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Abstract

There has been a growing interest in the graph-streaming

setting where a continuous stream of graph updates is mixed

with graph queries. In principle, purely-functional trees are

an ideal fit for this setting as they enable safe parallelism,

lightweight snapshots, and strict serializability for queries.

However, directly using them for graph processing leads to

significant space overhead and poor cache locality.

This paper presentsC-trees, a compressed purely-functional

search tree data structure that significantly improves on the

space usage and locality of purely-functional trees.We design

theoretically-efficient and practical algorithms for perform-

ing batch updates toC-trees, and also show that we can store

massive dynamic real-world graphs using only a few bytes

per edge, thereby achieving space usage close to that of the

best static graph processing frameworks.

To study the applicability of our data structure, we de-

signed Aspen, a graph-streaming framework that extends

the interface of Ligra with operations for updating graphs.

We show that Aspen is faster than two state-of-the-art graph-

streaming systems, Stinger and LLAMA, while requiring less

memory, and is competitive in performance with the state-

of-the-art static graph frameworks, Galois, GAP, and Ligra+.

With Aspen, we are able to efficiently process the largest

publicly-available graph with over two hundred billion edges

in the graph-streaming setting using a single commodity

multicore server with 1TB of memory.

CCS Concepts • Computing methodologies → Vector

/ streaming algorithms.

Keywords streaming graph processing, purely-functional

data structures, parallel graph algorithms
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1 Introduction

In recent years, there has been growing interest in program-

ming frameworks for processing streaming graphs due to

the fact that many real-world graphs change in real-time

(e.g., [21, 29, 30, 34, 47, 83]). These graph-streaming systems

receive a stream of queries and a stream of updates and must

process both updates and queries with low latency, both

in terms of query processing time and the time it takes for

updates to be reflected in new queries. There are several ex-

isting graph-streaming frameworks, such as STINGER, based

on maintaining a single mutable copy of the graph in mem-

ory [29, 30, 34]. Unfortunately, these frameworks require

either blocking queries or updates so that they are not con-

current, or giving up serializability [83]. Another approach is

to use snapshots [21, 47]. Existing snapshot-based systems,

however, are either very space-inefficient, or suffer from

high latency on updates. Therefore, an important question is

whether we can design a data structure that supports light-

weight snapshots which can be used to concurrently process

queries and updates, while ensuring that the data structure

is safe for parallelism and achieves good asymptotic and

empirical performance.

In principle, representing graphs using purely-functional
balanced search trees [1, 57] can satisfy both criteria. Such a

representation can use a search tree over the vertices (the

vertex-tree), and for each vertex store a search tree of its

incident edges (an edge-tree). Because the trees are purely-

functional, acquiring an immutable snapshot is as simple as

acquiring a pointer to the root of the vertex-tree. Updates can

then happen concurrently without affecting the snapshot.

In fact, any number of readers (queries) can concurrently

acquire independent snapshots without being affected by

a writer. A writer can make an individual or bulk update

and then set the root to make the changes immediately and

atomically visible to the next reader without affecting cur-

rent active readers. A single update costsO(logn) work, and
because the trees are purely-functional it is relatively easy

and safe to parallelize a bulk update.

https://doi.org/10.1145/3314221.3314598
https://doi.org/10.1145/3314221.3314598
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However, there are several challenges that arise when

comparing purely-functional trees to compressed sparse row

(CSR), the standard data structure for representing static

graphs in shared-memory graph processing [64]. In CSR,

the graph is stored as an array of vertices and an array of

edges, where each vertex points to the start of its edges in

the edge-array. Therefore, in the CSR format, accessing all

edges incident to a vertex v takes O(deд(v)) work, instead
of O(logn + deд(v)) work for a graph represented using

trees. Furthermore, the format requires only one pointer (or

index) per vertex and edge, instead of a whole tree node.

Additionally, as edges are stored contiguously, CSR has good

cache locality when accessing the edges incident to a vertex,

while tree nodes could be spread across memory. Finally,

each set of edges can be compressed internally using graph

compression techniques [71], allowing massive graphs to be

stored using just a few bytes per edge [25]. This approach

cannot be used directly on trees. This would all seem to put

a search tree representation at a severe disadvantage.

In this paper, we describe a compressed purely-functional

tree data structure that we call aC-tree, which addresses the

poor space usage and locality of purely-functional trees. The

C-tree data structure allows us to take advantage of graph
compression techniques, and thereby store very large graphs

on a single machine. The key idea of a C-tree is to chunk

the elements represented by the tree and store each chunk

contiguously in an array. Because elements in a chunk are

stored contiguously, the structure achieves good locality. By

ensuring that each chunk is large enough, we significantly

reduce the space used for tree nodes. Although the idea of

chunking is intuitive, designing a chunking scheme which

admits asymptotically-efficient algorithms for batch-updates

and also performs well in practice is challenging. We note

that our chunking scheme is independent of the underlying

balancing scheme used, and works for any type of element.

In the context of graphs, because each chunk in a C-tree
stores a sorted set of integers, we can compress by applying

difference coding within each block and integer code the

differences. We compare to some other chunking schemes,

including B-trees [4] and ropes [2, 9, 15, 31] in Section 3.3.

To address the asymptotic complexity issue, we observe

that for many graph algorithms the O(logn) work overhead

to access vertices can be handled in one of two ways. The

first is for global graph algorithms, which process all vertices

and edges. In this case, we can afford to compute a flat snap-
shot, which is an array of pointers to the edge-tree for each

vertex. We show how to create a flat snapshot using O(n)
work,O(logn) depth, andO(n) space. A flat snapshot can be

created concurrently with updates and other reads since it

copies from the persistent functional representation. Once a

flat snapshot is created, the work for accessing the edges for

a vertex v is onlyO(deд(v)), as with CSR. The second case is

for local graph algorithms, where we cannot afford to create

a flat snapshot. In this setting, we note that many local algo-

rithms examine all edges incident to a vertex after retrieving

it. Furthermore, although real-world graphs are sparse, their

average degree is often in the same range or larger than logn.
Therefore, the cost of accessing a vertex in the vertex-tree

can be amortized against the cost of processing its edges.

To evaluate our ideas, we describe a new graph-streaming

framework calledAspen that enables concurrent, low-latency
processing of queries and updates on graphs with billions of

vertices and hundreds of billions of edges, all on a relatively

modest shared-memory machine equipped with 1TB of RAM.

Our system is fully serializable and achieves high throughput

and performance comparable to state-of-the-art static graph

processing systems. Aspen extends the interface proposed

by Ligra [70] with operations for updating the graph. As a

result, all of the algorithms implemented using Ligra, includ-

ing graph traversal algorithms, local graph algorithms [72],

algorithms using bucketing [24], and others [25], can be run

using Aspen with minor modifications. We have made Aspen

publicly-available at https://github.com/ldhulipala/aspen.
Compared to state-of-the-art graph-streaming frameworks,

Aspen provides significant improvements both in memory

usage (8.5–11.4x more memory-efficient than Stinger [29]

and 1.9–3.3x more memory-efficient than LLAMA [47]), and

algorithm performance (1.8–10.2x faster than Stinger and

2.8–15.1x faster than LLAMA). Aspen is also comparable to

the fastest static graph processing frameworks, including

GAP [6] (Aspen is 1.4x faster on average), Ligra+ [71] (As-

pen is 1.4x slower on average), and Galois [56] (Aspen is 12x

faster on average). Compared to Ligra+, which is one of the

fastest static compressed graph representations, Aspen only

requires between 1.8–2.3x more space.

Our experiments show that adding a continuous stream

of edges while running queries does not affect query perfor-

mance by more than 3%. Furthermore, the latency is well

under a millisecond, and the update throughput ranges from

11K–78K updates per second when performing one update

at a time to 105M–442M updates per second when performing

batches of updates. We show that our update rates are an

order of magnitude faster than the update rates achievable

by Stinger, even when using very small batches.

The contributions of this paper are as follows:

(1) A practical compressed purely-functional data structure

for search trees, called the C-tree, with operations that

have strong theoretical bounds on work and depth.

(2) The approach of flat-snapshotting for C-trees to reduce

the cost of random access to the vertices of a graph.

(3) Aspen, a multicore graph-streaming framework built us-

ingC-trees that enables concurrent, low-latency process-
ing of queries and updates, along with several algorithms

using the framework.

(4) An experimental evaluation of Aspen in a variety of

regimes over graph datasets at different scales, including

the largest publicly-available graphs (graphswith billions

https://github.com/ldhulipala/aspen
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of vertices and hundreds of billions of edges), showing

significant improvements over state-of-the-art graph-

streaming frameworks, and modest overhead over static

graph processing frameworks.

