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ABSTRACT

The binary star Par 1802 in the Orion Nebula presents an interesting puzzle in the field of

stellar dynamics and evolution. Binary systems such as Par 1802 are thought to form from the

same natal material and thus the stellar members are expected to have very similar physical

attributes. However, Par 1802’s stars have significantly different temperatures despite their

identical (within 3 per cent) masses of about 0.39 M⊙. The leading proof-of-concept idea is

that a third companion gravitationally induced the two stars to orbit closer than their Roche

limit, which facilitated heating through tidal effects. Here we expand on this idea and study

the three-body dynamical evolution of such a system, including tidal and pre-main-sequence

evolution. We also include tidal heating and mass transfer at the onset of Roche limit crossing.

We show, as a proof-of-concept, that mass transfer combined with tidal heating can naturally

explain the observed temperature discrepancy. We also predict the orbital configuration of the

possible tertiary companion. Finally, we suggest that the dynamical evolution of such a system

has pervasive consequences. We expect an abundance of systems to undergo mass transfer

during their pre-main-sequence time, which can cause temperature differences.

Key words: binaries: close – binaries: general – stars: kinematics and dynamics – stars: low-

mass – stars: pre-main-sequence.

1 IN T RO D U C T I O N

Basic physical properties of a star such as mass and temperature

are strongly determined by its initial mass and chemical com-

position. Equal-mass components of binary stars are typically

considered to be coeval and identical ‘twins’ formed from the

same protostellar core, and are expected to have identical physical

attributes. However, a small number of identical twin systems seem

to be inconsistent with this narrative, featuring a large temperature

difference between its component stars. These systems are rare, with

∼5 such systems having been observed and studied (e.g. Cargile,

Stassun & Mathieu 2008; Gómez Maqueo Chew et al. 2009, 2019;

Wang et al. 2009; Gillen et al. 2017). We suggest that this type

of system is a natural result of dynamical evolution in three-body

systems.

As a case study, we focus on the Par 1802 binary system (Stassun

et al. 2008). This system is a relatively young (few million years

old; see Cargile, Stassun & Mathieu 2008; Gómez Maqueo Chew

et al. 2012; Stassun, Feiden & Torres 2014) pre-main-sequence

‘twin’ composed of two M-dwarf stars, each with identical (within

3 per cent) masses of 0.391 and 0.385 M⊙ (Gómez Maqueo Chew

⋆ E-mail: shelleycheng@ucla.edu

et al. 2012; Stassun et al. 2014). However, the temperatures of the

binary stars are 3675 and 3365 K, which surprisingly differ by

∼300 K (or 9.2 per cent; Gómez Maqueo Chew et al. 2012; Stassun

et al. 2014) despite their otherwise identical physical attributes.

The majority (∼75 per cent; Salpeter 1955; Henry et al. 2006) of

all the stars in our Galaxy are low-mass (about 10–50 per cent the

mass of the Sun) and cold (about 30–65 per cent the temperature

of the Sun) stars that belong to the M-dwarf (red dwarf) class.

Approximately 20–40 per cent of all M-dwarfs have a binary com-

panion (Fischer & Marcy 1992; Bergfors et al. 2010; Raghavan et al.

2010; Janson et al. 2012), and in a survey of 151 contact binaries

using data from the Hipparcos satellite mission, Pribulla & Rucinski

(2006) found that 42 ± 5 per cent are at least in triple systems.

Therefore, many binary stars in our Galaxy are in fact in triple

configurations (Tokovinin 1997; Tokovinin et al. 2006; Eggleton,

Kisseleva-Eggleton & Dearborn 2007; Griffin 2012; Rappaport et al.

2013).

The prevalence of M-dwarf binaries in triple systems motivated

Gómez Maqueo Chew et al. (2012) and Stassun et al. (2014) to study

Par 1802 in the presence of a third star. In particular, they proposed

that the temperature difference between the components of Par 1802

is likely due to different spin evolution and uneven mass accretion,

perhaps caused by pre-main-sequence tidal evolution between the

two stars. However, their work did not include the dynamical
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Interacting young M-dwarfs 2299

evolution of the three-body system, which can dramatically alter

the binary’s orbital parameters (e.g. Naoz 2016). Here we follow

the dynamical evolution of a Par 1802-like system and show

that a distant tertiary can naturally explain all of the observed

properties. Moreover, we constrain the orbital configuration of the

third companion.

Dynamical stability of such a system requires a hierarchical

configuration where a third body on a far wider (outer) orbit orbits

around the tighter (inner) binary of Par 1802. In this configuration,

the triple body orbital parameters change on secular time-scales.

