of the dimension-
less Alfvén frequency evaluated at # = 7, (see Equation (76)).
These modes comprise an infinite family, in which each mode
can be uniquely classified by a radial order n that counts the
number of nodes (excluding the endpoints) in the dimension-
less radial displacement eigenfunction gr. With this classifica-
tion, an ordering by # is in one-to-one correspondence with an
ordering by @2, with the eigenvalue &; of the n =0
(fundamental) mode being the least positive.

Figure 1 plots the dimensionless displacement eigenfunc-
tions, Er, £ > and EZ, as a function of 7 for the three lowest-order
modes (n = 0, 1, 2). Each plot is labeled at top-left by the
corresponding eigenvalue &2. From these eigenvalues, we see
that the fundamental mode and first overtone (n = 1) are both
unstable, with @2 < 0. From the eigenfunctions, we see that the
displacement in the azimuthal direction is greater than that in
the radial direction, || > |€,], as predicted by Spruit (2002).
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T
2 b @f = —0.0226 — & 3

r &p x 0.05
1r _—— & x5 ]

L

TTTET T T

1.0 1.1 1.2 1.3 1.4 1.5

Figure 1. Dimensionless displacement eigenfunctions of the n = 0, 1, 2 modes
(top to bottom), for an azimuthal wavenumber m = 1 and an axial wavenumber
k = 25, and an equilibrium model having 8 =5, ¢ = 0.01 and v = 5/3. In
each panel, the eigenfunctions are normalized such that the root-mean-square
value of Er is unity. The plots are labeled with the corresponding eigenvalue

@2; negative values for the n = 0 and n = 1 modes indicates that they are

unstable.

This makes sense because displacement along the magnetic
field lines on equipotential gravitational surfaces does not need
to do work against the stratification.

5.3. Dependence on Axial Wavenumber

We now explore how the mode eigenvalues depend on the
axial wavenumber k. With other parameters fixed at the values
given in Section 5.2, Figure 2 plots the eigenvalues of unstable
modes as a function of k. The plot shows that for modes with a
given radial order n to become unstable, k must exceed some
finite threshold k,. Above this threshold, the eigenvalue
decreases monotonically with k, approaching an asymptotic
limit as k — oo. This is similar behavior to that found by Pitts
& Tayler (1985) for a uniform-density incompressible fluid
without gravity. In a non-ideal fluid with one or more forms of
diffusion (thermal, viscous, or resistive), diffusive damping is
expected to reduce the instability of modes at high %, leading to
a minimal @* < 0 (i.e., maximal growth rate) at large but
finite k.
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0.0 T

0.5

—1.0f

—2.0F

@2 x 100

—25F

-3.0F

—4.0 1 1 I 1
0 50 100 150 200 250
k
Figure 2. Eigenvalues &? plotted as a function of axial wavenumber &, for an
azimuthal wavenumber m = 1 and an equilibrium model having @ =5,
g = 0.01 and v = 5/3. Selected modes are labeled at right with their radial

order n.

5.4. Stability Boundaries

Because the fundamental mode is the most unstable at any %,
we can use it as a proxy for the onset of the TI. Accordingly,
we evaluate the minimal eigenvalue &2, , over all modes, as
the limiting value of the fundamental-mode eigenvalue in the
limit £ — oo:

@2, = lim @, (56)
k— o0
When &2, < 0, the maximal exponential growth rate of the
Tayler instability is then given by
a|Wmi
>\max _ I m1n| . (57)
o

Because our numerical calculations are restricted to finite
values of k, we estimate the limit on the right-hand side of
Equation (56) by evaluating &y at k = 1000 and k = 2000, and
then linearly extrapolating in inverse wavenumber k' to find
the eigenvalue at k~' — 0.

We apply this approach to evaluate @2, for a grid of
equilibrium models spanning 1<pB<30 and
0.00 < g < 040. In all cases, we assume an azimuthal
wavenumber m = 1 and v = 5/3. Figure 3 shows a contour
map of the resulting values. Plotted over the map are the
stability boundaries predicted by the original stability criteria
(Equation (53)), the cTI criteria (Equation (54)) and the anTI
criteria (Equation (55)). The original criteria over-predict the
extent of the instability seen in the numerical calculations,
while the cTI criteria under-predict it. Only the anTI criteria
correctly predict the stability boundary &2, = 0, confirming
that they are the correct choice for LBR anelastic MHD.

