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Abstract

We study the power of interactivity in local differential privacy. First, we focus on the dif-
ference between fully interactive and sequentially interactive protocols. Sequentially interactive
protocols may query users adaptively in sequence, but they cannot return to previously queried
users. The vast majority of existing lower bounds for local differential privacy apply only to se-
quentially interactive protocols, and before this paper it was not known whether fully interactive
protocols were more powerful.

We resolve this question. First, we classify locally private protocols by their compositionality,
the multiplicative factor k ≥ 1 by which the sum of a protocol’s single-round privacy parameters
exceeds its overall privacy guarantee. We then show how to efficiently transform any fully
interactive k-compositional protocol into an equivalent sequentially interactive protocol with an
O(k) blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a
family of problems such that for any k, there is a fully interactive k-compositional protocol which
solves the problem, while no sequentially interactive protocol can solve the problem without at
least an Ω̃(k) factor more examples.

We then turn our attention to hypothesis testing problems. We show that for a large class of
compound hypothesis testing problems — which include all simple hypothesis testing problems
as a special case — a simple noninteractive test is optimal among the class of all (possibly fully
interactive) tests.
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1 Introduction

In the last several years, differential privacy in the local model has seen wide adoption in industry,
including at Google [6, 20], Apple [3], and Microsoft [15]. The choice of adopting the local model
of differential privacy — in which privacy protections are added at each individual’s device, before
data aggregation — instead of the more powerful central model of differential privacy — in which
a trusted intermediary is allowed to first aggregate data before adding privacy protections — is
driven by practical concerns. Local differential privacy frees the data analyst from many of the
responsibilities that come with the stewardship of private data, including liability for security
breaches, and the legal responsibility to respond to subpoenas for private data, amongst others.
However, the local model of differential privacy comes with its own practical difficulties. The most
well known of these is the need to have access to a larger number of users than would be necessary
in the central model. Another serious obstacle — the one we study in this paper — is the need for
interactivity.

There are two reasons why interactive protocols — which query users adaptively, as a function of
the answers to previous queries — pose practical difficulties. The first is that communication with
user devices is slow: the communication in noninteractive protocols can be fully parallelized, but for
interactive protocols, the number of rounds of interactivity becomes a running-time bottleneck. The
second is that user devices can go offline or otherwise become unreachable — and so it may not be
possible to return to a previously queried user and pose a new query. The first difficulty motivates
the study of noninteractive protocols. The second difficulty motives the study of sequentially
interactive protocols [17] — which may pose adaptively chosen queries — but must not pose more
than one query to any user (and so in particular never need to return to a previously queried user).

It has been known since [27] that there can be an exponential gap in the sample complexity
between noninteractive and interactive protocols in the local model of differential privacy, and that
this gap can manifest itself even in natural problems like convex optimization [32, 33]. However, it
was not known whether the full power of the local model could be realized with only sequentially
interactive protocols. Almost all known lower bound techniques applied only to either noninterac-
tive or sequentially interactive protocols, but there were no known fully interactive protocols that
could circumvent lower bounds for sequential interactivity.

1.1 Our Results

We present two kinds of results, relating to the power of sequentially adaptive protocols and non-
adaptive protocols respectively. Throughout, we consider protocols operating on datasets that are
drawn i.i.d. from some unknown distribution D, and focus on the sample complexity of these
protocols: how many users (each corresponding to a sample from D) are needed in order to solve
some problem, defined in terms of D.

Sequential Interactivity We classify locally private protocols in terms of their compositionality.
Informally, a protocol is k-compositional if the privacy costs {εij}rj=1 of the local randomizers
executed by any user i over the course of the protocol sum to at most kε, where ε is the overall
privacy cost of the protocol:

∑

j ε
i
j ≤ kε. When k = 1, we say that the protocol is compositional.

Compositional protocols capture most of the algorithms studied in the published literature, and
in particular, any protocol whose privacy guarantee is proven using the composition theorem for
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ε-differential privacy1.

1. Upper Bounds: For any (potentially fully interactive) compositional protocol M , we give
a generic and efficient reduction that compiles it into a sequentially interactive protocol M ′,
with only a constant factor blow-up in privacy guarantees and sample complexity, while
preserving (exactly) the distribution on transcripts generated. This in particular implies
that up to constant factors, sequentially adaptive compositional protocols are as powerful as
fully adaptive compositional protocols. More generally, our reduction compiles an arbitrary k-
compositional protocol M into a sequentially interactive protocol M ′ with the same transcript
distribution, and a blowup in sample complexity of O(k).

2. Lower Bounds: We show that our upper bound is tight by proving a separation between
the power of sequentially and fully interactive protocols in the local model. In particular, we
define a family of problems (Multi-Party Pointer Jumping) such that for any k, there is a fully
interactive k-compositional protocol which can solve the problem given sample complexity
n = n(k), but such that no sequentially interactive protocol with the same privacy guarantees
can solve the problem with sample complexity õ(k · n). Thus, the sample complexity blowup
of our reduction cannot be improved in general.

Noninteractivity We then turn our attention to the power of noninteractive protocols. We
consider a large class of compound hypothesis testing problems — those such that both the null
hypothesis H0 and the alternative hypothesis H1 are closed under mixtures. For every problem in
this class, we show that the optimal locally private hypothesis test is noninteractive. We do this by
demonstrating the existence of a simple hypothesis test for such problems. We then prove that this
test’s sample complexity is optimal even among the set of all fully interactive tests by extending
information theoretical lower bound techniques developed by Braverman et al. [8] and first applied
to local privacy by Joseph et al. [25] and Duchi and Rogers [16] to the fully interactive setting.

1.2 Related Work

The local model of differential privacy was introduced by Dwork et al. [19] and further formalized
by Kasiviswanathan et al. [27], who also gave the first separation between noninteractive locally
private protocols and interactive locally private protocols. They did so by constructing a problem,
Masked Parity, that requires exponentially larger sample complexity without interaction than with
interaction. Daniely and Feldman [14] later expanded this result to a different, larger class of
problems. Smith et al. [32] proved a similar separation between noninteractive and interactive
locally private convex optimization protocols that use neighborhood-based oracles.

Recent work by Acharya et al. [1, 2] gives a qualitatively different separation between the
private-coin and public-coin models of noninteractive local privacy. Informally, the public-coin
model allows for an additional “half step” of interaction over the private-coin model in the form of
coordinated local randomizer choices across users. In this paper, we use the public-coin model of
noninteractivity.

Duchi et al. [17] introduced the notion of sequential interactivity for local privacy. They also
provided the first general techniques for proving lower bounds for sequentially interactive locally

1Not every protocol is 1-compositional: exceptions include RAPPOR [20] and the evolving data protocol of Joseph
et al. [24].
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private protocols by bounding the KL-divergence between the output distributions of ε-locally
private protocols with different input distributions as a function of ε and the total variation distance
between these input distributions. Bassily and Smith [5] and Bun et al. [7] later generalized this
result to (ε, δ)-locally private protocols, and Duchi et al. [18] obtained an analogue of Assouad’s
method for proving lower bounds for sequentially interactive locally private protocols.

More recently, Duchi and Rogers [16] showed how to combine the above analogue of Assouad’s
method with techniques from information complexity [8, 22] to prove lower bounds for estimation
problems that apply to a restricted class of fully interactive locally private protocols. A corollary
of their lower bounds is that several known noninteractive algorithms are optimal minimax esti-
mators within the class they consider. However, their results do not imply any separation between
sequential and full interaction. Moreover, our reduction implies that every (arbitrarily interactive)
compositional locally private algorithm can be reduced to a sequentially interactive protocol with
only constant blowup in sample complexity, and as a result all known lower bounds for sequentially
interactive protocols also hold for arbitrary compositional protocols.

Canonne et al. [10] study simple hypothesis testing under the centralized model of differential
privacy, and Theorem 1 of Duchi et al. [17] implies a tight lower bound for sequentially interactive
locally private simple hypothesis testing. We extend this lower bound to the fully interactive
setting and match it with a noninteractive upper bound for a more general class of compound
testing problems that includes simple hypothesis testing as a special case.

Finally, recent subsequent work [26] gives a stronger exponential sample complexity separa-
tion separation between the sequentially and fully interactive models. It does so through a general
connection between communication complexity and sequentially interactive sample complexity. Ap-
plying this connection to a communication problem similar to the “multi-party pointer jumping”
described in Section 4 completes the result.

2 Preliminaries

We begin with the definition of approximate differential privacy. Given data domain X , two data
sets S, S′ ∈ X n are neighbors (denoted S ∼ S′) if they differ in at most one coordinate: i.e. if there
exists an index i such that for all j 6= i, Sj = S′

j. A differentially private algorithm must have
similar output distributions on all pairs of neighboring datasets.

Definition 2.1 ([19]). Let ε, δ ≥ 0. A randomized algorithm M : X n → O is (ε, δ)-differentially
private if for every pair of neighboring data sets S ∼ S′ ∈ X n, and every event Ω ⊆ O

PM [A(S) ∈ Ω] ≤ exp(ε)PM
[

A(S′) ∈ Ω
]

+ δ.

When δ = 0, we say that M satisfies (pure) ε-differential privacy.

Differential privacy has two nice properties. First, it composes neatly: the composition of algo-
rithmsM1, . . . ,Mn that are respectively (ε1, δ1), . . . , (εn, δn)-differentially private is (

∑

i εi,
∑

i δi)-
differentially private. For pure differential privacy, this is tight in general. Second, differential
privacy is resilient to post-processing: given an (ε, δ)-differentially private M and any function
f , f ◦ M is still (ε, δ)-differentially private (see Appendix A.1 for details). For brevity, we often
abbreviate “differential privacy” as “privacy”.

As defined, the constraint of differential privacy is on the output of an algorithm M, not on
its internal workings. Hence, it implicitly assumes a trusted data curator, who has access to the
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entire raw dataset. This is sometimes referred to as differential privacy in the central model. In
contrast, this paper focuses on the more restrictive local model [19] of differential privacy. In the
local model, the private computation is an interaction between n users, each of whom hold exactly
one dataset record, and is coordinated by a protocol A. We assume throughout this paper that
each user’s datum is drawn i.i.d. from some unknown distribution: xi ∼iid D2. Informally, at each
round t of the interaction, a protocol A observes the transcript of interactions so far, selects a user,
and assigns the user a randomizer. The user then applies the randomizer to their datum, using
fresh randomness for each application, and publishes the output. In turn, the protocol observes
the updated transcript, selects a new user-randomizer pair, and the process continues. We define
these terms precisely below.

Definition 2.2. An (ε, δ)-randomizer R : X → Y is an (ε, δ)-differentially private function taking
a single data point as input.

A simple, canonical, and useful randomizer is randomized response [19, 34].

Example 2.1 (Randomized Response). Given data universe X = [k] and datum xi ∈ X , ε-
randomizer RR (xi, ε) outputs xi with probability eε

eε+k−1 and otherwise outputs a uniformly random
element of X − {xi}.

Next, we formally define transcripts and protocols.

Definition 2.3. A transcript π is a vector consisting of 5-tuples (it, Rt, εt, δt, yt) — encoding the
user chosen, randomizer assigned, randomizer privacy parameters, and randomized output produced
— for each round t. π<t denotes the transcript prefix before round t. Letting Sπ denote the
collection of all transcripts and SR the collection of all randomizers, a protocol is a function
A : Sπ → ([n]× SR × R≥0 × R≥0)∪{⊥} mapping transcripts to users, randomizers, and randomizer
privacy parameters (⊥ is a special character indicating a protocol halt).