2 Preliminaries

Notation and Primitives. We denote a graph by G(V ,E),
where V is the set of vertices and E is the set of edges in

the graph. For weighted graphs, the edges store real-valued

weights. The number of vertices in a graph is n = |V |, and

the number of edges ism = |E |. Vertices are assumed to be

indexed from 0 to n − 1. For undirected graphs, we use N (v)
to denote the neighbors of vertex v and deg(v) to denote

its degree. We assume that we have access to a family of

uniformly (purely) random hash functions which we can

draw from in O(1) work [22, 58]. In functions from such a

family, keys are mapped to elements in the range with equal

probability, independent of the values that other keys hash

to, and the function can be evaluated for a key in O(1) work.

Work-Depth Model. We analyze algorithms in the work-

depth model, where the work is the number of operations

used by the algorithm and the depth is the length of the

longest sequential dependence in the computation [14, 39].

Purely-Functional Trees. Purely-functional (mutation-free)

data structures preserve previous versions of themselves

when modified and yield a new structure reflecting the up-

date [57]. The trees studied in this paper are binary search

trees, which represent a set of ordered elements. In a purely-

functional tree, each element is used as a key, and is stored

in a separate tree node. The elements can be optionally asso-

ciated with a value, which is stored in the node along with

the key. Trees can also be augmented with an associative

function f (e.g., +), allowing the sum with respect to f in

a range of the tree be queried in O(logn) work and depth,

where n is the number of elements in the tree.

Interfaces forGraphs.Wewill extend the interface defined

by Ligra [70] and so we review its interface here. We use

the vertexSubset data structure which represents subsets

of vertices, and the edgeMap primitive which is used for

mapping over edges incident to sets of vertices. edgeMap

takes as input a subset of vertices and applies a function over

the edges incident to the subset that satisfy a condition (e.g.,

edges to vertices that have not yet been visited by a breadth-

first search). Specifically, edgeMap takes as input a graph

G(V ,E), a vertexSubsetU , and two boolean functions F and

C; it applies F to (u,v) ∈ E such that u ∈ U and C(v) = true
(call this subset of edges Ea ), and returns a vertexSubset U ′

where u ∈ U ′
if and only if (u,v) ∈ Ea and F (u,v) = true.

3 Compressed Purely-Functional Trees

In this section, we describe a compressed purely-functional

search tree data structure called aC-tree. After describing the
data structure (Section 3.1), we argue that C-trees improve

locality and reduce space-usage relative to ordinary purely-

functional trees (Section 3.2). Finally, we compare C-trees to
other possible design choices, such as B-trees (Section 3.3).

3.1 C-tree Definition

The main idea of C-trees is to apply a chunking scheme

over the tree to store multiple elements per tree-node. The

chunking scheme takes the ordered set of elements to be

represented and “promotes” certain elements to be heads,

which are stored in a tree. The remaining elements are stored

in tails associated with each tree node. To ensure that the

same keys are promoted in different trees, a hash function is

used to choose which elements are promoted. An important

goal forC-trees is to maintain similar asymptotic cost bounds

as for the uncompressed trees while improving space and

cache performance, and to this end we describe theoretically

efficient implementations of tree primitives in Section 4.

More formally. For an element type K , fix a hash function,

h : K → {1, . . .N }, drawn from a uniformly random family

of hash functions (N is some sufficiently large range). Let

b be a chunking parameter, a constant which controls the

granularity of the chunks. Given a set E ofn elements, we first

compute the set of heads H (E) = {e ∈ E | h(e) mod b = 0}.

For each e ∈ H (E) let its tail be t(e) = {x ∈ E | e < x <
next(H (E), e)}, where next(H (e), e) returns the next element

inH (E) greater than e . We then construct a purely-functional

tree with keys e ∈ H (E) and associated values t(e).
Thus far, we have described the construction of a tree over

the head elements, and their tails. However, there may be

a “tail” at the beginning of E that has no associated head,

and is therefore not part of the tree. We refer to this chunk

of elements as the prefix. We refer to either a tail or prefix

as a chunk. We represent each chunk as a (variable-length)

array of elements. As described later, when the elements are

integers we can use difference encoding to compress each of

the chunks. The overall C-tree data structure consists of the
tree over head keys and tail values, and a single (possibly

empty) prefix. Figure 1 illustrates the C-tree data structure
over a set of integer elements.

Properties of C-trees. The expected size of chunks in a C-
tree is b as each element is independently selected as a head

under h with probability 1/b. Furthermore, the chunks are

unlikely to be much larger than b—in particular, a simple cal-

culation shows that the chunks have size at most O(b logn)
with high probability (w.h.p.),

1
where n is the number of

elements in the tree. Notice that an element chosen to be a

head will be a head in any C-trees containing it, a property
that simplifies the implementation of primitives on C-trees.
Our chunking scheme has the following bounds, which

we prove in the full version of the paper [26].

1
We usewith high probability (w.h.p.) to mean with probability 1−1/nc

for some constant c > 0.
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Figure 1. Subfigure (a) defines the C-tree data structure in an ML-

like language. Subfigure (b) shows a purely-functional tree where

each element in S is stored in a separate tree node. We color the

elements in S that are sampled as heads yellow, and color the non-

head elements gray. Subfigure (c) illustrates how the C-tree stores
S , given the heads. Notice that the C-tree has a chunk (the prefix)

which contains non-head elements that are not associated with

any head, and that each head stores a chunk (its tail) containing all

non-head elements that follow it until the next head.

Lemma 3.1. The number of heads (keys) in aC-tree over a set
E of n elements is O(n/b) w.h.p. Furthermore, the maximum
size of a tail (the non-head nodes associated with a head) or
prefix is O(b logn) w.h.p.

Corollary 3.2. When using a balanced binary tree for the
heads (one with O(logn) height for n keys), the height of a
C-tree over a sequence E of n elements is O(log(n/b)) w.h.p.

3.2 C-tree Compression

In this section, we first discuss the improved space usage

of C-trees relative to purely-functional trees without any

assumption on the underlying type of elements. We then

discuss how we can further reduce the space usage of the

data structure in the case where the elements are integers.

Space Usage and Locality. Consider the layout of aC-tree
compared to a purely-functional tree. By Lemma 3.1, the

expected number of heads is O(n/b). Therefore, compared

to a purely-functional tree, which allocates n tree nodes, we

reduce the number of tree nodes allocated by a factor of b.
As each tree node is quite large (in our implementation, each

tree node is at least 32 bytes), reducing the number of nodes

by a factor of b can significantly reduce the size of the tree.

Experimental results are given in Section 7.1.

In a purely-functional tree, in the worst case, accessing

each element will incur a cache miss, even in the case where

elements are smaller than the size of a cache line. In a C-
tree, however, by choosing b, the chunking parameter, to be

slightly larger than the cache line size (≈ 128), we can store

multiple elements contiguously within a single chunk and

amortize the cost of a cache miss across all elements read

Figure 2. This figure shows the difference between performing a

single update in a B-Tree versus an update in a C-tree. The data
marked in green is newly allocated in the update. Observe that

updating single element in a C-tree in the worst-case requires

copying a path of nodes, and copying a single chunk if the element

is not a head. Updating an element in a B-tree requires copying B
pointers (potentially thousands of bytes) per level of the tree, which

adds significant overhead in terms of memory and running time.

from the chunk. Furthermore, note that the data structure can

provide locality benefits even in the case when the size of an

element is larger than the cache line size, as a modest value of

b will ensure that reading all but the heads, which constitute

an O(1/b) fraction of the elements, will be contiguous loads

from the chunks.

IntegerC-trees. In the case where the elements are integers,

theC-tree data structure can exploit the fact that elements are

stored in sorted order in the chunks to further compress the

data structure. We apply a difference encoding scheme to each

chunk. Given a chunk containing d integers, {I1, . . . , Id },
we compute the differences {I1, I2 − I1, . . . , Id − Id−1}. The
differences are then encoded using a byte-code [71, 81]. We

applied byte-codes due to the fact that they are fast to decode

while achievingmost of thememory savings that are possible

using a shorter code [12, 81].

Note that in the common case when b is a constant, the

size of each chunk is small (O(logn) w.h.p.). Therefore, de-
spite the fact that each chunk must be processed sequen-

tially, the cost of the sequential decoding does not affect the

overall work or depth of parallel tree methods. For exam-

ple, mapping over all elements in the C-tree, or finding a

particular element have the same asymptotic work as purely-

functional trees and optimal (O(logn)) depth. To make the

data structure dynamic, chunks must also be recompressed

when updating a C-tree, which has a similar cost to decom-

pressing the chunks. In the context of graph processing, the

fact that methods over a C-tree are easily parallelizable and

have low depth lets us avoid designing and implementing

a more complex parallel decoding scheme, like the parallel

byte-code in Ligra+ [71].