In his dynamo models, Spruit (1999, 2002) assumes that the
growth rate of the TI is of the order A &~ wy in the limit where
the rotation angular frequency 2 is small compared to the
Alfvén frequency wy defined by

2m2a?®

6
To compare this assumption against our calculations, we write
the ratio of growth rate to Alfvén frequency as

2 PR
i = |w]| pr < | @minl M , (59)
wWa \ 2m2a? \ 8m?2

wh = (58)
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Figure 3. Contour map of the minimal eigenvalue &2, , plotted across the §-¢
plane for an azimuthal wavenumber m = 1 and equilibrium models having
v = 5/3. Regions where @2 < 0 are unstable to the Tayler instability. The
three black lines show the stability boundaries for the fully compressible
criteria (TI), the constrained anelastic criteria (cTI) and the LBR anelastic
criteria (anTI). Only the LBR anelastic criteria correctly predict the @2, = 0
stability boundary.

where the second (in)equality follows from setting |&| = |@minl,
and evaluating the ratio at the midpoint 7 = (7, + 7,)/2 of the
calculation domain. For modes with azimuthal order m = 1, we
find this ratio has an average value \/wy = 0.27 over the
unstable region plotted in Figure 3, and a maximal value
A/wp =~ 0.42. These are both moderately smaller than the
A/ws &~ 1 assumed by Spruit (1999, 2002). Therefore, future
studies involving anelastic MHD simulations of the TI should
recognize that the growth rate can be smaller than wy, and
adjust their expectations accordingly.

6. Conclusion

The TI is of interest in the radiative regions of stars because,
with differential rotation, it may contribute to forming and
maintaining a magnetic field dynamo that could significantly
affect the stars’ structure and evolution. However, attempts to
heuristically derive and numerically simulate the growth and
saturation of the TI in stellar models have led to indeterminate
results.

The TI criteria were derived using fully compressible MHD,
but simulations of fluid dynamics in stellar interiors frequently
use some version of the anelastic or pseudo-incompressible
approximations, which suppress acoustic waves with much
shorter periods than stellar timescales. The goal of this paper
was not to address the problem of whether the dynamo exists
but to narrow the gap between fully compressible linear theory
and anelastic nonlinear simulations of the TIL

We undertook this by modifying the classic MHD energy
principle (Bernstein et al. 1958) according to LBR anelastic
MHD, which—based on the work of Brown et al. (2012)-we
regard as the most promising of several anelastic schemes. We
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derived a version of the MHD energy principle that yields
stability criteria (Equations (46) and 47) in excellent agreement
with solutions of the eigenvalue problem calculated using the
GYRE code. Our test configuration was a family of
cylindrically symmetric magnetohydrostatic equilibria with a
toroidal background magnetic field and gravity supplied by a
line mass (Section 5.1). Our results show that the instability
still exists in LBR anelastic MHD, but in a more restricted part
of parameter space than the fully compressible case. This
happens because the energy principle is based on minimizing
the potential energy of the system, and anelasticity introduces a
constraint which precludes full minimization. However, we
conclude that the instability should manifest in anelastic LBR
MHD simulations if the models used are unstable under the
anTT criteria.

We found that the amplitude of the displacement in the
horizontal direction is greater than the displacement in the
radial direction, as predicted by Spruit (2002). We also found
that the largest growth rates calculated by GYRE are somewhat
smaller than predicted for slow rotators by Spruit (2002).

We are limited in addressing discrepancies between our
calculations and heuristic predictions of the saturated state
because our analysis and numerical calculations are in the
linear regime and lack rotation or dissipative effects, both of
which are key ingredients in the proposed instability-driven
dynamo (Spruit 2002). We are unable to predict the nonlinear
growth rate and amplitude of the instabilities without taking
those physical effects into consideration. This is beyond the
scope of this work, but it is an open question for future work.

