
Theoretically-Efficient and Practical
Parallel In-Place Radix Sorting

Omar Obeya

MIT CSAIL

obeya@mit.edu

Endrias Kahssay

MIT CSAIL

endrias@mit.edu

Edward Fan

MIT CSAIL

edwardf@mit.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

ABSTRACT
Parallel radix sorting has been extensively studied in the literature

for decades. However, the most efficient implementations require

auxiliary memory proportional to the input size, which can be pro-

hibitive for large inputs. The standard serial in-place radix sorting

algorithm is based on swapping each key to its correct place in the

array on each level of recursion. However, it is not straightforward

to parallelize this algorithm due to dependencies among the swaps.

This paper presents Regions Sort, a new parallel in-place radix

sorting algorithm that is efficient both in theory and in practice.

Our algorithm uses a graph structure to model dependencies across

elements that need to be swapped, and generates independent

tasks from this graph that can be executed in parallel. For sort-

ing n integers from a range r , and a parameter K , Regions Sort
requires only O(K log r logn) auxiliary memory. Our algorithm re-

quires O(n log r) work and O((n/K + logK) log r) span, making it

work-efficient and highly parallel. In addition, we present several

optimizations that significantly improve the empirical performance

of our algorithm. We compare the performance of Regions Sort

to existing parallel in-place and out-of-place sorting algorithms

on a variety of input distributions and show that Regions Sort is

faster than optimized out-of-place radix sorting and comparison

sorting algorithms, and is almost always faster than the fastest

publicly-available in-place sorting algorithm.

ACM Reference Format:
OmarObeya, Endrias Kahssay, Edward Fan, and Julian Shun. 2019. Theoretically-

Efficient and Practical Parallel In-Place Radix Sorting. In 31st ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA ’19), June
22–24, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3323165.3323198

1 INTRODUCTION
Parallel integer sorting has received significant attention in the

literature due to its efficiency over comparison sorting when the

keys are integers. n integer keys in the range [0, . . . , r − 1] can

be sorted stably in Θ(n/ϵ) work and O((rϵ + logn)/ϵ) span for a

constant 0 < ϵ < 1 [44]. No linear-work polylogarithmic-span

stable integer sorting algorithm is known, although integers in the

range [0, . . . ,n logO (1) n] can be sorted non-stably in Θ(n) work

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6184-2/19/06. . . $15.00

https://doi.org/10.1145/3323165.3323198

and O(logn) span [33]. Radix sorting is a form of integer sorting

that repeatedly sorts on a constant number of bits of the keys.

MSD (most significant digit) radix sorting starts from the higher-

order bits, and recursively sorts each set of keys that share the

same higher-order bits. LSD (least significant digit) radix sorting

starts from the lower-order bits, sorting all keys based on a constant

number of bits each time. LSD radix sorting requires each pass to be

stable, while MSD radix sorting does not. Parallel radix sorting can

be implemented in (n log r) work andO(log r logn) span [9, 38, 46],

and there are a variety of practical parallel implementations that

have been developed [9, 12, 23, 24, 26, 31, 32, 36–38, 41–43, 45, 46].

Most existing parallel radix sorting algorithms require Ω(n) ad-
ditional memory, which can be undesirable for large values of n.
As such, there has been recent interest in designing fast in-place
parallel sorting algorithms [3, 12], where the required auxiliary

memory is sub-linear in the input size. Reducing the amount of ad-

ditional memory required by an algorithm can enable larger inputs

to be processed in the memory of a machine, or a machine with

smaller RAM to be used, which can lead to considerable savings

when renting cloud computing resources. Furthermore, a lower

memory footprint can decrease the number of cache misses and

page faults, which can in turn improve performance, especially in

the parallel setting where memory bandwidth can be a bottleneck.

A standard serial in-place radix sorting algorithm is an MSD

algorithm that swaps each key into its correct place on each level of

recursion. The algorithm is non-stable, takes O(n log r) work, and
uses O(log r logn) additional memory to store per-bucket pointers

and information for recursion. More details and pseudocode for

this algorithm are presented in Section 2. The only existing parallel

in-place radix sorting algorithm is PARADIS [12], which is based on

partitioning the input among the available processors, and having

each processor serially process its partition by swapping each key

into its desired location. The algorithm is speculative in that not all

keys may be sorted after each processor finishes its partition, and

therefore additional iterations are needed. The authors show that

PARADIS performs well in practice, but in the worst case, one level

of recursion can take linear span, which is theoretically no better

than the serial algorithm. We describe PARADIS in more detail in

Section 2.

In this paper, we design Regions Sort, a parallel in-place radix

sorting algorithm that is efficient both in theory and in practice.

Like the serial in-place algorithm and PARADIS, our algorithm is a

non-stable MSD radix sort. The algorithm uses a graph structure

where vertices represent sub-arrays that will store keys of the

same bucket, and an edge between vertex u and v with weightw
represents a set ofw keys that are in the sub-array corresponding to

vertex u and need to be swapped into the sub-array corresponding

to vertex v . Using the graph, we iteratively identify and execute

https://doi.org/10.1145/3323165.3323198
https://doi.org/10.1145/3323165.3323198

tasks in parallel, and modify the graph based on the executed tasks.

We propose two strategies for processing the graph, one based on

processing cycles and one based on processing 2-paths. Similar to

the standard parallel MSD radix sorting algorithm, Regions Sort

recursively sorts sub-arrays that share the same bucket in parallel,

until all of the bits have been processed. We prove that the work of

Regions Sort isO(n log r), which matches that of the serial in-place

radix sorting algorithm. We also show that the span of Regions Sort

is O((n/K + logK) log r) where K is an algorithm parameter. The

additional space required by Regions Sort is O(K log r logn). Our
algorithm is presented in Section 3, and performance optimizations

are presented in Section 4.

In Section 5, we perform an extensive experimental evaluation

of Regions Sort and compare it to several existing parallel sorting

algorithms (out-of-place radix sort, in-place sample sort, out-of-

place sample sort, and a sorting algorithm from the C++ Standard

Template Library
1
) as well as a state-of-the-art serial in-place radix

sorting algorithm. On a variety of input distributions using a 36-

core machine with two-way hyper-threading, we are almost always

faster than the fastest existing parallel in-place sorting algorithm

IPS
4
o [3] (ranging from 3.6x faster to 1.02x slower). In addition,

Regions Sort is between 1.2–4.4x faster than an optimized paral-

lel out-of-place radix sorting algorithm. We achieve between 19–

65x parallel speedup on 36 cores with two-way hyper-threading.

We present additional experiments comparing the impact of input

size, key range, skewness of input distributions, and radix size on

performance. The code for Regions Sort is publicly available at

https://github.com/omarobeya/parallel-inplace-radixsort.

2 PRELIMINARIES

Notation. In this paper, we use n to denote the size of the input.

For integer inputs in the range [0, . . . , r − 1], we say that its range

is r . We use P to denote the number of processors available for

computation. For radix sorting algorithms, we use b to denote the

number of bits (e.g., the size of the radix) it sorts at a time, and

B = 2
b
is the number of possible values of the radix. We measure

space in bits and assume that pointers take O(logn) space. For a
graph, we use (i, j,w) to refer to a directed edge from vertex i to
vertex j with weightw .

Work-Span Model. We analyze algorithms in the work-span

model, where the work is the number of operations used by the

algorithm and the span is the length of the longest sequential

dependence in the computation [15, 22].

Parallel Primitives. The following parallel procedures are used

in the paper. Prefix sum takes as input an array A of length n,
an associative binary operator ⊕, and an identity element ⊥ such

that ⊥ ⊕ x = x for any x , and returns the array (⊥,⊥ ⊕ A[0],⊥ ⊕

A[0]⊕A[1], . . . ,⊥⊕n−2i=0 A[i]) as well as the overall sum,⊥⊕n−1i=0 A[i].
Prefix sum can be done in O(n) work and O(logn) span (assuming

⊕ takes O(1) work) [22].Merging takes two sorted arrays A1 and

A2 and outputs a sorted array containing all elements in A1 and

A2. Merging requiresO(|A1 |+ |A2 |)work andO(log |A1 |+ log |A2 |)

1
We are unable to compare with PARADIS as their code is not open source and we

could not obtain it from the authors. However, we perform a rough comparison with

PARADIS based on numbers reported in the PARADIS paper [12].

Algorithm 1 Pseudocode for Serial In-Place Radix Sort

▷ extract(a, level) extracts the appropriate bits from element a
based on the radix size and current level.