3.3 Other Approaches

Our data structure is loosely based on a previous sequential

approach to chunking [11]. That approach was designed to

be a generic addition to any existing balanced tree scheme

for a dictionary and has overheads due to this goal.

Another option is to use B-trees [4]. However, the objec-
tive of a B-tree is to reduce the height of a search tree to

accelerate searches in external memory, whereas our goal is

to build a data structure that stores contiguous elements in

a single node to make compression possible. The problem
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with B-trees in our purely-functional setting is that we re-

quire path copying during functional updates, as illustrated

in Figure 2. In our trees, this only requires copying a single

binary node (32 or 40 bytes in our implementation) per level

of the tree. For a B-tree, it would require copying B pointers

(potentially thousands of bytes) per level of the tree, adding

significant overhead in terms of memory and running time.

There is also work on chunking of functional trees for

representing strings or (unordered) sequences [2, 9, 15, 31].

The motivation is similar (decrease space and increase local-

ity), but the fact they are sequences rather than search trees

makes the tradeoffs different. None of this work uses the idea

of hashing or efficiently searching the trees. Using hashing

to select the heads has an important advantage in simplify-

ing the code, and proving asymptotic bounds. Keeping the

elements with internal nodes and using a prefix allows us to

access the first b elements (or so) in constant work.

4 Operations on C-trees
In this section, we show how to support various tree opera-

tions over C-trees, such as building, searching and perform-

ing batch-updates to the data structure. These are operations

that we will need for efficiently processing and updating

graphs. We argue that the primitives are theoretically effi-

cient by showing bounds on the work and depth of each

operation. We also describe how to support augmentation

in the data structure using an underlying augmented purely-

functional tree. We note that theC-tree interfaces defined in

this section operate over element-value pairs, whereas theC-
trees defined in Section 3.1 only stored a set of elements for

the sake of illustration. The algorithm descriptions elide the

values associated with each element for the sake of clarity.

We use operations on an underlying purely-functional tree

data structure in our description, and state the bounds for op-

erations on these trees as necessary (e.g., the trees described

in Blelloch et al. [13] and Sun et al. [74]). The primitives in

this section for a C-tree containing elements of type E and

values of type V are defined as follows.

• Build(S, fV ) takes a sequence of element-value pairs and

returns aC-tree containing the elements in S with duplicate
values combined using a function fV : V ×V → V .

• Find(T , e) takes a C-tree T and an element e and returns

the entry of the largest element e ′ ≤ e .
• Map(T , f ) takes a C-tree T and a function f : V → () and

applies f to each element in T .
• MultiInsert(T , f , S) and MultiDelete(T , S) take a C-tree
T , (possibly) a function f : V ×V → V that specifies how

to combine values, and a sequence S of element-value pairs,

and returns a C-tree containing the union or difference of

T and S .
Our algorithms for Build, Find, and Map are straightfor-

ward, so due to space constraints, we give details about these

implementations in the full version of the paper [26].

Algorithm 1 Union

1: function Union(C1,C2)

2: case (C1,C2) of

3: ((null, _), _) → UnionBC(C1,C2)

4: (_, (null, _)) → UnionBC(C2,C1)

5: ((T1, P1), (T2, P2)) →
6: let

7: val (L2,k2,v2,R2) = Expose(T2)
8: val (B1, (BT2,BP2)) = Split(C1,k2)
9: val (vL ,vR ) = SplitChunk(v2, Smallest(BT2))
10: val (PL , PR ) = SplitChunk(BP2, Smallest(R2))
11: val v ′

2
= UnionChunk(vL , PL)

12: val (CL ,CR ) = Union(B1, (L2, P2)) | |
Union((BT2, PR ), (R2,vR ))

13: in

14: ctree(Join(CL .Tree,CR .Tree,k2,v ′
2
),CL .Prefix)

15: end

4.1 Algorithms for Batch Insertions and Deletions

OurMultiInsert andMultiDelete algorithms are based

on more fundamental algorithms for Union, Intersection,

and Difference on C-trees. Since we can simply build a

tree over the input sequence toMultiInsert and call Union

(or Difference for MultiDelete), we focus only on the

set operations. Furthermore, because the algorithms for In-

tersection and Difference are conceptually very similar

to the algorithm for Union, we only describe in detail the

Union algorithm, and Split, an important primitive used to

implement Union.

Union. Our Union algorithm (Algorithm 1) is based on the

recursive algorithm for Union given by Blelloch et al. [13].

The main differences between the implementations are how

to split a C-tree by a given element, and how to handle ele-

ments in the tails and prefixes. The algorithm takes as input

two C-trees, C1 and C2, and returns a C-tree C containing

the elements in the union of C1 and C2. Figure 3 provides an

illustration of how our Union algorithm computes the union

of two C-trees. The algorithms use the following operations

defined onC-trees and chunks. The Expose operation takes

as input a tree and returns the left subtree, the element and

prefix at the root of the tree, and the right subtree. The Split

operation takes as input a C-tree B and an element k , and
returns two C-trees B1 and B2, where B1 (resp. B2) are a C-
tree containing all elements less than (resp. greater than) k .
It can also optionally return a boolean indicating whether

k was found in B, which is used when implementing Dif-

ference and Intersection. Smallest operation returns

the smallest head in a tree. UnionBC merges a C-tree con-
sisting of a prefix and empty tree, and another C-tree. We

also use the SplitChunk and UnionChunk operations,

which are defined similarly to Split and Union for chunks.

The idea of the algorithm is to call Expose on the tree of

one of the two C-trees (C2), and split the other C-tree (C1)

based on the element exposed at the root ofC2’s tree (Line 7).

The split on C1 returns the trees B1 and B2 (Line 8). The
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Figure 3. This figure illustrates how our Union algorithm computes the union of two C-trees, T1 and T2. The text at the top of each figure

(in green) denotes the sub-routine that is called, and the bottom portion of the figure illustrates the output of the call.

algorithm then recursively calls Union on the C-trees con-
structed from L2 and R2, the left and right subtrees exposed

in C2’s tree with the C-trees returned by Split, B1, and B2.

However, some care must be taken, since elements in

k2’s tail, v2, may come after some heads in B2. Similarly,

elements in B2’s prefix may come after some heads of R2.

In both cases, we should merge these elements with their

corresponding heads’ tails.We handle these cases by splitting

v2 by the leftmost element of B2 (producing vL and vR ), and
splitting B2’s prefix by the leftmost element of R2 (producing

PL and PR ). The left recursive call to Union just takes the

C-trees B1 and (L2, P2). The right recursive call takes the

C-trees (B2.Tree, PR ), and (R2,vR ). Note that all elements

in the prefixes PR and vR are larger than the smallest head

in B2 and R2. Therefore, the C-tree returned from the right

recursive call has an empty prefix. The output of Union is

the C-tree formed by joining the left and right trees from

the recursive calls, k2, and the tail v ′
2
formed by unioning vL

and PL , with the prefix from CL .

Union-BC. Recall that the Union-BC algorithm merges a

C-tree consisting of a prefix and empty tree, and another

C-tree. We give a detailed description and pseudocode of

the algorithm in the full version of the paper due to space

constraints [26]. The idea of Union-BC is to split the prefix

based on the leftmost element of P ’s tree into two pieces, PL
and PR containing elements less than and greater than the

leftmost element respectively. PL is merged with P ’s prefix
to generate P ′

. The elements in PR find the heads they cor-

respond to by searching the tree for the largest head that is

smaller than them.We then construct a sequence of head-tail

pairs by inserting each element in PR into its corresponding

elements tail. Finally, we generate a new tree,T ′
, by perform-

ing a MultiInsert into C’s tree with the updated head-tail

pairs. The return value is the C-tree (T ′, P ′).

Split. Split takes aC-tree,C = (T , P), and an element k and

returns a triple consisting of a C-tree of all elements less

than k , whether the element was found, and a C-tree of all
elements greater than k . We provide a high-level description

of the algorithm here and defer the pseudocode and details

to the full version of the paper [26].

The algorithm works by enumerating cases for how the

split key can split C . If k is less than the first element in P ,
then we return an empty C-tree, false, indicating that k was

not found, andC as the rightC-tree. Similarly, if k splits P (it

lies between the first and last elements of P ) then we split P ,
and return the list of elements less than the split key as the

leftC-tree, with the boolean and right tree handled similarly.

Otherwise, if the above cases did not match, and the tree

is null, then we return C as the left C-tree. The recursive

cases are similar to how Split is implemented in Blelloch et

al. [13], except for the case where k splits the tail at the root

of the tree. Another important detail is how we compute the

first and last elements of a chunk. Instead of scanning the

chunk, which will cause us to do work proportional to the

sum of chunks on a root-to-leaf path in the tree, we store the

first and last elements at the head of each chunk to perform

this operation in O(1) work and depth. This modification is

important to show that Split can be done inO(b logn) work
and depth w.h.p. on a C-tree.