In particular, gravitational perturbations from the tertiary star can

cause eccentricity excitations of the inner orbit, i.e. Kozai–Lidov

cycles (Kozai 1962; Lidov 1962; Naoz 2016). The two non-

resonant orbits can be described by two ‘wires’ where the line

densities are inversely proportional to orbital velocity. Gravitational

potential can then be expanded in the semimajor axial ratio, as the

hierarchical configuration drives the ratio between the inner and

outer body’s semimajor axes to a small parameter. Here, we employ

the hierarchical three-body secular approximation up to the octupole

level of approximation, known as the eccentric Kozai–Lidov (EKL)

mechanism (e.g. Naoz 2016). It was recently shown that the EKL

mechanism plays a pivotal role in the evolution of triple stellar

systems (Thompson 2011; Naoz et al. 2013a; Naoz & Fabrycky

2014; Naoz 2016; Stephan et al. 2016; Bataille, Libert & Correia

2018; Moe & Kratter 2018). Gravitational perturbations from a

third companion excite high eccentricities in the inner binary, thus

the stars spend longer times near each other, yielding to stronger

tides that can shrink the binary separation and circularizing it. This

process is very effective in forming short period inner binaries such

as Par 1802 (e.g. Naoz & Fabrycky 2014).

This paper provides a theoretical background (Section 2), de-

scribes the set-up for the dynamical simulations (Section 3),

presents and analyses results of the simulations (Section 4) with

particular emphasis on predictions of the third companion’s orbital

parameters. We investigate the interaction at Roche limit and explain

the observed temperature difference between the stars of the inner

binary (Section 5) through a proof-of-concept mass transfer analysis

and a tidal heating model. A discussion of our results is offered in

Section 6 before drawing our conclusions.

2 TH E O RY

2.1 Pre-main-sequence evolution

Tidal evolution of such a compact binary system is very sensitive

not only to orbital separation, but also to stellar radii. As we are

modelling the tidal evolution during the stars’ pre-main-sequence

lifetime, it is therefore very important to also consider the dramatic

evolution in stellar radii during this time. To do this, we consider the

calculations of Chabrier & Baraffe (1997) for the radius evolution

of small (<0.8 M⊙) pre-main-sequence stars, wherein they consider

stellar evolution as a function of mass and metallicity using grainless

non-grey atmosphere models. We interpolate their results, assuming

solar metallicity, for pre-main-sequence stars to find radius for

each star as a function of its mass and of time while modelling

the tidal evolution. The radii of these stars dramatically contracts

during their pre-main-sequence lifetime, with initial inflated radii

of approximately 11 times the radius of the Sun, to final radii of

approximately 1.5 times the radius of the Sun (see Fig. 1). This in

turn has dramatic effects on the tidal evolution, with the tidal forces

weakening greatly as the star contracts.

Figure 1. Pre-main-sequence radius contraction for a 0.391 M⊙ M-dwarf

star. Interpolated from Chabrier & Baraffe (1997), with pre-main-sequence

(and thus radius contraction) ending at 2.1 × 108 yr. The age of the system

of ∼2 Myr (Stassun et al. 2014; Gómez Maqueo Chew et al. 2012) is shaded

in green. The estimated Roche limit crossing time of 1.4 Myr is in red.

2.2 Analytical expectations for the tertiary companion

Par 1802 is a very tight binary with semimajor axis a ∼ 0.049 au

and on a circularized orbit of eccentricity e ∼ 0.02 (Gómez Maqueo

Chew et al. 2012). The temperature difference between the stars

implies that mass transfer may have taken place during Roche limit

crossing phase of the evolution. The Roche limit, RRoche, 1, of a body

of mass m1 and radius R1 with respect to an orbiting body of mass

m2 is defined as

RRoche,1 = 2.7 × R1

(

m1 + m2

m1

)−1/3

. (1)

The numerical pre-factor is highly uncertain and here we adopt

2.7 following numerical simulations from Guillochon, Ramirez-

Ruiz & Lin (2011) and Liu et al. (2013). As the M-dwarf goes

through pre-main-sequence contraction the Roche limit contracts.

Thus, a system may have a short phase of mass transfer during the

evolution before settling down on a stable tight configuration.

The two stars probably began their life on a wider orbit than cur-

rently observed, avoiding merging at birth. The tertiary induces large

values of eccentricity that eventually, with tidal evolution, drive the

binaries to a tight configuration (e.g. Eggleton, Kiseleva & Hut

1998; Kiseleva, Eggleton & Mikkola 1998; Eggleton & Kiseleva-

Eggleton 2001; Fabrycky & Tremaine 2007; Perets & Fabrycky

2009; Thompson 2011; Shappee & Thompson 2013; Naoz & Fab-

rycky 2014). The final semimajor axis from this process is most

likely the result of tidal shrinking that conserved angular momentum

(e.g. Ford, Kozinsky & Rasio 2000). In other words, we can write

ai

(

1 − e2
i

)

≈ af, (2)

where subscript ‘i’ refers to initial configuration (before tidal

effects) and subscript ‘f’ refers to final configuration, a is the

semimajor axis, and e is the eccentricity. High eccentricity migration

implies that e → 1 during the evolution, thus

af ∼ 2ai(1 − ei) ∼ 2RRoche, (3)

assuming that the closest approach before disruption can be the

Roche limit. In our case, where mass transfer may have taken place,

RRoche represents the maximum approach for interaction.