1: procedure RadixSort(A, N , level)
2: C = {0, . . . , 0} ▷ length-B array storing per-bucket counts

3: for a in A do
4: C[extract(a, level)]++
5: Compute prefix sum on C to get per-bucket start and end

indices stored in H and T , respectively
6: for i = 0 to B − 1 do
7: while H [i] < T [i] do
8: while extract(A[H [i]], level) , i do
9: swap(A[H [i]],A[H [extract(A[H [i]], level)]++])
10: H [i]++

11: if level < maxLevel then
12: for i = 0 to B − 1 do
13: if C[i] > 0 then
14: RadixSort(Ai ,C[i], level + 1) ▷ Ai is the

sub-array containing elements in bucket i

span [22]. The standard algorithms for prefix sum and merging use

linear auxiliary space [22].

In-Place Algorithms.We call an algorithm in-place if it requires
o(n) additional memory for an input of size n. We assume that

the number of processors P is sub-linear in n, otherwise it would
not be possible to use all processors without using Ω(n) additional
memory. We note that our definition differs from [4], which defines

a parallel in-place algorithm to take O(P logn) additional memory.

Serial In-place Radix Sorting.Here we review the serial in-place

radix sorting algorithm, also known as American Flag Sort [30].

The pseudocode is shown in Figure 1.

The algorithm is anMSD algorithm thatmaintains buckets where

each bucket stores all keys with the same radix at the current level,

and where buckets are ordered based on the value of the radix. Lines

2–4 computes the number of keys per bucket (i.e., a histogram). The

extract() function computes the bucket of a key by extracting the

appropriate bits based on the radix size and current level. Line 5 uses

prefix sum to generate the starting and ending offsets in the array

for each bucket (stored in arrays H and T). Lines 6–10 processes
the positions one-by-one in each bucket. For each position x in

bucket i , the algorithm repeatedly swaps A[x] to its target bucket

until the value inA[x] belongs to bucket i . The next position is then

processed until the end of the bucket is reached. After all buckets

are processed, all keys are sorted with respect to the current radix,

and the algorithm recurses on each bucket to sort by the next radix

(Lines 11–14). Note that the sort on each level is not stable, and

thus an LSD approach would not work.

The histogram and prefix sum take linear work. In Lines 6–10,

each swap places at least one key in its correct location, leading

to linear work across all buckets. The sum of the sizes of recursive

calls is linear, and there are O(logB r) levels of recursion. For sub-
problems of size O(B) we switch to a comparison sort which takes

O(B logB) work. In the worst case, the calls to comparison sort

incur an overall work of O((n/B)B logB) = O(n logB). The rest

of the work can be bounded by O(n logB r). Therefore the total

https://github.com/omarobeya/parallel-inplace-radixsort

work is O(n(logB r + logB)), which is O(n logB r) if we set B such

that log
2 B = O(log r), e.g., by setting B to a constant. The only

auxiliary space required is for storing the bucket counts and offsets

per level, pointers on the stack to keep track of recursion, and

comparison sort on problems of size O(B). The overall additional
space is O(B logB r logn).

Parallelization. The histogram and prefix sum of Algorithm 1 can

be implemented in parallel using O(PB logn) additional memory.

The recursive calls can also be executed in parallel. However, the

swaps on Lines 6–10 cannot be easily done in parallel as there are

data dependences across keys as well as within a cycle of swaps.

To distribute the keys to the correct buckets, existing out-of-place

parallel MSD radix sort algorithms use Ω(n) additional memory to

store the output array so that keys can be moved from the input to

the output array in parallel without any dependences after comput-

ing a transpose of the histogram. This paper will present a novel

parallel algorithm to distribute the keys in-place.

PARADIS Algorithm. Cho et al. [12] present the PARADIS al-

gorithm for executing the distribution step in-place. To distribute

the keys, PARADIS repeatedly executes two phases: the permuta-
tion and repair phases. The permutation phase divides each bucket

equally across all processors. Each processor is responsible for

swapping the keys in its sub-buckets into the correct place. How-

ever, it is not necessarily possible for all keys to be placed into the

correct bucket, since a processor could own more keys that need

to be swapped into a bucket than its sub-bucket size. The repair

phase places all keys not yet in their correct bucket at the end of

their current bucket. Each processor is responsible for repairing a

subset of the buckets, which are assigned greedily to try to mini-

mize the maximum load (however, each bucket is processed by only

one processor). The two phases are then repeated on just the keys

that are not yet in their correct buckets. PARADIS uses a custom

load-balancing scheme to allocate processors to recursive calls.

The authors argue that the work complexity for processing each

radix isΘ(Bn). The factor of B comes from the fact that the permuta-

tion and repair phases have to be repeated multiple times. Summed

across all radices, the work is Θ(Bn logB r). The span per radix is

Θ(Bn(1/P + w)) where w is the maximum fraction of misplaced

keys processed by a processor in the repair phase. The n/P term

comes from the permutation phase, which splits the work equally

among processors, and the nw term comes from the repair phase

where in the worst case one processor has to do Θ(nw) work. The

overall span is Θ(Bn(1/P +w) logB r) assuming that the number of

processors assigned to each recursive problem is proportional to

the problem size. In the worst case w = Θ(1) as the bucket sizes
can be highly skewed. Thus, the worst case span is Θ(Bn logB r),
giving no theoretical parallelism. The algorithm uses B buckets and

O(B) pointers per processor on each level, and so the space usage

is O(PB logB r logn).
2

3 PARALLEL IN-PLACE RADIX SORT
This section presents Regions Sort, our new parallel algorithm

for in-place radix sorting. Table 1 serves as a reference for the

terminology used. Our algorithm is an MSD algorithm, and the

2
The work and space bounds we report differ from [12], as they assume that P , B , and
r are constant, and that pointers takeO (1) space.

Term Definition

Block A contiguous sub-array of A. The k’th block is the

sub-array A[kNK ′ , . . . ,
(k+1)N

K ′ − 1].

Country A contiguous sub-array of A that will contain all

keys belonging to a certain bucket after it gets

sorted by the current radix. Country i (also re-

ferred to asAi) is the sub-array containing all keys
belonging to bucket i after sorting.

Region A contiguous sequence of keys belonging to the

same bucket within the same block and the same

country.

Table 1: Terminology.

Algorithm 2 Pseudocode for Regions Sort

1: n = initial input size

2: K = initial number of blocks

3: procedure RadixSort(A, N , level)
4: K ′ = ⌈K · Nn ⌉

▷ Local Sorting Phase
5: parfor k = 0 to K ′ − 1 do
6: Do serial in-place distribution onA[kNK ′ , . . . ,

(k+1)N
K ′ −1]

▷ Graph Construction Phase
7: Compute global counts array C from local counts, and per-

bucket start and end indices

8: Generate regions graph G

▷ Global Sorting Phase
9: while G is not empty do
10: Process a subset of non-conflicting edges inG in parallel

11: Remove processed edges and add new edges to G if

needed

▷ Recursion
12: if level < maxLevel then
13: parfor i = 0 to B − 1 do
14: if C[i] > 0 then
15: RadixSort(Ai ,C[i], level + 1)

high-level structure is presented in Algorithm 2. The algorithm

is parameterized by K , an initial number of blocks, and B, the
number of possible values of the radix. Regions Sort consists of

three main phases prior to recursion: local sorting, constructing

the regions graph, and global sorting. For a problem of size N ,

the local sorting phase (Lines 4–6) partitions the input array into

K ′ = ⌈K · (N /n)⌉ blocks, where n is the initial input size, and

sorts the blocks independently in parallel. The number of blocks

K ′
is chosen to be proportional to the original K based on the

sub-problem size in order to provide enough parallelism across sub-

problems while ensuring that the work on blocks does not grow

too much in lower levels of recursion. For simplicity, our discussion

assumes that K ′
evenly divides N , although the algorithm and

analysis work in the general case. The local sort uses the serial in-

place distribution method presented in Lines 6–10 of Algorithm 1.

We also keep track of the counts of each radix value in each block.