4.2 Work and Depth Bounds

We provide details, correctness proofs, and analysis for our

C-tree primitives in the full version of the paper [26], and

state the work and depth bounds below.

Building. Building (Build(S, fV )) a C-tree can be done in

O(n logn) work and O(b logn) depth w.h.p. where |S | = n.

Searching. Searching (Find(T , e)) for an element e in a C-
tree can be implemented inO(b logn) work and depth w.h.p.

Mapping. Mapping (Map(T , f )) over a C-tree containing n
elements with a constant-work function f can be done in

O(n) work and O(b logn) depth w.h.p.

Batch Updates. Batch updates (MultiInsert(T , f , S) and
MultiDelete(T , S)) can be performed inO(b2(k log((n/k) +
1))) expected work and O(b logk logn) depth w.h.p. where

k = min(|T |, |S |) and n = max(|T |, |S |).

5 Representing Graphs as Trees

Representation. An undirected graph can be implemented

using purely functional tree-based data structures by rep-

resenting the set of vertices as a tree, which we call the

vertex-tree. Each vertex in the vertex-tree represents its ad-

jacency information by storing a tree of identifiers of its

adjacent neighbors, which we call the edge-tree. Directed
graphs can be represented in the same way by simply storing

two edge-trees per vertex, one for the out-neighbors, and

one for the in-neighbors. The resulting graph data structure

is a tree-of-trees that has O(logn) overall depth using any

balanced tree implementation (w.h.p. using a treap). Figure 4
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Figure 4. We illustrate how the graph (shown in subfigure (a)) is represented as a simple tree of trees (subfigure (b)) and as a tree of C-trees
(subfigure (c)). As in Figure 1, we color elements (in this case vertex IDs) that are sampled as heads yellow. The prefix and tree in each C-tree
are drawn as a tuple, following the datatype definition in Figure 1.

illustrates the vertex-tree and the edge-trees for an example

graph (subfigure (a)). Subfigure (b) illustrates how the graph

is represented using simple trees for both the vertex-tree

and edge-tree. Subfigure (c) illustrates using a simple tree for

the vertex-tree and a C-tree for the edge-tree. We augment

the vertex-tree to store the number of edges contained in its

subtrees, which is needed to compute the total number of

edges in the graph in O(1) work. Weighted graphs can be

represented using the same structure, with the only differ-

ence being that the elements in the edge-trees are modified

to store an associated edge weight. Note that computing

associative functions over the weights (e.g., aggregating the

sum of all edge-weights) could be easily done by augmenting

the edge and vertex-trees. We also note that the vertex-tree

could also be compressed using aC-tree but defer evaluating
this idea for future work.

Basic Graph Operations.We can compute the number of

vertices and number of edges in the graph by querying the

size (number of keys) in the vertex-tree and the augmented

value of the vertex-tree respectively, which can both be done

in O(1) work. Finding a particular vertex just searches the

vertex-tree, which takes O(logn) work and depth.

edgeMap.We implement edgeMap (defined in Section 2)

by mapping over the vertices in the input vertexSubsetU in

parallel and for each vertex u ∈ U searching the vertex-tree

for its edge-tree, and then mapping over u’s incident neigh-
bors, again in parallel. For each of u’s neighbors v , we apply
the map function F (u,v) if the filter function C(v) returns
true. Other than finding vertices in the input vertexSubset

in G and traversing edges via the tree instead of an array,

the implementation is effectively the same as in Ligra [70].

The direction optimization [5, 70] can also be implemented,

and we describe more details later in this section. Assuming

the functions F and C take constant work, EdgeMap takes

O(
∑
u ∈U deg(u) + |U | logn) work and O(logn) depth.

Batch Updates. Inserting and deleting edges are defined

similarly, and so we only provide details for InsertEdges.

Note that updates (e.g., to the weight) of existing edges can

be done within this interface. Let A be the sequence (batch)

of edge updates and let k = |A|.

We first sort the batch of edge pairs using a comparison

sort. Next, we compute an array of source vertex IDs that are

being updated and for each ID, in parallel, build a tree over

its updated edges. We can combine duplicate updates in the

batch by using the duplicate-combining function provided by

the C-tree constructor. As the sequence is sorted, the build
costs O(k) work and O(logk) depth. Next, in the update

step, we call MultiInsert over the vertex-tree with each

(source, tree) pair in the previous sequence. The combine

function forMultiInsert combines existing values (edge-

trees) with the new edge-trees by calling Union on the old

edge-tree and new edge-tree.

We give a simple worst-case analysis of the algorithm

and show that the algorithm performs O(k logn) work over-

all, and has O(log3 n) depth. All steps before the Multi-

Insert cost O(k logk) work, and O(logk) depth in total,

as they sort and apply parallel sequence operations to se-

quences of length k [39]. As the depth of both the vertex-

tree and edge-tree is O(logn), the overall work of updating

both the vertex-tree and each affected edge-tree can be up-

per bounded by O(k logn). The depth of MultiInsert is

O(logn(logm+DUnion)), whereDUnion) is the depth of union.

This simplifies to O(log3 n) by upper-bounding DUnion as

O(log2 n), as shown in the full version of the paper [26].

5.1 Efficiently Implementing Graph Algorithms

We now address how to efficiently implement graph algo-

rithms using a tree of C-trees, mitigating the increase in

access times due to using trees. We first describe a technique

for handling the asymptotic increase in work for global graph

algorithms due to using trees. We then consider local algo-

rithms, and argue that for many local algorithms, the extra

cost of searching the vertex-tree can be amortized. Finally,

we describe how direction optimization [5] can be easily

implemented over the C-tree data structure.

Flat Snapshots. Notice that algorithms in our framework

that use edgeMap incur an extra O(K logn) factor in their

work, where K is the total number of vertices accessed by

edgeMap over the course of the algorithm. For an algorithm

like breadth-first search, which runs in O(m + n) work and
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O(D logn) depth for a graph with diameter D using a static-

graph processing framework [25], a naive implementation

using our framework will require performingO(m +n logn)
work (the depth is the same, assuming that b is a constant).

Instead, for global graph algorithms, which we loosely

define as performing Ω(n) work, we can afford to take a flat
snapshot of the graph, which reduces the O(K logn) term
to O(K). The idea of a flat snapshot is very simple—instead

of accessing vertices through the vertex-tree, and calling

Find for each v supplied to edgeMap, we just precompute

the pointers to the edge-trees for all v ∈ V and store them

in an array of size n. This can be done in linear work and

O(logn) depth by traversing the vertex-tree once to fetch

the pointers. By providing this array, which we call a flat
snapshot to each call to edgeMap, we can directly access

the edges tree inO(1)work and reduce the work of edgeMap

on a vertexSubset, U , to O(
∑
u ∈U deg(u) + |U |). In practice,

using a flat snapshot speeds up BFS queries on our input

graphs by an average of 1.26x (see Table 4).

Local Algorithms. For local graph algorithms we often can-

not afford to create a flat snapshot without a significant in-

crease in the work.We observe, however, that after retrieving

a vertex many local algorithms will process all edges inci-

dent to it. Because the average degree in real-world graphs

is often in the same range or larger than logn (see Table 1),

the logarithmic overhead of accessing a vertex in the vertex-

tree in these graphs can be amortized against the cost of

processing the edges incident to the vertex, on average.

Direction Optimization. Direction optimization is a tech-

nique first described for breadth-first search in Beamer et

al. [5], and later generalized as part of Ligra in its edgeMap

implementation [70]. It combines a sparse traversal, which

applies the F function in edgeMap to the outgoing neigh-

bors of the input vertexSubset U , with a dense traversal,

which applies F to the incoming neighbors u of all vertices

v in the graph where C(v) = true and u ∈ U . The dense

traversal improves locality for large input vertexSubsets, and

reduces edge traversals in some algorithms, such as breadth-

first search. The traversal mode on each iteration is selected

based on the size ofU and its out-degrees. We implemented

the optimization by implementing a sparse traversal and a

dense traversal that traverses the underlying C-trees.

6 Aspen Graph-Streaming Framework

In this section, we outline the Aspen interface and imple-

mentation for processing streaming graphs, and provide the

full interface in the full version of the paper [26]. The Aspen

interface is an extension of Ligra’s interface. It includes the

full Ligra interface—vertexSubsets, edgeMap, and various

other functionality on a fixed graph. On top of Ligra, we

add a set of functions for updating the graph—in particular,

for inserting or deleting sets of edges or sets of vertices. We

also add a flat-snapshot function. Aspen currently does not

support weighted edges, but we plan to add this functional-

ity using a similar compression scheme for weights as used

in Ligra+ in the future. All of the functions for processing

and updating the graph work on a fixed and immutable ver-
sion (snapshot) of the graph. The updates are functional, and
therefore instead of mutating the version, return a handle to

a new graph. The implementation of these operations follow

the description given in the previous sections.

