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ABSTRACT

Aims. We analyze the behavior of the argument of pericenter ω2 of an outer particle in the elliptical restricted three-body problem,
focusing on the ω2 resonance or inverse Lidov-Kozai resonance.
Methods. First, we calculated the contribution of the terms of quadrupole, octupole, and hexadecapolar order of the secular approx-
imation of the potential to the outer particle’s ω2 precession rate (dω2/dτ). Then, we derived analytical criteria that determine the
vanishing of the ω2 quadrupole precession rate (dω2/dτ)quad for different values of the inner perturber’s eccentricity e1. Finally, we
used such analytical considerations and described the behavior of ω2 of outer particles extracted from N-body simulations developed
in a previous work.
Results. Our analytical study indicates that the values of the inclination i2 and the ascending node longitude Ω2 associated with the
outer particle that vanish (dω2/dτ)quad strongly depend on the eccentricity e1 of the inner perturber. In fact, if e1 < 0.25 (>0.40825),
(dω2/dτ)quad is only vanished for particles whose Ω2 circulates (librates). For e1 between 0.25 and 0.40825, (dω2/dτ)quad can be
vanished for any particle for a suitable selection of pairs (Ω2, i2). Our analysis of the N-body simulations shows that the inverse Lidov-
Kozai resonance is possible for small, moderate, and high values of e1. Moreover, such a resonance produces distinctive features in
the evolution of a particle in the (Ω2, i2) plane. In fact, if ω2 librates and Ω2 circulates, the extremes of i2 at Ω2 = 90◦ and 270◦ do not
reach the same value, while if ω2 and Ω2 librate, the evolutionary trajectory of the particle in the (Ω2, i2) plane shows evidence of an
asymmetry with respect to i2 = 90◦. The evolution of ω2 associated with the outer particles of the N-body simulations can be very well
explained by the analytical criteria derived in our investigation.

Key words. planets and satellites: dynamical evolution and stability – minor planets, asteroids: general – methods: numerical

1. Introduction

The approximation of secular dynamics is a powerful tool for
studying a wide diversity of astrophysical problems. In partic-
ular, the works carried out by Lidov (1962) and Kozai (1962)
were the first ones aimed at exploring the secular perturbations
produced by a far away massive planet on a circular orbit over an
inner test particle. In their works, the authors showed that, if the
minimum inclination of the inner massless particle is between
39.23◦ and 140.77◦, its eccentricity e, inclination i, and argument
of pericenter ω experience coupled oscillations. This secular
effect associated with the evolution of the inner test particle is
known as the Lidov-Kozai mechanism.

When the hypothesis of the circular orbit for the outer
perturber relaxes, interesting dynamical modes of behavior of
the inner test particle become visible. Several authors have
focused on the so-called inner eccentric Lidov-Kozai mecha-
nism, analyzing the evolution of an inner particle in the elliptical
restricted three-body problem. In particular, Harrington (1968),
Soderhjelm (1984), Krymolowski & Mazeh (1999), Ford et al.
(2000), and Naoz et al. (2013) derived general expressions for
the secular hamiltonian, while Lithwick & Naoz (2011) and Katz
et al. (2011) explored the case of the dynamical evolution of
an inner test particle that orbits a star under the effects of an
outer and eccentric massive perturber up to the octupole level

of secular approximation. In such studies, it is possible under-
stand that if the outer massive perturber has an eccentric orbit,
the vertical angular momentum of the inner massless particle is
not conserved and thus, its orbital plane can change the orienta-
tion from prograde to retrograde and back again, reaching very
high eccentricities close to the unity.

The study of the secular dynamics of an outer test particle

in the elliptical restricted three-body problem also shows signifi-

cant results concerning the evolution of its orbital parameters. In

this sense, Ziglin (1975) was the first to describe several aspects

concerning the so-called outer eccentric Lidov-Kozai mecha-
nism, analyzing the secular evolution of a distant planet orbiting

a binary star system. From a doubly averaged disturbing func-

tion and under the context of the restricted three-body problem,
the author showed that the evolution of the inclination i and

the ascending node longitude Ω of the outer planet is coupled,

and furthermore, the width of libration region associated with Ω
only depends on the eccentricity of the inner binary. Recently,
Farago & Laskar (2010) analyzed the dynamical evolution for a
distant test particle that orbits a central star under the gravita-
tional effects of an internal massive planet up to the quadrupole
level of the secular approximation. These authors confirmed the
results obtained by Ziglin (1975) and extended their studies to
the general case of the three-body problem.
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The outer restricted three-body problem was also studied by
Li et al. (2014), who obtained general solutions to some orbital
parameters up to the quadrupole level of the secular approxi-
mation. Furthermore, Li et al. (2014) explored the contribution
of the octupole term of the secular hamiltonian and determined
the evolution of the eccentricity of the outer massless particle
for slightly inclined orbits and near polar configurations, and
different values associated with the inner binary’s eccentricity.

More recently, Naoz et al. (2017) and Zanardi et al. (2017)
carried out two joint works aimed at studying the effects pro-
duced by an inner and eccentric massive perturber over the
dynamical evolution of an outer massless particle, which both
orbit around a given central star. On the one hand, Naoz et al.
(2017) derived analytical expressions up to the octupole level of
the secular approximation for an outer test particle in the ellipti-
cal restricted three-body problem. From this, the authors showed
that the analysis of the system under consideration is consistent
with that derived by Ziglin (1975) up to the quadrupole level of
the approximation, and they discussed in detail the sensitivity
of the octupole terms of the secular hamiltonian to the results.
On the other hand, Zanardi et al. (2017) studied the formation and
evolution of outer small body populations in systems that suf-
fer strong scattering events between giant planets around 0.5 M⊙
stars from N-body simulations. In particular, the authors focused
the investigation on systems composed of a single inner Jupiter-
mass planet and a far away reservoir of small bodies after the
dynamical instability event. According to such a study, a natu-
ral result observed in these systems is the generation of particles
with prograde and retrograde orbits whose ascending node lon-
gitude Ω circulates, and particles whose orbit plane flips1 from
prograde to retrograde and back again throughout the evolution
with coupled librations associated with Ω. It is worth noting
that the comparative analysis carried out by Zanardi et al. (2017)
shows that the numerical results obtained in their research are
supported by the analytical expressions derived by Naoz et al.
(2017).

Then, Zanardi et al. (2018) analyzed the role of general rela-
tivity (GR) on outer small body reservoirs under the effects of an
inner and eccentric Jupiter-mass planet around low-mass stars.
From N-body simulations and analytical criteria, the authors
showed that the GR may significantly modify the dynamical
properties of the outer test particles. In fact, if the GR is included
in the analysis, the range of prograde (retrograde) inclinations of
the libration region associated with the ascending node longi-
tude is reduced (increased) in comparison with that observed in
the absence of GR.

Finally, Vinson & Chiang (2018) performed a study concern-
ing the secular dynamics of an outer test particle in the elliptical
restricted three-body problem from the expansion of the poten-
tial up to hexadecapolar level of the approximation. In this
research, the authors described the quadrupole orbital-flipping
resonance, the octupole resonances associated with librations of
ω + Ω and ω − Ω around 0◦, and the hexadecapolar ω reso-
nance, in whichω librates around 90◦ or 270◦ and is the so-called
inverse Lidov-Kozai resonance.

The inverse Lidov-Kozai resonance in the transneptunian
region of the solar system was analyzed by Gallardo et al. (2012)
assuming the gravitational effects of the giant planets on circular
and coplanar orbits. As we mentioned in the previous paragraph,

1 We define flipped orbits as those whose inclination i oscillates from
below 90◦ to above 90◦. In other words, our definition focuses on the
i = 90◦ transition rather than the location and phase of i in the surface of
section.

Vinson & Chiang (2018) extended the study of the inverse Lidov-
Kozai resonance for the case of an inner perturber moving on
an eccentric orbit. These authors found the inverse Lidov-Kozai
resonance only up to a value of the inner perturber’s eccen-
tricity of 0.1 in N-body experiments. However, Zanardi et al.
(2017) noted the existence of a few flipping particles that expe-
rience simultaneous librations of the ascending node longitude
Ω and the argument of pericenter ω, which are associated with
an inner perturber’s eccentricity greater than 0.2 in their N-body
simulations.