The transcript that results from running a locally private computation will often be post-
processed to compute some useful function of the data. However, the privacy guarantee must hold
even if the entire transcript is observed. Hence, in this paper we abstract away the task that the
computation is intended to solve, and view the output of a locally private computation as simply
the transcript it generates.

To clarify the role of interaction in these private computations – especially when analyzing
reductions between computations with different kinds of interactivity – it is often useful to speak
separately of protocols and experiments. While the protocol A is a function mapping transcripts
to users and randomizers, the experiment is the interactive process that maps a protocol and
collection of users drawn from a distribution D to a finished transcript. In the simplest case,
FollowExpt (Algorithm 1), the experiment exactly follows the outputs of its protocol.

However, experiments may in general heed, modify, or ignore the outputs of their input protocol.
We delineate the privacy characteristics of experiment-protocol pairs and protocols in isolation
below. Here and throughout, the dataset is not viewed as an input to an experiment, but is drawn
from D by the experiment-protocol pair. Drawing a fresh user ∼ D corresponds to adding an
additional data point, and so the sample complexity of an experiment-protocol pair is the number

2Roughly speaking, this corresponds to a setting in which users are “symmetric” and in which nothing differentiates
them a priori. All of our results generalize to the setting in which there are different “types” of users, known to the
protocol up front.
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Algorithm 1

1: procedure FollowExpt(A,D, n)
2: Draw n users {xi} ∼ Dn

3: Initialize transcript π0 ← ∅
4: for t = 1, 2, . . . do
5: if A(π<t) =⊥ then
6: Output transcript π<t

7: else
8: (it, Rt, εt, δt)← A(π<t)
9: User it publishes yt ∼ Rt(xit , εt, δt)

10: end if
11: end for
12: end procedure

of draws from D over the run of the algorithm. For the simple algorithm FollowExpt(A) defined
above, the sample complexity is always n. Finally we remark that although the distribution D and
the sample complexity n are inputs to the experiment, for brevity we typically omit them and focus
on the protocol A; e.g. writing Expt(A) rather than Expt(A,D, n).

Definition 2.4. Experiment-protocol pair Expt(A) satisfies (ε, δ)-local differential privacy (LDP) if
it is (ε, δ)-differentially private in its transcript outputs. A protocol A satisfies (ε, δ)-local differential
privacy (LDP) if experiment-protocol pair FollowExpt(A) is (ε, δ)-locally differentially private.

Experiment-protocol pairs can be, by increasing order of generality, noninteractive, sequentially
interactive, and fully interactive.

Definition 2.5. An experiment-protocol pair Expt(A) is noninteractive if, at each round t, as
random variables, (it, Rt, εt, δt) ⊥⊥ Π<t | t.

In other words, noninteractivity forces nonadaptivity, and all user-randomizer assignments are
made before the experiment begins. In contrast, in sequentially interactive experiment-protocol
pairs, users may be queried adaptively, but only once.

Definition 2.6. An experiment-protocol pair Expt(A) is sequentially interactive if, at each round
t, it 6= it−1, . . . , i1.

Finally, in in fully interactive experiments, the experiment-protocol may make user-randomizer
assignments adaptively, and each user may receive arbitrarily many randomizer assignments. Along
the same lines, we say a protocol A is noninteractive (respectively sequentially and fully in-
teractive) if FollowExpt(A) is a noninteractive (respectively sequentially and fully interactive)
experiment-protocol pair. This experiment-protocol formalism will be useful in constructing the
full-to-sequential reduction in Section 3; elsewhere, we typically elide the distinction and simply
reason about FollowExpt(A) as “protocol A”. For any locally private protocol, we refer to the
number of users n that it queries as its sample complexity. For fully interactive protocols, the
total number of rounds — which we denote by T — may greatly exceed n. In contrast, for both
non-interactive and sequentially interactive protocols, the number of rounds T ≤ n.

At each round t of a fully interactive ε-locally private protocol, we know that εt ≤ ε. For many
protocols, we can say more about how the εt parameters relate to ε:

5



Definition 2.7. Consider an ε-locally private protocol A. Let {εt}Tt=1 denote the minimal privacy
parameters of the local randomizers Rt selected at round t considered as random variables. We say
the protocol A is k-compositionally private if for all i ∈ [n], with probability 1 over the randomness
of the transcript,

∑

t : it=i

εt ≤ kε.

If k = 1, a protocol is simply compositional private.

Remark. In fact, all of our results hold without modification even under the weaker condition of
average k-compositionality. For a protocol A with sample complexity n, A is k-compositional on
average if

∑

t

εt ≤ kεn.

For brevity, we often shorthand “k-compositionally private” as simply “k-compositional”.

Informally, a compositionally private protocol is one in which the privacy parameters for each
user “just add up.” Almost every locally private protocol studied in the literature (and in particular,
every protocol whose privacy analysis follows from the composition theorem for pure differential
privacy) is compositionally private3. They are so ubiquitous that it is tempting to guess that all
(ε, 0)-locally private protocols are compositional. However, this is false: for every k and ε, there are
ε-locally private protocols that fail to be k-compositionally private. The following example shows
that by taking advantage of special structure in the data domain and choice of randomizers it is
possible to achieve (ε, 0)-local privacy, even as the sum of the round-by-round privacy parameters
greatly exceeds ε.

Example 2.2 (Informal). Let the data universe X consist of the canonical basis vectors e1, . . . , ed ∈
{0, 1}d, and let each x1, . . . , xn be an arbitrary element of X . Consider the d round protocol where,
for each round j ∈ [d], every user i with xi = ej outputs a sample from RR (1, ε), and the remaining
users output a sample from Ber (0.5). As RR(·, ε) is an ε-local randomizer which each user employs
only once, and remaining outputs are data-independent, this protocol is ε-locally private. But the
protocol fails to be k-compositionally private for k < d/2.

The preceding example demonstrates that the careful choice of local randomizers based on
the data universe structure can strongly violate compositional privacy. Seen another way, when
multiple queries are asked of the same user, there are situations in which the correlation in privatized
responses induced by being run on the same data element can lead to arbitrarily sub-compositional
privacy costs. The main result of our paper is that the additional power of a fully interactive
protocol, on top of sequential interactivity, is characterized by its compositionality.

3 From Full to Sequential Interactivity

We show that any (ε, 0)-locally private compositional protocol is “equivalent” to a sequentially
interactive protocol with sample complexity that is larger by only a small constant factor. By
equivalent, we mean that for any (ε, 0)-locally private compositional protocol, we can exhibit a

3This simple compositionality applies even if {εt}Tt=1 are chosen adaptively in each round (see Theorem 3.6
in Rogers et al. [30]).
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sequentially interactive (3ε, 0)-locally differentially private protocol with only a constant factor
larger sample complexity that induces exactly the same distribution on transcripts. Thus for any
task for which the original protocol was useful, the sequentially interactive protocol is just as useful4.

More generally, we give a generic reduction under which any (ε, 0)-private k-compositional
protocol can be compiled into a sequentially interactive protocol with an eεk-factor increase in
sample complexity.

Our proof is constructive; given an arbitrary k-compositional (ε, 0)-locally differentially private
protocol we show how to simulate it using a sequentially interactive protocol that induces the same
joint distribution on transcripts. The “simulation” is driven by three main ideas:

1. Bayesian Resampling: The dataset used in a locally differentially private protocol is static
once the protocol begins. However, we consider the following thought experiment: each
user’s datum is resampled from the posterior distribution on their datum, conditioned on the
transcript thus far, before every round in which they are given a local randomizer. We observe
that the mechanism from this thought experiment induces exactly the same joint distribution
on datasets and transcripts upon completion of the mechanism. Thus, for the remainder of
the argument, we can seek to simulate this “Bayesian Resampling” version of the mechanism.

2. Private Rejection Sampling: Because of the local differential privacy guarantee, at any
step of the algorithm, the posterior on a user’s datum conditioned on the private transcript
generated so far must be close to their prior. Thus, it is possible to sample from this posterior
distribution by first sampling from the prior, and then applying a rejection sampling step
that is both a) likely to succeed, and b) differentially private. Sampling from the prior simply
corresponds to querying a new user. At first glance, applying rejection sampling as needed
seems to require information that the users will not have available, because they do not know
the underlying data distribution D. But an application of Bayes rule, together with a data
independent rescaling can be used to re-write the required rejection probability using only
quantities that each user can compute from her own data point and the transcript. A similar
use of rejection sampling appears in the simulation of locally private algorithms by statistical
query algorithms given by Kasiviswanathan et al. [27].

3. Data Independent Decomposition of Local Randomizers: The two ideas above suffice
to transform a fully interactive mechanism into a sequentially interactive mechanism, with a
blowup in sample complexity from n to T (because in the sequentially interactive protocol
that results from rejection sampling, each user applies only one local randomizer instead of
an average of T/n). However, we generalize a recent result of [4] to show that any εi-private
local randomizer can be described as a mixture between a data independent distribution and
an (ε, 0)-private local randomizer for any ε > εi, where the weight on the data independent
distribution is roughly (for small constant ε) 1 − εi/ε. Thus we can simulate each local

4Formally, for any loss function defined over a data distribution D and a transcript Π, when data points xi are
drawn i.i.d. from D, the two protocols induce exactly the same distribution over transcripts, and hence the same
distribution over losses. Once one restricts attention to locally private protocols with privacy parameter ε ≤ 1 that
take as input points drawn i.i.d. from a distribution D, it is without loss of generality to measure the success or
failure of a protocol with respect to the underlying distribution D, rather than with respect to the sample. This
is because such protocols are ≈ ε/

√
n differentially private when viewed in the central model of differential privacy

(in which the input may be permuted before used in the protocol) [4, 21], and hence the distribution on transcripts
would be almost unchanged even if the entire dataset was resampled i.i.d. from D. [13, 28]. Thus, for such protocols,
the transcript distribution is governed by the data distribution D, but not (significantly) by the sample.
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randomizer while only needing to query a new user with probability εi/ε. As a result, for
any compositional mechanism, 1 user in the sequential setting suffices (in expectation) to
simulate the entire transcript of a single user in the fully interactive setting. More generally,
if the mechanism is k-compositional, then k users are required in expectation to carry out
the simulation. The realized sample complexity concentrates sharply around its expectation.

3.1 Step 1: A Bayesian Thought Experiment

The first step of our construction is to observe that for any locally private protocol A, BayesExpt(A)
induces exactly the same distribution over transcripts as FollowExpt(A). The difference is that in
BayesExpt(A), between each interaction with a given user i, their datum xi is resampled from
the posterior distribution on user i’s data conditioned on the portion of the transcript generated
thus far. We prove in Lemma 3.1 that the two experiments produce exactly the same transcript
distribution. Once we establish this, our goal will be to simulate the transcript distribution induced
by BayesExpt(A).

Algorithm 2

1: procedure BayesExpt(A,D, n )
2: Initialize transcript π0 = ∅
3: for t = 1, 2, . . . do
4: if A(π<t) =⊥ then
5: Output transcript π<t

6: else
7: (it, Rt, εt, δt)← A(π<t)
8: Redraw xit ∼ Qi,t ⊲ Qi,t is the posterior on xit given π<t

9: User it publishes yt ∼ Rt(xit)
10: end if
11: end for
12: end procedure

Note that when it is selected for the first time Qi,t = D, and so the sample complexity (e.g.
number of draws from D) of BayesExpt(A) is bounded by n.

Lemma 3.1. For any protocol A, Let Πf be the transcript random variable that is output by
FollowExpt(A) and let Πb be the transcript output by BayesExpt(A). Then

Πf d
= Πb

where
d
= denotes equality of distributions.

Proof. We show this by (strong) induction on rounds in the transcript. The base case t = 1 is
immediate: for any index i1 selected by BayesExpt(A), the posterior distribution Qi,1 is the same
as the prior D.