The Aspen interface supports three functions, acqire,

set, and release, for acquiring the current version of a

graph, setting a new version, and releasing a the version.

The interface is based on the recently defined version main-
tenance problem and implemented with the corresponding

lock-free algorithm to solve it [8]. release returns whether

it is the last copy on that version, and if so we garbage

collect it. The three functions each act atomically. The frame-

work allows any number of concurrent readers (i.e., transac-

tions that acqire and release but do not set) and a single

writer (acqires, sets, and then releases). Multiple con-

current readers can acquire the same version, or different

versions depending on how the writer is interleaved with

them. The implementation of this interface is non-trivial due

to race conditions between the three operations. Importantly,

however, no reader or writer is ever blocked or delayed by

other readers or writers. Aspen guarantees strict serializ-

ability, which means that the state of the graph and outputs

of queries are consistent with some serial execution of the

updates and queries corresponding to real time.

Aspen is implemented in C++ and uses PAM [74] as the

underlying purely-functional tree data structure for storing

the heads. Our C-tree implementation requires about 1400

lines of C++, most of which are for implementing Union,

Difference, and Intersect. Our graph data structure uses

an augmented purely-functional tree from PAM to store the

vertex-tree. Each node in the vertex tree stores an integer C-
tree storing the edges incident to each vertex as its value. We

note that the vertex-tree could also be compressed using aC-
tree, but we did not explore this direction in the present work.

To handle memory management, our implementations use a

parallel reference counting garbage collector along with a

custom pool-based memory allocator. The pool-allocation

is critical for achieving good performance due to the large

number of small memory allocations in the the functional

setting. Although C++ might seem like an odd choice for

implementing a functional interface, it allows us to easily

integrate with PAM and Ligra. We also note that although

our graph interface is purely-functional (immutable), our

global and local graph algorithms are not. They can mutate

local state within their transaction, but can only access the

shared graph through an immutable interface.

7 Experiments

Algorithms.We implemented five algorithms in Aspen, con-

sisting of three global algorithms and two local algorithms.
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Graph Num. Vertices Num. Edges Avg. Deg. Flat Snap. Aspen Uncomp. Aspen (No DE) Aspen (DE) Savings

LiveJournal 4,847,571 85,702,474 17.8 0.0722 2.77 0.748 0.582 4.75x

com-Orkut 3,072,627 234,370,166 76.2 0.0457 7.12 1.47 0.893 7.98x

Twitter 41,652,231 2,405,026,092 57.7 0.620 73.5 15.6 9.42 7.80x

ClueWeb 978,408,098 74,744,358,622 76.4 14.5 2271 468 200 11.3x

Hyperlink2014 1,724,573,718 124,141,874,032 72.0 25.6 3776 782 363 10.4x

Hyperlink2012 3,563,602,789 225,840,663,232 63.3 53.1 6889 1449 702 9.81x

Table 1. Statistics about our input graphs, and memory usage using different formats in Aspen. Flat Snap. shows the amount of memory in

GBs required to represent a flat snapshot of the graph. Aspen Uncomp., Aspen (No DE), and Aspen (DE) show the amount of memory in

GBs required to represent the graph using uncompressed trees, Aspen without difference encoding of chunks, and Aspen with difference

encoding of chunks, respectively. Savings shows the factor of memory saved by using Aspen (DE) over the uncompressed representation.

Our global algorithms are breadth-first search (BFS), single-
source betweenness centrality (BC), and maximal indepen-

dent set (MIS). Our BC implementation computes the contri-

butions to betweenness scores for shortest paths emanating

from a single vertex. The algorithms are similar to the algo-

rithms in [25] and required only minor changes to acquire

a flat snapshot and include it as an argument to edgeMap.

As argued in Section 5.1, the cost of creating the snapshot

does not asymptotically affect the work or depth of our im-

plementations. The work and depth of our implementations

of BFS, BC, and MIS are identical to the implementations

in [25]. Our local algorithms are 2-hop and Local-Cluster.
2-hop computes the set of vertices that are at most 2 hops

away from the vertex using edgeMap. The worst-case work

is O(m + n logn) and the depth is O(logn). Local-Cluster is
a sequential implementation of the Nibble-Serial clustering

algorithm (see [72, 73]), run using ϵ = 10
−6

and T = 10.

In our experiments, we run the global queries one at a

time due to their large memory usage and significant internal

parallelism, and run the local queries concurrently (many at

the same time).

Experimental Setup. Our experiments are performed on a

72-core Dell PowerEdge R930 (with two-way hyper-threading)

with 4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon processors

(with a 4800MHz bus and 45MB L3 cache) and 1TB of main

memory. Our programs use a work-stealing scheduler that

we implemented. The scheduler is implemented similarly to

Cilk for parallelism. Our programs are compiled with the g++
compiler (version 7.3.0) with the -O3 flag. All experiments

involving balanced-binary trees use weight-balanced trees

as the underlying balanced tree implementation [13, 74]. We

use Aspen to refer to the system usingC-trees and difference
encoding within each chunk and explicitly specify other

configurations of the system if necessary.

Graph Data. Table 1 lists the graphs we use. LiveJournal is
a directed graph of the LiveJournal social network [16]. com-
Orkut is an undirected graph of the Orkut social network.

Twitter is a directed graph of the Twitter network, where

edges represent the follower relationship [45]. ClueWeb is

a Web graph from the Lemur project at CMU [16]. Hy-
perlink2012 and Hyperlink2014 are directed hyperlink

graphs obtained from the WebDataCommons dataset where

nodes represent web pages [51]. Hyperlink2012 is the largest

publicly-available graph, and we show that Aspen is able to
process it on a single multicore machine. We symmetrized the

graphs in our experiments, as the running times for queries

like BFS and BC are more consistent on undirected graphs

due to the majority of vertices being in a single large com-

ponent.

Overview of Results.We show the following experimental

results in this section.

• The most memory-efficient representation ofC-trees saves
between 4–11x memory over using uncompressed trees,

and improves performance by 2.5–2.8x compared to using

uncompressed trees (Section 7.1).

• Algorithms implemented using Aspen are scalable, achiev-

ing between 32–78x speedup across inputs (Section 7.2).

• Updates and queries can be run concurrently in Aspen

with only a slight increase in latency (Section 7.3).

• Parallel batch updates in Aspen are efficient, achieving

between 105–442M updates/sec for large batches (Sec-

tion 7.4).

• Aspen outperforms Stinger by 1.8–10.2x while using 8.5–

11.4x less memory (Section 7.5).

• Aspen outperforms LLAMA by 2.8–7.8x while using 1.9–

3.5x less memory (Section 7.6).

• Aspen is competitive with state-of-the-art static graph

processing systems, ranging from being 1.4x slower to 30x

faster (Section 7.7).

7.1 Chunking and Compression in Aspen

Memory Usage. Table 1 shows the amount of memory re-

quired to represent real-world graphs in Aspen without com-

pression, using C-trees, and finally using C-trees with differ-

ence encoding. In the uncompressed representation, the size

of a vertex-tree node is 48 bytes, and the size of an edge-tree

node is 32 bytes. On the other hand, in the compressed rep-

resentation, the size of a vertex-tree node is 56 bytes (due

to padding and extra pointers for the prefix) and the size of

an edge-tree node is 48 bytes. We calculated the memory

footprint of graphs that require more than 1TB of memory in

the uncompressed format by hand, using the sizes of nodes

in the uncompressed format.

