Theoretically-Efficient and Practical
Parallel In-Place Radix Sorting

Omar Obeya Endrias Kahssay
MIT CSAIL MIT CSAIL
obeya@mit.edu endrias@mit.edu
ABSTRACT

Parallel radix sorting has been extensively studied in the literature
for decades. However, the most efficient implementations require
auxiliary memory proportional to the input size, which can be pro-
hibitive for large inputs. The standard serial in-place radix sorting
algorithm is based on swapping each key to its correct place in the
array on each level of recursion. However, it is not straightforward
to parallelize this algorithm due to dependencies among the swaps.

This paper presents Regions Sort, a new parallel in-place radix
sorting algorithm that is efficient both in theory and in practice.
Our algorithm uses a graph structure to model dependencies across
elements that need to be swapped, and generates independent
tasks from this graph that can be executed in parallel. For sort-
ing n integers from a range r, and a parameter K, Regions Sort
requires only O(K log r log n) auxiliary memory. Our algorithm re-
quires O(nlogr) work and O((n/K + log K) log r) span, making it
work-efficient and highly parallel. In addition, we present several
optimizations that significantly improve the empirical performance
of our algorithm. We compare the performance of Regions Sort
to existing parallel in-place and out-of-place sorting algorithms
on a variety of input distributions and show that Regions Sort is
faster than optimized out-of-place radix sorting and comparison
sorting algorithms, and is almost always faster than the fastest
publicly-available in-place sorting algorithm.

ACM Reference Format:

Omar Obeya, Endrias Kahssay, Edward Fan, and Julian Shun. 2019. Theoretically-

Efficient and Practical Parallel In-Place Radix Sorting. In 31st ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA °19), June
22-24, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3323165.3323198

1 INTRODUCTION

Parallel integer sorting has received significant attention in the
literature due to its efficiency over comparison sorting when the
keys are integers. n integer keys in the range [0,...,r — 1] can
be sorted stably in ©(n/e) work and O((r€ + logn)/e) span for a
constant 0 < € < 1 [44]. No linear-work polylogarithmic-span
stable integer sorting algorithm is known, although integers in the
range [0, ..., nlogo(l) n] can be sorted non-stably in ©(n) work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA 19, June 22-24, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6184-2/19/06...$15.00
https://doi.org/10.1145/3323165.3323198

Edward Fan Julian Shun
MIT CSAIL MIT CSAIL
edwardf@mit.edu jshun@mit.edu

and O(log n) span [33]. Radix sorting is a form of integer sorting
that repeatedly sorts on a constant number of bits of the keys.
MSD (most significant digit) radix sorting starts from the higher-
order bits, and recursively sorts each set of keys that share the
same higher-order bits. LSD (least significant digit) radix sorting
starts from the lower-order bits, sorting all keys based on a constant
number of bits each time. LSD radix sorting requires each pass to be
stable, while MSD radix sorting does not. Parallel radix sorting can
be implemented in (nlog r) work and O(log r log n) span [9, 38, 46],
and there are a variety of practical parallel implementations that
have been developed [9, 12, 23, 24, 26, 31, 32, 36-38, 41-43, 45, 46].

Most existing parallel radix sorting algorithms require Q(n) ad-
ditional memory, which can be undesirable for large values of n.
As such, there has been recent interest in designing fast in-place
parallel sorting algorithms [3, 12], where the required auxiliary
memory is sub-linear in the input size. Reducing the amount of ad-
ditional memory required by an algorithm can enable larger inputs
to be processed in the memory of a machine, or a machine with
smaller RAM to be used, which can lead to considerable savings
when renting cloud computing resources. Furthermore, a lower
memory footprint can decrease the number of cache misses and
page faults, which can in turn improve performance, especially in
the parallel setting where memory bandwidth can be a bottleneck.