Adopting the observed semimajor axis of Par 1802 af = 0.049 au,

and using equation (3), we find that the pericentre crosses the Roche
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2300 S. J. Cheng, A. M. Vinson and S. Naoz

limit at a radius

R1(t) ∼
af

2 × 2.7

(

m1 + m2

m1

)−1/3

∼ 1.57 R⊙. (4)

We adopt pre-main-sequence evolution of M-dwarfs following

Chabrier & Baraffe (1997), and can estimate the time the star

reached this value (the vertical line in Fig. 1). We thus estimate

that the limit on the Roche limit crossing time was at 1.4 × 106 yr,

in other words, about 0.6 Myr ago.

3 TH R E E - B O DY DY NA M I C A L E VO L U T I O N

FOR PR E-MAIN -SEQU ENCE STARS

Here we discuss the secular three-body evolution in the presence

of pre-main-sequence contraction of the stellar radius and general

relativity (GR) precession and tides. We begin by describing the

EKL evolution and our Monte Carlo implementation. In Section 5.1,

we discuss the possibility of mass transfer during Roche limit

crossing and calculate the resultant temperature of the stars.

3.1 Three-body dynamical evolution

We study the hierarchical three-body dynamics, tidal, GR, and

pre-main-sequence evolution of the binary system Par 1802 in the

presence of a tertiary companion. We model the dynamical evolution

of these systems by performing Monte Carlo simulations of 7500

different initial systems for 2 Myr, the approximate age of the

Par 1802 system (Gómez Maqueo Chew et al. 2012; Stassun et al.

2014). Our Monte Carlo implementation first involves randomly

selecting 7500 different sets of initial conditions (that satisfy the

stability criteria and constraints described in Section 3.2). We then

solve the three-body secular equations up to the octupole level

of approximation (following Naoz et al. 2013a) through numerical

integration with the Runge–Kutta fourth-order method. We note that

a variable step size was used in our numerical integration due to the

presence of highly eccentric orbits. Physical processes such as tidal

effects and GR precession for the inner and outer orbits (e.g. Naoz

et al. 2013b) are included in the numerical integration. Additionally,

the effect of shrinking stellar radius during the pre-main-sequence

evolution of an M-dwarf, which is of particular interest to the case

of the Par 1802 binary, is included in the numerical integration.

The quadrupole level of approximation time-scales for such a

system is

tk ∼
16

15

√
m1 + m2√

Gm3

a3
2

a
3/2
1

(

1 − e2
2

)3/2
, (5)

where G is the gravitational constant, a1 (a2) is the inner (outer)

semimajor axis, and e1 (e2) is the inner (outer) eccentricity. The

tidal evolution of the inner binary is determined following Eggle-

ton & Kiseleva-Eggleton (2001) through differential equations

that account for distortion due to both tides and rotation. Tidal

dissipation follows the equilibrium tidal model in Eggleton et al.

(1998), with viscous time-scale tV = 0.5 for all simulations (see

Naoz 2016, for full set of equations). This is a simplified treatment

of tidal effects as tV is expected to vary with stellar radius and mass.

However, the dependence of tV on radius and mass is unknown.

The apsidal motion constant (which is twice the Love parameter)

for this polytrope is 0.014. Hence, this tidal evolution approach

is adopted in our integration since it is self-consistent with the

secular framework, accounts for precession due to tidal torques and

oblateness, and enables us to qualitatively understand the physical

effect of tides in the inner binary.

While we adopted equilibrium tides, dynamical tides were shown

to have significant effect on the orbital evolution (see for review

Mathis 2019). For example, in a fully convective M-type star

such as Par 1802, dynamical tides in the convection zone result

in a frequency-dependent tidal dissipation (e.g. Greenberg 2009;

Vick & Lai 2018) that, at resonances, may be significantly larger

than equilibrium tide dissipation (Braviner & Ogilvie 2015). Dy-

namical tides have numerous potential consequences on dynamical

evolution (Witte & Savonije 2002; Auclair-Desrotour, Mathis & Le

Poncin-Lafitte 2015), such as causing the binary orbit to rapidly

circularize, abrupt shrinking of a, and changes to the orbital period.

However, we stress that the equilibrium tide model may capture the

qualitative behaviour of the system (e.g. Vick & Lai 2018).

3.2 Initial conditions

The numerical set-up incorporates data from observations of

Par 1802, selects initial distributions for unknown orbital quantities,

and finally applies constraints and stability criteria. The masses of

the constituent stars of Par 1802 (m1, m2) are taken to be 0.391

and 0.385 M⊙ from Gómez Maqueo Chew et al. (2012), and the

radii (R1, R2) taken to be 11.71 and 11.64 R⊙, respectively, from

Baraffe et al. (1998). The stellar spins for both stars in the inner

binary are taken to be 2 d, and the spin–orbit angle was randomly

sampled from a uniform distribution. The mass of the third outer

star m3 was randomly sampled from a uniform distribution between

0.1 and 0.8 M⊙.