From such results, the main goal of this research is to analyze
in detail the inverse Lidov-Kozai resonance as a function of the
inner perturber’s eccentricity from analytical criteria and N-body
simulations. Working on the basis of the elliptical restricted
three-body problem, we will show that the inverse Lidov-Kozai
resonance can be found for small, moderate, and high values of
the orbital eccentricity associated with the inner perturber.

The present paper is structured as follows. In Sect. 2, we
present a brief, up-to-date overview of the outer eccentric Lidov-
Kozai mechanism. The analytical treatment concerning the pre-
cession rate of the argument of pericenter of an outer test particle
is described in Sect. 3. A detailed analysis of results derived from
N-body simulations is shown in Sect. 4. Finally, Sect. 5 describes
the discussions and conclusions of our study.

2. Overview

Recently, Naoz et al. (2017) analyzed in detail the secular dynam-
ics of an outer test particle evolving under the gravitational
influence of an inner and eccentric perturber of mass m1 orbiting
a central star of mass m0. If the orbital parameters e2, i2, ω2, and
Ω2 represent the eccentricity, the inclination with respect to the
inner orbit, the argument of pericenter, and the ascending node
longitude of the outer test particle relative to the inner perturber’s
periapse, respectively, the equations of motion can be written as
partial derivatives of an energy function f in the following way:

dJ2

dτ
=
∂ f

∂ω2

, (1)

dJ2,z

dτ
=
∂ f

∂Ω2

, (2)

dω2

dτ
=
∂ f

∂e2

J2

e2

+
∂ f

∂θ2

θ2

J2

, (3)

dΩ2

dτ
= −
∂ f

∂θ2

1

J2

, (4)

where θ2 = cos i2, J2 =

√

1 − e2
2
, J2,z = θ2

√

1 − e2
2
, and τ is a

parameter proportional to the true time t, which is given by
τ= At, with

A =
1

16

m0m1

(m0 + m1)2

√

G(m0 + m1)

a3
2

(

a1

a2

)2

, (5)

G being the gravitational constant, and a1 and a2 the semimajor
axis of the inner perturber and the outer test particle, respec-
tively. The energy function f derived by Naoz et al. (2017) up to
the octupole level of the secular approximation is given by

f = fquad + ǫ foct, (6)

where the ǫ parameter is written by

ǫ =
m0 − m1

m0 + m1

a1

a2

e2

1 − e2
2

, (7)
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and the functions fquad and foct
2 adopt the expressions

fquad =
(2 + 3e2

1
)(3θ2

2
− 1) + 15e2

1
(1 − θ2

2
) cos(2Ω2)

(1 − e2
2
)3/2

, (8)

foct =
−15e1

4(1 − e2
2
)3/2

{

10(1 − e2
1)θ2(1 − θ22) sinω2 sinΩ2

+
1

2

[

2 + 19e2
1 − 5(2 + 5e2

1)θ22 − 35e2
1(1 − θ22) cos(2Ω2)

]

× (θ2 sinω2 sinΩ2 − cosω2 cosΩ2)

}

, (9)

where e1 is the eccentricity of the inner massive perturber.
At the quadrupole level of the secular approximation, Naoz

et al. (2017) found that the inclination i2 and the ascending node
longitude Ω2 of the outer test particle evolve with precession
rates given by di2/dτ ∝ sin(2Ω2) and dΩ2/dτ ∝ θ2. According
to this, on the one hand, the inclination i2 adopts extreme val-
ues for Ω2 = 0◦, 90◦ or 270◦. On the other hand, the ascending
node longitude Ω2 reaches minimum and maximum values for
i2 = 90◦, which represents a very important result to understand
the secular behavior of an outer test particle. In fact, from this,
the ascending node longitude Ω2 can evolve following two dif-
ferent regimes: circulation or libration. In a circulation trajectory,
Ω2 adopts values between 0◦ and 360◦, and the outer test parti-
cle always evolves on prograde or retrograde orbits. In a libration
trajectory,Ω2 is constrained between two specific values, and the
orbital plane of the outer test particle flips from prograde to ret-
rograde and back again along its evolution. This orbit-flipping
quadrupole resonance, in which Ω2 librates around 90◦ or 270◦,
was mentioned originally in the pioneering work carried out by
Ziglin (1975) and a detailed description of this can be found in
Naoz et al. (2017).

The critical trajectory that divides the circulation and libra-
tion regimes in an inclination i2 versus ascending node longitude
Ω2 plane is called the separatrix. According to that described in
last paragraph, the separatrix has associated a value of i2 = 90◦

for Ω2 = 0◦. By taking into account that the extreme values of
the inclination i2 on the separatrix (hereafter referred by ie

2
)

are obtained for Ω2 = 90◦ or 270◦, the conservation of energy
at the quadrupole level of the approximation indicates that
fquad(Ω2 = 0◦, i2 = 90◦)= fquad(Ω2 = 90◦ or 270◦, i2 = ie

2
), where

fquad is given by Eq. (8). From this,

ie2 = arccos



















±

√

5e2
1

(1 + 4e2
1
)



















, (10)

and then, the range of inclinations that lead to libration trajecto-
ries of Ω2 has a width ∆i2 given by

∆i2 = 2 arccos



















√

1 − e2
1

(1 + 4e2
1
)



















. (11)

According to this expression, the more eccentric the inner
perturber, the larger the range of inclinations that lead to libra-
tion trajectories of Ω2. In particular, it is worth remarking that
a perturber on a circular orbit cannot produce this orbit-flipping
resonance that involves librations of Ω2 since the width ∆i2 = 0◦.

2 We note that Naoz et al. (2017) had a typographical error in their
Eq. (7) concerning foct, which should have been preceded with a minus
sign. It is worth noting that the equations of motion were calculated
using the correct hamiltonian.

Recently, Vinson & Chiang (2018) studied the dynamics of
an outer test particle in the secular three-body problem expand-
ing the hamiltonian of the system up to hexadecapolar order. To
do this, the authors adapted the disturbing function for an outer
perturber derived by Yokoyama et al. (2003). According to this,
the hexadecapolar term of the secular approximation associated
with the energy function f for an outer test particle adopts the
expression3

fhex =
16

Gm1

a3
2

a2
1

c3Rhex, (12)

where c3 is given by

c3 = Gm1

a4
1

a5
2

1

(1 − e2
2
)7/2
, (13)

and

Rhex =
3

16
(2 + 3e2

2)d1 −
495

1024
e2

2 −
135

256
θ22 −

165

512

+
315

512
θ42 +

945

1024
θ42e2

2 −
405

512
θ22e2

2

+

{

105

512
θ42 +

315

1024
e2

2 −
105

256
θ22 +

105

512
−

315

512
θ22e2

2

+
315

1024
θ42e2

2

}

d3 cos(4Ω2)

+
105

512

{

θ32 − θ2 −
1

2
θ42 +

1

2

}

d3e2
2 cos(2ω2 − 4Ω2)

+
105

512

{

− θ32 + θ2 −
1

2
θ42 +

1

2

}

d3e2
2 cos(2ω2 + 4Ω2)

+

{

45

64
θ22 −

45

512
−

315

512
θ42

}

e2
2 cos(2ω2)

+

{

15

16
θ22 +

45

32
θ22e2

2 −
45

256
e2

2 −
15

128
−

315

256
θ42e2

2

−
105

128
θ42

}

d2 cos(2Ω2)

+

{

15

256
−

45

128
θ22 +

75

256
θ2 +

105

256
θ42

−
105

256
θ32

}

d2e2
2 cos(2ω2 − 2Ω2)

+

{

15

256
−

45

128
θ22 −

75

256
θ2 +

105

256
θ42

+
105

256
θ32

}

d2e2
2 cos(2ω2 + 2Ω2), (14)

where

d1 = 1 +
15

8
e2

1 +
45

64
e4

1, (15)

3 It is important to remark that the terms of the energy function
derived by Vinson & Chiang (2018) differ from those obtained by
Naoz et al. (2017) in a constant factor. In particular, if we com-
pare the quadrupole terms proposed in both works, it is possible to
observe that the quadrupole term from Naoz et al. (2017) is obtained
dividing the quadrupole term from Vinson & Chiang (2018) by
Gm1a2

1
/(16a3

2
). Thus, we divide by such a factor the hexadecapolar term

from Vinson & Chiang (2018) given by c3Rhex in order to use the equa-
tions of motion derived by Naoz et al. (2017) with the aim of calculating
the hexadecapolar contribution of the secular approximation to the ω2

precession rate.
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d2 =
21

8
e2

1(2 + e2
1), (16)

d3 =
63

8
e4

1. (17)

From the analysis carried out by Vinson & Chiang (2018), it
is worth noting that the ω2 resonance or inverse Lidov-Kozai
resonance appears at hexadecapole order in the secular treat-
ment due to the existence of the term in Eq. (14) proportional
to e2

2
cos(2ω2).