A standard serial in-place radix sorting algorithm is an MSD
algorithm that swaps each key into its correct place on each level of
recursion. The algorithm is non-stable, takes O(nlog r) work, and
uses O(log r log n) additional memory to store per-bucket pointers
and information for recursion. More details and pseudocode for
this algorithm are presented in Section 2. The only existing parallel
in-place radix sorting algorithm is PARADIS [12], which is based on
partitioning the input among the available processors, and having
each processor serially process its partition by swapping each key
into its desired location. The algorithm is speculative in that not all
keys may be sorted after each processor finishes its partition, and
therefore additional iterations are needed. The authors show that
PARADIS performs well in practice, but in the worst case, one level
of recursion can take linear span, which is theoretically no better
than the serial algorithm. We describe PARADIS in more detail in
Section 2.

In this paper, we design Regions Sort, a parallel in-place radix
sorting algorithm that is efficient both in theory and in practice.
Like the serial in-place algorithm and PARADIS, our algorithm is a
non-stable MSD radix sort. The algorithm uses a graph structure
where vertices represent sub-arrays that will store keys of the
same bucket, and an edge between vertex v and v with weight w
represents a set of w keys that are in the sub-array corresponding to
vertex u and need to be swapped into the sub-array corresponding
to vertex v. Using the graph, we iteratively identify and execute

https://doi.org/10.1145/3323165.3323198
https://doi.org/10.1145/3323165.3323198

tasks in parallel, and modify the graph based on the executed tasks.
We propose two strategies for processing the graph, one based on
processing cycles and one based on processing 2-paths. Similar to
the standard parallel MSD radix sorting algorithm, Regions Sort
recursively sorts sub-arrays that share the same bucket in parallel,
until all of the bits have been processed. We prove that the work of
Regions Sort is O(nlog r), which matches that of the serial in-place
radix sorting algorithm. We also show that the span of Regions Sort
is O((n/K + log K)log r) where K is an algorithm parameter. The
additional space required by Regions Sort is O(K log r log n). Our
algorithm is presented in Section 3, and performance optimizations
are presented in Section 4.

In Section 5, we perform an extensive experimental evaluation
of Regions Sort and compare it to several existing parallel sorting
algorithms (out-of-place radix sort, in-place sample sort, out-of-
place sample sort, and a sorting algorithm from the C++ Standard
Template Library!) as well as a state-of-the-art serial in-place radix
sorting algorithm. On a variety of input distributions using a 36-
core machine with two-way hyper-threading, we are almost always
faster than the fastest existing parallel in-place sorting algorithm
IPS*0 [3] (ranging from 3.6x faster to 1.02x slower). In addition,
Regions Sort is between 1.2-4.4x faster than an optimized paral-
lel out-of-place radix sorting algorithm. We achieve between 19—
65x parallel speedup on 36 cores with two-way hyper-threading.
We present additional experiments comparing the impact of input
size, key range, skewness of input distributions, and radix size on
performance. The code for Regions Sort is publicly available at
https://github.com/omarobeya/parallel-inplace-radixsort.

2 PRELIMINARIES

Notation. In this paper, we use n to denote the size of the input.
For integer inputs in the range [0, ..., r — 1], we say that its range
is r. We use P to denote the number of processors available for
computation. For radix sorting algorithms, we use b to denote the
number of bits (e.g., the size of the radix) it sorts at a time, and
B = 2 is the number of possible values of the radix. We measure
space in bits and assume that pointers take O(log n) space. For a
graph, we use (i, j, w) to refer to a directed edge from vertex i to
vertex j with weight w.

Work-Span Model. We analyze algorithms in the work-span
model, where the work is the number of operations used by the
algorithm and the span is the length of the longest sequential
dependence in the computation [15, 22].

Parallel Primitives. The following parallel procedures are used
in the paper. Prefix sum takes as input an array A of length n,
an associative binary operator @, and an identity element L such
that L & x = x for any x, and returns the array (L, L & A[0], L &
Alo]®A[1],..., J_QB?Z_OZA[I']) as well as the overall sum, l@?:_OIA[i].
Prefix sum can be done in O(n) work and O(log n) span (assuming
@ takes O(1) work) [22]. Merging takes two sorted arrays A; and
Ay and outputs a sorted array containing all elements in A; and
Ajz. Merging requires O(|A1| + |Az]) work and O(log |A1 | +1og |A2])

!We are unable to compare with PARADIS as their code is not open source and we
could not obtain it from the authors. However, we perform a rough comparison with
PARADIS based on numbers reported in the PARADIS paper [12].