The eccentricity of the inner (outer) orbit e1 (e2) were sampled

from a thermal distribution between 0 and 1. The inclination i

between the inner and outer orbit’s angular momenta was assumed

to be isotropic (i.e. uniform in cosine). The period of the inner

and outer orbit was assumed to be the lognormal distribution of

Duquennoy & Mayor (1991). Note that this period distribution

represents the final periods of binaries population, rather than the

initial one. However, if we extrapolate for a recent study for more

massive stars, the final period distribution, at wide orbits, is a

signature of the birth distribution (Rose, Naoz & Geller 2019).

We also adopt the following stability criteria. The first represents

the relative importance of the octupole and quadrupole terms in the

system’s Hamiltonian (Naoz 2016):

ǫ =
a1

a2

e2

1 − e2
2

< 0.1. (6)

The second stability criterion follows Mardling & Aarseth (2001):

a2

a1

> 2.8

(

1 +
m2

m1 + m2

)2/5
(1 + e2)2/5

(1 − e2)6/5

(

1 −
0.3i

180◦

)

. (7)

Equation (6) is numerically similar to this criterion (Naoz et al.

2013a). It is noted that the dynamics of systems in the upper

limit of equation (6) may be dominated by effects other than

the EKL mechanism, especially for a strong perturber (Antonini,

Murray & Mikkola 2014; Bode & Wegg 2014). Our work does

not take these cases into account because equations (6) and (7) are

numerically very close, and therefore it is expected that the vast

majority of stable systems can be faithfully described by the EKL

mechanism. We also note that these stability criteria deem a system

unstable if at any point in time it violates the stability criteria, but do

not provide a time-scales for growth of the instability (e.g. Mylläri

et al. 2018). In practice we expect more systems to be stable for

2 Myr of our integration time-scales than considered here.

Additionally, we require the pericentre distance to be greater

than initial Roche limit, which ensures that the inner binary does
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Interacting young M-dwarfs 2301

Figure 2. Initial conditions for semimajor axes and eccentricities. The left-

and right-hand columns show the distribution of a and e of, respectively, the

inner and outer binary. Dynamical stability criteria (see text) are accounted

for in these distributions.

not merge before the tertiary companion can affect the system:

a1(1 − e1) > RRoche,1. (8)

Together, these constraints and stability criteria allow us to model

systems in which the EKL mechanism may facilitate tidal heating

during the pre-main-sequence evolution of the system. We depict

the initial conditions of the system in Fig. 2, after these criteria have

been applied.

4 THREE-BODY EVOLUTION R ESULTS

4.1 Inner orbit dynamical outcomes

We identified two general dynamical outcomes. As expected, the

outcome is dependent on the presence and strength of eccentricity

excitations. EKL in the presence of tides tends to circularize and

tighten systems. Larger eccentricity excitations, due to the EKL

mechanism, result in a more efficient production of such systems.

The different dynamical outcomes are depicted in Fig. 3, and are

summarized in Fig. 4. In the latter figure we consider the initial

distribution of a1 (top) and e1 (bottom) and overplot the 15 per cent

of systems that crossed their Roche limit at any point throughout

the 2 Myr evolution (blue line). The green vertical lines in Fig. 4

represent the observed parameters for Par 1802. We then use the

observed a1, up to a factor of 2, to constrain the orbital parameters

of the third companion.

4.1.1 Roche limit crossing systems

About 15 per cent of all systems crossed their Roche limit. We

identify two subtypes of Roche limit crossing systems.

(i) Single eccentricity excitation. Depicted in top left-hand panel

of Fig. 3. These systems are in the most efficient part of the

parameter space of EKL. Here, the eccentricity undergoes a single

dip throughout the evolution, with pericentre dipping below the

Roche limit of the inner binary for a time �t and then exiting

the Roche limit. Mass transfer may occur within the Roche limit

(see Section 5.1). These systems are of interest since Par 1802 is

observed to be circularized (e1 = 0.0166) with small semimajor

axis (a1 = 0.0496 au; Gómez Maqueo Chew et al. 2012).

(ii) Long-term eccentricity oscillations. Depicted in top right-

hand panel of Fig. 3. In these systems EKL oscillations take place,

but the eccentricity excitation is not high enough to cause the system

to quickly circularize. Tides may cause an increase of a1. In general,

for these systems the inner binary does not circularize and tighten,

and therefore these systems are not of interest as they do not match

observations.

4.1.2 Non-Roche limit crossing systems

In many cases, the EKL eccentricity excitation is either taking place

on longer time-scales than the age of the system (e.g. bottom right-

hand panel of Fig. 3), or had not yet reached high eccentricity values

(bottom left-hand panel of Fig. 3). These systems are not of interest

since the inner binary does not circularize or tighten, and its final

configuration does not match observations.