Now suppose it is true up to time t + 1, i.e. Πf
<t+1

d
= Πb

<t+1. Then since the joint distributions
Π<t+2 factor as (it+1, Rt+1, εt+1, δt+1, Yt+1|Π<t+1) · Π<t+1, it suffices to show that the conditional
distributions on it+1, Rt+1, εt+1, δt+1, Yt+1|Π<t+1 coincide. Moreover, the conditional distribution
on it+1, Rt+1, εt+1, δt+1|Π<t+1 is given byA(Π<t+1) under both algorithms, and so it remains only to
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show that Yt+1|it+1, Rt+1, εt+1, δt+1,Π<t+1 is the same distribution under both algorithms. Under
FollowExpt(A),

Yt+1|it+1, Rt+1, εt+1, δt+1,Π<t+1 ∼ Rt+1(xit+1 , εt+1, δt+1|Π<t+1)
d
= Rt+1(u, εt+1, δt+1),

where u
d
= xit+1 |Π<t+1

d
= Qi,t+1 by definition, and we use the fact that after conditioning on

Π<t+1, xit+1 is independent of εt+1 and δt+1. Redrawing u ∼ Qi,t+1 does not change the marginal
distribution of Rt+1(u, εt+1, δt+1), which is exactly the distribution under BayesExpt(A), as desired.

3.2 Step 2: Sequential Simulation of Algorithm 2 via Rejection Sampling

We now show how to replace step 8 in Algorithm 2 by selecting a new datapoint (drawn from D) at
every round and using rejection sampling to simulate a draw from Qi,t. The result is a sequentially
interactive mechanism that preserves the transcript distribution of Algorithm 2 (and, by Lemma
3.1, of Algorithm 1), albeit one with a potentially very large increase in sample complexity (from
n to T ). The rejection sampling step increases the privacy cost of the protocol by at most a factor
of 2.

We first review why it is non-obvious that rejection sampling can be performed in this setting.
We want to sample from the target distribution Qi,t, the posterior xti|π<t, using samples from the
proposal distribution D. Let pπ denote the density function of Qi,t and let p denote the density
function of D. In rejection sampling, we would typically sample u ∼ D, and with probability
∝ pπ(u)

p(u) we would accept u as a sample drawn from Qi,t, or else redraw another u and continue.

This is not immediately possible in our setting, since the individuals (who must perform the
rejection sampling computation) do not know the prior density p and hence do not know the pos-
terior pπ. As a result, they cannot compute either the numerator or denominator of the expression
for the acceptance probability. We solve this problem by using the fact that we are simulating
a posterior with a prior distribution, and formulate the rejection sampling probability ratio as a
quantity depending only on a user’s private data point and the transcript. Users may then compute
this quantity themselves.

To define our transformed rejection sampler we set up some new notation: given a user i and
round t, let π<t,i denote the subset of the realized transcript up to time t that corresponds to user
i’s data, i.e. π<t,i = {(it′ , Rt′ , εt′ , δt′ , yt′) : t′ < t, it

′
= i}. Let Pxi

[π<t,i] denote the conditional
probability of the messages corresponding to user i given the choices of privacy parameters and
randomizers up to time t:

P [π<t,i] =
∏

t′ : it′=i

PRt′
[Rt′(xi, εt′ , δt′) = yt′ ] .

Using this notation, we define our rejection sampling procedure RejSamp in Algorithm 3.
We now prove that RejSamp is private and does not need to sample many users.

Lemma 3.2. Let Yt
d
= Rt(x

′), where x′ ∼ Qi,t and let Y ′
t be defined by the rejection sampling

algorithm RejSamp above. Let the sample complexity N be the total number of new users x drawn

in step 4 of RejSamp. Then RejSamp is (ε + εt, 0)-locally private, Yt
d
= Y ′

t , and E[N ] ≤ 2eε.

Proof of Lemma 3.2.
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Algorithm 3 Rejection Sampling

1: procedure RejSamp(i, π<t, ε, εt, Rt(·),D) ⊲ Publishing Π<t is (ε, 0)-private
2: Initialize indicator accept← 0
3: while accept = 0 do
4: Draw a new user x ∼ D
5: User x computes px ← Px[π<t,i]

maxx∗ Px∗ [π<t,i]

6: User x publishes accept ∼ Ber (px/2)
7: if accept = 1 then
8: User x outputs Y ′

t ∼ Rt(x, εt)
9: end if

10: end while
11: end procedure

Claim 3.3. RejSamp is (ε + εt)-locally private.
We first show that publishing a draw from Ber (px/2) is (ε, 0)-locally private. By assumption

publishing π<t, and hence publishing π<t,i (by post-processing), (ε, 0)-private. Hence for any x ∈ X

P [1 | x] = px/2 =
Px [π<t,i]

2 maxx∗ Px∗ [π<t,i]
∈ [1/(2eε), 1/2].

Therefore for any x, x′, P [1 | x] ≤ eεP [1 | x′]. Similarly,

P [0 | x] = (1− px/2) ∈ [1/2, (2eε − 1)/2eε]

and by 1 + x ≤ ex, we get 1− ε ≤ e−ε, so 1 + ε ≥ 2− e−ε, and eε/2 ≥ (2ε − 1)/(2eε). Thus for any
x, x′, P [0 | x] ≤ eεP [0 | x′].

Releasing Rt(x, εt) is εt-locally private, so by composition the whole process is (ε + εt)-locally
private.

Claim 3.4. Yt
d
= Y ′

t

It suffices to show that x|{accept = 1} d
= Qi,t. Fix any x0 ∈ X . Then by Bayes’ rule

P [x = x0 | accept = 1] = P [accept = 1 | x = x0] ·
P [x = x0]

P [accept = 1]

=
Px0 [π<t,i]

maxx∗ Px∗ [π<t,i]
· P [x = x0]
∑

x′ P [x = x′] Px′ [π<t,i]
maxx∗ Px∗ [π<t,i]

=
Px0 [π<t,i]P [x = x0]

∑

x′ P [x = x′]Px′ [π<t,i]

=
Px0 [π<t,i]P [x = x0]

P [π<t,i]

= P [x = x0|π<t,i]
d
= Qi,t,

as desired. Finally, since px/2 ≥ 1
2eε , the expected number of samples until accept = 1 is ≤ 2eε.
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3.3 Step 3: Data Independent Decomposition of Local Randomizers

The preceding sections enable us to simulate a fully interactive k-compositional (ε, 0)-locally private
protocol with a sequentially interactive (2ε, 0)-locally private protocol. However, our solution so far
may require sampling a new user for each query in the original protocol. Since a fully interactive
protocol’s query complexity may greatly exceed its sample complexity, this is undesirable. To
address this problem, we decompose each local randomizer in a way that substantially reduces the
number of queries that actually require samples.

Let R : X → Y be an ε′ local randomizer, fix an arbitrary element x0 ∈ X , and let x be a
private input to R. Then Lemma 5.2 in Balle et al. [4] shows that we can write R(x) as a mixture
γw + (1 − γ)dx, where w is a data-independent distribution, dx is a data-dependent distribution,
and γ ≥ e−ε′ . This suggests that decomposition — by answering a proportion of queries from data-
independent distributions — can reduce the sample complexity of our solution. Unfortunately, the
data dependent distribution need not be differentially private (in fact, it often corresponds to a
point mass on the private data point), so the privacy of the overall mechanism crucially relies on
not releasing which of the two mixture distributions the output was sampled from.

We first generalize this result, showing that for any ε ≥ ε′, we can write R(x) as (1−γ)w+γR̃(x)

where R̃ is a 2ε-differentially private local randomizer, and γ = e−ε′−1
e−ε−1 (Lemma 3.5). The upshot of

this generalization is that even if we make public which part of the mixture distribution was used,
the resulting privacy loss is still bounded by 2ε. Larger values of ε increase our chance of sampling
from a data-independent distribution when simulating a local randomizer, while increasing the
privacy cost incurred by a user in the event that we sample from the data-dependent mixture
component. This tradeoff will be crucial for us in the proof of our main result.

Lemma 3.5 (Data Independent Decomposition). Let R : X → Y be an ε′-differentially private local
randomizer and let ε ≥ ε′. Then there exists a mapping R̃ and fixed data-independent distribution
µ such that R̃(·) is a 2ε−differentially private local randomizer and

R(x)
d
= γR̃(x) + (1− γ)µ,

where γ = e−ε′−1
e−ε−1 .

Proof. Let 0 < ε′ ≤ ε, fix any x0 ∈ X , let γ = e−ε′−1
e−ε−1 , and let r(x) denote the density function

of the local randomizer R with input x implicitly evaluated at some arbitrary point in the range,
which we suppress. Since ε ≥ ε′ > 0, γ ∈ (0, 1] is a valid mixture probability. Thus we can write

r(x) = (r(x)− (1− γ)r(x0)) + (1− γ)r(x0)

and, rewriting the first term,

r(x)− (1− γ)r(x0) = γ(r(x0) +
1

γ
(r(x)− r(x0))) = γr̃(x).

r̃ defines a new mapping R̃(·) by mapping x to the random variable R̃(x) with density function
r̃(x) = (r(x0) + 1

γ (r(x) − r(x0))). Thus, it suffices to show that the mapping R̃(x) is a 2ε-private
local randomizer.

11



We first show that for any x, r̃(x) is a well-defined density function. Since R is an ε′-private
local randomizer, r(x)− r(x0) ≥ (e−ε′ − 1)r(x0), and so

r(x0) +
1

γ
(r(x)− r(x0)) ≥ r(x0)

(

1 +
e−ε′ − 1

γ

)

= r(x0)e
−ε.

This establishes that r̃(x) is non-negative. Then since

∫

Ω
r̃(x) =

∫

Ω
r(x0) +

1

γ

∫

Ω
(r(x)− r(x0)) = 1 +

1

γ
(1− 1) = 1,

r̃(x) defines a valid density function for any x.
To see that r̃ is also a 2ε-private local randomizer, fix any outcome o ∈ Y and any other x′ ∈ X .

Since r is an ε′-local randomizer, r(x)− r(x0) ≤ r(x0)(e
ε′ − 1) and we get

r̃(x) = r(x0) +
1

γ
(r(x)− r(x0))

≤ r(x0)

[

1 +
1

γ

(

eε
′ − 1

)

]

= r(x0)

[

1 +
1− e−ε

1− e−ε′

(

eε
′ − 1

)

]

= r(x0)
[

1 + eε
′ ·
(

1− e−ε
)

]

≤ r(x0)
[

1 + eε ·
(

1− e−ε
)]

= r(x0)e
ε.

We already showed r̃(x′) ≥ e−εr(x0), so

r̃(x)(o)

r̃(x′)(o)]
≤ eεr(x0)(o)

e−εr(x0)(o)
≤ e2ε.

3.4 Putting it All Together: The Complete Simulation

Finally, we combine rejection sampling and decomposition to give our complete reduction, Algo-
rithm 4. We use rejection sampling to convert from a fully interactive mechanism to a sequentially
interactive one and use our data-independent decomposition of local randomizers to reduce the
sample complexity of the converted mechanism.

We now prove that Reduction has the desired interactivity, privacy, transcript, and sample
complexity guarantees. We again denote by N the sample complexity of Reduction, i.e. the number
of samples drawn from the prior D over the run of the algorithm, either in Step 15 (which is
bounded by n), or over the runs of RejSamp in line 10. We observe that sampling from the prior D
simply corresponds to using a new datapoint drawn from D. Fixing a protocol A, let Πr denote the
transcript random variable generated by Reduction(A), and let Πb denote the transcript random
variable generated by BayesExpt(A).