Algorithm 1 Pseudocode for Serial In-Place Radix Sort

> EXTRACT(a, level) extracts the appropriate bits from element a
based on the radix size and current level.

1: procedure RADIXSORT(A, N, level)

2 C =H{0,...,0} » length-B array storing per-bucket counts

3: for ain Ado

4 C[EXTRACT(a, level)|++

5 Compute prefix sum on C to get per-bucket start and end
indices stored in H and T, respectively

6: fori=0toB-1do

7: while H[i] < T[i] do

8: while exTraCT(A[H[i]], level) # i do

9: swaP(A[H[i]], AlH[ExTRACT(A[H[i]], level)]++])
10: H[i]++

11: if level < maxLevel then

12: fori=0toB—-1do

13: if C[i] > 0 then

14: RADIXSORT(A;, C[i], level + 1) > A; is the

sub-array containing elements in bucket i

span [22]. The standard algorithms for prefix sum and merging use
linear auxiliary space [22].

In-Place Algorithms. We call an algorithm in-place if it requires
o(n) additional memory for an input of size n. We assume that
the number of processors P is sub-linear in n, otherwise it would
not be possible to use all processors without using Q(n) additional
memory. We note that our definition differs from [4], which defines
a parallel in-place algorithm to take O(P log n) additional memory.

Serial In-place Radix Sorting. Here we review the serial in-place
radix sorting algorithm, also known as American Flag Sort [30].
The pseudocode is shown in Figure 1.

The algorithm is an MSD algorithm that maintains buckets where
each bucket stores all keys with the same radix at the current level,
and where buckets are ordered based on the value of the radix. Lines
2—4 computes the number of keys per bucket (i.e., a histogram). The
EXTRACT() function computes the bucket of a key by extracting the
appropriate bits based on the radix size and current level. Line 5 uses
prefix sum to generate the starting and ending offsets in the array
for each bucket (stored in arrays H and T). Lines 6—10 processes
the positions one-by-one in each bucket. For each position x in
bucket i, the algorithm repeatedly swaps A[x] to its target bucket
until the value in A[x] belongs to bucket i. The next position is then
processed until the end of the bucket is reached. After all buckets
are processed, all keys are sorted with respect to the current radix,
and the algorithm recurses on each bucket to sort by the next radix
(Lines 11-14). Note that the sort on each level is not stable, and
thus an LSD approach would not work.

The histogram and prefix sum take linear work. In Lines 6-10,
each swap places at least one key in its correct location, leading
to linear work across all buckets. The sum of the sizes of recursive
calls is linear, and there are O(logg r) levels of recursion. For sub-
problems of size O(B) we switch to a comparison sort which takes
O(Blog B) work. In the worst case, the calls to comparison sort
incur an overall work of O((n/B)Blog B) = O(nlog B). The rest
of the work can be bounded by O(nlogg r). Therefore the total

https://github.com/omarobeya/parallel-inplace-radixsort

work is O(n(logg r + log B)), which is O(nlogg r) if we set B such
that log? B = O(logr), e.g., by setting B to a constant. The only
auxiliary space required is for storing the bucket counts and offsets
per level, pointers on the stack to keep track of recursion, and
comparison sort on problems of size O(B). The overall additional
space is O(Blogg rlog n).

Parallelization. The histogram and prefix sum of Algorithm 1 can
be implemented in parallel using O(PB log n) additional memory.
The recursive calls can also be executed in parallel. However, the
swaps on Lines 6-10 cannot be easily done in parallel as there are
data dependences across keys as well as within a cycle of swaps.
To distribute the keys to the correct buckets, existing out-of-place
parallel MSD radix sort algorithms use Q(n) additional memory to
store the output array so that keys can be moved from the input to
the output array in parallel without any dependences after comput-
ing a transpose of the histogram. This paper will present a novel
parallel algorithm to distribute the keys in-place.