Vinson & Chiang (2018) derived interesting conclusions con-
cerning the inverse Lidov-Kozai resonance for different values
corresponding to the eccentricity e1 of the inner perturber. In
fact, from a secular analysis truncated up to the hexadecap-
olar order, the authors inferred that the inverse Lidov-Kozai
resonance persists up to a value of e1 = 0.3. However, from
N-body simulations, the authors found the inverse Lidov-Kozai
resonance only up to a value of e1 = 0.1. From these results,
Vinson & Chiang (2018) suggested that the inverse Lidov-Kozai
resonance seems to disappear at higher e1 being overwhelmed
by the octupole effects. It is important to remark that the exper-
iments carried out by these authors did not use a wide range of
initial conditions associated with the orbital parameters of the
outer test particle for each value of the eccentricity of the inner
perturber.

3. Determination of the ω2 precession rate

In the previous section, we described the expression of the
energy function f associated with an outer test particle orbit-
ing around a central star and evolving under the influence of an
inner perturber with an arbitrary eccentricity. In particular, we
presented the quadrupole and octupole terms of the energy func-
tion calculated by Naoz et al. (2017), and the hexadecapolar term
derived by Vinson & Chiang (2018). From such expressions and
the equations of motion given by Eqs. (1)–(4), it is possible to
determine the change rate of the eccentricity e2, the inclination
i2, the argument of pericenter ω2, and the ascending node longi-
tude Ω2 associated with the outer test particle. As we have said
before, our main research focuses on the inverse Lidov-Kozai
resonance, for which we are only interested in computing the ω2

precession rate in the present study.

3.1. General treatment

Taking into account the quadrupole, octupole, and hexadecapo-
lar terms of the energy function, it is possible to determine the
contribution of each order of the secular approximation to the ω2

precession rate. Thus, the ω2 quadrupole precession rate is given
by

(

dω2

dτ

)

quad

=
1

(1 − e2
2
)2

{

−6 − 9e2
1 + 15θ22(2 + 3e2

1)

+ 15e2
1(3 − 5θ22) cos(2Ω2)

}

. (18)

Then, the contribution of the octupole term to the ω2 preces-
sion rate adopts the expression

(

dω2

dτ

)

oct

=
ǫ

(1 − e2
2
)1/2

{

(4 +
1

e2
2

) foct

}

−
15ǫe1θ2

4(1 − e2
2
)2

{

10(1 − e2
1)(1 − 3θ22) sinω2 sinΩ2

+
1

2

[

− 10θ2(2 + 5e2
1) + 70e2

1θ2 cos(2Ω2)

]

× (θ2 sinω2 sinΩ2 − cosω2 cosΩ2)

+
1

2

[

2 + 19e2
1 − 5θ22(2 + 5e2

1)

− 35e2
1(1 − θ22) cos(2Ω2)

]

sinω2 sinΩ2

}

. (19)

Finally, the contribution of the hexadecapolar term to the ω2

precession rate is given by

(

dω2

dτ

)

hex

=
16

Gm1

a3
2

a2
1

(1 − e2
2
)1/2

e2

{

c3

∂Rhex

∂e2

+
e2

(1 − e2
2
)
θ2c3

∂Rhex

∂θ2
+ Rhex

∂c3

∂e2

}

, (20)

where c3 and Rhex are given by Eqs. (13) and (14), respectively,
and

∂Rhex

∂e2

=
3

16
6e2d1 −

495

1024
2e2 +

945

1024
θ422e2 −

405

512
θ222e2

+

{

315

1024
2e2 −

315

512
θ222e2 +

315

1024
θ422e2

}

d3 cos(4Ω2)

+
105

512

{

θ32 − θ2 −
1

2
θ42 +

1

2

}

d32e2 cos(2ω2 − 4Ω2)

+
105

512

{

− θ32 + θ2 −
1

2
θ42 +

1

2

}

d32e2 cos(2ω2 + 4Ω2)

+

{

45

64
θ22 −

45

512
−

315

512
θ42

}

2e2 cos(2ω2)

+

{

45

32
θ22 −

45

256
−

315

256
θ42

}

d22e2 cos(2Ω2)

+

{

15

256
−

45

128
θ22 +

75

256
θ2 +

105

256
θ42 −

105

256
θ32

}

× d22e2 cos(2ω2 − 2Ω2)

+

{

15

256
−

45

128
θ22 −

75

256
θ2 +

105

256
θ42 +

105

256
θ32

}

× d22e2 cos(2ω2 + 2Ω2), (21)

∂Rhex

∂θ2
= −

135

256
2θ2 +

315

512
4θ32 +

945

1024
4θ32e2

2 −
405

512
2θ2e2

2

+

{

105

512
4θ32 −

105

256
2θ2 −

315

512
2θ2e2

2 +
315

1024
4θ32e2

2

}

× d3 cos(4Ω2)

+
105

512

{

3θ22 − 1 − 2θ32

}

d3e2
2 cos(2ω2 − 4Ω2)

+
105

512

{

−3θ22 + 1 − 2θ32

}

d3e2
2 cos(2ω2 + 4Ω2)

+

{

45

64
2θ2 −

315

512
4θ32

}

e2
2 cos(2ω2)

+

{

15

16
2θ2 +

45

32
2θ2e2

2 −
315

256
4θ32e2

2 −
105

128
4θ32

}

× d2 cos(2Ω2)

+

{

−
45

128
2θ2 +

75

256
+

105

256
4θ32 −

105

256
3θ22

}
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× d2e2
2 cos(2ω2 − 2Ω2)

+

{

−
45

128
2θ2 −

75

256
+

105

256
4θ32 +

105

256
3θ22

}

× d2e2
2 cos(2ω2 + 2Ω2), (22)

∂c3

∂e2

= 7Gm1e2

a4
1

a5
2

1

(1 − e2
2
)9/2
. (23)

Once (dω2/dτ)quad, (dω2/dτ)oct, and (dω2/dτ)hex are cal-
culated from Eqs. (18), (19), and (20), respectively, the ω2

precession rate up to the hexadecapolar order of the secular
approximation is derived by

dω2

dτ
=

(

dω2

dτ

)

quad

+

(

dω2

dτ

)

oct

+

(

dω2

dτ

)

hex

. (24)

It is important to remark that if we want to compute the ω2

precession rate with respect to the true time t, it is necessary to
multiply Eq. (24) by the factor A given by Eq. (5).

3.2. Vanishing of the ω2 quadrupole precession rate

In general terms, in a secular treatment, the quadrupole preces-
sion rate of the argument of pericenter of the outer test particle
is that of greater magnitude since it is proportional to (a1/a2)2.
Thus, it is very interesting to determine the orbital parameter
space that leads to the vanishing of (dω2/dτ)quad.

Setting (dω2/dτ)quad = 0 in Eq. (18), we find that the values
of the inclination i2 that satisfy this condition are given by

i2 = arccos



















±

√

2 + 3e2
1
[1 − 5 cos(2Ω2)]

10 + 5e2
1
[3 − 5 cos(2Ω2)]



















. (25)

This expression allows us to derive several considerations of
interest concerning the temporal evolution of ω2. The simplest
case is produced when the orbit of the inner perturber is circular.
In fact, if e1 = 0, the quadrupole precession rate of the argument
of pericenter of the outer test particle vanishes for orbital incli-
nations i2 = 63.4◦ and 116.6◦. This result is consistent with the
critical inclinations that lead to the inverse Lidov-Kozai reso-
nance derived by Gallardo et al. (2012), who analyzed the Kozai
dynamics in the transneptunian region of the solar system taking
into account the gravitational perturbations of the giant planets
moving in circular and coplanar orbits. More recently, Vinson &
Chiang (2018) studied the outer elliptical restricted three-body
problem and also determined such critical inclinations associ-
ated with the vanishing of the ω2 quadrupole precession rate
analyzing the particular case of an inner perturber on a circular
orbit.