In the graph construction phase (Lines 7–8), we use prefix sums

to generate the global bucket counts from the local bucket counts

obtained from the local sorting phase, followed by another prefix

Figure 1: (a) shows the value of the current radix of keys in
the input for a 2-bit radix (B = 4), and lines below corre-
sponds to the countries (blue is country 0, orange is country
1, green is country 2, and purple is country 3). (b) shows the
corresponding regions graph.

sum to obtain offsets for each bucket in the global array. We define

a country to be a contiguous sub-array of the input array that

would contain all of the keys belonging to a certain bucket after

sorting. At this point, each block may have keys that are not located

in its correct country. The regions graph will represent the source

and destination countries of the misplaced keys. Each vertex in the

regions graph corresponds to a country. There is a directed edge of

weightw from vertex i to vertex j ifw contiguous keys from country

i should be moved to country j (these contiguous keys are referred
to as a region). Multiple edges can exist between two vertices since

the regions from i to j can come from multiple blocks (a country

can span multiple blocks). We do not include self-edges, as they

represent regions that are already correctly placed. An example of a

regions graph is shown in Figure 1. The regions graph satisfies the

following lemma that will be useful in our proofs of correctness.

Lemma 1. For each vertex in the regions graph, the sum of the
weights of incoming edges for the vertex equals the sum of the weights
of outgoing edges for the vertex.

Proof. A country, represented by a vertexv in the regions graph,

is defined to have size equal to the number of keys that belong in the

country after sorting. Letwv, in andwv,out be the sum of weights

of incoming and outgoing edges of v , respectively. By definition,

there arewv,out misplaced keys in countryv . Therefore there must

be wv,out keys in other countries that belong to country v . By
definition, the incoming edges represent keys in other countries

that belong to country v . Therefore,wv,out = wv, in. □

In the global sorting phase (Lines 9–11), Regions Sort swaps keys

in the array by identifying independent swaps that can be executed

in parallel. An edge (i, j,w) in the regions graph corresponds to a

swap ofw keys from country i to j , and the swaps for multiple edges

can be performed in parallel as long as none of the source and target

memory locations overlap. Processing an edge may introduce a new

edge in the regions graph, as a region can be moved to another

country where it is still misplaced. Therefore, we need to update

the graph by deleting the old edges and adding the new edges. We

describe two strategies for using the regions graph to perform the

global sorting in Section 3.1.

Finally, we perform the recursive calls of the radix sort on the

next radix in parallel on Lines 12–15. For small problems sizes, we

switch to comparison sort.

3.1 Global Sorting Strategies
In this section, we present two different methods for using the

regions graph to perform global sorting.

3.1.1 Cycle Processing. Our first method is based on processing

directed cycles in the regions graph. Observe that for a length-l
cycle (v0,v1,w0), . . . , (vl−1,v0,wl−1), if we move the firstw

min
=

min (w0, . . . ,wl−1) keys in each of these corresponding regions

from country vi to country vi+1 mod l thenw
min

keys from each

of these corresponding regions will have been moved to the correct

country. We can then decrement the weight of all of the edges in

the cycle by w
min

and remove any edge with weight 0, and the

resulting regions graph will be valid. Figure 2 shows an example

of processing cycles for an input. Each of the w
min

keys can be

processed in parallel, but the swaps for a particular key have to

happen serially due to data dependences (this is similar in spirit

to Lines 8–9 of Algorithm 1). The algorithm iteratively processes

cycles in the regions graph until no more edges are left, at which

point the keys will be sorted. The following lemma shows that

using cycle processing, Regions Sort will terminate when all keys

are sorted.

Lemma 2. Using cycle processing, Regions Sort will terminate when
all keys are sorted.

Proof. We argue that a non-empty regions graph contains at

least one cycle. A regions graph that is non-empty means that

there is at least one misplaced key in the array. By Lemma 1, each

vertex with an incoming edge must have at least one outgoing edge.

Consider the process where we start with a misplaced key e0, find
the key e1 in e0’s target country that e0 wants to swap with, and

repeat with e1 until we have seen two keys from the same country.

After inspecting at most B + 1 vertices, we must have encountered

two keys ei and ej from the same country. The edges in the regions

graph corresponding to the keys ei , . . . , ej form a cycle.

This algorithm always makes progress, as there is always a cycle

in a non-empty regions graph, and after processing a cycle, at

least one edge in the cycle will have a weight of 0 and be deleted.

Eventually, all edges will be deleted, which corresponds to a sorted

array. □

We analyze the theoretical complexity of the cycle processing

approach in Section 3.2.

3.1.2 2-path Processing. Our secondmethod is based on processing

2-paths in the regions graph. For a 2-path with directed edges

(v0,v1,w0) and (v1,v2,w1), we refer to v0 as the source, v1 as the
broker, andv2 as the sink. Let R0 be the region containing the keys
that should be moved fromv0 tov1, R1 be the region containing the

keys that should move from v1 to v2, and R2 be the target region
of the edge (v1,v2,w1). Processing a 2-path involves swapping

w
min
= min (w0,w1) from region R0 withw

min
consecutive keys

in R1. In the case that v0 , v2 (i.e., the 2-path is not a 2-cycle), as

a result of the swap,w
min

keys from R1 that were destined for R2
are moved to R0, and so we add a new edge from v0 to v2 of weight
w
min

. Figure 3 shows an example of processing a 2-path.

Processing a 2-path will decrease the weight of both edges in the

path by w
min

, which deletes at least one of them from the graph

(since it will have a weight of 0). If v0 , v2, a new edge from the

Figure 2: (a) shows the value of the current radix of keys
in the input for a 2-bit radix (B = 4). At each step, the
corresponding swaps for each cycle is shown in the array
above the regions graph. (b) shows the corresponding re-
gions graph of (a), and the cycle to process is highlighted
in red. (c) and (d) show the array and regions graph after
processing the highlighted cycle in (b). In particular, the
edges (0, 2, 1) and (1, 0, 1) are deleted, and (2, 1, 2) is modified
to (2, 1, 1). The next cycle to process is highlighted in (d). (e)
and (f) shows the input and regions graph after processing
the highlighted cycle in (d). After processing the remaining
cycle in (f), we are left with the sorted array for the cur-
rent level, shown in (g), and the regions graphwith no edges,
shown in (h).

Figure 3: (a) and (b) show an example of processing a 2-path
formed by the edges (1, 0, 1) and (0, 2, 1). Here vertex 1 is the
source, vertex 0 is the broker, and vertex 2 is the sink. The
result of processing this 2-path is shown in (c) and (d). The
edges (1, 0, 1) and (0, 2, 1) are deleted, and a new edge (1, 2, 1)

is formed (the dashed edge in (b)).

source to the sink of weightw
min

will be formed. Since the weight

of the two path edges each decrease byw
min

units, and the possible

new edge has weightw
min

, the sum of weights in the regions graph

decreases by at leastw
min

. Therefore, Regions Sort will eventually

terminate. Each of thew
min

keys can be swapped in parallel. Our

algorithm processes all 2-paths for a particular vertex acting as a

broker before moving on to another vertex. Once all 2-paths for a

particular vertex have been processed, it will have no more incident

edges (since the sum of weights of incoming edges and outgoing

edges must be the same by Lemma 1) and can be removed from the

regions graph. Figure 4 illustrates how processing 2-paths can be

used to sort an array. We analyze the complexity of this approach

in Section 3.2.

0 1

23

0 0 2 0 1 2 3 1 1 1 3

2

b

a
0 0 0 2 1 2 3 1 1 1 3

d

c

0 0 0 2 1 1 3 2 1 1 3

f

e
0 0 0 1 1 1 3 2 1 2 3

h

g

0 0 0 1 1 1 1 2 3 2 3

j

i
0 0 0 1 1 1 1 2 2 3 3

l

k

11

1

1
1

1

0 1

23

211

1

1

0 1

23

11

1

1

1

0 1

23

1

1

1

1

0 1

23 1

1

0 1

23

Figure 4: An illustration of global sorting with 2-path pro-
cessing. At each step, the corresponding swap for the 2-
path is shown in the array above the regions graph. In (b),
we process the 2-path (1, 0, 1), (0, 2, 1), and create the dashed
edge (1, 2, 1) resulting in (d). In (d), we process the 2-path
(1, 2, 1), (2, 1, 2), which does not add any new edges, resulting
in (f). In (f), we process the 2-path (3, 1, 1), (1, 2, 1), which cre-
ates the dashed edge (3, 2, 1), resulting in (h). In (h), we pro-
cess the 2-path (2, 1, 1), (1, 3, 1), which creates the dashed edge
(2, 3, 1), resulting in (j). Finally, in (j), we process the remain-
ing 2-path (2, 3, 1), (3, 2, 1), and are left with an empty graph
in (l), at which point the array is sorted.