Theorem 3.6. Let A a fully-interactive k-compositional (ε, 0)-locally private protocol. Then

12



Algorithm 4 Reduction

1: procedure Reduction(Fully interactive (ε, 0)−LDP Protocol A,D, n)
2: Initialize s1, . . . , sn ← 0. ⊲ indicator if user i has been selected yet
3: for t = 1 . . . do
4: if A(π<t) =⊥ then
5: Output transcript π<t

6: else
7: (it, Rt, εt)← A(π<t)
8: if sti = 1 then

9: Let γ ← e−εt−1
e−ε−1

10: Let Rt = γR̃t + (1− γ)Rt(x0) ⊲ Data Decomposition
11: Draw ρ ∼ Unif(0, 1)
12: if ρ ≤ γ then
13: Draw Yt ∼ RejSamp(it, π<t, ε, 2ε, R̃(·),D)
14: else
15: Draw Yt ∼ Rt(x0, εt) ⊲ Data independent distribution
16: end if
17: else
18: Draw xit ∼ Qi,t = D, then draw Yt ∼ Rt(xit , εt) ⊲ Qi,t = D since sit = 0
19: Let sit ← 1
20: end if
21: end if
22: end for
23: end procedure

13



1. Reduction(A) is sequentially interactive,

2. Reduction(A) is (3ε, 0)-locally private,

3. Πr d
= Πb,

4. E[N ] ≤ n( 2eε·ε
1−e−εk + 1), and with probability 1− δ, N = O(nk +

√

nk log 1
δ ).

Proof of Theorem 3.6. 1. Interactivity: Since each user i’s data is only used once (before si is
set to 1), Reduction is sequentially interactive.

2. Privacy: Consider a data point x corresponding to an arbitrary user over the run of
Reduction(A). Then either x is drawn in line 18, or x is drawn during a rejection sampling step.
In the first case, x is only used once in step 18, as input to an εt-local randomizer, preserving
(ε, 0)-LDP, since εt ≤ ε. If x is drawn during the rejection sampling step, then it is used during
the use of rejection sampling to simulate a draw from a (2ε, 0)-local randomizer R̃(·), where the
input transcript π<t has been generated (ε, 0)-privately. The privacy of the input transcript is
relevant because it bounds the privacy of the user’s rejection sampling step. By Lemma 3.2, this is
(3ε, 0)-private.

3. Transcripts: We prove this claim by a similar argument as that of Lemma 3.1: we show
by induction that the transcript distribution at each step t is the same for Reduction(A) and

BayesExpt(A). This is trivially true at t = 1. Now suppose it is true up to time t+ 1, i.e. Πr
<t+1

d
=

Πb
<t+1. Then since the joint distributions Π<t+2 factor as (it+1, Rt+1, εt+1, Yt+1|Π<t+1) · Π<t+1, it

suffices to show that the conditional distributions on it+1, Rt+1, εt+1, Yt+1|Π<t+1 coincide.
Note that under both Reduction(A) and BayesExpt(A), protocolA is used to select it+1, Rt+1, εt+1

as a function of Π<t+1, so we can condition on it+1, Rt+1, εt+1 as well, and need only show that the
distribution on Yt+1 is the same. Under BayesExpt(A), Yt+1 is drawn from Rt+1(u, εt+1), u ∼ Qi,t+1.
There are two cases for Reduction(A):

• If st+1
i = 0, then under Reduction(A), Yt+1 is drawn in line 18 from Rt+1(u, εt+1), u ∼ Qi,t+1,

as desired.

• If st+1
i = 1, then Reduction(A) uses Lemma 3.5 to write Rt+1(·) as a mixture. Hence if we

sample from the mixture with input u ∼ Qi,t+1, we sample from Rt+1(u), which is the desired
sampling distribution. To see that Reduction(A) does sample from the target, we need only
show that Yt+1 drawn in line 13 is sampled from R̃t(u) where u ∼ Qi,t+1. This is true by
Lemma 3.2.

4. Sample Complexity: Here we bound the expected sample complexity, deferring the high
probability bound to Section A.3 in the Appendix. Let Ni be the number of fresh samples drawn
over all rounds t where it = i, i.e. the number of samples drawn when simulating follow-up queries
to i. Let N t

i be the number of samples drawn during rejection sampling in round t; we imagine
that regardless of the coin-flip in line 11 of the pseudocode of Reduction, N t

i is always drawn. Then
the total number of samples is Ni =

∑T
t=1 γtN

t
i . (Note that for simplicity, we are summing over

all rounds T , since equivalently we may imagine that each user is given a local randomizer at each
round, with privacy cost 0 in any round in which it 6= i.) Then by Lemma 3.2

E[Ni] =

T
∑

t=1

γt2e
ε =

2eε

1− e−ε

T
∑

t=1

(1− e−εt).

14



Since 1− x ≤ e−x, we get that 1− εt ≤ e−εt and so 1− e−εt ≤ εt. Hence

E[Ni] ≤
2eε

1− e−ε

T
∑

t=1

εt ≤
(

2eε · ε
1− e−ε

)

k.

Summing over i, and including the at most n samples drawn in line 18 bounds the expected sample
complexity by (( 2eε·ε

1−e−ε )k + 1)n, as desired.

4 Separating Full and Sequential Interactivity

We now prove that our reduction in Section 3 is tight in the sense that any generic reduction from
a fully interactive protocol to a sequentially interactive protocol must have a sample complexity
blowup of Ω̃(k) when applied to a k-compositional protocol. Specifically, we define a family of
problems such that for every k, there is a fully interactive k-compositional protocol that can solve
the problem with sample complexity n = n(k), but such that any sequentially interactive protocol
solving the problem must have sample complexity Ω̃(k · n).

Informally, the family of problems (Multi-Party Pointer Jumping, orMPJ (d)) we introduce is
defined as follows. An instance of MPJ (d) is given by a complete tree of depth d. Every vertex
of the tree is labelled by one of its children. By following the labels down the tree, starting at
the root, an instance defines a unique root-to-leaf path. Given an instance of MPJ (d), the data
distribution is defined as follows: to sample a new user, first select a level of the tree uniformly
ℓ ∈ [d] at random, and provide that user with the vertex-labels corresponding to level ℓ (note that
fixing an instance of the problem, every user corresponding to the same level of the tree has the
same data). The problem we wish to solve privately is to identify the unique root to leaf path
specified by the instance.

We first show that there is a fully interactive protocol which can solve this problem with sample
complexity n = Õ(d2/ε2). The protocol is k-compositional for k = Θ(d). Roughly speaking, the
protocol works as follows: it identifies the path one vertex at a time, starting from the root, and
proceeding to the leaf, in d rounds. In each round, given the most recently identified vertex vi in
level ℓ, it attempts to identify the child that vertex vi is labelled with. It queries every user with the
same local randomizer, which asks them to use randomized response to identify the labelled child
of vi if their data corresponds to level ℓ, and to respond with a uniformly random child otherwise
(recall that the level that a user’s data corresponds to is itself private, and hence is not known to
the protocol). Since there are roughly Θ̃(

√
n/ε2) users with relevant data, out of n users total, it is

possible to identitify the child in question subject to local differential privacy. Although every user
applies an ε-local randomizer d times in sequence, because each user’s data corresponds to only a
single level in the tree, the protocol is still (ε, 0)-locally private. Note that this privacy analysis
mirrors the “histogram” structure of the non-compositional protocol in Example 2.2.

Informally, the reason that any sequentially interactive protocol must have sample complexity
that is larger by a factor of d, is that even to identify the child of a single vertex in the local model,
Ω(d2/ε2) datapoints are required (this is exactly what our randomized response protocol achieves).
But a sequentially interactive protocol cannot re-use these datapoints across levels of the tree, and
so must expend Ω(d2/ε2) samples for each of the d levels of the tree. This intuition is formalized
in a delicate and technical induction on the depth of the tree, using information theoretic tools to
bound the success probability of any protocol as a function of its sample complexity. The precise
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definition ofMPJ (d) is somewhat more complicated, in which half of the weight on the underlying
distribution is assigned to “level 0” dummy agents whose purpose is to break correlations between
levels of the tree in the argument.

4.1 The Multi-Party Pointer Jumping Problem

We now formally define the Multi-party Pointer Jumping (MPJ ) problem.

Definition 4.1. Given integer parameter d > 1, an instance of Multi-party Pointer Jumping
MPJ (d) is defined by a vector Z = Z1 ◦ · · · ◦Zd, a concatenation of d vectors of increasing length.
Letting s = d4, for each i ∈ [d] Zi is a vector of si−1 integers in {0, 1, . . . , s− 1}. For each Zi, Zi,j

is its jth coordinate.
Viewed as a tree, Z is a complete s-ary tree of depth d where each Zi,j marks a child of the j-th

vertex at depth i. P = P (Z) then denotes the vector of d integers representing the unique root to
leaf path down this tree through the children marked by Z. Formally, P is defined in a recursive
way: P1 = Z1,1, ...,Pi = Zi,P1·si−1+P2·si−2+···+Pi−1+1,...,Pd = Zd,P1·sd−1+P2·sd−2+···+Pd−1+1.

Finally, an instance MPJ (d) defines a data distribution D. For each x ∼ D, with probability
1/2, x = (0, ∅) is a “dummy datapoint”, and with the remaining probability x = (ℓ, Zℓ) where ℓ
is a level drawn uniformly at random from [d]. A protocol solves MPJ (d) if it recovers P using
samples from D.

A graphical representation of MPJ (d) where s = 2 appears in Figure 1 (we set s = 2 in this
figure for easier graphical representation).
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Figure 1: Multi-party Pointer Jumping
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Algorithm 5 A fully interactive (ε, 0)-locally private protocol for MPJ (d)

1: Divide users into u = ⌈log(s)/ log(2)⌉ groups each of m = 512d2 log(d) · (eε+1)2

(eε−1)2
users.

2: Initialize Q← 0
3: for r = 1, 2, . . . , d do
4: Qr ← 0
5: for each group g = 1, 2, . . . , u do
6: for each user i = 1, 2, . . . ,m do
7: ℓi ← level of user xi
8: if ℓi = r then
9: bi,r ← g-th bit of binary representation of Zr,Q+1

10: User i publishes randomized response yi ∼ RR (bi,r, ε)
11: else
12: User i publishes yi ∼ Ber (0.5)
13: end if
14: end for
15: g-th bit of Qr ← majority bit of {yi}mi=1

16: end for
17: Q← s ·Q + Qr

18: end for
19: Output Q1 ◦ · · · ◦Qd

4.2 An Upper Bound for Fully Interactive Mechanisms

Theorem 4.1. There exists a fully interactive (ε, 0)-locally private protocol (Algorithm 5) with
sample complexity n = O(d2 log2(d)(eε + 1)2/(eε − 1)2) that, on any instance Z of MPJ (d),
correctly identifies P (Z) with probability at least 1− 1/d.

Proof. First, it is easy to check that the total sample complexity of Algorithm 5 is n = u ·m =

O
(

d2 log2(d) · (eε+1)2

(eε−1)2

)

. Privacy follows from the same line of logic used in Example 2.2: each agent

sends d bits in total, and at most one of these bits is not sampled uniformly at random. Therefore,
the probability of an agent sending any binary string of d bits is bounded between 1

2d−1 · 1
1+eε and

1
2d−1 · eε

1+eε , for any datapoint that they might hold. Algorithm 5 is therefore (ε, 0)-locally private.
It remains to prove correctness. We first show that each group contains enough users from

each level. For each group g ∈ [u], define Xi,g,r to be 1 if the i-th user in group g has level
r and 0 otherwise. By definition, for any r ∈ [d], P [Xi,g,r = 1] = 1/(2d). Therefore we have
E [
∑m

i=1 Xi,g,r] = m/(2d), and by a Chernoff bound

P

[

m
∑

i=1

Xi,g,r < m/(4d)

]

≤ exp
(

− m

16d

)

≤ 1/(d4).