We observe that by usingC-trees and difference encoding

to represent the edge trees, we reduce the memory footprint

of the dynamic graph representation by 4.7–11.3x compared
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Application LiveJournal com-Orkut Twitter ClueWeb Hyperlink2014 Hyperlink2012

(1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU) (1) (72h) (SU)

BFS 0.981 0.021 46.7 0.690 0.015 46.0 7.26 0.138 52.6 186 3.69 50.4 362 6.19 58.4 1001 14.1 70.9

BC 4.66 0.075 62.1 4.58 0.078 58.7 81.2 1.18 68.8 1111 21.8 50.9 1725 24.5 70.4 4581 58.1 78.8

MIS 3.38 0.054 62.5 4.19 0.069 60.7 71.5 0.99 72.2 955 12.1 78.9 1622 22.2 73.0 3923 50.8 77.2

2-hop 4.36e-3 1.06e-4 41.1 2.95e-3 6.82e-5 43.2 0.036 8.70e-4 41.3 0.883 0.021 42.0 1.61 0.038 42.3 3.24 0.0755 42.9

Local-Cluster 0.075 1.64e-3 45.7 0.122 2.50e-3 48.8 0.127 2.59e-3 49.0 0.016 4.45e-4 35.9 0.022 6.75e-4 32.5 0.028 6.82e-4 41.0

Table 2. Running times (in seconds) of our algorithms over symmetric graph inputs where (1) is the single threaded time (72h) is the 72-core

time (with hyper-threading, i.e., 144 threads), and (SU) is the self-relative speedup.

b (Exp. Chunk Size) Memory BFS (72h) BC (72h) MIS (72h)

2
1

68.83 0.309 2.72 2.17

2
2

41.72 0.245 2.09 1.71

2
3

26.0 0.217 1.68 1.41

2
4

17.7 0.172 1.45 1.24

2
5

13.3 0.162 1.32 1.14

2
6

11.1 0.152 1.25 1.07

2
7

9.97 0.142 1.22 1.01

28 9.42 0.138 1.18 0.99

2
9

9.17 0.141 1.20 0.99

2
10

9.03 0.152 1.19 0.98

2
11

8.96 0.163 1.20 0.98

2
12

8.89 0.170 1.21 0.98

Table 3. Memory usage (gigabytes) and performance (seconds)

for the Twitter graph as a function of the (expected) chunk size.

All times are measured on 72 cores using hyper-threading. Bold-

text marks the best value in each column. We use 2
8
in the other

experiments.

.

to the uncompressed format. Using difference encoding pro-

vides between 1.2–2.3x reduction in memory usage com-

pared to storing the chunks in an uncompressed format. We

observe that both using C-trees and compressing within

the chunks is crucial for storing and processing our largest

graphs in a reasonable amount of memory.

Comparison with Uncompressed Trees. Next, we study

the performance improvement gained by the improved local-

ity of theC-tree data structure. Due to thememory overheads

of representing large graphs using the uncompressed for-

mat (see Table 1), we are only able to report results for our

three smallest graphs, LiveJournal, com-Orkut, and Twitter,

as we cannot store the larger graphs even with 1TB of RAM

in the uncompressed format. We ran BFS on both the un-

compressed and C-tree formats (using difference encoding)

and show the results in the full version of our paper due to

space constraints [26]. The results show that using the com-

pressed representation improves the running times of these

applications from between 2.5–2.8x across these graphs.

Choice of Chunk Size. Next, we consider how Aspen per-

forms as a function of the expected chunk size, b. Table 3
reports the amount of memory used, and the BFS, BC, and

MIS running times as a function of b. In the rest of the pa-

per, we fixed b = 2
8
, which we found gave the best tradeoff

between the amount of memory consumed (it requires 5%

morememory than themost memory-efficient configuration)

while enabling good parallelism across different applications.

Graph Without FS With FS Speedup FS Time

LiveJournal 0.028 0.021 1.33 3.8e-3

com-Orkut 0.018 0.015 1.12 2.3e-3

Twitter 0.184 0.138 1.33 0.034

ClueWeb 4.98 3.69 1.34 0.779

Hyperlink2014 7.51 6.19 1.21 1.45

Hyperlink2012 18.3 14.1 1.29 3.03

Table 4. 72-core with hyper-threading running times (in sec-

onds) comparing the performance of BFS without flat snapshots

(Without FS) and with flat snapshots (With FS), as well as the

running time for computing the flat snapshot (FS Time).

7.2 Parallel Scalability of Aspen

Algorithm Performance. Table 2 reports experimental re-

sults including the single-threaded time and 72-core time

(with hyper-threading) for Aspen using compressed C-trees.
For BFS, we achieve between 46–70x speedup across all in-

puts. For BC, our implementations achieve between 50–78x

speedup across all inputs. Finally, for MIS, our implementa-

tions achieve between 60x–78x speedup across all inputs. We

observe that the experiments in [25] report similar speedups

for the same graphs. For local algorithms, we report the av-

erage running time for performing 2048 queries sequentially

and in parallel. We achieve between 41–43x speedup for

2-hop, and between 35–49x speedup for Local-Cluster.

Flat Snapshots. Table 4 shows the running times of BFS

with and without the use of a flat snapshot. Our BFS imple-

mentation is between 1.12–1.34x faster using a flat snapshot,

including the time to compute a flat snapshot. The table also

reports the time to acquire a flat snapshot, which is between

15–24% of the overall BFS time across all graphs. We observe

that acquiring a flat snapshot is already an improvement for

a single run of an algorithm, and quickly becomes more prof-

itable as multiple algorithms are run over a single snapshot

of the graph (e.g., multiple BFS’s or betweenness centrality

computations).

7.3 Simultaneous Updates and Queries

In this sub-section, we experimentally verify that Aspen can

support low-latency queries and updates running concur-

rently. In these experiments, we generate an update stream

by randomly sampling 2 million edges from the input graph

to use as updates. We sub-sample 90% of the sample to use

as edge insertions, and immediately delete them from the

input graph. The remaining 10% are kept in the graph, as
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Graph Update Query (BFS)

Edges/sec Latency Latency (C) Latency (I)

LiveJournal 7.86e4 1.27e-5 0.0190 0.0185

com-Orkut 6.02e4 1.66e-5 0.0179 0.0176

Twitter 4.44e4 1.73e-5 0.155 0.155

ClueWeb 2.06e4 4.83e-5 4.83 4.82

Hyperlink2014 1.42e4 7.04e-5 6.17 6.15

Hyperlink2012 1.16e4 8.57e-5 15.8 15.5

Table 5. Throughput and average latency achieved by Aspen when

concurrently processing a sequential stream of edge updates along

with a sequential stream of breadth-first search queries (each BFS is

internally parallel). Latency (C) reports the average latency of the

query when running the updates and queries concurrently, while

Latency (I) reports the average latency when running queries in

isolation on the modified graph.

we will delete them over the course of the update stream.

The update stream is a random permutation of these inser-

tions and deletions. We believe that sampling edges from

the input graph better preserves the properties of the graph

and ensures that edge deletions perform non-trivial work,

compared to using random edge updates.

After constructing the update stream, we spawn two paral-

lel jobs, onewhich performs the updates sequentially and one

which performs global queries. We maintain the undirect-

edness of the graph by inserting each edge as two directed

edge updates, within a single batch. For global queries, we

run a stream of BFS’s from random sources one after the

other and measure the average latency. We note that for the

BFS queries, as our inputs are symmetrized, a random vertex

is likely to fall in the giant connected component which ex-

ists in all of our input graphs. The global queries therefore

process nearly all of the vertices and edges.

Table 5 shows the throughput in terms of directed edge

updates per second, the average latency to make an undi-

rected edge visible, and the latency of global queries both

when running concurrently with updates and when running

in isolation. We note that when running global queries in

isolation, we use all of the threads in the system (72-cores

with hyper-threading). We observe that our data structure

achieves between 22–157 thousand directed edge updates

per second, which is achieved while concurrently running

a parallel query on all remaining threads. We obtain higher

update rates on smaller graphs, where the small size of the

graph enables it to utilize the caches better. In all cases, the

average latency for making an edge visible is at most 86

microseconds, and is as low as 12.7 microseconds on the

smallest graph.

The last two columns in Table 5 show the average latency

of BFS queries from random sources when running queries

concurrently with updates, and when running queries in

isolation. We see that the performance impact of running

updates concurrently with queries is less than 3%, which

could be due to having one fewer thread. We ran a similar

experiment, where we ran updates on 1 core and ranmultiple

Graph Batch Size

10 10
3

10
5

10
7

10
9

2 · 109

LiveJournal 8.26e4 2.88e6 2.29e7 1.56e8 4.13e8 4.31e8

com-Orkut 7.14e4 2.79e6 2.22e7 1.51e8 4.21e8 4.42e8

Twitter 6.32e4 2.63e6 1.23e7 5.68e7 3.04e8 3.15e8

ClueWeb 6.57e4 2.38e6 7.19e6 2.64e7 1.33e8 1.69e8

Hyperlink2014 6.17e4 2.12e6 6.66e6 2.28e7 9.90e7 1.39e8

Hyperlink2012 6.45e4 2.04e6 4.97e6 1.84e7 8.26e7 1.05e8

Table 6. Throughput (directed edges/second) obtained when per-

forming parallel batch edge insertions on different graphs with

varying batch sizes, where inserted edges are sampled from an

rMAT graph generator. The times for batch deletions are similar

to the time for insertions. All times are on 72 cores with hyper-

threading.

concurrent local queries (Local-Cluster) on the remaining

cores, and found that the difference in average query times

is even lower than for BFS.