The problem is more complex when the inner perturber’s
orbit is eccentric. In fact, if e1 > 0, the values of the inclination
i2 that vanish the quadrupole precession rate of the argument
of pericenter of the outer test particle depend on the ascending
node longitude Ω2. The blue curve illustrated in Fig. 1 repre-
sents the pairs (Ω2, i2) that vanish the ω2 quadrupole precession
rate for different values of the eccentricity e1 associated with the
inner perturber. Moreover, the red curve illustrates the separa-
trix, while the red shaded region represents the pairs (Ω2, i2) that
lead to the orbit-flipping resonance.

From this, Fig. 1 allows us to appreciate important results
concerning the vanishing of the ω2 quadrupole precession rate.
On the one hand, for a value of e1 < e1,NF, all pairs (Ω2, i2)

that vanish the quadrupole precession rate of the argument of
pericenter ω2 are located outside the red shaded region that cor-
responds to orbital flips. To calculate e1,NF, we equate Eq. (25) at
Ω2 = 90◦ and Eq. (10), which implies that −64e4

1
− 12e2

1
+ 1= 0.

According to this expression, e1,NF adopts a value of 0.25.
On the other hand, it is also important to remark that for a

value of e1 > e1,F, the ω2 quadrupole precession rate is vanished
only for pairs (Ω2, i2) associated with the orbital flip, red-shaded
region. As Fig. 1 shows, to determine e1,F, it is enough to evalu-
ate Eq. (25) at (Ω2 = 0◦, i2 = 90◦), which is a pair corresponding
to the separatrix. This condition implies that 2 − 12e2

1
= 0, which

is satisfied for a value of e1,F = 0.40825.
This simple analysis allows us to observe that the eccentric-

ity e1 of the inner perturber determines what kind of outer test
particles vanish the ω2 quadrupole precession rate. In fact, if
the perturber’s eccentricity e1 < e1,NF = 0.25, the ω2 quadrupole
precession rate is only vanished for outer test particles on pro-
grade and retrograde orbits whose Ω2 evolves on a circulatory
regime, while when e1 > e1,F = 0.40825, only outer test parti-
cles on flipping orbits vanish the ω2 quadrupole precession
rate. For perturbers with eccentricities e1 between 0.25 and
0.40825, the ω2 quadrupole precession rate can be vanished
for outer test particles on prograde and retrograde orbits whose
Ω2 circulates, as well as for particles that experience an orbit-
flipping resonance, for values of the pair (Ω2, i2) that satisfy
Eq. (25).

In the next section, we make use of these analytical consider-
ations with the aim of describing results obtained from N-body
simulations. In fact, we use the expressions of the ω2 preces-
sion rate obtained in Sect. 3.1 and the criterion derived from
the vanishing of the ω2 quadrupole precession rate to analyze
the dynamical behavior of outer test particles that orbit around a
central star and evolve under the effects of an inner and eccentric
massive perturber in a given set of N-body experiments.

4. Results of N-body simulations

Recently, Zanardi et al. (2017) carried out N-body simulations4

aimed at studying the behavior of planetary systems that initially
harbor three Jupiter-mass giants located close to their dynamical
instability limit and an outer disk of test particles on quasicir-
cular and coplanar orbits around a 0.5 M⊙ star. In this work,
the authors analyzed the dynamical properties of such systems
after undergoing strong planetary scattering events involving the
three gaseous giants, and they focused their study on a set of
N-body simulations, in which a single Jupiter-mass planet sur-
vives after the dynamical instability event. In particular, Zanardi
et al. (2017) studied in detail a total of 12 N-body simulations,
each of which began with 1000 test particles, being some of them
removed during the evolution due to strong scattering events
from collisions with the planets or the central star, or ejections
from the system. In general terms, the 12 N-body simulations
developed by Zanardi et al. (2017) produce systems with outer
reservoirs composed of three different kinds of test particles:
(1) particles on prograde orbits and whose Ω2 circulates (here-
after Type-P particles), (2) particles on retrograde orbits and
whose Ω2 circulates (hereafter Type-R particles), and (3) par-
ticles whose orbital plane flips from prograde to retrograde and
back again along their evolution and whoseΩ2 librates (hereafter
Type-F particles).

4 Zanardi et al. (2017) carried out the N-body simulations using the
MERCURY code (Chambers 1999). In particular, the authors used the
RA15 version of the RADAU numerical integrator with an accuracy
parameter of 10−12 (Everhart 1985).
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Fig. 1. Pairs (Ω2, i2) that vanish the ω2 quadrupole precession rate are illustrated by a blue curve for different values of the eccentricity e1 associated
with the inner perturber, which is specified at the top left corner of every panel. For each scenario, the separatrix of the system, which is computed
up to the quadruple level of the secular approximation, is represented by a red curve, while the red shaded region illustrates the pairs (Ω2, i2) that
lead to the orbit-flipping quadrupole resonance.

In the present work, we study the evolution of the argument
of pericenter ω2 of the surviving outer test particles associated
with the 12 N-body simulations analyzed in detail by Zanardi
et al. (2017), in each of which a single Jupiter-mass planet sur-
vives in the system with different values of the semimajor axis a1

and the eccentricity e1. In particular, our main research is based
on outer test particles with values of (a1/a2) and ǫ parameter
.0.1. With these conditions, we seek to minimize the existence
of non-secular effects in the sample of test particles of work
extracted from the N-body simulations.

It is important to remark that the Jupiter-mass planets sur-
viving in the 12 N-body simulations that represent our sample
of work show a wide diversity of orbital eccentricities. From
such a sample, we can distinguish three different sets of N-body
simulations:

– Set 1: two of 12 N-body simulations, in which the inner
Jupiter-mass planet has an eccentricity e1 < e1,NF = 0.25,

– Set 2: one of 12 N-body simulations, in which the inner
Jupiter-mass planet has an eccentricity 0.25< e1 < 0.40825,
and

– Set 3: nine of 12 N-body simulations, in which the inner
Jupiter-mass planet has an eccentricity e1 > e1,F = 0.40825.

Taking into account the analytical considerations derived in
Sect. 3, we analyze the evolution of the argument of pericenter
ω2 of the Type-P, -R, and -F outer test particles in each of these
three different sets of N-body simulations. It is worth mention-
ing that we do not find test particles of interest concerning the
evolution of the argument of pericenter ω2 in the N-body simu-
lation associated with Set 2. From this, our study focuses on the
Sets 1 and 3 of N-body simulations, which show test particles
with a wide diversity of dynamical behavior.

We want to note two very important points concerning the
N-body simulations used in the present research. On the one
hand, the initial conditions of the test particles refer to orbital
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Fig. 2. Left panel: evolutionary trajectory of a Type-P particle associated with the Set 1 of N-body simulations is represented by the black curve in
an inclination i2 versus ascending node longitude Ω2 plane. The initial orbital elements of this particle are a2 = 21.935 au, e2 = 0.452, i2 = 37.129◦,
ω2 = 165.966◦, and Ω2 = 97.285◦. The inner Jupiter-mass planet of such a system has a semimajor axis a1 = 1.011 au and an eccentricity e1 = 0.237.
The red curve represents the separatrix of the system, while the blue curve illustrates the pairs (Ω2, i2) that vanish the ω2 quadrupole precession
rate for an inner perturber of e1 = 0.237. Right panel: temporal evolution of the argument of pericenter ω2 of the same particle.

parameters immediately after the dynamical instability event,
when a single Jupiter-mass planet survives in the system. In fact,
we study the dynamical properties of each test particle in the
framework of a restricted three-body problem (star + planet +
test particle) and its initial conditions must correspond to such
a system. A detailed discussion on this is developed by Zanardi
et al. (2017), and an illustration of the initial conditions of the
test particles associated with the 12 N-body simulations used in
the present work can be found in Fig. 2 of Zanardi et al. (2018).
On the other hand, in order to compare properly the numeri-
cal results to the analytical expressions obtained in Sect. 3, we
emphasize that the orbital parameters of the outer test particles
and the surviving planet of each N-body simulation are assumed
to be referenced to the barycenter and invariant plane of the sys-
tem (star + planet), whose x-axis is selected to coincide with the
surviving planet’s periapse. To do this, we set the longitude of
pericenter of the inner perturber ̟1 = 0 in agreement with Naoz
et al. (2017) and Vinson & Chiang (2018).