3.2 Analysis
In this section, we analyze the theoretical complexity of Regions

Sort in terms of work, span, and auxiliary space. We first analyze

the complexity of the initial call before recursion, where n = N and

K ′ = K , and then analyze the complexity of the algorithm across

all recursive calls.

3.2.1 Local Sorting. The local sorting phase requires O(n + KB)
work andO(n/K) span since each block sorts n/K keys serially and

keeps local counts of each radix per block. Using a work-stealing

scheduler, such as Cilk’s [10], up to P tasks can be executed in

parallel by P processors. Each task requires a temporary variable

to run the serial in-place distribution, as well as a constant number

of pointers. Including the bucket pointers and local counts, the

additional space used in the local sorting phase isO((P +KB) logn).

3.2.2 Graph Construction. In the graph construction phase, com-

puting the global counts from the local counts and generating off-

sets per bucket uses prefix sums and takesO(KB)work,O(log(KB))
span, andO((P +KB) logn) additional space. The regions graph can

be constructed by creating an edge (i, j,w) if w consecutive keys

of a block are in country i but should be moved to country j. We

first compute the number of edges per block and perform a prefix

sum to get the total number of edges and offsets for each block

into an array. All edges can then be written to the array in parallel.

The edges with the same source will be contiguous in memory, and

this can be used to create the regions graph. The following lemma

shows that the total number of edges in the regions graph isO(KB).

Lemma 3. The total number of edges in the regions graph isO(KB).

Proof. After sorting, each block has at most B subarrays con-

taining the same radix value, as all keys with the same radix value

are consecutive. Subarrays that do not cross a country boundary are

their own region, and subarrays that cross country boundaries are

partitioned into regions containing keys from one country. Since

there are B countries, the number of country boundaries is B − 1.

Thus the total number of additional regions generated from parti-

tioning is B − 1. Regions that are not in the correct country form

an edge in the regions graph, and thus the total number of edges is

upper bounded by K(B − 1) + B − 1 = KB. □

Therefore, for graph construction, the work is O(KB), span is

O(log(KB)), and additional space is O((P + KB) logn). We discuss

settings of K and B at the end of this section such that the total

additional space is o(n).

3.2.3 Global Sorting – Cycle Processing. For the cycle processing
strategy, we find a cycle serially by choosing a starting vertex

and following the first edge out of each vertex until a vertex v is

visited twice along the path. The explored path starting at v and

ending atv forms a cycle. This takesO(B)work andO(B) span since
there are at most B vertices in the regions graph. We then decrease

the weight of all edges in the cycle by the minimum weight, and

remove any edges with weight 0 (by incrementing the pointer to

the vertex’s first edge). This can be done in O(B) work and O(1)
span. We delete at least one edge every time we process a cycle, so

the overall work and span spent in finding cycles and updating the

graph isO(KB2). The keys being swapped when processing a cycle

can all be processed in parallel, and each one does at most O(B)
swaps. Each key is processed exactly once, and so the total work for

swapping is O(n) and the total span is O(KB2). The O(KB2) work
term for processing cycles can be charged to keys being swapped

since each edge in a cycle causes at least one key to be swapped,

and is therefore dominated by the O(n) work term. The auxiliary

space needed for swapping is O(P logn) since at most P swaps can

happen at once, each of which requires a temporary variable.

3.2.4 Global Sorting – 2-path Processing. For the 2-path processing

strategy, we process all incident edges for a vertex in parallel before

moving on to the next vertex. We first describe how to process 2-

paths one-by-one. Each swap places at least one key in the correct

location, and so there are a total ofO(n) swaps needed. Each 2-path

can be extracted in O(1) work. We look at the first incoming and

first outgoing edge to extract a 2-path. We then delete one of the

two edges by incrementing the pointer to the start of the incoming

or outgoing edge list for the current vertex, and decrement the

weight of the other edge (possibly deleting it as well). A new edge is

possibly added to the end of the sink vertex’s edge list. The number

of edges incident per broker is upper bounded byO(KB), and so the

0 1

23

0 0 2 0 1 2 3 1 1 1 3

2

b

a

0 0 0 1 1 1 1 2 3 2 3

f

e
0 0 0 1 1 1 1 2 2 3 3

h

g

11

1

1
1

1

0 1

23 1

1

0 1

23

0 0 0 2 1 2 3 1 1 1 3

d

c

0 1

23

11

1

1

1

1

1 1

Figure 5: An illustration of how 2-paths incident on a bro-
ker are processed in parallel. The current broker being pro-
cessed is circled in bold. At each step, the corresponding
swap for each 2-path is shown in the array above the re-
gions graph using the same color as the 2-path. In (b), we
process the single 2-path with vertex 0 as broker, which is
(1, 0, 1), (0, 2, 1), and create the dashed edge (1, 2, 1) resulting
in (d). In (d), we process all three 2-paths with vertex 1 as bro-
ker in parallel. The three 2-paths are (1, 2, 1), (2, 1, 2), which
does not add any new edges; (3, 1, 1), (1, 2, 1), which creates
the dashed edge (3, 2, 1); and (2, 1, 1), (1, 3, 1), which creates
the dashed edge (2, 3, 1). This results in (f). Finally, in (f), we
process the single 2-path with vertex 2 as broker, which is
(2, 3, 1), (3, 2, 1), and are left with an empty graph in (h), at
which point the array is sorted.

total work is O(KB2), but this work can be charged to keys being

swapped since each 2-path processed swaps at least one key.

We now describe a solution for 2-path processing with lower

span. We can process all 2-paths with a common broker in parallel,

and we can use prefix sums and merging to calculate appropriate

offsets so that all swaps operate on disjoint memory locations. In

this case, an edge may participate in multiple 2-paths (it splits its

weight among the multiple paths). We find all of the 2-paths with

vertex v as a broker by creating two arrays I and O , where I stores
the weights of the incoming edges and O stores the weights of the

outgoing edges. We then compute the prefix sums of the weights

in each of I and O , giving arrays I ′ and O ′
. Next, we merge I ′ and

O ′
together (ties are broken by giving higher priority to edges in

I ′). Now each incoming edge in I ′ can be matched to one or more

outgoing edges in O ′
to form 2-paths, and vice versa. In particular,

in the merged output, each edge in I ′ is matched to the closest edge

from O ′
to its right, and each edge in O ′

is matched to the closest

edge from I ′ to its left (which again can be computed using prefix

sums). We can use the result of the prefix sums to determine exactly

which keys in the two regions are used to form the 2-path and then

execute all of the swaps independently in parallel. The new edges

formed by processing the 2-paths can be stored in an output array

and sorted at the end using a parallel integer sort to insert them

into the regions graph. An example of processing all 2-paths on a

broker in parallel is shown in Figure 5.

The work for prefix sums and merging for one vertex is pro-

portional to the number of edges incident on the selected broker

vertex, which is upper bounded by O(KB). The span is O(log(KB))
for prefix sums and merging. The range of the edge values are

in [0, . . . , (B − 1)2], and so we can perform the integer sort in

O(KB) work,O(B + log(KB)) span, and linear additional space [44].
Summed across the B vertices, the work is O(KB2) and span is

O(B(log(KB)+B)). Again, theO(KB2)work term can be charged to

keys being swapped and is dominated by O(n). The auxiliary space

needed for the prefix sums, merge, and integer sort is O(KB logn).
Each swap places at least one key in the correct location, and so

there are a total of O(n) swaps needed to sort the array for the

current radix, leading to O(n) work. As with cycle processing, the

auxiliary space needed for swapping is O(P logn).

3.2.5 Overall Algorithm. We now analyze the complexity of our

algorithm across all recursive calls. After the local sorting, graph

construction, and global sorting phases, our algorithm recurses on

each of the buckets (countries) in parallel using the next radix. For

a range r and number of possible values of the radix B, the total
number of levels of recursion is O(logB r). The work for swapping

the keys in global sorting is O(n) per level. We now need to bound

the extra work incurred by local sorting and graph processing

operations in global sorting.