Define W to be the event that for every r ∈ [d] and g ∈ [u], there are at least m/(4d) users in
group g with level r. By a union bound, we know P [W ] ≥ 1 − (ud)/d4 ≥ 1 − 1/d2, so with high
probability we have enough users in each level in each group.

We now analyze the quantities Qr. For each r ∈ [d], we want to show

P [Qr = Pr|Q1 = P1, ..., Qr−1 = Pr−1,W ] ≥ 1− 1/d3,
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i.e. that the output Q actually matches P . Conditioning on Q1 = P1, . . . , Qr−1 = Pr−1 and W ,
Zr,Q+1 = Pr. Define Yi,g,r to be 1 if the bit sent by the i-th user of group g is equal to the j-th
bit of Pr and 0 otherwise. If the i-th user has level r then they send their bit using randomized
response and P [Yi,g,r = 1] = eε

eε+1 . If the i-th user’s level is not r then they send a uniform random
bit P [Yi,g,r = 1] = 1/2. Since we conditioned on W , there are at least m/(4d) users in group g with
level r. Thus

E

[

m
∑

i=1

Yi,g,r

]

=
m

4d
· eε

eε + 1
+
(

m− m

4d

)

· 1

2
. (1)

Then we have

P [Qr, Pr have the same g-th bit|Q1 = P1, ..., Qr−1 = Pr−1,W ]

=P

[

m
∑

i=1

Yi,g,r >
m

2

]

≥P
[

m
∑

i=1

Yi,g,r > E

[

m
∑

i=1

Yi,g,r

]

+
m

2
− m

4d
· eε

eε + 1
−
(

m− m

4d

)

· 1

2

]

(Equation 1)

≥P
[

m
∑

i=1

Yi,g,r > E

[

m
∑

i=1

Yi,g,r

]

− m

8d
· e

ε − 1

eε + 1

]

≥1− exp

(

− 1

2m
·
(

m

8d
· e

ε − 1

eε + 1

)2
)

(Chernoff bound)

=1− exp

(

−m · 1

128d2
· (eε − 1)2

(eε + 1)2

)

≥1− exp(−4 log(d)) = 1− 1/d4.

Union bounding over all u groups yields

P [Qr = Pr|Q1 = P1, ..., Qr−1 = Pr−1,W ] ≥ 1− u/d4 ≥ 1− 1/d3.

Putting this all together, Algorithm 5 outputs P (Z) with probability at least

P [Q1 = P1, ..., Qd = Pd] ≥ P [W ] · P [Q1 = P1, ..., Qd = Pd|W ]

≥ P [W ]

d
∏

r=1

P [Qr = Pr|Q1 = P1, ..., Qr−1 = Pr−1,W ]

≥ (1− 1/d2)(1− 1/d3)d

≥ 1− 1/d.

Note that Algorithm 5 is k-compositional only for k ≥ Ω(d). The lower bound that we prove
next (Theorem 4.2) shows that any sequentially interactive protocol for the same problem must
have a larger sample complexity by a factor of Ω̃(d) = Ω̃(k), showing that in general, the sample-
complexity dependence that our reduction (Theorem 3.6) has on k cannot be improved.
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4.3 A Lower Bound for Sequentially Interactive Mechanisms

We prove our lower bound for sequentially interactive (ε, 0)-locally private protocols. As previous
work [9, 12] has established that (ε, 0)- and (ε, δ)-local privacy are approximately equivalent for
reasonable parameter ranges, our lower bound also holds for sequentially interactive (ε, δ)-locally
private protocols. For an extended discussion of this equivalence, see Section 5.1.2.

Theorem 4.2. Let A be a sequentially interactive (ε, 0)-locally private protocol that, for every
instance Z of MPJ (d), correctly identifies P (Z) with probability ≥ 2/3. Then A must have
sample complexity n ≥ d3/(216(eε − 1)2 log(d)).

Proof. We will prove that any sequentially interactive (ε, 0)-locally private protocol with n =
d3/(216(eε − 1)2 log(d)) samples fails to solve MPJ (d) correctly with probability > 1/3 when
Z is sampled uniformly randomly. This is a distributional lower bound which is only stronger
than the theorem statement (a worst case lower bound). For notational simplicity,we assume in
this argument that all local randomizers have discrete message spaces. However, this assumption
is without loss of generality and can be removed (e.g. using the rejection sampling technique
from Bassily and Smith [5]).

We will prove our lower bound even for protocols to which we “reveal” some information about
the hidden instance Z and users’ inputs to the protocol and users. This only makes our lower bound
stronger, as the mechanism can ignore this information if desired. Before the protocol starts, each
user i publishes a quantity Ri. Ri = ℓi, user i’s level, if ℓi 6= 0 (i.e., user i is not a “dummy” user).
Otherwise Ri is set to be ⌊ i−1

n/d⌋+1. At a high level, we reveal these {Ri}ni=1 to break the dependence

between Zi’s during the execution of the protocol (see Claim 4.3 for a formalization of this intuition).
Throughout the proof and its claims, we fix realizations R1 = r1, R2 = r2, . . . , Rn = rn. We will
show that even given such r1, ..., rn, any sequentially interactive (ε, 0)-locally private protocol with
n users fails with probability more than 1/3.

For each i ∈ [n], denote by Πi the message — i.e., portion of the transcript — sent by user
i via their local randomizer. Note that there is at most one such message since the protocol is
sequentially interactive. We begin with a result about how conditioning on messages and revealed
values affects the distribution of Z.

Claim 4.3. Suppose Z1, ..., Zd are sampled from a product distribution. Conditioned on the mes-
sages Π1, ...,Πi of the first i users and the revealed values R1, . . . , Rn, Z1, ..., Zd are still distributed
according to a product distribution.

Proof. We proceed via induction on the number of messages i. The base case i = 0 is immediate
from the assumption. Now suppose the statement of the claim is true for i−1. Use D1×D2×· · · Dd

to denote the product distribution of Z1, ..., Zd conditioned on Π1, ...,Πi−1 and R1, . . . , Rn (all
quantities that follow are conditioned on R1, . . . , Rn, and so for notational simplicity we elide the
explicit conditioning).

Since the protocol is sequentially interactive, conditioned on Π1, ...,Πi−1, Πi depends only on
Zri , user i’s internal randomness, and their level ℓi (recall that when ri = ⌊ i−1

n/d⌋+ 1, it may be that

ℓi = 0 or ℓi = ri). Therefore, conditioned on Π1, ...,Πi, Z1, ..., Zd distribute as

D1 ×D2 × · · · × (Dri |Πi)× · · · × Dd,

a product distribution.
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We also use induction to prove the overall theorem. It has d steps. For step ℓ ∈ [d], we let ∆ℓ

be the following set of distributions on Z.

Definition 4.2 (∆ℓ). For each ℓ ∈ [d], the set ∆ℓ is composed of distributions D on Z such that

1. D is a product distribution on Z1, ..., Zd,

2. for each i = 1, ..., d − ℓ, Zi is deterministically fixed to be zi, and

3. since Z1, ..., Zd−ℓ are fixed, by the definition of MPJ , P1, ..., Pd−ℓ are also fixed to some
p1, ..., pd−ℓ. The marginal distribution on Z|p1,...,pd−ℓ

is the uniform distribution.

In the induction step, we consider locally private sequentially interactive protocols with fewer
users. The idea is that for any sequentially interactive (ε, 0)-locally private protocol of n users, if
we fix the messages of the first i users, then what remains is a sequentially interactive (ε, 0)-locally
private protocol on n− i users. Accordingly, we want to lower bound the failure probability of this
remaining protocol. More concretely:

Inductive Statement Any sequentially interactive (ε, 0)-locally private protocol with n · ℓd users

(the
(

n · d−ℓ
d + 1

)

-th user to the n-th user) fails to solve MPJ (d) correctly with probability at
> 2/3 − ℓ/(3d) when Z is sampled from a distribution in ∆ℓ.

It will be slightly more convenient to establish the inductive case first and then establish the
base case second.

Induction step (ℓ > 1): Assume the above statement is true for ℓ− 1.
In this induction, let A be a sequentially interactive (ε, 0)-locally private protocol with n · ℓd

users and let D be the distribution generating Z before A starts. Let Π be the messages sent by
the first n/d users of A (the

(

n · d−ℓ
d + 1

)

-th user to the
(

n · d−ℓ+1
d

)

-th user) and let Aπ be the

sequentially interactive (ε, 0)-locally private protocol with n · ℓ−1
d users conditioned on Π = π. For

notational convenience, define nℓ = n · d−ℓ
d , Π<i = Πnℓ+1, ...,Πi−1 and Π≤i = Πnℓ+1, ...,Πi.

For each prefix of messages, π, let D′(π) be some mixture of distributions in ∆ℓ−1 (to be specified
later). By the induction hypothesis on ℓ− 1,

PZ∼D′(π) [Aπ outputs P (Z)] < 1/3 + (ℓ− 1)/(3d).

Thus

PZ∼D [A outputs P (Z)] =
∑

π

P [Π = π] · PZ∼(D|Π=π) [Aπ outputs P (Z)]

≤
∑

π

P [Π = π] ·
(

PZ∼D′(π) [Aπ outputs P (Z)] + ‖(D|Π = π)−D′(π)‖1
)

< 1/3 + (ℓ− 1)/(3d) +
∑

π

P [Π = π] · ‖(D|(Π = π))−D′(π)‖1.

It therefore suffices to show that
∑

π

P [Π = π] · ‖(D|(Π = π))−D′(π)‖1 ≤ 1/(3d).
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We show this via a sequence of three claims (Claims 4.4, 4.6, and 4.8), where D′(π) is defined in
Claim 4.8.

First we define some notation for the path we need to reason about. Since D ∈ ∆ℓ, by the
definition of ∆ℓ we know that for Z ∼ D, the first d−ℓ levels of the tree Z1, ..., Zd−ℓ deterministically
take fixed values z1, ..., zd−ℓ. Thus, the first d − ℓ nodes in the path P1, ..., Pd−ℓ are also fixed to
take particular values p1, ..., pd−ℓ. For the induction step, we write P = P1, ..., Pd−ℓ+1 to denote
the first d − ℓ + 1 vertices of the path. Since Pd−ℓ+1 is the only value that is not fixed, and the
path is through an s-ary tree, P can take on at most s different possible values and is determined
by Zd−ℓ+1.

In the first claim, we show that after observing the messages sent by n/d agents, there remains
substantial uncertainty about P .

Claim 4.4. For i ∈ {nℓ + 1, ..., nℓ + n/d},
∑

π≤i

P [Π≤i = π≤i] ·
(

max
p

P [P = p|Π≤i = π≤i]

)

≤ 3/d4.

Proof. Denoting by 1E the indicator function for event E,

∑

π≤i

P [Π≤i = π≤i] ·
(

max
p

P [P = p|Π≤i = π≤i]

)

≤
∑

π≤i

P [Π≤i = π≤i] ·
(

1maxp P[P=p|Π≤i=π≤i]>2/s · 1 + 1maxp P[P=p|Π≤i=π≤i]≤2/s ·
2

s

)

≤2

s
+
∑

π≤i

P [Π≤i = π≤i] ·
(

1maxp P[P=p|Π≤i=π≤i]>2/s

)

≤2

s
+
∑

p

∑

π≤i

P [Π≤i = π≤i] ·
(

1
P[P=p|Π≤i=π≤i]>2/s

)

. (2)

Now consider some specific p. We know that

P [P = p|Π≤i = π≤i] =
P [P = p,Π≤i = π≤i]

P [Π≤i = π≤i]

= P [P = p] · P [Π≤i = π≤i|P = p]

P [Π≤i = π≤i]
(Bayes’ rule)

=
1

s
· P [Π≤i = π≤i|P = p]

P [Π≤i = π≤i]
(uniformity of P ).