4.1. Inner perturber with an eccentricity e1 < e1,NF = 0.25

As we said above, in two out of 12 N-body simulations, the
eccentricity e1 of the inner Jupiter-mass planet is less than
e1,NF = 0.25. Specifically, the values of e1 associated with such
simulations are 0.227 and 0.237. We carried out a detailed anal-
ysis of the outer reservoirs of such systems with the aim of
describing the evolution of the argument of pericenter ω2 of the
Type-P, -R, and -F particles.

In particular, Figs. 2–4 show the evolution of three differ-
ent kinds of Type-P particles associated with a simulation whose
inner perturber has an eccentricity e1 of 0.237. The left panel of
Fig. 2 describes the evolution of a given Type-P particle in the
(Ω2, i2) plane, which is represented by the black curve. More-
over, the red curve illustrates the separatrix of the system, which
is computed up to the quadrupole level of the secular approxima-
tion such as was described in Sect. 2, and the blue curve shows
the pairs (Ω2, i2) that vanish the ω2 quadrupole precession rate
for an inner perturber with an eccentricity e1 of 0.237. As the
reader can see, the ascending node longitude Ω2 of the test parti-
cle evolves in a circulation mode, while its inclination i2 always
adopts prograde values. It is important to note that the trajectory

of the test particle never crosses the blue curve, which indicates
that its ω2 quadrupole precession rate does not vanish along its
evolution. From this, the right panel of Fig. 2 shows that the argu-
ment of pericenter ω2 of the test particle circulates over 108 yr
of evolution.

In the same way, the black curve in the top panel of Fig. 3
illustrates the evolution of a test particle representative of a
second kind of Type-P particle in the inclination i2 versus
ascending node longitude Ω2 plane. In this case, the evolution-
ary trajectory of the particle periodically crosses the blue curve,
which determines pairs (Ω2, i2) that lead to the vanishing of
the ω2 quadrupole precession rate. The middle panel of Fig. 3
shows that the argument of pericenter ω2 of this Type-P particle
circulates reaching local minimum and maximum values.

To understand the existence of these local minima and max-
ima associated with the evolution of argument of pericenter ω2

of the outer test particle under consideration, we compute the
values of i2, Ω2, and ω2 corresponding to the vanishing of the
ω2 quadrupole precession rate (dω2/dτ)quad, which is given by
Eq. (18), and the vanishing of the ω2 precession rate calcu-
lated up to the hexadecapolar level of the secular approximation
(dω2/dτ), which is represented by Eq. (24). From this, on the
one hand, the bottom panel of Fig. 3 shows a zoom of the middle
panel between 200 and 300 Myr and it illustrates the values of
ω2 associated with the vanishing of (dω2/dτ)quad and (dω2/dτ)
by yellow and green circles, respectively. As the reader can see,
the local minimum and maximum observed in the evolution of
ω2 are in a good agreement with the green circles, while the yel-
low ones are very close to them. On the other hand, the top panel
of Fig. 3 shows the pairs (Ω2, i2) associated with the vanishing of
(dω2/dτ)quad and (dω2/dτ) by yellow and green circles, respec-
tively. From this, the green circles represent values of i2 and Ω2

very similar to those illustrated by the yellow ones, which are
located on the blue curve.

Finally, the top panel of Fig. 4 shows the evolution of a test
particle representative of a third kind of Type-P particles in the
(Ω2, i2) plane, which is illustrated by the black curve. Accord-
ing to this, the intersection points of the evolutionary trajectory
of the particle with the blue curve define pairs (Ω2, i2) that vanish
the ω2 quadrupole precession rate. Once this is done, we analyze
the temporal evolution of the argument of pericenter ω2 of the
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Fig. 3. Top panel: evolutionary trajectory of a Type-P particle asso-
ciated with Set 1 of N-body simulations in the (Ω2, i2) plane (black
curve). The initial orbital parameters of this particle are a2 = 20.306 au,
e2 = 0.556, i2 = 66.612◦,ω2 = 148.109◦, andΩ2 = 328.286◦. The values of
a1 and e1 associated with the inner Jupiter-mass planet, and the red and
blue curves are defined in the caption of Fig. 2. The yellow and green
circles illustrate the pairs (Ω2, i2) of the particle’s trajectory associated
with the vanishing of (dω2/dτ)quad and (dω2/dτ), respectively. Middle
panel: evolution in time of the argument of pericenterω2 of such a parti-
cle. Bottom panel: zoom of the middle panel between 200 and 300 Myr.
The yellow and green circles represent the values of ω2 of the particle’s
trajectory associated with the vanishing of (dω2/dτ)quad and (dω2/dτ),
respectively.

test particle, which is illustrated in the middle panel of Fig. 4. In
this particular case, ω2 librates around 270◦, reaching local min-
imum and maximum values. This behavior defines an inverse

Fig. 4. Top panel: trajectory of a Type-P particle associated with Set 1 of
N-body simulations in the (Ω2, i2) plane (black curve). The initial orbital
parameters of this particle are a2 = 17.424 au, e2 = 0.371, i2 = 69.930◦,
ω2 = 325.686◦, and Ω2 = 159.785◦. The values of a1 and e1 associated
with the inner perturber, and the red and blue curves are defined in
the caption of Fig. 2. Middle panel: temporal evolution of the argu-
ment of pericenter ω2 of such a particle, which librates by defining an
inverse Lidov-Kozai resonance. Bottom panel: zoom of the middle panel
between 480 and 600 Myr. The yellow and green circles illustrated in
the top and bottom panels are defined in the caption of Fig. 3.

Lidov-Kozai resonance, and it represents the only example that
we find in the sample of particles with values of (a1/a2) and ǫ
parameter less than 0.1 in our two N-body simulations with an
inner perturber whose eccentricity e1 is less than e1,NF = 0.25. In
fact, the inverse Lidov Kozai resonance is more restrictive than
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the conventional Lidov-Kozai resonance, and the orbital param-
eters (in particular, the values of Ω2 and i2) that lead to a ω2

resonance for an outer test particle are more limited.
For this particular case, we also derive the values of the incli-

nation i2, the ascending node longitude Ω2, and the argument of
pericenterω2 associated with the vanishing of theω2 quadrupole
precession rate (dω2/dτ)quad (yellow circles), and the ω2 preces-
sion rate computed up to the hexadecapolar level of the secular
approximation (dω2/dτ) (green circles). On the one hand, the
yellow circles illustrated in the top panel of Fig. 4 are logically
located on the blue curve, while the green ones represent pairs
(Ω2, i2) close to them. On the other hand, the bottom panel of
Fig. 4 shows that the local minimum and maximum values of the
temporal evolution of ω2 are in a good agreement with the green
circles, but the yellow ones are close.

We must note a very important difference observed between
Type-P particles whose argument of pericenterω2 circulates, and
those Type-P particles that experience an inverse Lidov-Kozai
resonance. In fact, on the one hand, if ω2 circulates, the mini-
mum values of the orbital inclination i2 at Ω2 = 90◦ and 270◦ are
the same. This result is very well illustrated in the left and top
panels of Figs. 2 and 3, respectively. Beyond this, the top panel of
Fig. 5, which represents a zoom of the top panel of Fig. 3, allows
us a better appreciation of the equivalence between the mini-
mum values of the inclination i2 at Ω2 = 90◦ and 270◦ of a test
particle whose ω2 evolves in a circulatory regime. On the other
hand, if ω2 librates, the minimum values of the orbital inclina-
tion i2 at Ω2 = 90◦ and 270◦ are different, which can be seen in
the middle and bottom panels of Fig. 5, which illustrate evolu-
tionary trajectories of two different particles whose ω2 librates
around 270◦ and 90◦, respectively. According to what we observe
in these panels, the value of the ascending node longitude Ω2

associated with the absolute minimum of the inclination i2 of a
Type-P particle in a ω2 resonance depends on the libration cen-
ter of ω2. In fact, if an outer test particle experiences an inverse
Lidov-Kozai resonance, the minimum value of the inclination i2
corresponds to Ω2 = 270◦ (90◦) if ω2 librates around 270◦ (90◦).
We would like to note that the middle panel of Fig. 5 is a zoom
of the top panel of Fig. 4, which illustrates the evolution of the
only particle with values of (a1/a2) and ǫ parameter less than 0.1
in an inverse Lidov-Kozai resonance in our two N-body simu-
lations with an inner perturber’s eccentricity e1 < e1,NF = 0.25.
The bottom panel of Fig. 5 is associated with the evolution of
a test particle that experiences a ω2 resonance with values of
(a1/a2) and ǫ parameter slightly greater than 0.1 in a system
whose inner perturber’s eccentricity e1 = 0.227. While our main
investigation did not take into account such test particles, we
decided to include it in order to explicitly show the sensitivity
of the results exposed in Fig. 5 to the libration center of ω2.