PARADIS Algorithm. Cho et al. [12] present the PARADIS al-
gorithm for executing the distribution step in-place. To distribute
the keys, PARADIS repeatedly executes two phases: the permuta-
tion and repair phases. The permutation phase divides each bucket
equally across all processors. Each processor is responsible for
swapping the keys in its sub-buckets into the correct place. How-
ever, it is not necessarily possible for all keys to be placed into the
correct bucket, since a processor could own more keys that need
to be swapped into a bucket than its sub-bucket size. The repair
phase places all keys not yet in their correct bucket at the end of
their current bucket. Each processor is responsible for repairing a
subset of the buckets, which are assigned greedily to try to mini-
mize the maximum load (however, each bucket is processed by only
one processor). The two phases are then repeated on just the keys
that are not yet in their correct buckets. PARADIS uses a custom
load-balancing scheme to allocate processors to recursive calls.

The authors argue that the work complexity for processing each
radix is @(Bn). The factor of B comes from the fact that the permuta-
tion and repair phases have to be repeated multiple times. Summed
across all radices, the work is ©(Bnlogg r). The span per radix is
©(Bn(1/P + w)) where w is the maximum fraction of misplaced
keys processed by a processor in the repair phase. The n/P term
comes from the permutation phase, which splits the work equally
among processors, and the nw term comes from the repair phase
where in the worst case one processor has to do ©(nw) work. The
overall span is @(Bn(1/P + w) logg r) assuming that the number of
processors assigned to each recursive problem is proportional to
the problem size. In the worst case w = ©(1) as the bucket sizes
can be highly skewed. Thus, the worst case span is @(Bnlogg r),
giving no theoretical parallelism. The algorithm uses B buckets and
O(B) pointers per processor on each level, and so the space usage
is O(PBlogg rlogn).2

3 PARALLEL IN-PLACE RADIX SORT

This section presents Regions Sort, our new parallel algorithm
for in-place radix sorting. Table 1 serves as a reference for the
terminology used. Our algorithm is an MSD algorithm, and the

2The work and space bounds we report differ from [12], as they assume that P, B, and
r are constant, and that pointers take O(1) space.

Term ‘ Definition

Block | A contiguous sub-array of A. The k’th block is the
sub-array A[I}(—I\,I, el (k}ﬁ -1].

Country | A contiguous sub-array of A that will contain all
keys belonging to a certain bucket after it gets
sorted by the current radix. Country i (also re-
ferred to as A;) is the sub-array containing all keys
belonging to bucket i after sorting.

A contiguous sequence of keys belonging to the
same bucket within the same block and the same
country.

Region

Table 1: Terminology.

Algorithm 2 Pseudocode for Regions Sort

1: n = initial input size
2: K = initial number of blocks
3: procedure RADIXSORT(A, N, level)
« K =[K-¥
> Local Sorting Phase
5: parfork =0to K’ —1do

6: Do serial in-place distribution on A[I}(—A,I, o, (k}ﬂ —-1]

> Graph Construction Phase

7: Compute global counts array C from local counts, and per-
bucket start and end indices
8: Generate regions graph G

> Global Sorting Phase
9: while G is not empty do
10: Process a subset of non-conflicting edges in G in parallel
11 Remove processed edges and add new edges to G if
needed

> Recursion

12: if level < maxLevel then

13: parfori=0toB—-1do

14: if C[i] > 0 then

15: RADIXSORT(A;, C[i], level + 1)

high-level structure is presented in Algorithm 2. The algorithm
is parameterized by K, an initial number of blocks, and B, the
number of possible values of the radix. Regions Sort consists of
three main phases prior to recursion: local sorting, constructing
the regions graph, and global sorting. For a problem of size N,
the local sorting phase (Lines 4-6) partitions the input array into
K’ = [K - (N/n)] blocks, where n is the initial input size, and
sorts the blocks independently in parallel. The number of blocks
K’ is chosen to be proportional to the original K based on the
sub-problem size in order to provide enough parallelism across sub-
problems while ensuring that the work on blocks does not grow
too much in lower levels of recursion. For simplicity, our discussion
assumes that K’ evenly divides N, although the algorithm and
analysis work in the general case. The local sort uses the serial in-
place distribution method presented in Lines 6-10 of Algorithm 1.
We also keep track of the counts of each radix value in each block.