We assume that the original input size n is at least αKB for a

constant α to be determined later. If the original input is smaller

than αKB, we pad the input with dummy keys (which will be

discarded at the end of computation) until it is of size αKB. For
a sub-problem of size N < B, we switch to a parallel comparison

sort [13] which contributes O(n logB) work overall, similar to the

serial algorithm. We now argue that for a sub-problem of size

N ≥ B, the extra O(K ′B) work term for constructing the regions

graph and managing buckets in local sorting can be charged to

swapping the keys. Let this extra work equal βK ′B, which we

want to upper bound by γN , for constants β and γ . Recall that
we set K ′ = ⌈K · N /n⌉. Consider two cases, K ′ = 1 and K ′ > 1. If

K ′ = 1, thenwe are essentially running the serial in-place algorithm,

which incurs O(N + B) = O(N) work. Otherwise if K ′ > 1, then

K ′ ≤ 2K · N /n and we need β(2K · N /n)B ≤ γN . This holds true

if n ≥ 2βKB/γ , and so we set α = 2β/γ . Therefore, the work for

graph processing and local sorting can be charged to swapping the

keys, and the total work bound is O((n + KB)(logB r + logB)).
The span per level for local sorting is O(n/K) since the total

number of blocks across sub-problems is at least K . The span for

global sorting of sub-problems, which are all executed in parallel,

is upper bounded by the span of the top-level since the number

of blocks per sub-problem is at most K . The span for the calls to

parallel comparison sort is O(logB) [13].
We now bound the auxiliary space across recursive calls. An ad-

ditional O(PB logB r logn) space is needed to keep track of bucket

pointers per level and pointers in the stack for recursion. The calls

to parallel comparison sort requireO(PB logn) space overall. When

run serially, at most one local sorting, graph construction, or global

sorting phase can happen at any time, leading toO(KB logn) space.
A straightforward space bound of O(PKB logn) when using P pro-

cessors can be obtained by using Cilk’s space bound [10]. However,

a more careful analysis gives a tighter bound, as shown in the

following lemma.

Lemma 4. The auxiliary space usage required by local sorting,
graph construction, and global sorting across all recursive calls is
O((K + P)B logn).

Proof. For the worst case space analysis of local sorting and

regions graphs, we assume that each processor is working on a task

for which different auxiliary memory is allocated (we only need

to consider the space for P such tasks since the space at higher

levels of recursion has already been freed). Let Ni be the size of

the sub-problem for the task that processor i is working on. The

total number of blocks across the P tasks is

∑P
i=1 ⌈K · Ni/n⌉ ≤

P + K
∑P
i=1 Ni/n. At any point during the computation, each key

can be involved in only one sub-problem because the algorithm

recurses only when it is done processing the key at the current level.

Thus, we have

∑P
i=1 Ni ≤ n and

∑P
i=1 Ni/n ≤ 1. Therefore, the total

number of blocks across the active tasks is bounded by K + P , and
the overall space used for local sorting, graph construction, and

global sorting is O((K + P)B logn). □

At the beginning of the algorithm, we compute the range r
by finding the value of the maximum key. This can be done by

splitting the array into K sub-arrays, and in parallel across sub-

arrays, computing the maximum of each sub-array serially. Finally,

we use a prefix sum on the K results to get the overall maximum.

This requiresO(n)work,O(n/K+ logK) span, andO(K logn) space,
which does not increase our overall bounds. The following theorems

summarize the complexity of the two variants of our algorithm

using the cycle processing and 2-path processing strategies as a

function of n, K , B, P , and r .

Theorem 5. Using cycle processing, Regions Sort takes O((n +
KB)(logB r+logB))work,O((n/K+KB

2) logB r) span, andO((PB logB r+
KB) logn) auxiliary space.

Theorem 6. Using 2-path processing, Regions Sort takes O((n +
KB)(logB r + logB)) work, O((n/K + B(log(KB) + B)) logB r) span,
and O((PB logB r + KB) logn) auxiliary space.

Our algorithm sets K to be Θ(P) for the initial call to radix

sort, and B to be a constant. With these parameter settings, our

2-path variant takes O(n log r) work, O((n/P + log P) log r) span,
and O(P log r logn) additional space. The algorithm achieves lin-

ear parallel speedup for P = O(n/logn) although we need P =
o(n/(logn log r)) to have an in-place algorithm. The bounds are

summarized in the following theorem.

Theorem 7. Using 2-path processing withK = Θ(P) andB = Θ(1),
Regions Sort takes O(n log r) work, O((n/P + log P) log r) span, and
O(P log r logn) additional space.

A processor-oblivious parallel in-place algorithm can be obtained

by setting K = o(n/(logn log r)), and the value of K trades off be-

tween span and auxiliary space. For example,K = Θ(n/(logn log r)2)
gives an algorithm with O(n log r) work, O(log2 n log3 r) span and

O(P log r logn + n/(logn log2 r)) auxiliary space.

4 IMPLEMENTATION AND OPTIMIZATIONS

Implementation. We implemented the two variants of Regions

Sort using Cilk Plus [27], which provides a provably-efficient work-

stealing scheduler [10]. We found the 2-path variant to always be

faster due to avoiding the overhead of cycle finding, and being

able to effectively use the early recursion optimization that we

will describe. To represent the regions graph in the 2-path variant,

we use two edge lists per vertex, one for the incoming edges and

one for the outgoing edges. This makes it easy to match incoming

and outgoing edges to form 2-paths with a particular vertex as the

broker. Each edge is stored only on the vertex that will be processed

first instead of on both endpoints. Newly created edges are added

to the end of an edge list. To represent the regions graph in the

cycle processing variant, we only store outgoing edges of vertices

and there are no new edges that get created.

The remainder of this section describes optimizations for both

the 2-path and cycle processing variants to improve performance.

Processing 2-cycles.When processing 2-paths that are not cycles,

after performing a swap, only one of the keys will be in the correct

country. However, if we process a 2-cycle, then both keys will be in

the correct country after swapping. Furthermore, no new edge has

to be created in the regions graph. Therefore, processing as many

2-cycles as possible will reduce the overall work. Our algorithm

first finds and processes all 2-cycles on a vertex before processing 2-

paths that are not cycles. Although there is additional work needed

to determine 2-cycles, we found that the overall work decreases

since a swap places two keys in the correct country instead of one,

and no new edges have to be formed in the regions graph.

Parallelization Across Cycles and 2-paths. In our cycle process-
ing algorithm, we process all cycles for a vertex v before moving to

the next vertex. We first find all of the cycles for vertex v serially,

but allow edges to have their weight split across multiple cycles,

so that all of v’s outgoing edges will be contained in one or more

cycles. Then we execute the swaps associated with all of the cy-

cles in parallel. Finally, we remove v from the graph. While this

optimization does not improve the worst-case span (cycle-finding

is still done serially), it provides more parallelism during global

sorting.

For the 2-path processing variant, our implementation finds the

2-paths on a broker using a serial merging algorithm, as we found

that the number of edges was too small to benefit from parallelism.

However, after finding all of the 2-paths on the broker vertex, we

execute the swaps for all of them in parallel.

Early Recursion. After processing all of the 2-paths or cycles

associated with a vertex, there will be no more swaps in and out of

the corresponding country. Therefore, we can recursively call radix

sort on the keys in the country before we finish processing 2-paths

or cycles of other vertices. This increases the available parallelism

and improves overall performance. This optimization fuses together

Lines 9–11 and Lines 12–15 of Algorithm 2.

Country Sorting. There is more work in the countries with more

keys, and with early recursion it is beneficial to recurse on the larger

countries first to generate more available parallelism. Therefore,

we sort the countries by size and process 2-paths or cycles from

countries in decreasing order of size. The edges in the regions

graph will only be stored on the vertex corresponding to the larger

country, as that country will be processed first. For the 2-path

variant, this optimization improves performance significantly in

skewed distributions, where the country sizes vary widely. For

the the cycle processing variant, the optimization does not help as

much, since most of the work is done on the first vertex anyway

regardless of whether or not we sort the countries.

Coarsening. Our algorithm includes multiple levels of coarsening.

When n is less than 32, we switch to serial insertion sort. Otherwise,

when K = 1 or when n is smaller than 20000, we use Ska Sort, an

optimized serial in-place radix sort [40]. To reduce overheads of

parallelism, when executing parallel loops, we use a parallel for-

loop (cilk_for) when the number of iterations is greater than 4000,

and otherwise we use a serial for-loop.

5 EVALUATION
Experimental Setup. We evaluate the performance of Regions

Sort on an AWS EC2 c5.18.xlarge instance with two 18-core

processors with hyper-threading (Intel Xeon Platinum 8124M at

3.00 GHz with a 24.75 MB L3 cache), for a total of 36 cores and

72 hyper-threads. The system has a total of 144 GB of RAM. We

compile our code using g++ version 7.3.1 (which has support for

Cilk Plus), and we used the -O3 optimization flag.