Our family of cylindrical models can be implemented in
anelastic MHD simulations. These simulations could verify the
linear analysis and calculations that we performed, and
determine how nonlinear effects impact the growth rate and
amplitude of the instability. By choosing models that are
unstable under the anTI criteria, and by including differential
rotation, anelastic MHD simulations could more accurately test
the Tayler—Spruit dynamo and its significance as a mechanism
for angular momentum transport in stellar evolution.
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Appendix
Numerical Technique

To calculate numerical solutions of the LBR anelastic
Equations (19)—-(23), (26), we first undertake a separation of
variables in space and time, by writing perturbed quantities in
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the form
gr g"
& | = roRel | i€, |expli(me + kz/ro + wi)] (60)
£ i€,
B’ iB!

B)| = /8”; " Re{| B [explitno + ke/m + wil § (61)
5/

]/
' c 8P,
Jé B drrg\ B :
0
J!
iyl
x Re4| J; |expli(me + ke/ro + wr] (62)
7
I = ﬂRe {T1"expli(m¢ + kz/ro + wt]} (63)
Po
S" = cpRe (S expli(mo + kz/ro + wt]}. (64)

In these expressions, all quantities with a tilde (~) are
dimensionless real functions of r, to be determined numeri-
cally; the integer m is the azimuthal wavenumber introduced in
Section (4.1); and the real number k is the axial wavenumber.
Here, we choose to work with

BB,
4mpq

II'=w"+ (65)

rather than the reduced pressure w, as this allows Ji; and f; to
be decoupled from the other dependent variables, reducing the
differential order of the system from four to two.

With these definitions, and assuming the equilibrium that we
introduce in Section 5.1, we write the linearized equations in
the form

dv
dr
0=A,v+A,w (67)

= Avvv + Avww (66)

where 7 = r/rg is the independent variable, and the vectors

roIn
<

I}

=~

(68)
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contain the dependent variables. The Jacobian matrices in
Equations (66) and (67) are given by

a—1
A= 0 (69)
@ 0
Zk 0 0 000
Avw =" 5 2a—2) P (70)
_ m o — 1
00 7 7 00 2
o -
0 —k
n
va = 2;01 0 | (71
0 0
0 0
a(y—1 0
A
~2 2-—a 2m
@ 0 B 0 0 0
0 @ o %2 o0 2o
5] 5]
0 0 -1 0 0 00
Aww = _$ 0 0 -1 0 0 0) (72)
o -2 0 0 -1 0 0
0 0 0 —k ? -10
0 0 0O o0 0 01
where we introduce the dimensionless frequency
w="10. (73)
a

By eliminating w between Equations (66) and (67), we arrive
at a system of differential equations for v alone:

av
dF
where the second equality serves to define the overall Jacobian

matrix A. Although we do not write out an explicit expression
for the elements of A, we note that each contains a factor

1 1

Br? —2m®  BRA(@? — @F)

= (Avv - AVWAV_V\!VAWV)V = AV, (74)

F= (75)

where

an = L (76)
a

is the dimensionless equivalent of the Alfvén frequency defined

in Equation (58). The factor F diverges if @ = @, indicating a

local resonance with the Alfvén wave. In the present context,

such behavior is not a problem because we are interested in

finding unstable modes for which @? < 0, and therefore the

resonance never arises.
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Together with the boundary conditions
vi=¢ =0 a7

on the inner (¥ = 7,) and outer (¥ = F,) boundaries of the
calculation domain (in accordance with Equation (32)), the
system of Equations (74) is a linear two-point boundary
eigenvalue problem (BVEP), with & serving as the eigenvalue.
To solve the BVEP numerically we use the GYRE code
(Townsend & Teitler 2013). Although GYRE is designed to
address stellar pulsation problems, it is built on a robust
multiple-shooting scheme that can in principle be applied to
any BVEP. Accordingly, we modify GYRE to implement the
differential equations and boundary conditions given here. The
modified code takes as inputs parameters specifying the
equilibrium model (3, v, g), the wavenumbers (m, k), and
the calculation domain (7, 7, and the number of points N used
to discretize the differential equations). As outputs, it calculates
the eigenvalues @? of the discrete modal solutions, and the
corresponding eigenfunctions given by the components of v
and w.
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