In the graph construction phase (Lines 7-8), we use prefix sums
to generate the global bucket counts from the local bucket counts
obtained from the local sorting phase, followed by another prefix

ofol2off2fs]]

Figure 1: (a) shows the value of the current radix of keys in
the input for a 2-bit radix (B = 4), and lines below corre-
sponds to the countries (blue is country 0, orange is country
1, green is country 2, and purple is country 3). (b) shows the
corresponding regions graph.

sum to obtain offsets for each bucket in the global array. We define
a country to be a contiguous sub-array of the input array that
would contain all of the keys belonging to a certain bucket after
sorting. At this point, each block may have keys that are not located
in its correct country. The regions graph will represent the source
and destination countries of the misplaced keys. Each vertex in the
regions graph corresponds to a country. There is a directed edge of
weight w from vertex i to vertex j if w contiguous keys from country
i should be moved to country j (these contiguous keys are referred
to as a region). Multiple edges can exist between two vertices since
the regions from i to j can come from multiple blocks (a country
can span multiple blocks). We do not include self-edges, as they
represent regions that are already correctly placed. An example of a
regions graph is shown in Figure 1. The regions graph satisfies the
following lemma that will be useful in our proofs of correctness.

LEMMA 1. For each vertex in the regions graph, the sum of the
weights of incoming edges for the vertex equals the sum of the weights
of outgoing edges for the vertex.

PROOF. A country, represented by a vertex v in the regions graph,
is defined to have size equal to the number of keys that belong in the
country after sorting. Let w,, ;5 and wy, out be the sum of weights
of incoming and outgoing edges of v, respectively. By definition,
there are wy, out misplaced keys in country v. Therefore there must
be wy out keys in other countries that belong to country v. By
definition, the incoming edges represent keys in other countries
that belong to country v. Therefore, wy, out = Wy, in-)

In the global sorting phase (Lines 9-11), Regions Sort swaps keys
in the array by identifying independent swaps that can be executed
in parallel. An edge (i, j, w) in the regions graph corresponds to a
swap of w keys from country i to j, and the swaps for multiple edges
can be performed in parallel as long as none of the source and target
memory locations overlap. Processing an edge may introduce a new
edge in the regions graph, as a region can be moved to another
country where it is still misplaced. Therefore, we need to update
the graph by deleting the old edges and adding the new edges. We
describe two strategies for using the regions graph to perform the
global sorting in Section 3.1.

Finally, we perform the recursive calls of the radix sort on the
next radix in parallel on Lines 12-15. For small problems sizes, we
switch to comparison sort.

3.1 Global Sorting Strategies

In this section, we present two different methods for using the
regions graph to perform global sorting.

3.1.1 Cycle Processing. Our first method is based on processing
directed cycles in the regions graph. Observe that for a length-I
cycle (vg, v1, wp), - . -, (V1_1, V0, Wi_1), if we move the first wyi, =
min (wo, . .., w;_1) keys in each of these corresponding regions
from country v; to country v;,q mod ; then win keys from each
of these corresponding regions will have been moved to the correct
country. We can then decrement the weight of all of the edges in
the cycle by wyyi, and remove any edge with weight 0, and the
resulting regions graph will be valid. Figure 2 shows an example
of processing cycles for an input. Each of the wy;, keys can be
processed in parallel, but the swaps for a particular key have to
happen serially due to data dependences (this is similar in spirit
to Lines 8-9 of Algorithm 1). The algorithm iteratively processes
cycles in the regions graph until no more edges are left, at which
point the keys will be sorted. The following lemma shows that
using cycle processing, Regions Sort will terminate when all keys
are sorted.

LEmMA 2. Using cycle processing, Regions Sort will terminate when
all keys are sorted.

Proor. We argue that a non-empty regions graph contains at
least one cycle. A regions graph that is non-empty means that
there is at least one misplaced key in the array. By Lemma 1, each
vertex with an incoming edge must have at least one outgoing edge.
Consider the process where we start with a misplaced key ey, find
the key e in eg’s target country that ey wants to swap with, and
repeat with e; until we have seen two keys from the same country.
After inspecting at most B + 1 vertices, we must have encountered
two keys e; and e; from the same country. The edges in the regions
graph corresponding to the keys e;, . . ., ej form a cycle.