The Type-R outer test particles observed in this set of
N-body simulations show a behavior similar to that described
for the Type-P particles illustrated in Figs. 2 and 3 concerning
the evolution of the argument of pericenter ω2. In fact, as we
said above, we do not find Type-R outer test particles that expe-
rience an inverse Lidov-Kozai resonance in our sample of work.
It is important to remember that the initial conditions of the test
particles of the N-body simulations used in the present study
correspond to orbital parameters immediately after the dynami-
cal instability event, when a single Jupiter-mass planet survives
in the system. As Zanardi et al. (2017) described and Zanardi
et al. (2018) illustrated in their Fig. 2, the number of particles
with initial orbital inclinations higher than 90◦ is much lower
than the number associated with initial inclinations less than 90◦.

Fig. 5. Evolutionary trajectories in the (Ω2, i2) plane of Type-P particles
associated with Set 1 of N-body simulations are displayed in a zoom.
In every panel, the black curve illustrates the test particle’s trajectory,
while the red and blue curves represent the separatrix and the pairs (Ω2,
i2) that vanish the ω2 quadrupole precession rate of the system under
consideration. The particles illustrated in the top and middle panels
are those represented in Figs. 3 and 4, respectively. Bottom panel: ini-
tial orbital parameters of the test particle are a2 = 13.833 au, e2 = 0.672,
i2 = 63.712◦, ω2 = 33.2◦, and Ω2 = 138.95◦, while the values of a1 and e1

of the inner Jupiter-mass planet are 1.561 au and 0.227, respectively.

According to this and taking into account the restrictive con-
ditions associated with an inverse Lidov-Kozai resonance, it is
easy to understand that no Type-R test particle was found in a ω2

resonance in the present set of N-body simulations.
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Fig. 6. Left panel: trajectory of a Type-F particle corresponding to Set 1 of N-body simulations in the (Ω2, i2) plane (black curve). The initial orbital
elements of this particle are a2 = 14.116 au, e2 = 0.262, i2 = 83.136◦, ω2 = 156.0◦, and Ω2 = 133.263◦. The values of a1 and e1 associated with the
inner perturber, and the red and blue curves are defined in the caption of Fig. 2. Right panel: evolution in time of the argument of pericenter ω2 of
the particle.

Fig. 7. Left panel: trajectory of a Type-P particle associated with Set 3 of N-body simulations in the (Ω2, i2) plane (black curve). The initial
orbital elements of this particle are a2 = 38.098 au, e2 = 0.676, i2 = 18.455◦, ω2 = 134.168◦, and Ω2 = 119.149◦. The inner Jupiter-mass planet of such
a system has a semimajor axis a1 = 1.778 au and an eccentricity e1 = 0.475. The red curve represents the separatrix of the system, while the blue
curve illustrates the pairs (Ω2, i2) that vanish the ω2 quadrupole precession rate for an inner perturber of e1 = 0.475. Right panel: temporal evolution
of the argument of pericenter ω2 of the particle.

Finally, in general terms, the behavior of the argument of
pericenter ω2 of the Type-F particles associated with Set 1 of
N-body simulations is very simple. In fact, Fig. 6 shows the evo-
lution of a given Type-F particle associated with a system with
an inner perturber whose eccentricity e1 is 0.237. The left panel
illustrates the trajectory of such a particle in an inclination i2
versus ascending node longitude Ω2 plane. According to Naoz
et al. (2017) and Zanardi et al. (2017), if the inclination i2 of the
outer particle’s orbital plane flips from prograde to retrograde
values and back again, the ascending node longitude Ω2 librates
between two specific values. Thus, if the orbital plane of the par-
ticle flips along the entire evolution, its evolutionary trajectory
is confined to the inner region of the separatrix in an i2 versus
Ω2 plane, and it never crosses the blue curve, which indicates
that the ω2 quadrupole precession rate does not vanish. From
this, we analyze the temporal evolution of the argument of peri-
center ω2 of such a Type-F particle. Our study shows that ω2

circulates over 108 yr, which is illustrated in the right panel of
Fig. 6.

4.2. Inner perturber with an eccentricity e1 >e1,F = 0.40825

As we said at the beginning of the present section, the inner mas-
sive perturber has an eccentricity e1 greater than e1,F = 0.40825
in nine out of 12 N-body simulations. We also analyze in detail
the evolution of the argument of pericenter ω2 of the Type-P, -R,

and -F particles associated with the outer small body populations
of those resulting systems.

In general terms, the evolution of the argument of pericen-
ter ω2 of the Type-P and -R particles associated with N-body
simulations of Set 3 is very simple. In fact, Fig. 7 illustrates
the evolution of a given Type-P particle associated with a sys-
tem with an inner Jupiter-mass planet whose eccentricity e1 is
0.4753. In particular, the left panel exposes the trajectory of
such a particle in the (Ω2, i2) plane, which is represented by
the black curve. The evolution of such a particle is very simi-
lar to that described for the Type-P particle illustrated in Fig. 2.
In fact, as the reader can see, the evolutionary trajectory of
the particle never crosses the blue curve, which indicates that
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Fig. 8. Left panel: evolutionary trajectory of a Type-F particle associated with Set 3 of N-body simulations in the (Ω2, i2) plane (black curve). The
initial orbital parameters of this particle are a2 = 23.580 au, e2 = 0.331, i2 = 72.326◦, ω2 = 134.249◦, and Ω2 = 247.646◦. The values of a1 and e1 of
the inner Jupiter-mass planet of the system are 1.333 au and 0.566, respectively. The red and blue curves illustrate the separatrix and the pairs (Ω2,
i2) that vanish the ω2 quadrupole precession rate for an inner perturber of e1 = 0.566, respectively. Right panel: temporal evolution of the argument
of pericenter ω2 of such a particle.

the ω2 quadrupole precession rate does not vanish. Finally, the
right panel of Fig. 7 shows that the argument of pericenter ω2

circulates.
It is worth mentioning that in the nine systems under con-

sideration with an inner massive perturber whose orbit is more
eccentric than e1,F = 0.40825, we observe three different kinds
of Type-F particles in the resulting outer reservoirs. We note that
all Type-F particles produced in our simulations show an orbit-
flipping resonance that involves librations of the ascending node
longitude Ω2 and variations of the inclination i2 between pro-
grade and retrograde values. The differences observed in those
three kinds of Type-F particles are primarily associated with the
temporal evolution of the argument of pericenter ω2.

Figure 8 shows the evolution of a Type-F particle represen-
tative of the first kind. In particular, the black curve in the left
panel illustrates the trajectory of such a particle in the inclination
i2 versus ascending node longitudeΩ2 plane. While the evolution
of the particle is confined to the inner region of the separatrix,
it never crosses the blue curve and the ω2 quadrupole preces-
sion rate is not vanished for any pair (Ω2, i2) along the entire
evolution. The right panel of Fig. 8 shows that the argument of
pericenter ω2 of such a Type-F particle evolves in a circulatory
regime.

One representative example of a second kind of Type-F par-
ticle can be observed in Fig. 9. In particular, the top panel of
Fig. 9 describes the evolution of such a particle in the inclination
i2 versus ascending node longitude Ω2 plane by a black curve.
As the reader can see, the evolutionary trajectory periodically
crosses the blue curve, which defines values associated with i2
and Ω2 that vanish the ω2 quadrupole precession rate. For this
particular case, the argument of pericenter ω2 circulates reach-
ing local minimum and maximum values, which is illustrated
in the middle panel of Fig. 9. As the reader can see, the yel-
low and green circles, which are associated with the vanishing
of (dω2/dτ)quad (Eq. (18)) and (dω2/dτ) (Eq. (24)), respectively,
are close and they are in good agreement with the local mini-
mum and maximum values of ω2 observed in the bottom panel
of Fig. 9. Moreover, the yellow and green circles are also very
close in the (Ω2, i2) plane, which can be seen in the top panel of
Fig. 9.