For j = nℓ + 1, ..., i, define random variable

Xj = log

(

P [Πj |Π<j , P = p]

P [Πj |Π<j ]

)

.

As we ultimately want to upper bound the quantity in Equation 2, we now focus on bounding these
Xj .
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Recall that rj is user j’s level if that level is non-zero (i.e. user j is not a “dummy” user).
Otherwise rj is d− ℓ + 1 for j = nℓ + 1, ..., nℓ + n/d. If rj 6= d− ℓ + 1, by Claim 4.3, we know that
conditioned on Π<j , Πj is independent of P . Therefore when rj 6= d− ℓ + 1, Xj = log(1) = 0.

If instead rj = d− ℓ + 1, we know the level ℓj of the user j is 0 with probability d/(d + 1) and
d− ℓ + 1 with probability 1/(d + 1). If ℓj = 0, then the user is a “dummy” and since the user has
no private data about P , Πj is independent of P conditioned on Π<j. Call the input distribution
of the j-th user qj. Here, we recall Lemmas 3 and 4 from Duchi et al. [17] and restate a simplified
version as Lemma 4.5

Lemma 4.5. Let m1 and m2 be the output distributions of an (ε, 0)-local randomizer in a sequen-
tially interactive protocol given, respectively, input distributions qj | Π<j, P = p and qj | Π<j.
Then

∣

∣

∣

∣

log

(

m1(z)

m2(z)

)∣

∣

∣

∣

≤ min(2, eε)(eε − 1) · ‖(qj | Π<j, P = p)− (qj | Π<j)‖TV .

We know that ‖(qj |Π<j = π<j, P = p)− (qj |Π<j = π<j)‖TV ≤ 1/(d+1), as the difference stems
from the event that ℓj = d− ℓ + 1. Thus, by Lemma 4.5

|Xj | ≤ 2(eε − 1)/(d + 1) < 2(eε − 1)/d.

Next, we bound the conditional expectation of Xj :

E [Xj |Π<j = π<j] =
∑

πj

P [Πj = πj|Π<j = π<j] · log

(

P [Πj = πj|Π<j = π<j, P = p]

P [Πj = πj |Π<j = π<j]

)

= −DKL ((Πj |Π<j = π<j, P = p) || (Πj |Π<j = π<j)) ≤ 0.

Therefore Xnℓ+1,Xnℓ+1 +Xnℓ+2, ...,Xnℓ+1 + · · ·+Xi form a supermartingale. Next, we use the
above bounds on these Xj to control their sum using the Azuma-Hoeffding inequality:

P [Xnℓ+1 + · · ·+ Xi > log(2)] ≤ exp

(

− log2(2)

2(2(eε − 1)/d)2(i− nℓ)

)

≤ exp

(

− log2(2)

2(2(eε − 1)/d)2(n/d)

)

≤ 1

d8
=

1

sd4
.

By the chain rule and Bayes’ rule, we know

Xnℓ+1 + · · · + Xi = log

(

P [Π≤i|P = p]

P [Π≤i]

)

= log (s · P [P = p|Π≤i]) .

Therefore

∑

π≤i

P [Π≤i = π≤i] ·
(

1
P[P=p|Π≤i=π≤i]>2/s

)

=
∑

π≤i

P [Π≤i = π≤i] ·
(

1s·P[P=p|Π≤i=π≤i]>2

)

= P [Xnℓ+1 + · · ·+ Xi > log(2)]

≤ 1

sd4
.
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Tracing the above inequality back through Equation 2, we have

∑

π≤i

P [Π≤i = π≤i] ·
(

max
e

P [P = p|Π≤i = π≤i]
)

≤ 2

s
+
∑

p

∑

π≤i

P [Π≤i = π≤i] ·
(

1
P[P=p|Π≤i=π≤i]>2/s

)

≤ 2

s
+ s · 1

sd4
=

3

d4
.

In Claim 4.6, we bound the information Π contains about Z|P (for a primer on information
theory, see Appendix B). Intuitively, by Claim 4.4 users have little information about P , and as a
result they cannot know which potential subtree Z|p to focus their privacy budget on.

Claim 4.6.
∑

p

P [P = p] · I(Π;Z|p|P = p) ≤ 1/(18d2).

Proof. By the inductive hypothesis, Z is sampled from D ∈ ∆ℓ. Define Z|<p to be
Z|p1,...,pd−ℓ,0, ..., Z|p1,...,pd−ℓ,pd−ℓ+1−1. By the definition of ∆l, we know Z|<p and Z|p are independent
given P , so I(Z|<p;Z|p|P = p) = 0. Therefore by the chain rule for mutual information, we get

I(Π;Z|p|P = p) ≤I(Π, Z|<p;Z|p|P = p)

=I(Z|<p;Z|p|P = p) + I(Π;Z|p|P = p, Z|<p)

=0 + I(Π;Z|p|P = p, Z|<p).

The main step of the proof of this claim is to compare I(Πi;Z|p|P = p,Π<i = π<i, Z|<p) and
I(Πi;Z|p|Π<i = π<i, Z|<p). First, by Claim 4.3, conditioning on Π<i = π<i induces a product
distribution for Z1, ..., Zd. We also know that (as mentioned in the proof of Claim 4.3) conditioned
on Π<i = π<i, Πi only depends on Zri , the internal randomness of the user i, and their level ℓi. By
item 3 in the definition of ∆ℓ, P only depends on Zd−ℓ+1. We prove

I(Πi;Z|p|P = p,Π<i = π<i, Z|<p) = I(Πi;Z|p|Π<i = π<i, Z|<p).. (3)

There are two cases depending on ri.

• When ri ≤ d− ℓ+1, user i either has ℓi ≤ d− ℓ+1 or is a “dummy” user. Therefore, whether
or not we condition on P = p, Πi is independent of Z|p, Z|<p. Thus

I(Πi;Z|p|P = p,Π<i = π<i, Z|<p) = 0 = I(Πi;Z|p|Π<i = π<i, Z|<p).

• When ri > d−ℓ+1, once we’ve conditioned on Π<i = π<i, additionally conditioning on P = p
does not change the joint distribution of Zd−ℓ+2, ..., Zd. This is because P = P1, . . . , Pd−ℓ+1

and by above conditioning on Π<i = π<i induces a product distribution on Z1, . . . , Zd (and
in particular on Zd−ℓ+2, ..., Zd). It follows that conditioning on P = p does not change the
joint distribution of Z|p, Z|<p,Πi. Thus

I(Πi;Z|p|P = p,Π<i = π<i, Z|<p) = I(Πi;Z|p|Π<i = π<i, Z|<p).

23



Putting things together, we have

∑

p

P [P = p] · I(Π;Z|p|P = p)

≤
∑

p

P [P = p] · I(Π;Z|p|P = p, Z|<p)

=
∑

p

nℓ+n/d
∑

i=nℓ+1

P [P = p] · I(Πi;Z|p|P = p,Π<i, Z|<p)

=

nℓ+n/d
∑

i=nℓ+1

∑

π<i

∑

p

P [P = p] · P [Π<i = π<i|P = p] · I(Πi;Z|p|P = p,Π<i = π<i, Z|<p)

=

nℓ+n/d
∑

i=nℓ+1

∑

π<i

∑

p

P [Π<i = π<i] · P [P = p|Π<i = π<i] · I(Πi;Z|p|P = p,Π<i = π<i, Z|<p) (Bayes’ rule)

=

nℓ+n/d
∑

i=nℓ+1

∑

π<i

∑

p

P [Π<i = π<i] · P [P = p|Π<i = π<i] · I(Πi;Z|p|Π<i = π<i, Z|<p) (Equation 3)

≤
nℓ+n/d
∑

i=nℓ+1

∑

π<i

(

∑

p

P [Π<i = π<i] · I(Πi;Z|p|Π<i = π<i, Z|<p)

)

·
(

max
p

P [P = p|Π<i = π<i]

)

≤
nℓ+n/d
∑

i=nℓ+1

∑

π<i

P [Π<i = π<i] · I(Πi;Z|Π<i = π<i) ·
(

max
p

P [P = p|Π<i = π<i]

)

. (4)

We now bound I(Πi;Z|Π<i = π<i) using Theorem 1 from Duchi et al. [17], simplified here as
Lemma 4.7.

Lemma 4.7. Let Π be the distribution over randomizer outputs for an ε-local randomizer with
inputs drawn from a distribution family parametrized by V. Then I(Π;V) ≤ 4(eε − 1)2.

In particular, the proof of Lemma 4.7 implies that I(Πi;Z|Π<i = π<i) ≤ 4(eε−1)2. We continue
our chain of inequalities.

(4) ≤
nℓ+n/d
∑

i=nℓ+1

∑

π<i

P [Π<i = π<i] · 4(eε − 1)2 ·
(

max
p

P [P = p|Π<i = π<i]

)

≤ n

d
· (eε − 1)2 · 12

d4
(Claim 4.4)

≤ 1

18d2
.

In our last claim, we convert the bound on mutual information from Claim 4.6 into a bound on
the L1 distance between distributions.
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Claim 4.8. There exists a distribution D′(π) which is a mixture of distributions in ∆ℓ−1 for each
π such that

∑

π

Pr[Π = π] · ‖(D|(Π = π))−D′(π)‖1 ≤ 1/(3d).

Proof. By the definition of mutual information in terms of KL-divergence,

I(Π;Z|p|P = p) = DKL

(

P
[

Π, Z|p|P = p
]

|| P [Π|P = p]× P
[

Z|p|P = p
])

.

Next, by Pinsker’s inequality,

∑

π,z|p

∣

∣P
[

Π = π,Z|p = z|p|P = p
]

− P [Π = π|P = p]× P
[

Z|p = z|p|P = p
]∣

∣

≤
√

2DKL

(

P
[

Π, Z|p|P = p
]

|| P [Π|P = p]× P
[

Z|p|P = p
])

so we may upper bound

∑

p

P [P = p] ·
∑

π,z|p

∣

∣P
[

Π = π,Z|p = z|p|P = p
]

− P [Π = π|P = p]× P
[

Z|p = z|p|P = p
]∣

∣

≤
∑

p

P [P = p] ·
√

2DKL

(

P
[

Π, Z|p|P = p
]

|| P [Π|P = p]× P
[

Z|p|P = p
])

=
∑

p

P [P = p] ·
√

2I(Π;Z|p|P = p) (definition of mutual information)

≤
√

2
∑

p

P [P = p] · 2I(Π;Z|p|P = p) (Jensen’s inequality and concavity of
√
·)

≤1/(3d) (Claim 4.6).