This algorithm always makes progress, as there is always a cycle
in a non-empty regions graph, and after processing a cycle, at
least one edge in the cycle will have a weight of 0 and be deleted.
Eventually, all edges will be deleted, which corresponds to a sorted
array. o

We analyze the theoretical complexity of the cycle processing
approach in Section 3.2.

3.1.2 2-path Processing. Our second method is based on processing
2-paths in the regions graph. For a 2-path with directed edges
(vo,v1, o) and (v1, v, wi), we refer to vy as the source, v; as the
broker, and v; as the sink. Let Ry be the region containing the keys
that should be moved from vy to v1, Rq be the region containing the
keys that should move from v; to vy, and Ry be the target region
of the edge (v1,v2, w1). Processing a 2-path involves swapping
Wmin = min (wp, wi) from region Ry with wy,;, consecutive keys
in R1. In the case that vy # v (i.e., the 2-path is not a 2-cycle), as
a result of the swap, wyi,, keys from R; that were destined for Ry
are moved to Ry, and so we add a new edge from vy to vy of weight
Win- Figure 3 shows an example of processing a 2-path.
Processing a 2-path will decrease the weight of both edges in the
path by wpin, which deletes at least one of them from the graph
(since it will have a weight of 0). If vy # vz, a new edge from the

Figure 2: (a) shows the value of the current radix of keys
in the input for a 2-bit radix (B = 4). At each step, the
corresponding swaps for each cycle is shown in the array
above the regions graph. (b) shows the corresponding re-
gions graph of (a), and the cycle to process is highlighted
in red. (c) and (d) show the array and regions graph after
processing the highlighted cycle in (b). In particular, the
edges (0,2,1) and (1,0, 1) are deleted, and (2, 1, 2) is modified
to (2,1, 1). The next cycle to process is highlighted in (d). (e)
and (f) shows the input and regions graph after processing
the highlighted cycle in (d). After processing the remaining
cycle in (f), we are left with the sorted array for the cur-
rent level, shown in (g), and the regions graph with no edges,
shown in (h).

A
*[olof2fo
K
,[BROKER ! SOURCE

Sa)

Figure 3: (a) and (b) show an example of processing a 2-path
formed by the edges (1,0, 1) and (0, 2, 1). Here vertex 1 is the
source, vertex 0 is the broker, and vertex 2 is the sink. The
result of processing this 2-path is shown in (c) and (d). The
edges (1,0,1) and (0,2, 1) are deleted, and a new edge (1,2,1)
is formed (the dashed edge in (b)).

source to the sink of weight wy,j, will be formed. Since the weight
of the two path edges each decrease by wyi, units, and the possible
new edge has weight wy,i,, the sum of weights in the regions graph
decreases by at least wy,i,,. Therefore, Regions Sort will eventually
terminate. Each of the wyj, keys can be swapped in parallel. Our
algorithm processes all 2-paths for a particular vertex acting as a
broker before moving on to another vertex. Once all 2-paths for a
particular vertex have been processed, it will have no more incident
edges (since the sum of weights of incoming edges and outgoing
edges must be the same by Lemma 1) and can be removed from the
regions graph. Figure 4 illustrates how processing 2-paths can be
used to sort an array. We analyze the complexity of this approach
in Section 3.2.

Figure 4: An illustration of global sorting with 2-path pro-
cessing. At each step, the corresponding swap for the 2-
path is shown in the array above the regions graph. In (b),
we process the 2-path (1,0,1),(0, 2, 1), and create the dashed
edge (1,2,1) resulting in (d). In (d), we process the 2-path
(1,2,1),(2,1,2), which does not add any new edges, resulting
in (f). In (f), we process the 2-path (3,1,1),(1, 2, 1), which cre-
ates the dashed edge (3, 2, 1), resulting in (h). In (h), we pro-
cess the 2-path (2, 1, 1), (1, 3, 1), which creates the dashed edge
(2,3, 1), resulting in (j). Finally, in (j), we process the remain-
ing 2-path (2,3, 1), (3,2, 1), and are left with an empty graph
in (1), at which point the array is sorted.