Figure 10 shows the evolution of a Type-F particle repre-
sentative of the third kind, which is the most interesting one

concerning the behavior of the argument of pericenter ω2. In
particular, the evolution of such a Type-F particle in the (Ω2, i2)
plane is illustrated by a black curve in the top panel of Fig. 10.
As in the previous example, the blue curve is periodically crossed
by the trajectory associated with the particle, which determines
pairs (Ω2, i2) that lead to the vanishing of the ω2 quadrupole
precession rate. However, in this particular case, the argument of
pericenter ω2 librates around 90◦ reaching local minimum and
maximum values, which can be observed in the temporal evolu-
tion of ω2 represented in the middle panel of Fig. 10. From this,
the Type-F particles corresponding to this third kind experience
an inverse Lidov-Kozai resonance associated with librations of
ω2. It is important to remark that these particles are of particular
interest since both the ascending node longitude Ω2 as well as
the argument of pericenter ω2 evolve in a libration regime, while
the inclination i2 oscillates from prograde to retrograde values
and back again around 90◦.

As in the examples represented in the Figs. 3, 4, and 9, we
determine the values of i2, Ω2, and ω2 of the particle’s trajectory
associated with the vanishing of (dω2/dτ)quad (yellow circles)
and (dω2/dτ) (green circles). On the one hand, according to what
is observed in the top panel of Fig. 10, the green and yellow
circles are close but they slightly differ from each other in com-
parison with what is observed in the top panel of Fig. 9, which
represents the case of a Type-F particle whose argument of peri-
center ω2 circulates. On the other hand, the bottom panel of
Fig. 10 shows that the local minimum and maximum values of
the temporal evolution of ω2 of a Type-F particle that experi-
ences an inverse Lidov-Kozai resonance are in good agreement
with the green circles, while the yellow ones are close.

It is important to describe a peculiar property of the Type-F
particles that experience an inverse Lidov-Kozai resonance in
comparison with those Type-F particles whose argument of peri-
center ω2 circulates. In fact, if ω2 evolves on a circulatory
regime, the ascending node longitude Ω2 of the test particle
adopts extreme values for orbital inclinations i2 around 90◦.
Thus, the evolutionary trajectory of such a particle in an inclina-
tion i2 versus ascending node longitude Ω2 plane is symmetrical
with respect to i2 = 90◦. The behavior is very different if the
Type-F particle experiences an inverse Lidov-Kozai resonance.
In fact, if ω2 evolves on a librating regime, the extreme val-
ues of the ascending node longitude Ω2 are not obtained for
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Fig. 9. Top panel: trajectory of a Type-F particle associated with Set 3 of
N-body simulations in the (Ω2, i2) plane (black curve). The initial orbital
parameters of this particle are a2 = 20.332 au, e2 = 0.468, i2 = 56.236◦,
ω2 = 99.392◦, and Ω2 = 233.557◦. The values of a1 and e1 associated
with the inner perturber, and the red and blue curves are defined in the
caption of Fig. 8. Middle panel: evolution in time of the argument of
pericenterω2 of such a particle. Bottom panel: zoom of the middle panel
between 20 and 50 Myr. The references associated with the yellow and
green circles illustrated in the top and bottom panels are described in
the caption of Fig. 3.

orbital inclinations i2 around 90◦. In such a case, Ω2 adopts
extreme values for prograde or retrograde inclinations depend-
ing on the center of libration associated with Ω2 and ω2. Thus,
the evolutionary trajectory of such a particle in an inclination i2

Fig. 10. Top panel: evolutionary trajectory of a Type-F particle asso-
ciated with Set 3 of N-body simulations in the (Ω2, i2) plane (black
curve). The initial orbital parameters of this particle are a2 = 34.201 au,
e2 = 0.696, i2 = 52.853◦,ω2 = 120.147◦, andΩ2 = 254.671◦. The values of
a1 and e1 associated with the inner perturber, and the red and blue curves
are defined in the caption of Fig. 7. Middle panel: evolution in time of
the argument of pericenter ω2 of such a particle, which librates around
90◦ by defining an inverse Lidov-Kozai resonance. Bottom panel: zoom
of the middle panel between 1.44 and 1.52 Gyr. The references associ-
ated with the yellow and green circles represented in the top and bottom
panels are described in the caption of Fig. 3.

versus ascending node longitude Ω2 plane shows evidence of an
asymmetry with respect to i2 = 90◦.

The topic concerning the asymmetrical orbital flips in a (Ω2,
i2) plane with respect to i2 = 90◦ is very interesting. In fact,
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Zanardi et al. (2018) showed that, when the general relativity is
included, the extreme values of the ascending node longitude Ω2

associated with a given outer test particle are obtained for ret-
rograde inclinations, leading to an asymmetrical orbital flip in a
(Ω2, i2) plane with respect to i2 = 90◦. From this, it is very impor-
tant to remark that the results derived in the present research
indicate that, in the absence of general relativity, the existence
of an asymmetrical orbital flip in a (Ω2, i2) plane with respect to
an inclination i2 = 90◦ is a clear sign of an inverse Lidov-Kozai
resonance.

We can understand the correlation between the asymmetrical
orbital flips and the inverse Lidov-Kozai resonance from analyt-
ical considerations. To do this, it is important to remark that it is
not enough to analyze the extreme values of the ascending node
longitude Ω2 from the vanishing of the Ω2 quadrupole preces-
sion rate. In fact, as we mention in Sect. 2, the Ω2 quadrupole
precession rate vanishes for an inclination i2 = 90◦, which would
lead to symmetrical orbital flips in a (Ω2, i2) plane with respect
to i2 = 90◦, regardless of the evolution of the argument of peri-
center ω2. To describe in detail the symmetry or asymmetry of
the trajectories associated with Type-F particles in an inclina-
tion i2 versus ascending node longitude Ω2 plane with respect
to i2 = 90◦, we must compute the extreme values of the ascend-
ing node longitude Ω2 from the vanishing of the Ω2 precession
rate calculated (at least) up to the octupole level of the secular
approximation. From Eq. (4) and the expression of the energy
function given by Eq. (6), the Ω2 precession rate computed up to
the octupole level of the approximation is expressed by

dΩ2

dτ
= −
∂ fquad

∂θ2

1

J2

−
∂ foct

∂θ2

ǫ

J2
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2
)2

{
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For the particular case of Type-F particles, the ascending
node longitude Ω2 evolves in a librating regime. The presence of
sines and cosines of the argument of pericenter ω2 in α, β, and γ
parameters indicates that the vanishing of the Ω2 precession rate
depends on the evolutionary regime associated with ω2.

To understand this, we analyze five Type-F particles of Set
3 of N-body simulations with different modes of behavior con-
cerning the evolution of the argument of pericenter ω2, which
are illustrated in Fig. 11. This figure shows five rows, which are
numbered from 1 to 5 from top to bottom. Every row refers to
a given Type-F particle. The left panels of each row describe
the evolution in time of the argument of pericenter ω2 and the
ascending node longitude Ω2 of the test particle under study
by black and gray curves, respectively. Then, the middle pan-
els represent the evolutionary trajectory in the (Ω2, i2) plane
of each Type-F particle by a black curve, while the separatrix
and the pairs (Ω2, i2) that vanish the ω2 quadrupole precession
rate for the system under consideration are also illustrated by

red and blue curves, respectively. Finally, the right panels dis-
play a zoom of the middle panels by including the pairs (Ω2,
i2) of the trajectory of the corresponding test particle that van-
ish the Ω2 precession rate computed up to the octupole level of
the approximation (Eq. (26)), which are represented by violet
circles. Table 1 summarizes the initial orbital parameters associ-
ated with the five Type-F particles analyzed in Fig. 11, and the
values of the semimajor axis a1 and the eccentricity e1 of the
inner Jupiter-mass planet of each system corresponding to such
particles.

Row 1 of Fig. 11 illustrates the particular case of a Type-F
particle whose argument of pericenter ω2 circulates. Accord-
ing to this, the extreme values of the ascending node longitude
Ω2 are obtained for inclinations i2 around 90◦, which leads to
symmetrical orbital flips in the (Ω2, i2) plane with respect to
i2 = 90◦.