The datasets we use include inputs of only integer keys as well as

inputs of integer key-value pairs. We test on both 4-byte and 8-byte

keys/values (inputs with larger values can be sorted by storing a

pointer to the value). Our inputs unif(x ,y) are inputs of length y
with uniform random integers in the range x . Our inputs zipfθ (x ,y)
are inputs of length y drawn from a Zipfian distribution of range x
with parameter θ [17]. We also test on several degenerate inputs of

length 10
9
: an all equal input (allEqual(109)), an input with 10

9/2

copies of 10
9/2

distinct values placed equally apart (

√
nEqual(109)),

a sorted input (sorted(109)), and an almost sorted input with 10
9/2

random keys out of place (almostSorted(109)).

Unless otherwise specified, we use an 8-bit radix (B = 256)

and an initial value of K = 5000 for the 2-path variant and K =
P for the cycle processing variant, which we found to give the

best performance overall. The high value of K benefits the 2-path

variant of our algorithm because it allows the blocks to more easily

fit in cache and helps Cilk load balance work among processors

more effectively. The cycle processing variant benefits from these

effects well, but in practice it does not improve for high values of

K because the length of cycles becomes too large, which degrades

performance.

Other Algorithms. The only existing parallel in-place radix sort

algorithm we are aware of is PARADIS [12], but there is no publicly-

available code, and we were unable to obtain the code from the

authors. Therefore, we perform a rough comparison based on the

results reported in their paper.

We compare against the following sorting implementations: the

state-of-the-art serial in-place radix sorting algorithm Ska Sort [40],

a parallel in-place sample sort IPS
4
o by Axtmann et al. [3], a parallel

out-of-place radix sort RADULS [24, 25], a parallel out-of-place

radix sort from the Problem Based Benchmark Suite (PBBS) [38], a

parallel out-of-place sample sort from PBBS, and a parallel out-of-

place comparison sorting algorithm from MCSTL [39].

Ska Sort 2-path Cycle IPS
4
o RADULS PBBS PBBS MCSTL

Regions Sort Regions Sort Radix Sort Sample Sort Sort

Input T1 T1 T
36h SU T1 T

36h SU T1 T
36h SU T1 T

36h SU T1 T
36h SU T1 T

36h SU T1 T
36h SU

unif(109, 109) 23.02 14.19 0.49 28.96 19.48 0.72 27.06 33.52 0.93 36.04 27.79 1.79 15.53 14.40 0.62 23.23 81.41 1.81 44.98 100.36 2.54 39.51

unif(109, 109)-pairs 34.59 20.05 0.84 23.87 27.66 1.31 21.11 139.44 3.01 46.33 41.11 3.49 11.78 28.00 1.23 22.76 92.16 2.34 39.38 116.94 4.27 27.39

unif(263, 109) 38.12 32.27 1.00 32.27 92.12 1.42 64.87 35.99 1.15 31.30 15.15 0.78 19.42 42.60 1.50 28.40 136.00 2.93 46.41 103.12 4.62 22.32

unif(263, 109)-pairs 54.91 40.05 1.78 22.50 119.80 2.37 50.55 144.22 3.32 43.44 23.12 1.67 13.84 59.60 2.96 20.14 148.00 3.31 44.71 119.50 7.71 15.50

zipf0.75(10
9, 109) 22.02 14.81 0.55 26.93 20.05 0.70 28.64 29.66 0.82 36.17 28.86 1.93 14.95 14.70 0.68 21.62 77.57 1.74 44.58 94.52 2.54 37.21

zipf0.75(10
9, 109)-pairs 33.04 20.61 0.98 21.03 29.32 1.32 22.21 139.30 3.03 45.97 43.81 3.64 12.04 36.50 1.33 27.44 92.71 2.57 36.07 120.09 4.58 26.22

allEqual(109) 6.60 6.77 0.20 33.85 6.63 0.22 30.14 2.32 0.29 8.00 30.29 1.87 16.20 17.70 0.88 20.11 22.84 0.77 29.66 13.65 0.84 16.25
√
nEqual(109) 15.07 11.43 0.43 26.58 12.56 0.66 19.03 13.71 0.42 32.64 28.47 2.28 12.49 16.70 0.60 27.83 39.22 1.36 28.84 30.85 1.23 25.08

sorted(109) 14.54 14.51 0.31 46.81 16.36 0.38 43.05 24.60 0.62 39.68 30.25 1.67 18.11 14.70 0.60 24.50 42.20 1.25 33.76 19.65 0.94 20.90

almostSorted(109) 18.47 16.41 0.36 45.58 17.30 0.39 44.36 25.16 0.62 40.58 28.55 2.27 12.58 16.60 0.60 27.67 43.70 1.25 34.96 22.62 2.62 8.63

Table 2: Serial times (T1) and parallel (T
36h) times (seconds), as well as the parallel speedup (SU) on a 36-core machine with

two-way hyper-threading. The fastest parallel time for each input is bolded.

Running Times. Table 2 shows the single-thread, 72-thread, and
parallel speedup of all of the algorithms on our inputs.

We see that our 2-path processing strategy always outperforms

the cycle processing variant. The two variants of Regions Sort

achieve a parallel speedup of between 19–65x on 36 cores with

hyper-threading. While we use Ska Sort as a base case, our single-

threaded time for 2-path processing is usually faster than the highly-

optimized serial Ska Sort. Although Regions Sort incurs more work,

our local sorting phase has better temporal locality because we split

the input into blocks which can more easily fit into cache.

IPS
4
o is the fastest publicly-available parallel in-place sorting al-

gorithm, and the 2-path variant of Regions Sort achieves a 1.1–3.6x

speedup over it in parallel across all inputs, except for

√
nEqual(109)

on which we are about 1.02x slower. IPS
4
o, described more in Sec-

tion 6, is a comparison sorting algorithm, which is more general

than our algorithm, and incurs more work to determine the bucket

that a key belongs in. The two variants of Regions Sort as well as

IPS
4
o use a negligible amount of auxiliary memory compared to the

original input size (less than 5%). PBBS sample sort and MCSTL sort

are almost always slower than IPS
4
o and Regions Sort, and require

auxiliary space proportional to the input size. Again, PBBS sample

sort and MCSTL sort are comparison sorting algorithms, which

are more general. Compared to PBBS radix sort, which is a parallel

out-of-place radix sorting algorithm, the 2-path variant of Regions

Sort is between 1.2–4.4x faster in parallel. Compared to RADULS,

another out-of-place radix sorting algorithm, we are between 1.3x

slower to 9.4x faster. We are slightly slower than RADULS on the

inputs with 8-byte key ranges, and we believe that RADULS has

been optimized for very large key ranges.

Since the PARADIS code is not publicly-available, we perform

a rough comparison based on the numbers reported in their pa-

per [12]. On an input of random 8-byte key-value pairs of size 10
9
,

PARADIS reports a running time of approximately 6 seconds using

16 cores of two Intel Xeon E7-8837 processors running at 2.67GHz.

On 16 cores without hyper-threading on our machine, the 2-path

variant of Regions Sort takes about 3 seconds on unif(263, 109)-pairs.

We do not know the range of the keys PARADIS used, and so we

chose a very large range for our experiments. We believe that even

accounting for differences in machine specifications, Regions Sort

would still be faster. Furthermore, Regions Sort has much stronger

theoretical guarantees than PARADIS.

Parallel Scalability. Figures 6 and 7 show the speedup of the

algorithms over the single-threaded running time of 2-path as a

0 10 20 30 40 50 60 70
Threads

0

5

10

15

20

25

30

35

40

S
p
ee
d
u
p
ov
er

se
ri
al

2-
p
at
h

2-path

Cycle

IPS4o

MCSTL

RADULS

PBBS radix sort

PBBS samplesort

Figure 6: Speedup over single-thread performance of 2-path
vs. thread count for unif(109, 109).

0 10 20 30 40 50 60 70
Threads

0

5

10

15

20

25

30

35

S
p

ee
d

u
p

ov
er

se
ri

al
2-

p
at

h

2-path

Cycle

IPS4o

MCSTL

RADULS

PBBS radix sort

PBBS samplesort

Figure 7: Speedup over single-thread performance of 2-path
vs. thread count for zipf0.75(109, 109).

function of thread count for unif(109, 109) and zipf0.75(10
9, 109),

respectively. The algorithms all obtain reasonable parallel speedup

as the thread count increases, except RADULS which gets worse

at higher thread counts. We see that the 2-path variant of Regions

Sort outperforms all of the other algorithms on all thread counts.