3.2 Analysis

In this section, we analyze the theoretical complexity of Regions
Sort in terms of work, span, and auxiliary space. We first analyze
the complexity of the initial call before recursion, where n = N and
K’ = K, and then analyze the complexity of the algorithm across
all recursive calls.

3.2.1 Local Sorting. The local sorting phase requires O(n + KB)
work and O(n/K) span since each block sorts n/K keys serially and
keeps local counts of each radix per block. Using a work-stealing
scheduler, such as Cilk’s [10], up to P tasks can be executed in
parallel by P processors. Each task requires a temporary variable
to run the serial in-place distribution, as well as a constant number
of pointers. Including the bucket pointers and local counts, the
additional space used in the local sorting phase is O((P + KB) log n).

3.2.2 Graph Construction. In the graph construction phase, com-
puting the global counts from the local counts and generating off-
sets per bucket uses prefix sums and takes O(KB) work, O(log(K B))
span, and O((P + KB) log n) additional space. The regions graph can
be constructed by creating an edge (i, j, w) if w consecutive keys

of a block are in country i but should be moved to country j. We
first compute the number of edges per block and perform a prefix
sum to get the total number of edges and offsets for each block
into an array. All edges can then be written to the array in parallel.
The edges with the same source will be contiguous in memory, and
this can be used to create the regions graph. The following lemma
shows that the total number of edges in the regions graph is O(KB).

LEMMA 3. The total number of edges in the regions graph is O(KB).

Proor. After sorting, each block has at most B subarrays con-
taining the same radix value, as all keys with the same radix value
are consecutive. Subarrays that do not cross a country boundary are
their own region, and subarrays that cross country boundaries are
partitioned into regions containing keys from one country. Since
there are B countries, the number of country boundaries is B — 1.
Thus the total number of additional regions generated from parti-
tioning is B — 1. Regions that are not in the correct country form
an edge in the regions graph, and thus the total number of edges is
upper bounded by K(B—1)+ B—1=KB. m]

Therefore, for graph construction, the work is O(KB), span is
O(log(KB)), and additional space is O((P + KB) log n). We discuss
settings of K and B at the end of this section such that the total
additional space is o(n).

3.2.3 Global Sorting — Cycle Processing. For the cycle processing
strategy, we find a cycle serially by choosing a starting vertex
and following the first edge out of each vertex until a vertex v is
visited twice along the path. The explored path starting at v and
ending at v forms a cycle. This takes O(B) work and O(B) span since
there are at most B vertices in the regions graph. We then decrease
the weight of all edges in the cycle by the minimum weight, and
remove any edges with weight 0 (by incrementing the pointer to
the vertex’s first edge). This can be done in O(B) work and O(1)
span. We delete at least one edge every time we process a cycle, so
the overall work and span spent in finding cycles and updating the
graph is O(KB?). The keys being swapped when processing a cycle
can all be processed in parallel, and each one does at most O(B)
swaps. Each key is processed exactly once, and so the total work for
swapping is O(n) and the total span is O(KB?). The O(KB?) work
term for processing cycles can be charged to keys being swapped
since each edge in a cycle causes at least one key to be swapped,
and is therefore dominated by the O(n) work term. The auxiliary
space needed for swapping is O(P log n) since at most P swaps can
happen at once, each of which requires a temporary variable.

3.24 Global Sorting — 2-path Processing. For the 2-path processing
strategy, we process all incident edges for a vertex in parallel before
moving on to the next vertex. We first describe how to process 2-
paths one-by-one. Each swap places at least one key in the correct
location, and so there are a total of O(n) swaps needed. Each 2-path
can be extracted in O(1) work. We look at the first incoming and
first outgoing edge to extract a 2-path. We then delete one of the
two edges by incrementing the pointer to the start of the incoming
or outgoing edge list for the current vertex, and decrement the
weight of the other edge (possibly deleting it as well). A new edge is
possibly added to the end of the sink vertex’s edge list. The number
of edges incident per broker is upper bounded by O(KB), and so the