On the other hand, we can also lower bound

∑

p

P [P = p] ·
∑

π,z|p

∣

∣P
[

Π = π,Z|p = z|p|P = p
]

− P [Π = π|P = p]× P
[

Z|p = z|p|P = p
]∣

∣

=
∑

p

P [P = p] ·
∑

π

P [Π = π|P = p] ·
∑

z|p

∣

∣P
[

Z|p = z|p|Π = π, P = p
]

− P
[

Z|p = z|p|P = p
]∣

∣

=
∑

π

P [Π = π] ·
∑

p

P [P = p|Π = π] ·
∑

z|p

∣

∣P
[

Z|p = z|p|Π = π, P = p
]

− P
[

Z|p = z|p|P = p
]
∣

∣

=
∑

π

P [Π = π] ·
∑

p

P [P = p|Π = π] ·
∑

z

∣

∣P [Z = z|Π = π, P = p]− P
[

Z|p = z|p|P = p
]

· P
[

Z = z|Π = π, P = p, Z|p = z|p
]∣

∣

≥
∑

π

P [Π = π] ·
∑

z

∣

∣P [Z = z|Π = π]−
∑

p

P [P = p|Π = π] · P
[

Z|p = z|p|P = p
]

· P
[

Z = z|Π = π, P = p, Z|p = z|p
]
∣

∣ (5)
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where the last equality comes from multiplying by

1 =
∑

z

P
[

Z = z | Π = π, P = p, Z|p = z|p
]

and the inequality uses

P [Z = z | Π = π] =
∑

p

P [Z = z | Π = π, P = p] · P [P = p | Π = π]

and the triangle inequality. With the preceding upper bound, the quantity in Equation 5 is ≤
1/(3d).

Now, define D′(π) to be the distribution on Z such that for all z,

PZ∼D′(π) [Z = z] =
∑

p

P [P = p|Π = π] · P
[

Z|p = z|p|P = p
]

· P
[

Z = z|Π = π, P = p, Z|p = z|p
]

.

Equivalently, Z ∼ D′(π) is sampled through the following procedure: (1) sample P according to
P | Π = π, (2) sample Z|p according to Z|p | P = p, and (3) sample Z according to Z | Π = π, P =
p, Z|p = z|p.

Noting that PZ∼D|(Π=π) [Z = z] = P [Z = z|Π = π] for all z, since the quantity in Equation 5 is
≤ 1/(3d) we get

∑

π

Pr[Π = π] · ‖(D|(Π = π))−D′(π)‖1 ≤ 1/(3d).

It remains to show that D′(π) is a mixture of distributions in ∆ℓ−1; doing so will com-
plete our proof of the original inductive step. We will show for any z1, ..., zd−ℓ+1 such that
PZ∼D′(π) [Z1, ..., Zd−ℓ+1 = z1, ..., zd−ℓ+1] 6= 0, D′(π) | (Z1, ..., Zd−ℓ+1 = z1, ..., zd−ℓ+1) is a distri-
bution in ∆ℓ−1. Recalling that membership in ∆ℓ−1 requires meeting three conditions, we verify
these conditions below.

1. By Claim 4.3, we know D|(Π = π) is a product distribution on Z1, ..., Zd. It is easy to
check that as D′(π) is sampled according to D|(Π = π), D′(π) is also a product distribution
on Z1, ..., Zd, and after the conditioning, D′(π)|(Z1, ..., Zd−ℓ+1 = z1, ..., zd−ℓ+1) remains a
product distribution on Z1, ..., Zd.

2. Since we draw the final Z conditioned on Z|p = z|p, Zi is deterministically fixed for i =
1, . . . , d− ℓ.

3. First, note that the marginal distribution of D|(P = p) on Z|p is uniform since D | (Π = π)
induces a product distribution on Z1, . . . , Zd, and conditioning on P = p only fixes Z≤d−ℓ+1

and leaves Zd−ℓ+2 × · · ·Zd as a product distribution. Thus

PZ∼D′(π)|(Z≤d−ℓ+1=z≤d−ℓ+1)

[

Z|p = z|p
]

= P
[

Z|p = z|p | P = p
]

so the marginal distribution of D′(π)|(Z1, ..., Zd−ℓ+1 = z1, ..., zd−ℓ+1) on Z|p is also the uniform
distribution. Therefore D′(π)|(Z1, ..., Zd−ℓ+1 = z1, ..., zd−ℓ+1) is a distribution in ∆ℓ−1 and
D′(π) is a mixture of distributions in ∆ℓ−1.
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Base case (ℓ = 1): We finally discuss the base case of our induction. Define A, Π and P as in
the induction step. Since the output of A is a function of Π,

P [A outputs P (Z)] ≤
∑

π

P [Π = π] ·max
p

P [P = p|Π = π] .

Since Claim 4.4 also applies to the base case, we get

P [A outputs P (Z)] ≤ 3/d4 < 1/3 < 1/3 + 1/(3d).

5 Hypothesis Testing

We now turn our attention to the role of interactivity in hypothesis testing. We first show that
for the simple hypothesis testing problem, there exists a non-interactive (ε, 0)-LDP protocol that
achieves optimal sample complexity. This result extends to the compound hypothesis testing case,
when we make the additional assumption that the sets of distributions are convex and compact.

5.1 Simple Hypothesis Testing

Let P0 and P1 be two known distributions such that ‖P0 − P1‖TV ≥ α, and suppose one of P0

and P1 generates n i.i.d. samples x1, . . . , xn. The goal in simple hypothesis testing is to determine
whether the samples are generated by P0 or P1. The Neyman-Pearson lemma [29] establishes that
the likelihood ratio test is optimal for this problem absent privacy, and recent work [10] extends this
idea to give an optimal (up to constants) private simple hypothesis test in the centralized model of
differential privacy. We recall a simple folklore non-interactive hypothesis test in the local model,
and then prove that it is optimal even among the set of all fully interactive locally private tests.

5.1.1 (Folklore) Upper Bound

Consider the following simple variant A of the likelihood ratio test: each user i with input xi
outputs RR (ε) arg maxj∈{0,1} Pj(xi). For j ∈ {0, 1} let N̂j denote the resulting count of responses

and let N̂ ′
j = eε+1

eε−1 ·
(

N̂j − n
eε−1

)

be the corresponding de-biased count. The analyst computes both

quantities N̂ ′
j and outputs Pargmaxj N̂ ′

j
.

It is immediate that A is noninteractive and, since it relies on randomized response, satisfies
(ε, 0)-local differential privacy. Since we can bound its sample complexity by simple concentration
arguments, we defer the proof to Appendix A.2.

Theorem 5.1. With probability at least 2/3, A distinguishes between P0 and P1 given n = Ω
(

1
ε2α2

)

samples.

5.1.2 A Lower Bound for Arbitrarily Adaptive (ε, δ)-Locally Private Tests

We now show that the folklore ε-private non-interactive test is optimal amongst all (ε, δ)-private
fully interactive tests. First, combining (slightly modified versions of) Theorem 6.1 from Bun et al.
[9] and Theorem A.1 in Cheu et al. [12], we get the following result5

5 Bun et al. [9] and Cheu et al. [12] prove their results for noninteractive protocols. However, their constructions
both rely on replacing a single (ε, δ)-local randomizer call for each user with an (O(ε), 0)-local randomizer call and
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Algorithm 6 Locally Private Simple Hypothesis Tester A
1: procedure Noninteractive Protocol({xi}ni=1)
2: for i = 1 . . . n do
3: User i publishes yi ← RR

(

arg maxj∈{0,1} Pj(xi), ε
)

4: end for
5: for j = 0, 1 do
6: Analyst computes N̂j ← |{yi | yi = j}|
7: Analyst computes N̂ ′

j ← eε+1
eε−1 ·

(

N̂j − n
eε−1

)

8: end for
9: Analyst outputs Pargmaxj N̂ ′

j

10: end procedure

Lemma 5.2. Given ε > 0, δ < min
(

εβ
48n ln(2n/β) ,

β
64n ln(n/β)e7ε

)

and sequentially interactive (ε, δ)-

locally private protocol A, there exists a sequentially interactive (10ε, 0)-locally private protocol A′

such that for any dataset U , ‖A(U)−A′(U)‖TV ≤ β.

Lemma 5.2 enables us to apply existing lower bound tools for ε-locally private protocols to (se-
quentially interactive) (ε, δ)-locally private protocols. At a high level, our proof relies on controlling
the Hellinger distance between transcript distributions induced by an (ε, δ)-locally private protocol
when samples are generated by P0 and P1. We borrow a simulation technique used by Braverman
et al. [8] for a similar (non-private) problem and find that we can control this Hellinger distance
by bounding the KL divergence between a simpler, noninteractive pair of transcript distributions.
We accomplish this last step using existing tools from Duchi et al. [17].

Theorem 5.3. Let ‖P0 − P1‖TV = α and let Π be an arbitrary (possibly fully interactive) (ε, δ)-
locally private simple hypothesis testing protocol distinguishing between P0 and P1 with probability

≥ 2/3 using n samples where ε > 0 and δ < min
(

ε3α2

48n ln(2n/β) ,
ε2α2

64n ln(n/β)e7ε

)

. Then n = Ω
(

1
ε2α2

)

.

Proof. Let Π~0,Π~1, and Π~ei respectively denote the distribution over transcripts induced by protocol
Π when samples are drawn from P0, P1, and xi ∼ P1 but the remaining xi′ ∼ P0. Let h2 denote
the square of the Hellinger distance, h2 (f, g) = 1 −

∫

X
√

f(x)g(x)dx. We begin with Lemma 5.4,
originally proven as Lemma 2 in Braverman et al. [8].

Lemma 5.4. h2 (Π0̄,Π1̄) = O
(
∑n

i=1 h
2 (Π0̄,Π~ei)

)

.

Since our goal is now to bound these squared Hellinger distances, we will use a few facts collected
below.

Fact 5.5. For any distributions f , g, and h,

1. h2 (f, g) ≤ 2(h2 (f, h) + h2 (h, g)).

2. h2 (f, g) ≤ dTV (f, g) ≤
√

2h (f, g).

proving that these randomizers induce similar output distributions. Since each user still makes a single randomizer
call in sequential interactive protocols, essentially the same argument applies. For fully interactive protocols, a naive

modification of the same result forces a stronger restriction on δ, roughly δ = õ
(

εβ

max(n,T )

)

.
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3. h2 (f, g) ≤ 1
2DKL (f || g).

Choose an arbitrary term i of the sum in Lemma 5.4. Suppose we have user i simulate A using
draws from P0 for the inputs of other users and their input xi for input i. Since Π is (ε, δ)-locally
private, this simulation can be viewed as a single (ε, δ)-local randomizer applied to xi. We can
therefore use Lemma 5.2 to get a (10ε, 0)-local randomizer Π′ inducing distributions Π′

~0
and Π′

~ei

such that ‖Π′
~0
−Π~0‖TV ≤ ε2α2 and ‖Π′

~ei
−Π~ei‖TV ≤ ε2α2. Then,

h2
(

Π~0,Π~ei

)

≤ 2(h2
(

Π~0,Π
′
~ei

)

+ h2
(

Π′
~ei
,Π~ei

)

)

≤ 4(h2
(

Π~0,Π
′
~0

)

+ h2
(

Π′
~0
,Π′

~ei

)

) + 2h2
(

Π′
~ei
,Π~ei

)

≤ 4(‖Π~0 −Π′
~0
‖TV + h2

(

Π′
~0
,Π′

~ei

)

) + 2‖Π′
~ei
−Π~ei‖TV

≤ 6ε2α2 + 4h2
(

Π′
~0
,Π′

~ei

)

where the first two inequalities follow from item 1 in Fact 5.5, the third inequality follows from
item 2, and the last inequality follows from our use of Lemma 5.2 above.

It remains to bound h2
(

Π′
~0
,Π′

~ei

)

. By item 3 in Fact 5.5, 4h2
(

Π′
~0
,Π′

~ei

)

≤ 2DKL

(

Π′
~0
|| Π′

~ei

)

.

Since the transcript distributions Π′
~0

and Π′
~ei

can be simulated by noninteractive (10ε, 0)-local
randomizers, we can apply Theorem 1 from Duchi et al. [17], restated for our setting as Lemma 5.6.