Input Size Scalability. Figure 8 shows the performance of all of

the algorithms on uniform random inputs of varying size, with a

range of 10
8
. For the 2-path variant in this experiment, we decreased

K proportionally with the input size. As expected, the running times

of all of the algorithms increase with the input size. The 2-path

variant is always the fastest on all of the different input sizes.

0.2 0.4 0.6 0.8 1.0
Length ×109

0

500

1000

1500

2000

2500

T
im

e
(m

s)

2-path

Cycle

IPS4o

MCSTL

RADULS

PBBS radix sort

PBBS samplesort

Figure 8: 36-core running time vs. input sizen for unif(108,n).

102 103 104 105 106 107 108 109

Range

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
(m

s)

2-path

Cycle

IPS4o

MCSTL

RADULS

PBBS radix sort

PBBS samplesort

Figure 9: 36-core running time vs. range r for unif(r , 109).

102 103 104 105 106 107 108 109

Range

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

2-path

Cycle

IPS4o

MCSTL

RADULS

PBBS radix sort

PBBS samplesort

Figure 10: 36-core running time vs. range r for zipf0.75(r , 109).

Effect of Key Range. In Figures 9 and 10, we plot the running

time of the algorithms as a function of the range of the input keys

on uniform random inputs. As expected, the running times of the

algorithms increase with key range. However, the increase for both

variants of Regions Sort as well as PBBS radix sort and RADULS is

sub-linear in log r , the worst-case number of levels of recursion for

radix sort, because the algorithms switch to comparison sort when

the input size is small enough.

Effect of Skewness in Zipfian Distributions. In Figure 11, we

show the performance of the algorithms on zipfθ (10
9, 109) with

varying θ parameter. A larger θ parameter increases the skew of

the distribution. We observe that the performance of both variants

of Regions Sort is robust across different θ values as the number

0.25 0.50 0.75 1.00
Theta

0

1000

2000

3000

4000

5000

T
im

e
(m

s)

2-path

Cycle

IPS4o

MCSTL

RADULS

PBBS radix sort

PBBS samplesort

Figure 11: 36-core running time vs. θ for zipfθ (109, 109).

uniform zipf
0

0.05

0.1

0.15

0.2

0.25

0.3

Ti
m
e
(s
) Remaining levels

First level local sort
First level planning
First level swap
First level update

Figure 12: Breakdown of 36-core running time for the 2-path
variant of Regions Sort on unif(109, 109) and zipf0.75(109, 109).

of levels of recursion depends mostly on the range, which is fixed

in this experiment. The comparison sorting algorithms perform

better when the skew is higher because having fewer unique keys

reduces the number of recursive calls needed. The 2-path variant

of Regions Sort still performs the best across different θ values.

Breakdown of Running Time. In Figures 12, we show the break-

down of running time for the 2-path variant of Regions Sort on

the unif(109, 109) and zipf0.75(10
9, 109) inputs. We break down the

running time into various phases of the first level of recursion and

group together the time for the remaining levels. For these two

inputs, there are four levels of recursion since we use an 8-bit radix.

We see that the first level of radix sort takes a significant fraction

of the total time (over half for unif(109, 109) and almost half for

zipf0.75(10
9, 109)). The remaining levels of recursion are relatively

faster since the problem size decreases and is more likely to fit in

cache. Within the first level, local sorting and performing the swaps

associated with 2-paths dominate the running time. Finding the

2-paths (labeled as “First level planning”) and updating the graph

(labeled as “First level update”) take very little time (under 10% of

the first level time).

Effect of Radix Size. Figures 13 and 14 shows the impact of vary-

ing the number of bits of the radix on the performance of the two

variants of Regions Sort on unif(109, 109) and zipf0.75(10
9, 109), re-

spectively. We achieve the best performance on 8-bit radices, but

the performance on 6-bit and 7-bit radices is almost as good. For

smaller radices, more passes are needed before the problem size

fits into cache, which leads to worse performance. Increasing the

number of bits beyond 8 makes it so that the buckets during local

sorting are less likely to fit in L1 cache (32 KB on our machine),

which causes performance degradation.

Effect of K . Figures 15 and 16 show the running time for different

values of K for the 2-path variant of Regions Sort on unif(109, 109)

1 2 3 4 5 6 7 8 9 10 11 12
Radix

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

2-path

Cycle

Figure 13: 36-core running time vs. radix size for
unif(109, 109).

1 2 3 4 5 6 7 8 9 10 11 12
Radix

0

1000

2000

3000

4000

5000

6000

T
im

e
(m

s)

2-path

Cycle

Figure 14: 36-core running time vs. radix size for
zipf0.75(109, 109).

0 2000 4000 6000 8000 10000
K

0

200

400

600

800

1000

T
im

e
(m

s)

2-path

Figure 15: 36-core running time vs. K for unif(109, 109).

and zipf0.75(10
9, 109), respectively. We see that the running time

for large values of K is much lower than for small values of K . For
small values of K , the local sorts in the first level are less likely to

fit in cache, which increases the overall running time.

6 ADDITIONAL RELATED WORK
Axtmann et al. propose a parallel in-place sample sorting algorithm

called IPS
4
o [3]. In sample sort, a sample of keys is sorted and pivots

are chosen from the sorted sample to determine bucket boundaries.

The remaining keys are inserted into the buckets, and each bucket

is recursively sorted. In IPS
4
o, each processor maintains k buffers

of size b, where k is the number of buckets and b is a constant. In

0 2000 4000 6000 8000 10000
K

0

200

400

600

800

1000

T
im

e
(m

s)

2-path

Figure 16: 36-core running time vs. K for zipf0.75(109, 109).

the first phase, each processor scans a subarray of n/P keys, placing

each key into a buffer corresponding to its bucket; whenever a

buffer becomes full, the b keys in the buffer (which we call a chunk)

are copied to the beginning of the subarray for that processor.

The counts of the number of keys belonging to each bucket are

maintained, and a prefix sum across all processors gives the total

number of keys per buckets and determines bucket boundaries.

In the second phase, each processor moves chunks that are out

of place from buckets in its subarray to its target bucket, using a

swap buffer of size b. If the source chunk swaps with a chunk in

the target bucket, the target chunk is placed in the swap buffer

and the processor continues to swap it; otherwise it processes the

next chunk in its own subarray. Atomics are needed to increment

pointers and implement readers-writer locks on buckets as they can

be read and written by multiple processors. The amount of auxiliary

space needed by IPS
4
o is O(bkP logn). In contrast to IPS

4
o, our

algorithm does not require locks or swap buffers. We compare with

the performance of IPS
4
o in Section 5. We note that our regions

graph idea could also be used inside a sample sorting algorithm, and

it would be an interesting direction for future work to implement

such an approach.

There has been significant work in the literature on parallel inte-

ger sorting. With the exception of PARADIS [12], these algorithms

all require Ω(n) additional space. A standard linear-work and sub-

linear span stable integer sorting algorithm is described in [44].

Rajasekaran and Reif describe a linear-work polylogarithmic-span

integer sorting algorithm for integers in the range [n logO (1) n], al-
though the algorithm is non-stable [33]. Several super-linear work

and polylogarithmic-span stable integer sorting algorithms have

been described [1, 5, 18, 19, 29, 34]. However, obtaining a stable

linear-work polylogarithmic-span integer sorting algorithm has

been a long-standing open problem.

There has also been significant prior work on parallel algorithms

for comparison sorting (e.g., [2, 6–8, 11, 13, 14, 16, 20, 21, 28, 35, 38,

42, 47]). In terms of implementations, IPS
4
o is one of the most recent

and has been shown to achieve state-of-the-art performance [3].

Berney et al. present parallel in-place algorithms for constructing

implicit search tree layouts from sorted sequences [4]. Our work is

complementary in that we can efficiently generate sorted sequences

of integers in-place, which can be used as inputs to their algorithms.

One of their approaches uses cycles to represent a series of swaps.

The cycles in their approach are determined statically, while in our

cycle processing algorithm, the cycles are determined dynamically.

7 CONCLUSION
We have introduced Regions Sort, a novel parallel in-place radix

sorting algorithm that is work-efficient and highly-parallel. Our

experiments show that Regions Sort achieves good scalability and

almost always outperforms existing parallel in-place sorting algo-

rithms. Future work includes optimizing our algorithm for NUMA

characteristics to improve scalability, designing a work-efficient

in-place radix sorting algorithm with both polylogarithmic span

and polylogarithmic space, and using our ideas to design other

parallel in-place algorithms.