7.4 Performance of Batch Updates

In this sub-section, we show that the batch versions of our

primitives achieve high throughputwhen updating the graph,

even on very large graphs and for very large batches. As there

are insufficient edges on our smaller graphs for applying the

methodology from Section 7.3, we sample directed edges

from an rMAT generator [20] with a = 0.5,b = c = 0.1,d =
0.3 to perform the updates. To evaluate our performance on

a batch of size B, we generate B directed edge updates from

the stream (note that there can be duplicates), repeatedly call

InsertEdges and DeleteEdges on the batch, and report the

median of three such trials. The costs that we report include
the time to sort the batch and combine duplicates.

Table 6 shows the throughput (the number of edges pro-

cessed per second) of performing batch edge insertions in

parallel on varying batch sizes. The throughput for edge

deletions are within 10% of the edge insertion times, and

are usually faster (see Figure 5). The running time can be

calculated by dividing the batch size by the throughput. We

illustrate the throughput obtained for both insertions and

deletions in Figure 5 for the largest and smallest graph, and

note that the lines for other graphs are sandwiched between

these two lines. The only exception of com-Orkut, where

batch insertions achieve about 2% higher throughput than

soc-LiveJournal at the two largest batch sizes.

We observe that Aspen’s throughput seems to vary de-

pending on the graph size. We achieve a maximum through-

put of 442M updates per second on com-Orkut when pro-

cessing batches of 2B updates. On the other hand, on the

Hyperlink2012 graph, the largest graph that we tested on, we

achieve 105M updates per second for this batch size. We be-

lieve that the primary reason that small graphs achieve much

better throughput at the largest batch size is that nearly all

of the vertices in the tree are updated for the small graphs.
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Figure 5. Throughput (edges/sec) when performing batches of

insertions (I) and deletions (D) with varying batch sizes on Hyper-

link2012 and LiveJournal in a log-log scale. All times are on 72 cores

with hyper-threading.

In this case, due to the asymptotic work bound for the up-

date algorithm, the work for our updates become essentially

linear in the tree size.

7.5 Comparison with Stinger

In this sub-section, we compare Aspen to Stinger [29], a

state-of-the-art graph-streaming system.

StingerDesign. Stinger’s data structure for processing stream-

ing graphs is based on adapting the CSR format to support

dynamic updates. Instead of storing all edges of a vertex

contiguously, it chunks the edges into a number of blocks,

which are chained together as a linked list. Updates traverse

the list to find an empty slot for a new edge, or to determine

whether an edge exists. Therefore, updates take O(deд(v))
work and depth for a vertex v that is updated. Furthermore,

updates use fine-grained locking to perform edge insertions,

which may result in contention when updating very high

degree vertices. As Stinger does not support compressed

graph inputs, we were unable to run the system on our input

graphs that are larger than Twitter.

Memory Usage. We list the sizes of the three graphs that

Stinger was able to process in Table 7. The Stinger interface

supports a function which returns the size of its in-memory

representation in bytes, which is what we use to report the

numbers in this paper.

We found that Stinger has a high memory usage, even

in the memory-efficient settings used in our experiments.

The memory usage we observed appears to be consistent

with [29], which reports that the system requires 313GB of

memory to store a scale-free (RMAT) graph with 268 million

vertices and 2.15 billion edges, making the cost 145 bytes

per edge. This number is on the same order of magnitude as

the numbers we report in Table 7. We found that Aspen is

between 8.5–11.4x more memory efficient than Stinger.

BatchUpdate Performance.Wemeasure the batch update

performance of Stinger by using an rMAT generator provided

in Stinger to generate the directed updates. We set n = 2
30

Graph ST LL Ligra+ Aspen ST/Asp. LL/Asp. L+/Asp.

LiveJournal 4.98 1.12 0.246 0.582 8.55x 1.92x 0.422x

com-Orkut 10.2 3.13 0.497 0.893 11.4x 3.5x 0.55x

Twitter 81.8 31.4 5.1 9.42 8.6x 3.3x 0.54x

ClueWeb – – 100 200 – – 0.50x

Hyperlink2014 – – 184 363 – – 0.50x

Hyperlink2012 – – 351 702 – – 0.50x

Table 7. The first four columns show the memory in gigabytes re-

quired to represent the graph using Stinger (ST), LLAMA (LL),

Ligra+, and Aspen respectively. ST/A, LL/A, and L+/A is the

amount of memory used by Stinger, LLAMA, and Ligra+ divided

by the memory used by Aspen respectively. Stinger and LLAMA

do not support compression and were not able to store the largest

graphs used in our experiments.

Batch Size Stinger Updates/sec Aspen Updates/sec

10 0.0232 431 9.74e-5 102,669

10
2

0.0262 3,816 2.49e-4 401,606

10
3

0.0363 27,548 6.98e-4 1.43M

10
4

0.171 58,479 2.01e-3 4.97M

10
5

0.497 201,207 9.53e-3 10.4M

10
6

3.31 302,114 0.0226 44.2M

2 · 106 6.27 318,979 0.0279 71.6M

Table 8. Running times and update rates (directed edges/second)

for Stinger and Aspen when performing batch edge updates on an

empty graph with varying batch sizes. Inserted edges are sampled

from the RMAT graph generator. All times are on 72 cores with

hyper-threading.

for updates in the stream. The largest batch size supported by

Stinger is 2M directed updates. The update times for Stinger

were fastest when inserting into nearly-empty graphs. For

each batch size, we insert 10 batches of edges of that size

into the graph, and report the median time.

The results in Table 8 show the update rates for inserting

directed edge updates in Stinger and Aspen. We observe that

the running time for Stinger is reasonably high, even on very

small batches, and grows linearly with the size of the batch.

The Aspen update times also grow linearly, but are very fast

for small batches. Perhaps surprisingly, our update time on a

batch of 1M updates is faster than the update time of Stinger

on a batch of 10 edges.

AlgorithmPerformance. Lastly, we show the performance

of graph algorithms implemented using the Stinger data

structures. We use the BFS implementation for Stinger de-

veloped in McColl et al. [49]. We used a BC implementation

that is available in the Stinger code base. Unfortunately, this

implementation is entirely sequential, and so we compare

Stinger’s BC time to our single-threaded time. Neither of the

Stinger implementations perform direction-optimization, so

to perform a fair comparison, we used an implementation of

BFS and BC in Aspen that disables direction-optimization.

Table 9 shows the parallel running times of of Stinger and

Aspen for these problems. For BFS, which is run in par-

allel, we achieve between 6.7–10.2x speedup over Stinger.
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App. Graph ST LL A A(1) A
†

ST/A LL/A

BFS

LiveJournal 0.478 0.161 0.047 – 0.021 10.2 3.42

com-Orkut 0.548 0.192 0.067 – 0.015 8.18 2.86

Twitter 6.99 8.09 1.03 – 0.138 6.79 7.85

BC

LiveJournal 18.7 0.408 0.105 5.45 0.075 3.43 3.88

com-Orkut 32.8 1.32 0.160 7.74 0.078 4.23 8.25

Twitter 223 53.1 3.52 122 1.18 1.82 15.1

Table 9. Running times (in seconds) comparing the performance of

algorithms implemented in Stinger (ST), LLAMA (LL), and Aspen.

A is the parallel time using Aspen without direction-optimization.
(A(1)) is the one-thread time of Aspen, which is only relevant for

comparing with Stinger’s BC implementation. A
†
is the parallel

time using Aspen with direction-optimization. (ST/A) is Aspen’s
speedup over Stinger and (LL/A) is Aspen’s speedup over LLAMA.

For BC, which is run sequentially, we achieve between 1.8–

4.2x speedup over Stinger. A likely reason that Aspen’s BFS

is significantly faster than Stinger’s is that it can process

edges incident to high-degree vertices in parallel, whereas

traversing a vertex’s neighbors in Stinger requires sequen-

tially traversing a linked list of blocks.

7.6 Comparison with LLAMA

In this sub-section, we compare Aspen to LLAMA [47], an-

other state-of-the-art graph-streaming system.

LLAMA Design. Like Stinger, LLAMA’s streaming graph

data structure is motivated by the CSR format. However,

like Aspen, LLAMA is designed for batch-processing in the

single-writer multi-reader setting and can provide serializ-

able snapshots. In LLAMA, a batch of size k generates a new

snapshot which uses O(n) space to store a vertex array, and

O(k) space to store edge updates in a dynamic CSR structure.

The structure creates a linked list over the edges incident to a

vertex that is linked over multiple snapshots. This design can

cause the depth of iterating over the neighbors of a vertex

to be large if the edges are spread over multiple snapshots.

Unfortunately, the publicly-available code for LLAMA

does not provide support for evaluating streaming graph

algorithms or batch updates. However, we we were able to

load static graphs and run several implementations of algo-

rithms in LLAMA for which we report times in this section.