Row 2 of Fig. 11 describes the evolution of a Type-F particle
whoseω2 (Ω2) librates around 90◦ (270◦). From this, the extreme
values of Ω2 are associated with retrograde inclinations, which
produce asymmetrical orbital flips in the (Ω2, i2) plane with
respect to i2 = 90◦. This also can be observed in row 3 of Fig. 11.
In this case, the particle being studied experiences librations of
ω2 (Ω2) around 270◦ (90◦). As in row 2, retrograde inclinations
determine the extreme values of Ω2, which leads to an asymme-
try in the evolutionary trajectory of the Type-F particle in the
(Ω2, i2) plane with respect to i2 = 90◦.

Rows 4 and 5 of Fig. 11 show a different result in comparison
with that above described. In fact, both the argument of pericen-
ter ω2 as well as the ascending node longitude Ω2 of the Type-F
particle analyzed in row 4 (5) librate around 270◦ (90◦). When
ω2 and Ω2 have the same center of libration, the extreme values
of Ω2 are associated with prograde inclinations, which produces
asymmetrical orbital flips in the (Ω2, i2) plane with respect to
i2 = 90◦.

We would like to remark that the test particle represented
in row 4 of Fig. 11 is associated with a system with an inner
massive perturber whose eccentricity e1 is of 0.739. This sim-
ple example is of significant interest and it illustrates that the
inverse Lidov-Kozai resonance can be found even for high values
of the inner perturber’s eccentricity e1 from a suitable selection
of initial conditions.

5. Discussion and conclusions

In the present research, we study the evolution of the argument of
pericenter ω2 of outer test particles that orbit a given central star
and undergo the effects of an inner massive perturber. In partic-
ular, we describe the behavior of ω2 as a function of the orbital
eccentricity e1 of the inner perturber. The key result derived in
our study indicates that the inverse Lidov-Kozai or ω2 resonance
can appear for small, moderate, and high values of e1 as long as
suitable initial conditions mainly associated with i2 and Ω2 are
adopted.

First, we carried out our investigation from analytical consid-
erations. To do this, we adopted the expression of the potential
expanded up to the octupole level of the secular approximation
derived by Naoz et al. (2017), as well as the term of hexadecap-
olar order included later by Vinson & Chiang (2018). From this,
we computed equations that express the contribution of the terms
of quadrupole, octupole, and hexadecapolar order of the secular
approximation to the ω2 precession rate. Our study suggests that
the pairs (Ω2, i2) that vanish the ω2 quadrupole precession rate
(dω2/dτ)quad strongly depend on the eccentricity e1 of the inner
perturber. In fact, if e1 < 0.25, (dω2/dτ)quad is only vanished for
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Fig. 11. Evolution of different Type-F particles associated with Set 3 of N-body simulations. The rows are numbered from 1 to 5 from top to bottom.
In every row, the black and gray curves of the left panel illustrate the evolution in time of ω2 and Ω2, respectively. Then, the black and red curves
of the middle panel represent the trajectory of the particle and the separatrix in the plane (Ω2, i2), respectively, while the blue curve shows the
pairs (Ω2, i2) of the particle’s trajectory that vanish the ω2 quadrupole precession rate of the system under consideration. Finally, the violet circles
of the right panel illustrate the pairs (Ω2, i2) of the particle’s trajectory that vanish the Ω2 precession rate calculated up to the octupole level of
the approximation. The initial orbital parameters of the test particles and the values of a1 and e1 associated with the inner Jupiter-mass planet are
specified for every row in Table 1.

test particles on prograde and retrograde orbits whose ascend-
ing node longitude Ω2 evolves in a circulatory regime, while,
if e1 > 0.40825, (dω2/dτ)quad is only vanished for test particles

that experience an orbit-flipping resonance, in whichΩ2 librates.
For inner perturber eccentricities e1 between 0.25 and 0.40825,
our analysis indicates that any test particle can vanish the ω2
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Table 1. Initial orbital parameters.

Row a1 (au) e1 a2 (au) e2 i2 (◦) ω2 (◦) Ω2 (◦)

1 1.333 0.566 22.812 0.310 66.702 147.045 244.081
2 1.778 0.475 17.374 0.676 64.417 110.960 231.042
3 1.778 0.475 9.017 0.458 65.22 274.070 130.580
4 0.977 0.739 7.127 0.513 132.016 218.093 288.414
5 1.487 0.691 19.102 0.700 51.499 36.313 124.091

Notes. The table lists: the semimajor axis a2, eccentricity e2, inclination i2, argument of pericenter ω2, and ascending node longitudeΩ2 associated
with the Type-F particles of Fig. 11. Moreover, the semimajor axis a1 and the eccentricity e1 of the inner Jupiter-mass planet of each system are
also specified. The rows are numbered from 1 to 5 from top to bottom of Fig. 11. It is important to note that the Type-F particles corresponding to
rows 2–5 show values associated with (a1/a2) or/and ǫ parameter slightly greater than 0.1.

quadrupole precession rate regardless of the evolutionary regime
of the ascending node longitude Ω2, for pairs (Ω2, i2) that satisfy
the relation given by Eq. (25).

Furthermore, we used the analytical considerations derived
in our research with the aim of describing the behavior of test
particles, which result from a set of N-body simulations pre-
sented by Zanardi et al. (2017). On the basis of such simulations,
we analyzed the evolution of the argument of pericenter ω2 of
outer test particles that evolve under the effects of a Jupiter-mass
planet around a 0.5 M⊙ star. The eccentricity e1 of the inner per-
turber associated with the sample of simulations of work ranges
from 0.227 to 0.94. We remark that the evolution of ω2 of the
outer test particles extracted from the N-body simulations car-
ried out by Zanardi et al. (2017) is in very good agreement with
the analytical criteria derived in the present investigation.

It is very important to mention that, unlike the results pro-
posed by Vinson & Chiang (2018), who found the inverse
Lidov-Kozai resonance only up to e1 = 0.1 in N-body experi-
ments, we observed outer test particles that experience a ω2

resonance for an inner perturber’s eccentricity e1 as high as 0.8
in the N-body simulations that represent our frame of work. As
we remarked at the beginning of this section, our research indi-
cates that the inverse Lidov-Kozai resonance can be found even
for high values of e1 as long as a correct choice of the initial
conditions is made.

It is worth noting that the inverse Lidov-Kozai resonance pro-
duces some distinctive features in the evolution of a test particle
in the inclination i2 versus ascending node longitude Ω2 plane.
On the one hand, if a given particle experiences an inverse Lidov-
Kozai resonance and its ascending node longitude Ω2 evolves
in a circulatory regime, the extreme values of the inclination i2
at Ω2 = 90◦ and 270◦ are not equal. Our study shows that the
value of Ω2 associated with the absolute extreme of i2 depends
on the center of libration of ω2. On the other hand, if a test
particle is in an inverse Lidov-Kozai resonance and its ascend-
ing node longitude Ω2 librates, the evolutionary trajectory of
such a particle in the inclination i2 versus ascending node lon-
gitude Ω2 plane shows evidence of an asymmetry with respect
to i2 = 90◦. Our analysis shows that the extreme values of Ω2 are
obtained for values of i2 less or higher than 90◦, which depends
on the centers of libration associated with Ω2 and ω2. We
remark that such distinctive features observed in the evolution
of test particles extracted from the N-body experiments are very
well described from the analytical expressions derived in our
investigation.

It is important to mention that our investigation shows
that the vanishing of ω2 quadrupole precession rate is not a

sufficient condition for the inverse Lidov-Kozai resonance. A
more detailed study is beyond the scope of this paper.

The dynamics discussed in this research could play a key role
in understanding the evolution of debris disks associated with
extrasolar systems that host an inner and eccentric giant planet.
In this sense, planetary systems such as HD 10647, HD 39091,
HD 50499, HD 50554, and HD 210277 can serve as valuable
laboratories to contrast theoretical results with observational evi-
dence from dynamical and collisional models associated with the
evolution of debris disks.

The present work represents a detailed investigation that
combines analytical considerations and numerical results
derived from N-body simulations concerning the inverse Lidov-
Kozai resonance. Such a treatment allows us to obtain a better
understanding of the evolution of the argument of pericenter ω2

of an outer test particle in the elliptical restricted three-body
problem.
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