Acknowledgments. This research was supported by DARPA SDH

Award #HR0011-18-3-0007, Applications Driving Architectures

(ADA) Research Center, a JUMP Center co-sponsored by SRC and

DARPA, DOE Early Career Award #DE-SC0018947, and NSF CA-

REER Award #CCF-1845763.

REFERENCES
[1] Susanne Albers and Torben Hagerup. 1997. Improved Parallel Integer Sorting

without Concurrent Writing. Information and Computation 136, 1 (1997), 25 – 51.

[2] Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. 2015.

Practical Massively Parallel Sorting. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 13–23.

[3] Michael Axtmann, SaschaWitt, Daniel Ferizovic, and Peter Sanders. 2017. In-place

Parallel Super Scalar Samplesort (IPS
4
o). In European Symposium on Algorithms.

[4] K. Berney, H. Casanova, A. Higuchi, B. Karsin, and N. Sitchinava. 2018. Beyond

Binary Search: Parallel In-Place Construction of Implicit Search Tree Layouts. In

IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1070–
1079.

[5] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena. 1991.

Improved deterministic parallel integer sorting. Information and Computation 94,

1 (1991), 29–47.

[6] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.

Internally Deterministic Parallel Algorithms Can Be Fast. In ACM SIGPLAN
Symposium on Proceedings of Principles and Practice of Parallel Programming
(PPoPP). 181–192.

[7] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low

Depth Cache-oblivious Algorithms. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 189–199.

[8] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2016. Parallelism in Random-

ized Incremental Algorithms. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). 467–478.

[9] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J.

Smith, and Marco Zagha. 1991. A Comparison of Sorting Algorithms for the

Connection Machine CM-2. In ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA). 3–16.

[10] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded

Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999), 720–748.

[11] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa

Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.

2008. Efficient implementation of sorting on multi-core SIMD CPU architecture.

In International Conference on Very Large Data Bases (VLDB). 1313–1324.
[12] Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent Ku-

landaisamy, and Ruchir Puri. 2015. PARADIS: An Efficient Parallel Algorithm for

In-place Radix Sort. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1518–1529.
[13] Richard Cole. 1988. Parallel Merge Sort. SIAM J. Comput. 17, 4 (Aug. 1988),

770–785.

[14] Richard Cole and Vijaya Ramachandran. 2017. Resource Oblivious Sorting on

Multicores. ACM Trans. Parallel Comput. 3, 4, Article 23 (March 2017).

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3. ed.). MIT Press.

[16] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. 2006. GPUT-

eraSort: High Performance Graphics Co-processor Sorting for Large Database

Management. In ACM SIGMOD International Conference on Management of Data.
325–336.

[17] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J.

Weinberger. 1994. Quickly Generating Billion-record Synthetic Databases. In

ACM SIGMOD International Conference on Management of Data. 243–252.

[18] Torben Hagerup. 1987. Towards optimal parallel bucket sorting. Information and
Computation 75, 1 (1987), 39 – 51.

[19] Torben Hagerup. 1991. Constant-time Parallel Integer Sorting. In ACM Sympo-
sium on Theory of Computing (STOC). 299–306.

[20] David R. Helman, David A. Bader, and Joseph JaJa. 1998. A Randomized Parallel

Sorting Algorithm with an Experimental Study. J. Parallel and Distrib. Comput.
52, 1 (1998), 1 – 23.

[21] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. 2007. AA-Sort: A New

Parallel Sorting Algorithm for Multi-Core SIMD Processors. In International
Conference on Parallel Architecture and Compilation Techniques (PACT). 189–198.

[22] J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.

[23] Daniel Jiménez-González, Juan J. Navarro, and Josep-L. Larrba-Pey. 2001. Fast

Parallel In-memory 64-bit Sorting. In International Conference on Supercomputing
(ISC). 114–122.

[24] Marek Kokot, Sebastian Deorowicz, and Agnieszka Debudaj-Grabysz. 2017. Sort-

ing Data on Ultra-Large Scale with RADULS. In Beyond Databases, Architectures
and Structures. 235–245.

[25] Marek Kokot, Sebastian Deorowicz, and Maciej Długosz. 2018. Even Faster

Sorting of (Not Only) Integers. In Man-Machine Interactions 5. 481–491.
[26] Shin-Jae Lee, Minsoo Jeon, Dongseung Kim, and Andrew Sohn. 2002. Partitioned

Parallel Radix Sort. J. Parallel Distrib. Comput. 62, 4 (April 2002), 656–668.
[27] Charles E. Leiserson. 2010. The Cilk++ concurrency platform. The Journal of

Supercomputing 51, 3 (2010).

[28] Hui Li and Kenneth C. Sevcik. 1994. Parallel Sorting by Over Partitioning. In

ACM Symposium on Parallel Algorithms and Architectures (SPAA). 46–56.
[29] Yossi Matias and Uzi Vishkin. 1991. On parallel hashing and integer sorting.

Journal of Algorithms 12, 4 (1991), 573–606.
[30] Peter M. McIlroy, Keith Bostic, and M. Douglas McIlroy. 1993. Engineering Radix

Sort. Computing Systems 6, 1 (1993), 5–27.
[31] Duane Merrill and Andrew Grimshaw. 2011. High Performance and Scalable

Radix Sorting: A Case Study of Implementing Dynamic Parallelism for GPU

Computing. Parallel Processing Letters 21, 02 (2011), 245–272.
[32] Orestis Polychroniou and Kenneth A. Ross. 2014. A Comprehensive Study of

Main-memory Partitioning and Its Application to Large-scale Comparison- and

Radix-sort. In ACM SIGMOD International Conference on Management of Data.
755–766.

[33] S. Rajasekaran and J. H. Reif. 1989. Optimal and sublogarithmic time randomized

parallel sorting algorithms. SIAM J. Comput. 18, 3 (1989), 594–607.
[34] Rajeev Raman. 1990. The Power of Collision: Randomized Parallel Algorithms

for Chaining and Integer Sorting. In Foundations of Software Technology and
Theoretical Computer Science. 161–175.

[35] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,

Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. 2011. TritonSort:

A Balanced Large-scale Sorting System. In USENIX Conference on Networked
Systems Design and Implementation (NSDI). 29–42.

[36] N. Satish, M. Harris, and M. Garland. 2009. Designing efficient sorting algo-

rithms for manycore GPUs. In IEEE International Parallel Distributed Processing
Symposium (IPDPS). 1–10.

[37] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.

Lee, Daehyun Kim, and PradeepDubey. 2010. Fast Sort on CPUs andGPUs: ACase

for Bandwidth Oblivious SIMD Sort. In ACM SIGMOD International Conference
on Management of Data. 351–362.

[38] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola,

Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Brief announcement:

the Problem Based Benchmark Suite. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 68–70.

[39] Johannes Singler, Peter Sanders, and Felix Putze. 2007. MCSTL: The Multi-core

Standard Template Library. In Euro-Par. 682–694.
[40] Malte Skarupke. 2016. I Wrote a Faster Sorting Algorithm. https://probablydance.

com/2016/12/27/i-wrote-a-faster-sorting-algorithm/.

[41] Andrew Sohn and Yuetsu Kodama. 1998. Load Balanced Parallel Radix Sort. In

International Conference on Supercomputing (ISC). 305–312.
[42] E. Solomonik and L. V. Kalé. 2010. Highly scalable parallel sorting. In IEEE

International Symposium on Parallel Distributed Processing (IPDPS). 1–12.
[43] Elias Stehle and Hans-Arno Jacobsen. 2017. A Memory Bandwidth-Efficient

Hybrid Radix Sort on GPUs. In ACM SIGMOD International Conference on Man-
agement of Data. 417–432.

[44] Uzi Vishkin. 2010. Thinking in Parallel: Some Basic Data-Parallel Algorithms

and Techniques.

[45] Jan Wassenberg and Peter Sanders. 2011. Engineering a Multi-core Radix Sort.

In Euro-Par. 160–169.
[46] Marco Zagha and Guy E. Blelloch. 1991. Radix sort for vector multiprocessors.

In ACM/IEEE Conference on Supercomputing (SC). 712–721.
[47] K. Zhang and B. Wu. 2012. A Novel Parallel Approach of Radix Sort with Bucket

Partition Preprocess. In IEEE International Conference on Embedded Software and
Systems. 989–994.

https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/
https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Parallel In-Place Radix Sort
	3.1 Global Sorting Strategies
	3.2 Analysis

	4 Implementation and Optimizations
	5 Evaluation
	6 Additional Related Work
	7 Conclusion
	References