4.2 Tertiary predictions

We focus on Roche limit crossing systems since their behaviour

matches the observations of Gómez Maqueo Chew et al. (2012)

in which the inner binary is circularized and tightened. We show

in Fig. 4 that the vast majority of Roche limit crossing systems

(those with a single eccentricity excitation) have a final inner binary

configuration that is circularized and tightened. Qualitatively, we

note that these systems should be a generic result of the EKL

evolution. About 10 per cent of all systems that cross their Roche

limit are within in a factor of 2 of Par 1802 observed semimajor axis

of 0.0496 ± 0.0008 au and have a circularized orbit. We use this

subset to constrain the parameter space for the Par 1802 hypothetical

companion. We choose to constrain our predictions using a factor

of 2 due to the uncertainties of our model, such as in the pre-factor

of the Roche limit in equation (1) and the choice of our viscous

time-scales in Section 3.1.

We predict the median semimajor axis for Par 1802 outer binary

to likely be 350 au.

As shown in the top panel of Fig. 5, Roche limit crossing systems

(blue) have a2 that ranges between 2 and 2500 au with a median of

55 au. This is distinctly different from the distribution for a2 for all

simulated systems (black), which has a median of 140 au. Because

of the young age of Par 1802 (and thus the short time of simulation),

the final distribution for a2 for all systems (black) closely resembles

the initial conditions (e.g. top right-hand panel of Fig. 2). This result

is consistent with the result for massive stars found by Rose et al.

(2019).

The Par 1802-like systems (the 10 per cent of systems within

factor of 2 of the observed a1) have a bimodal distribution in a2.

The low value a2 peak (median of ∼5 au) corresponds to low e2

systems. The higher a2 values represent the majority of systems and

have a median of ∼375 au.

As expected the final distribution of e2 resembles the initial

distribution. The eccentricity of Par 1802-like system’s outer orbit

corresponds to the outer orbit semimajor axis, with the rule of

thumb that lower eccentricity requires lower (closer in) semimajor

axis values. The median eccentricity in this case is 0.5 (bottom panel

of Fig. 5).
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2302 S. J. Cheng, A. M. Vinson and S. Naoz

Figure 3. Archetypal systems. We show the time evolution of four triple systems. In the top row, we show two Roche limit crossing systems: with a single

eccentricity excitation (left), and with long-term eccentricity oscillations (right). In the bottom row, we show two non-Roche limit crossing systems. For each

of the four systems, the top panel shows 1 − e of the inner and outer binary, and the bottom panel shows the inner semimajor axis, pericentre, the Roche limit,

and R1, the radius of the more massive inner binary star. When plotted, R2 is visually indistinguishable from R1 and is therefore omitted from the figure. All

systems have m1 = 0.391 M⊙, m2 = 0.385 M⊙, and spins of 2 d. The initial conditions are (from left to right on top row, then left to right on bottom row):

m3 = 0.25, 0.36, 0.67, and 0.49 M⊙, a1 = 1.87, 13.4, 144, and 0.658 au, a2 = 14.7, 108, 2220, and 1195 au, e1 = 0.62, 0.81, 0.18, and 0.59, e2 = 0.19, 0.25,

0.64, and 0.97, g1 = 131.◦6, 231.◦8, 263.◦5, and 128.◦1, g2 = 136.◦0, 123.◦9, 255.◦3, and 37.◦29, and i = 86.◦4, 101◦, 112◦, and 121◦.

The inclination of the system (top panel of Fig. 6) also behaves

as expected, and we find a bimodal distribution (consistent with

Fabrycky, Johnson & Goodman 2007; Naoz & Fabrycky 2014).

However, due to the short time-scales of the integration, the bimodal

distribution is more closely located near 90◦ rather than near the

Kozai angles, being centred at about 70◦ and 110◦. The inclination of

the system is correlated with ǫ (bottom panel of Fig. 6), a parameter

that describes the strength of the EKL mechanism. As expected, the

EKL mechanism is efficient for systems that cross the Roche limit

and particularly efficient for Roche limit-crossing systems that are

within a factor of 2 of the observed a1.

5 IN T E R AC T I O N AT RO C H E L I M I T

5.1 Mass transfer

At the Roche limit, mass transfer occurs. As a proof-of-concept

we assume a conservative mass inversion where the binary

mass

m1 + m2 = 0.776 M⊙ = constant, (9)

and that mass transfer only occurs while the inner binary stars

are within the Roche limit. We note that Eggleton (1983) adopted

the Roche lobe radius (where a surface mass element of a star

becomes unbound) as the criterion for mass transfer, with mass

transfer occurring slightly earlier. Here, we instead adopt the Roche

limit as the criterion for mass transfer, which is more conservative

(smaller �t) than the Roche lobe radius criterion by a small factor

of ∼1.2. This factor is well within the uncertainties in the model,

and therefore will not lead to any significant qualitative changes to

the result.