Lemma 5.6. Let Q be an (ε, 0)-local randomizer and let P0 and P1 be distributions defined on
common space X . Let x0 ∼ P0 and x1 ∼ P1. Then

DKL (Q(x0) || Q(x1)) + DKL (Q(x1) || Q(x0)) ≤ min{4, e2ε}(eε − 1)2‖P0 − P1‖2TV .

Thus
DKL

(

Π′
~0
|| Π′

~ei

)

+ DKL

(

Π′
~ei
|| Π′

~0

)

= O(ε2 · ‖P0 − P1‖2TV ) = O
(

ε2α2
)

.

It follows that h2
(

Π′
~0
,Π′

~ei

)

= O(ε2α2). Moreover, since our original choice of i was arbitrary,

tracing back to Lemma 5.4 yields h2
(

Π~0,Π~1

)

= O(nε2α2). By Fact 5.5, h2
(

Π~0,Π~1

)

≥ 1
2‖Π~0 −

Π~1‖2TV = Ω(1). Thus n = Ω
(

1
ε2α2

)

.

5.2 Compound Hypothesis Testing

We now extend the reasoning of Section 5 to compound hypothesis testing. Here P0 and P1 are
replaced by (disjoint) collections of discrete hypotheses H0 and H1 such that

inf
(P,Q)∈H0×H1

‖P −Q‖TV ≥ α.

The goal is to determine whether samples are generated by a distribution in H0 or one in H1.

Theorem 5.7. Let H0 and H1 be convex and compact sets of distributions over ground set X such
that inf(P,Q)∈H0×H1

‖P −Q‖TV ≥ α. Then there exists noninteractive (ε, 0)-locally private protocol

A that with probability at least 2/3 distinguishes between H0 and H1 given n = Ω
(

1
ε2α2

)

samples.
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Proof. Let X be the ground set for distributions in H0 and H1, and consider the two-player zero-sum
game

sup
S∈∆(2X)

inf
(P,Q)∈H0×H1

EE∼S [P (E) −Q(E)] .

Here, the sup player chooses a distribution over events, and the inf player chooses distributions in
H0 and H1. We will use (a simplified version of) Sion’s minimax theorem [31].

Lemma 5.8 (Sion’s minimax theorem). For f : A×B → R, if

1. for all a ∈ A f(a, ·) is continuous and concave on B,

2. for all b ∈ B f(·, b) is continuous and convex on A, and

3. A and B are convex and A is compact,

then
sup
b∈B

inf
a∈A

f(a, b) = inf
a∈A

sup
b∈B

f(a, b).

We first verify that the three conditions of Lemma 5.8 hold. Let

f(S, (P,Q)) = EE∼S [P (E) −Q(E)] .

Linearity of expectation implies that f(·, (P,Q)) is linear in ∆(2X) and f(S, ·) is linear in H0×H1.
Therefore conditions 1 and 2 hold. Moreover, since ∆(2X) is convex and we assumed H0 and H1 to
be convex and compact — properties which are both closed under Cartesian product — condition
3 holds as well. As a result,

sup
S∈∆(2X )

inf
(P,Q)∈H0×H1

EE∼S [P (E)−Q(E)] = inf
(P,Q)∈H0×H1

sup
S∈∆(2X)

EE∼S [P (E) −Q(E)] ≥ α

and there exists fixed distribution S over events such that for all (P,Q) ∈ H0 ×H1,

EE∼S [P (E)−Q(E)] ≥ α.

This leads to the following hypothesis testing protocol A: for each i ∈ [n], user i computes
yi = EE∼S [1xi∈E ] and publishes yi+Lap

(

1
ε

)

. This protocol is immediately noninteractive, and since
yi ∈ [0, 1], this protocol is (ε, 0)-locally private over {xi}ni=1. Finally, by the same analysis used to
prove Theorem 5.1 (replacing concentration of randomized responses with concentration of Lap (1)
noise [11]) it distinguishes between H0 and H1 with probability at least 2/3 using n = Ω

(

1
ε2α2

)

samples.

Since Theorem 5.3 still applies, this establishes that the above non-interactive protocol is also
optimal.

A Appendix

A.1 Properties of Differential Privacy

Differentially private computations enjoy two nice properties:
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Theorem A.1 (Post Processing [19]). Let A : X ∗ → O be any (ε, δ)-differentially private algorithm,
and let f : O → O′ be any function. Then the algorithm f ◦A : X n → O′ is also (ε, δ)-differentially
private.

Post-processing implies that, for example, every decision process based on the output of a
differentially private algorithm is also differentially private.

Theorem A.2 (Basic Composition [19]). Let A1 : X ∗ → O, A2 : O ×X ∗ → O′ be such that A1 is
(ε1, δ1)-differentially private, and A2(o, ·) is (ε2, δ2)-differentially private for every o ∈ O. Then the
algorithm A : X ∗ → O′ defined as A(x) = A2(A1(x), x) is (ε1 + ε2, δ1 + δ2)-differentially private.

A.2 Proof of Theorem 5.1

Proof. For j ∈ {0, 1}, let Nj denote the (unknown) true count of 0 and 1 responses, i.e. Nj =

|{xi | arg maxj′∈{0,1} Pj′(xi) = j}|. Then for both j, E
[

N̂j

]

=
Nj(e

ε−1)+n
eε+1 . By a Chernoff bound,

with high probability |N̂j − Nj(e
ε−1)+n
eε+1 | = O(

√
n). Then since N ′

j = eε+1
eε−1 ·

(

N̂j − n
eε−1

)

we get

|N̂ ′
j − Nj| = O

(

eε+1

eε−1 ·
√
n
)

= O
(√

n
ε

)

. It is therefore sufficient that 1
ε
√
n

= O(α) to distinguish

between P0 and P1, which implies the claim.

A.3 High Probability Sample Complexity from Theorem 3.6

We first prove a multiplicative Azuma-Hoeffding Inequality which will drive the high probability
bound.

Lemma A.3 (Multiplicative Azuma-Hoeffding Inequality). Let (γt)
T
t=1, γt ∈ [0, 1] a collection of

dependent random variables, and let (Ft)
T
t=1 a filtration such that σ(γ1, . . . γt−1) ⊂ Ft−1. Suppose

∀t,E [γt | Ft−1] ≤ µt. Then if w.p. 1,
∑

t µt ≤ µ, we have for any δ ∈ [e−3/4µ, 1]:

P

[

T
∑

t=1

γt >
√

3µ log(1/δ) + µ

]

≤ δ

Proof. By convexity of elγt , γt ∈ [0, 1],E [γt | Ft−1] ≤ µt, ∀t, l:

E

[

elγt | Ft−1

]

≤ 1 + (el − 1)E [γt|Ft−1] ≤ 1 + (el − 1)µ ≤ e(e
l−1)µt

If we define Sj =
∑j

t=1 γt, then:

E

[

elSj

]

= EFj−1

[

E

[

elSj | Fj−1

]]

= EFj−1

[

elSj−1 | Fj−1

]

E

[

elγj | Fj−1

]

≤ E

[

elSj−1

]

e(e
l−1)µt

Inducting on j, we have:

E

[

elST

]

≤ e(e
l−1)

∑
t µt ≤ e(e

l−1)µ

For ε > 0, taking l = log(1 + ε), a = (1 + ε)µ and using Markov’s inequality:

P [ST ≥ a] ≤ e−(1+ε)µl
E

[

elS
]

≤ e−(1+ε)µl+µ(el−1) = e−µφ(ε),
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where φ(z) = z − (1 + z) log(1 + z). Since φ(z) ≤ −z2/3 for z ∈ [0, 3/2], we get:

P [ST ≥ (1 + ε)µ] ≤ e−µε2/3

Setting ε =
√

3 log(1/δ)
µ gives the desired bound. Note that the condition ε ∈ [0, 3/2] forces δ ≥

e−3/4µ.

Proof. There are at most n users drawn in line 18 of Reduction, hence it suffices to bound with
high probability the number of users drawn during rejection sampling steps in line 13. For a given
user i drawn during a rejection sampling step, the sample complexity on rounds where i is selected

can be written as
∑T

t:it=i γtNt, where γt ∼ Ber(e
−εt−1
e−ε−1 ), Nt

ind∼ Geom(pt) where pt ≥ e−2ε

2 , εt ≤ ε
are random variables that depend on Π<t. Hence the total sample complexity over the rejection
sampling rounds can be written as:

S =
T
∑

t=1

γtNt

First consider
∑T

t=1 γt. Let Ft be the σ-algebra generated as Ft = σ(Π<t, εt, (γl)
t−1
l=1). Then

E [γt | Ft−1] = e−εt−1
e−ε−1 = µt. Define µ =

∑

t µt ≤ nkε
1−e−ε . Hence by Lemma A.3, with probability

1− δ/2, for δ ≥ 2e−
3
4
µ:

P

[

T
∑

t=1

γt >
√

3µ log(2/δ) + µ

]

≤ δ

2

Let Eγ be the above event
{
∑

t γt ≤
√

3µ log(2/δ) + µ
}

. Then for any t,

P[S ≥ t|Eγ ] ≤ P[Z ≥ t],

where Z =
∑K

t=1N
′
t ,K =

√

3µ log(2/δ)+µ, and N ′
t
iid∼ Geom(e

−ε

2 ). Let µ′ = E[Z] = 2eε(
√

3µ log(2/δ)+
µ). By Theorem 2.1 in [23] for any t ≥ 1:

P[Z ≥ tµ′] ≤ e
−e−ε

2
µ′(t−1−log t)

Setting t = 2( log(2/δ)2e
ε

µ′ + 1) gives Z ≤ 2(log(2/δ)2eε + µ′) with probability at least 1− δ/2. Hence

P [S ≥ 2(log(2/δ)2eε + µ′)|Eγ ] ≤ δ
2 . Finally,

P
[

S ≥ 2(log(2/δ)2eε + µ′] ≤ P
[

S ≥ 2(log(2/δ)2eε + µ′|Eγ

]

P [Eγ ] + (1− P [Eγ ]) ≤ δ

2
+

δ

2
= δ

Substituting in the expression for µ′ gives S = O(nk+
√

nk log 1
δ ) with probability 1−δ, as desired.
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B Information Theory

We briefly review some standard facts and definitions from information theory, starting with en-
tropy. Throughout, our log is base e.

Definition B.1. The entropy of a random variable X, denoted by H(X), is defined as H(X) =
∑

x Pr[X = x] log(1/Pr[X = x]), and the conditional entropy of random variable X conditioned
on random variable Y is defined as H(X|Y ) = Ey[H(X|Y = y)].

Next, we can use entropy to define the mutual information between two random variables.

Definition B.2. The mutual information between two random variables X and Y is defined as
I(X;Y ) = H(X) −H(X|Y ) = H(Y )−H(Y |X), and the conditional mutual information between
X and Y given Z is defined as I(X;Y |Z) = H(X|Z)−H(X|Y Z) = H(Y |Z)−H(Y |XZ).

Fact B.1. Let X1,X2, Y, Z be random variables, we have I(X1X2;Y |Z) = I(X1;Y |Z)+I(X2;Y |X1Z).

Definition B.3. The Kullback-Leibler divergence between two random variables X and Y is defined
as DKL (X || Y ) =

∑

x Pr[X = x] log(Pr[X = x]/Pr[Y = x]).

Fact B.2. Let X,Y,Z be random variables, we have

I(X;Y |Z) = Ex,z[DKL ((Y |X = x,Z = z) || (Y |Z = z))].

Lemma B.3 (Pinsker’s inequality). Let X,Y be random variables,

√

2DKL (X || Y ) ≥
∑

x

|Pr[X = x]− Pr[Y = x]|

.
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