As LLAMA does not support compressed graphs, we were

unable to run the system on the graphs larger than Twitter.

Memory Usage. Unfortunately, we were not able to get

LLAMA’s internal allocator to report correct memory usage

statistics for its internal allocations. Instead, we measured

the lifetime memory usage of the process and use this as an

estimate for the size of the in-memory data structure built

by LLAMA. The memory usage in bytes for the three graphs

that LLAMAwas able to process is shown in Table 7. The cost

in terms of bytes/edge for LLAMA appears to be consistent,

which matches the fact that the internal representation is a

flat CSR, since there is a single snapshot. Overall, Aspen is

between 1.9–3.5x more memory efficient than LLAMA.

App. Graph GAP Galois Ligra+ Aspen
GAP
A

GAL
A

L+
A

BFS

LiveJ 0.0238 0.0761 0.015 0.021 1.1x 3.6x 0.71x

Orkut 0.0180 0.0661 0.012 0.015 1.2x 4.4x 0.80x

Twitter 0.139 0.461 0.081 0.138 1.0x 3.3x 0.58x

BC

LiveJ 0.0930 – 0.052 0.075 1.24x – 0.69x

Orkut 0.107 – 0.062 0.078 1.72x – 0.79x

Twitter 2.62 – 0.937 1.18 2.22x – 0.79x

MIS

LiveJ – 1.65 0.032 0.054 – 30x 0.59x

Orkut – 1.52 0.044 0.069 – 22x 0.63x

Twitter – 8.92 0.704 0.99 – 9.0x 0.71x

Table 10. Running times (in seconds) comparing the performance

of algorithms implemented in GAP, Galois, Ligra+, and Aspen.
GAP
A ,

GAL
A , and

L+
A are Aspen’s speedups over GAP, Galois, and Ligra+

respectively.

Algorithm Performance. We measured the performance

of a parallel breadth-first search (BFS) and single-source

betweenness centrality (BC) algorithms in LLAMA. The same

source is used for both LLAMA and Aspen for both BFS and

BC. BFS and BC in LLAMA do not use direction-optimization,

and so we report our times for these algorithms without

using direction-optimization to ensure a fair comparison.

Table 9 shows the running times for BFS and BC. We

achieve between 2.8–7.8x speedup over LLAMA for BFS and

between 3.8–15.1x speedup over LLAMA for BC. LLAMA’s

poor performance on these graphs, especially Twitter, is

likely due to sequentially exploring the out-edges of a vertex

in the search, which is slow on graphs with high degrees.

7.7 Static Graph Processing Systems

We compared Aspen to Ligra+, a state-of-the-art shared-

memory graph processing system, GAP, a state-of-the-art

graph processing benchmark [6], andGalois, a shared-memory

parallel programming library for C++ [56].

Ligra+. Table 10 the parallel running times of our three

global algorithms expressed using Aspen and Ligra+. The

results show that Ligra is 1.43x faster than Aspen for global

algorithms on small inputs. We also performed a more exten-

sive experimental comparison between Aspen and Ligra+,

comparing the parallel running times of all of our algorithms

on all of our inputs, which we include in the full version

of the paper [26]. Compared to Ligra+, across all inputs, al-

gorithms in Aspen are 1.51x slower on average (between

1.2x–1.7x) for the global algorithms, and 1.45x slower on av-

erage (between 1.0–2.1x) for the local algorithms. We report

the local algorithm times in the full version of the paper [26].

The local algorithms have a modest slowdown compared to

their Ligra+ counterparts, due to logarithmic work vertex

accesses being amortized against the relative high average

degrees (see Table 1).

GAP. Table 10 shows the parallel running times of the BFS

and BC implementations from GAP. On average, our imple-

mentations in Aspen are 1.4x faster than the implementations

from GAP over all problems and graphs. We note that the
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code in GAP has been hand-optimized using OpenMP sched-

uling primitives. As a result, the GAP code is significantly

more complex than our code, which only uses the high-level

primitives defined by Ligra+.

Galois. Table 10 shows the running times of using Galois, a

shared-memory parallel programming library that provides

support for graph processing [56]. Galois’ algorithms (e.g.,

for BFS and MIS) come with several versions. In our experi-

ments, we tried all versions of their algorithms, and report

times for the fastest one. On average, our implementations in

Aspen are 12x faster than Galois. For BFS, Aspen is between

3.3–4.4x faster than Galois. We note that the Galois BFS im-

plementation is synchronous, and does not appear to use

Beamer’s direction-optimization. We omit BC as we were

not able to obtain reasonable numbers on our inputs using

their publicly-available code (the numbers we obtained were

much worse than the ones reported in [56]). For MIS, our

implementations are between 9–30x faster than Galois.

8 Related Work

We have mentioned some other schemes for chunking in

Section 3.3. Although we use functional trees to support

snapshots, many other systems for supporting persistence

and snapshots use version lists [7, 27, 62]. The idea is for

each mutable value or pointer to keep a timestamped list of

versions, and reading a structure to go through the list to

find the right one (typically the most current is kept first).

LLAMA [47] uses a variation of this idea. However, it seems

challenging to achieve the low space that we achieve using

such systems since the space for such a list is large.

Graph Processing Frameworks.Many processing frame-

works have been designed to process static graphs (e.g. [23,

33, 46, 48, 56, 59, 61, 70, 79], among many others). We re-

fer the reader to [50, 82] for surveys of existing frameworks.

Similar to Ligra+ [71], Log(Graph) [10] supports running par-

allel algorithms on compressed graphs. Their experiments

show that they have a moderate performance slowdown on

real-world graphs, but sometimes get improved performance

on synthetic graphs [10].

Existing dynamic graph streaming frameworks can be

divided into two categories based on their approach to in-

gesting updates. The first category processes updates and

queries in phases, i.e., updates wait for queries to finish

before updating the graph, and queries wait for updates

to finish before viewing the graph. Most existing systems

take this approach, as it allows updates to mutate the un-

derlying graph without worrying about the consistency of

queries [3, 18, 19, 29, 30, 34, 54, 65–67, 69, 75, 78, 80]. Hor-

net [18], one of the most recent systems in this category,

reports a throughput of up to 800 million edges per second

on a GPU with 3,840 cores (about twice our throughput us-

ing 72 CPU cores for similarly-sized graphs); however the

graphs used in Hornet are much smaller that what Aspen

can handle due to memory limitations of GPUs. The second

category enables queries and updates to run concurrently by

isolating queries to run on snapshots and periodically have

updates generate new snapshots [21, 37, 38, 47].

GraphOne [44] is a system developed concurrently with

our work that can run queries on the most recent version of

the graph while processing updates concurrently by using

a combination of an adjacency list and an edge list. They

report an update rate of 66.4 million edges per second on a

Twitter graph with 2B edges using 28 cores; Aspen is able

to ingest 94.5 million edges per second on a larger Twitter

graph using 28 cores. However, GraphOne also backs up the

update data to disk for durability.

There are also many systems that have been built for

analyzing graphs over time [32, 35, 36, 41, 42, 52, 53, 63, 76,

77]. These systems are similar to processing graph streams

in that updates to the graph must become visible to new

queries, but are different in that queries can performed on

the graph as it appeared at any point in time. Although we do

not explore historical queries in this paper, functional data

structures are particularly well-suited for this task since it is

easy to keep any number of persistent versions by keeping

their roots.

Graph Databases. There has been significant research on

graph databases (e.g., [17, 28, 40, 43, 55, 60, 68]). The main dif-

ference between graph-streaming and graph databases is that

graph databases support transactions, i.e., multi-writer con-

currency. A graph database running with snapshot isolation

could be used to solve the same problem we solve. However,

due to the need to support transactions, graph databases have

significant overhead even for graph analytic queries such as

PageRank and shortest paths. McColl et al. [49] show that

Stinger is orders of magnitude faster than state-of-the-art

graph databases.

9 Conclusion

We have presented a compressed fully-functional tree data

structured called the C-tree that has theoretically-efficient

operations, low space usage, and good cache locality. We use

C-trees to represent graphs, and design a graph-streaming

framework called Aspen that is able to support concurrent

queries and updates to the graph with low latency. Experi-

ments show that Aspen outperforms state-of-the-art graph-

streaming frameworks, Stinger and LLAMA, and only incurs

a modest overhead over state-of-the-art static graph process-

ing frameworks. Future work includes designing incremental

graph algorithms and historical queries using Aspen, and

using C-trees in other applications. Although our original

motivation for designing C-trees was for representing com-

pressed graphs, we believe that they are of independent

interest and can be used in applications where ordered sets

of integers are dynamically maintained, such as compressed

inverted indices in search engines.
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