Thus, the mass transfer rate is loosely defined as

Ṁ =
�M

�t
, (10)

where �M = m1 − m2. In our proof-of-concept model, the mass

transfer rate varies for different lengths of time �t spent within the

MNRAS 489, 2298–2306 (2019)
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Interacting young M-dwarfs 2303

Figure 4. Inner binary orbit parameters. The top and bottom panels show

the distribution for, respectively, the semimajor axis and eccentricity of the

inner binary. Black lines show the final distribution for all systems, and

blue lines show the final distribution for systems that crossed the Roche

limit. Red dashed lines show the initial distribution for all systems, and the

observed quantities (Gómez Maqueo Chew et al. 2012) are in green.

Roche limit. Since we assume mass inversion, the fraction of binary

mass transferred is constant between different systems. Realistically

we may expect a constant mass transfer rate rather than constant

fraction of binary mass transferred.

The time that the systems spend in each other Roche limit is

about 1000 yr that results in a constant mass transfer rate of

∼6 × 10−6 M⊙ yr−1 (see Fig. 7). The Par 1802-like systems

spend about a factor of 3 longer time inside the Roche limit, which

results in a mass transfer rate of ∼3 × 10−6 M⊙ yr−1. These mass

transfer rates are not unreasonable to assume and we thus proceed

with this proof-of-concept calculation. We note that alternative

models exist (Sepinsky et al. 2007; Dosopoulou & Kalogera 2016;

Hamers & Dosopoulou 2019) that incorporate orbital evolution, and

will be included in future work.

5.2 Tidal heating

As the pre-main-sequence stars undergo mass transfer they also

feel the tidal forces that shrink and circularized the orbit (see

e.g. Fig. 3). The tidal model adopted throughout the three-body

dynamical evolution followed the equilibrium tidal model from Hut

(1980) that assumes a constant viscous time (e.g. Eggleton et al.

1998; Eggleton & Kiseleva-Eggleton 2001; Naoz 2016, see the

latter for a complete set of equations). However, we are particularly

interested in the response of the pre-main-sequence stars to the

energy deposited within them due to tides during the Roche limit

crossing period.

Figure 5. Outer binary orbit parameters. The top and bottom panels show

the distribution for, respectively, the semimajor axis and eccentricity of the

outer binary. Black lines show all systems, and blue lines show only systems

that crossed the Roche limit. Red lines show Roche limit crossing systems

constrained by the observed value for a1. The cluster of constrained systems

with a2 < 30 au corresponds to e2 < 0.5, and represents systems with a

moderately tightened and circularized outer orbit.

Tides on these polytropes that take orbital energy are transferred

into heat in the star. This may cause the inflation of the star. Here we

adopt a constant phase-lag tidal heating model (Goldreich & Soter

1966; Ferraz-Mello, Rodrı́guez & Hussmann 2008; Wisdom 2008),

often used for brown dwarfs (e.g. Heller et al. 2010). Since the stars

in questions did not begin their thermonuclear fusion reaction, this

tidal model is adequate.1 We note that the constant phase-lag model

adopts a constant quality factor for each of the stars Qj, with j = 1,

2. However, since a1 and Rj of the stars (j = 1, 2) vary in time, the

quality factor at the onset of Roche lobe crossing is dramatically

different than the quality factor at the existing point. The evolution

of Q strongly impacts the tidally driven orbital evolution of systems

(Heller 2019).

For the following proof-of-concept calculation we adopt two

quality factors to calculate the excess temperature due to tidal

effects. First, we consider the relation between the quality factor

and the viscous time:

Qj =
4

3

k1

(1 + 2k1)2

Gmj

R3
j

tV

n1

, (11)

from Naoz et al. (2016), with constant viscous time-scales

(tV)j = 0.5 typical for M-dwarfs, classical apsidal motion constant

1Note that dynamical tides have a significant effect on tidal dissipation, and

may allow more efficient tidal heating (see for review Mathis 2019). The

tidal heating model used here is based on the static equilibrium tidal model

and is sufficient for our proof-of-concept analysis.
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2304 S. J. Cheng, A. M. Vinson and S. Naoz

Figure 6. Inclination between inner and outer binary angular momenta,

and ǫ. The top panel shows the distribution of the inclination, with blue

marking all Roche limit crossing systems, dashed orange for the initial

distribution for all systems, and red marking Roche limit crossing systems

constrained by the observed value for a1. The bottom panel shows the final

inclination for all systems if as a function of ǫ, with all Roche limit crossing

systems marked in blue, and Roche limit crossing systems constrained by

the observed value for a1 marked in red.

k1 = 0.014, and where the mean motion is n1 = 2π/P1. Since Rj and

ai varies in time, Qj varies in time.

Tidal heating takes place throughout the tidal evolution. How-

ever, it is most significant when the stars are within each other

Roche lobe regimes (see upper panel of Fig. 7 for time-scale).

We thus limit ourselves to two relevant points in time of the

evolution: the onset of the Roche limit, and exit from this

regime. We find that for the majority of cases Qj,enter ≫ Qj,exit,

where the subscript ‘enter’ (‘exit’) refers to entering (exiting) the

Roche limit. While tidal heating takes place for both stars, the

3 per cent mass difference results in slight changes in the amount

of heating per unit mass, with the less massive star being heated

more.

Under the tidal heating, constant phase-lag model, the potential of

the less massive body is expressed in terms of periodic contributions

of tidal frequencies at various phase lags (e.g. Heller et al. 2010),

which can be expanded in terms of these phase lags. The phase lags

ǫη, j for the jth body with η = 0, 1, 2, 5, 8, 9 are

Qj ǫ0,j = �(2�s,j − 2n1),

Qj ǫ1,j = �(2�s,j − 3n1),

Qj ǫ2,j = �(2�s,j − n1),

Qj ǫ5,j = �(n1),

Figure 7. Mass transfer characteristics for Roche limit crossing systems.

The top panel shows the amount of time �t Roche limit crossing systems

spent within the Roche limit, and the bottom panel shows the mass transfer

rate for all Roche limit crossing systems determined using equation (10).

Roche limit crossing systems constrained by the observed value for a1 are

marked in red.

Qj ǫ8,j = �(�s,j − 2n1),

Qj ǫ9,j = �(�s,j ), (12)

with �(x) defined as the algebraic sign of x:

�(x) = +1 ∨ −1, (13)

and �s, j is the rotational period associated with the spin of the stars.

The change in orbital energy of star 1 due to star 2 (or vice versa)

is then

Ėorbit,j =
3kLGm2

l R
5
j

8a6
1

n

(

4ǫ0,j + e2
1

[

− 20ǫ0,j +
147

2
ǫ1,j +

1

2
[ǫ2,j

−3ǫ5,j ] − 4 sin2 ψj [ǫ0,j − ǫ8,j ]

])

, (14)

where j, l = 1, 2, and the change in rotational energy is

Ėrotation,j = −
3kLGm2

l R
5
j

8a6
1

�s,j

(

4ǫ0,j + e2
1

[

− 20ǫ0,j + 49[ǫ1,j

+ ǫ2,j ] + 2 sin2 ψj [−2ǫ0,j + ǫ8,j + ǫ9,j ]

])

, (15)

where kL = 0.5 is the dynamical Love parameter and ψ j is the

obliquity of the jth body. All of the relevant variables are obtained

through the dynamical evolution results described in Section 4.1,

and the masses of the stars invert between Roche limit entry and

MNRAS 489, 2298–2306 (2019)
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Interacting young M-dwarfs 2305

Figure 8. Temperature difference between inner binary stars. The solid lines

show the temperature difference between the inner binary stars determined

using equation (18) through the method detailed in Section 5.2. The quality

factor adopted in this calculation follows equation (11), and varies with

different a1 and Rj. Roche limit crossing systems are in blue, and Roche

limit crossing systems constrained by the observed value of a1 are in red.

The maximum �T for all Roche limit crossing systems is 910 K, and the

maximum predicted �T for Roche limit crossing systems constrained by the

observed value of a1 is 115 K. Additionally, the temperature difference for

an assumed constant quality factor Q = 500 is overplotted in dashed lines.

With this constant Q, the maximum �T for all Roche limit crossing systems

is 920 K. After constraining with the observed value of a1, the maximum

�T is 180 K.

exit (see Section 5.1). Finally, the change in total energy due to

tides is

Ėj = −(Ėorbit,j + Ėrotation,j ). (16)

The temperature change for each body due to tidal heating is then

evaluated from the Stefan–Boltzmann equation

dTj =

(

Ėj/2

4πR2
j σSB

+ T 4
eff,j

)1/4

− Teff,j , (17)

where σ SB is the Stefan–Boltzmann constant, and Teff, j is the

temperature at Roche-crossing for the jth body of mass mj adopting

Baraffe et al. (1998) model. We then estimate the above equation

at two times: when the system enters and exits the Roche lobe

regime.2 In other words, dTj = dTj,enter + dTj,exit, where subscript

enter (exit) refers to entering (exiting) the Roche lobe regime. We

note that Tj,eff at the entering and exiting points of the Roche limit

are roughly the same because the short amount of time the stars

spend in each other Roche lobe regime (see Fig. 7). The temperature

difference is then estimated by

�T = (dT1 + Teff,1) − (dT2 + Teff,2). (18)

In Fig. 8, we show a histogram of the final excess temperatures

as a result from the heuristic calculation of tidal heating. We find

that Roche limit crossing systems have a wide range of �T, with a

2In reality, heating takes place throughout the time the stars spend in the

Roche limit. However, since we find that the maximum heating takes place

when the stars exit their Roche limit, we evaluate heating only at these two

points in time.

maximum �Tmax = 910 K (Fig. 8). We predict a maximum �Tpredict

≈ 115 K.

The luminosity of the two stars is estimated by summing the total

energy change due to tides for each star using equation (16) at entry

and exit from the Roche limit. The luminosity difference between

Par 1802-like stars (with a1 within a factor of 2 from observation)

has a median of ∼3 × 1025 W, which is comparable to the observed

luminosity difference of ∼7 × 1025 W (Gómez Maqueo Chew et al.

2012).

Since the constant phase-lag tidal heating model typically adopts

a constant Q, we complete a second set of calculations of �T for an

assumed constant Q = 500. We predict a maximum �T ≈ 180 K

for constant Q = 500. Both predictions (∼115 K for Q following

equation 11, and ∼180 K for constant Q = 500) are comparable to

the observation of �Tobserved ≈ 300 K (Stassun et al. 2014). With

Q = 500, the luminosity difference between Par 1802-like stars has

a median of ∼5 × 1026 W, comparable to observation.

6 D ISCUSSION

The Par 1802 M-dwarf binary system is an interesting quandary for

stellar evolution since one of the component stars has unexpectedly

higher temperature compared to the other despite their almost

identical (within 3 per cent) masses. Previous work by Stassun et al.

(2014) and Gómez Maqueo Chew et al. (2012) have proposed that

the temperature difference was caused by the presence of a third star.

Here we focused on the dynamical evolution of such a system and

have shown that observed quantities can be naturally reproduced.

Furthermore, we predict the orbital configuration of such a tertiary

companion.

We studied the secular evolution of the binary M-dwarf system

Par 1802 in the presence of a third, far away star. We numerically

solved the three-body hierarchical secular equation to the octupole

level of approximation (i.e. the EKL mechanism; Naoz 2016). Tidal

effects, GR precession, and pre-main-sequence evolution were self-

consistently included in our simulations.

During the evolution, the EKL mechanism could cause large

eccentricity excitations in the inner orbit, which prompted the inner

binary to tighten and circularize (see top left-hand plot of Fig. 3).

In some of these systems, eccentricity excitations caused the inner

binary stars to cross their Roche limits (see Fig. 3). During that

time, mass transfer could take place, resulting in the aforementioned

temperature difference. As the stars’ radii contracted their Roche-

radii shrunk, effectively halting mass transfer, and the stars exit the

Roche lobe regime.

We found that ∼15 per cent of all simulations were Roche

limit crossing systems with the majority (∼80 per cent) of these

having circularized and their separation shrunk due to tides (see

Fig. 4). We focused on systems that evolved to within a factor

of 2 of the observed Par 1802 separation (of ∼0.05 au). These

systems represented about 10 per cent of all Roche limit crossing

systems, and about 1.5 per cent of all simulated systems. Since

our initial conditions for semimajor axis and eccentricity featured

broad distributions (with a1 varying between ∼0.2 and 380 au

and e1 varying between ∼0.1 and 0.9), this 1.5 per cent fraction is

statistically significant and suggests that systems similar to Par 1802

can exist in the presence of a tertiary companion.

For these systems similar to Par 1802, we constrain the orbital

configuration for the Par 1802 tertiary star. In particular, we predict

that the outer orbit is most likely to have a separation of 350 au (top

panel of Fig. 5). We find that the predicted median eccentricity of

the tertiary is e2 = 0.5 (bottom panel of Fig. 5). The inclination (as
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2306 S. J. Cheng, A. M. Vinson and S. Naoz

expected; e.g. Naoz & Fabrycky 2014) has a bimodal distribution

with peaks centred around 70◦ and 110◦.

During the time the system crossed its Roche limit, mass transfer

took place and tidal heating was probably most efficient. The two

stars of Par 1802 have an observed temperature difference of ∼300 K

(Gómez Maqueo Chew et al. 2012). We conducted a proof-of-

concept calculation, assuming conservative mass transfer during

the Roche limit crossing time. For simplicity the two inner masses

were set to be the observed masses, and thus, to match observations

the mass ratio inverted over the course of the evolution. These as-

sumptions determined the mass transfer rate (see Fig. 7). Following

the Heller et al. (2010) tidal heating model we find about 0.2 per cent

of all systems have temperature difference within a factor of 2 of the

observed value. These systems represent a small fraction (5 per cent)

of the Par 1802-like systems (i.e. systems with final inner binary

separation within a factor of 2 of the observed separation). Since

our mass exchange and tidal heating analysis are proof-of-concept

and only accounts for heating at entry and exit from the Roche limit,

we realistically expect a higher fraction of Par 1802-like systems to

exhibit the observed temperature difference.

Finally, our results suggest that secular interaction in hierarchical

triple-body systems, during their pre-main-sequence contractions,

may lead to a generic feature: tight binaries with temperature

difference. Par 1802 is a young system (∼2 Myr), which results

in limited time for the EKL mechanism to operate. We thus expect

similar, more pervasive behaviour for general triple systems. In

particular, the presence of a tertiary star may explain the four other

twin binaries with significant temperature differences discovered

so far (Gómez Maqueo Chew et al. 2009, 2019; Wang et al.

2009; Gillen et al. 2017). This dynamically induced temperature

difference may affect conclusions of the coevality of binary systems

(e.g. Kraus & Hillenbrand 2009).
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699, 1196
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