Figure 5: An illustration of how 2-paths incident on a bro-
ker are processed in parallel. The current broker being pro-
cessed is circled in bold. At each step, the corresponding
swap for each 2-path is shown in the array above the re-
gions graph using the same color as the 2-path. In (b), we
process the single 2-path with vertex 0 as broker, which is
(1,0,1),(0,2,1), and create the dashed edge (1,2, 1) resulting
in (d). In (d), we process all three 2-paths with vertex 1 as bro-
ker in parallel. The three 2-paths are (1,2, 1), (2, 1, 2), which
does not add any new edges; (3,1,1),(1, 2, 1), which creates
the dashed edge (3,2,1); and (2,1,1),(1,3,1), which creates
the dashed edge (2,3, 1). This results in (f). Finally, in (f), we
process the single 2-path with vertex 2 as broker, which is
(2,3,1),(3,2,1), and are left with an empty graph in (h), at
which point the array is sorted.

total work is O(KB?), but this work can be charged to keys being
swapped since each 2-path processed swaps at least one key.

We now describe a solution for 2-path processing with lower
span. We can process all 2-paths with a common broker in parallel,
and we can use prefix sums and merging to calculate appropriate
offsets so that all swaps operate on disjoint memory locations. In
this case, an edge may participate in multiple 2-paths (it splits its
weight among the multiple paths). We find all of the 2-paths with
vertex v as a broker by creating two arrays I and O, where I stores
the weights of the incoming edges and O stores the weights of the
outgoing edges. We then compute the prefix sums of the weights
in each of I and O, giving arrays I’ and O’. Next, we merge I’ and
O’ together (ties are broken by giving higher priority to edges in
I’). Now each incoming edge in I’ can be matched to one or more
outgoing edges in O’ to form 2-paths, and vice versa. In particular,
in the merged output, each edge in I’ is matched to the closest edge
from O’ to its right, and each edge in O’ is matched to the closest
edge from I’ to its left (which again can be computed using prefix
sums). We can use the result of the prefix sums to determine exactly
which keys in the two regions are used to form the 2-path and then
execute all of the swaps independently in parallel. The new edges
formed by processing the 2-paths can be stored in an output array
and sorted at the end using a parallel integer sort to insert them
into the regions graph. An example of processing all 2-paths on a
broker in parallel is shown in Figure 5.

The work for prefix sums and merging for one vertex is pro-
portional to the number of edges incident on the selected broker
vertex, which is upper bounded by O(KB). The span is O(log(KB))
for prefix sums and merging. The range of the edge values are
in [0,...,(B — 1)?], and so we can perform the integer sort in
O(KB) work, O(B + log(KB)) span, and linear additional space [44].
Summed across the B vertices, the work is O(KB?) and span is
O(B(log(KB) + B)). Again, the O(KB?) work term can be charged to
keys being swapped and is dominated by O(n). The auxiliary space
needed for the prefix sums, merge, and integer sort is O(KBlog n).
Each swap places at least one key in the correct location, and so
there are a total of O(n) swaps needed to sort the array for the
current radix, leading to O(n) work. As with cycle processing, the
auxiliary space needed for swapping is O(P log n).

3.2.5 Overall Algorithm. We now analyze the complexity of our
algorithm across all recursive calls. After the local sorting, graph
construction, and global sorting phases, our algorithm recurses on
each of the buckets (countries) in parallel using the next radix. For
a range r and number of possible values of the radix B, the total
number of levels of recursion is O(logg r). The work for swapping
the keys in global sorting is O(n) per level. We now need to bound
the extra work incurred by local sorting and graph processing
operations in global sorting.

We assume that the original input size n is at least KB for a
constant & to be determined later. If the original input is smaller
than aKB, we pad the input with dummy keys (which will be
discarded at the end of computation) until it is of size @KB. For
a sub-problem of size N < B, we switch to a parallel comparison
sort [13] which contributes O(n log B) work overall, similar to the
serial algorithm. We now argue that for a sub-problem of size
N > B, the extra O(K’B) work term for constructing the regions
graph and managing buckets in local sorting can be charged to
swapping the keys. Let this extra work equal SK’B, which we
want to upper bound by yN, for constants f and y. Recall that
we set K’ = [K - N/n]. Consider two cases, K’ = 1and K’ > 1. If
K’ = 1, then we are essentially running the serial in-place algorithm,
which incurs O(N + B) = O(N) work. Otherwise if K’ > 1, then
K’ < 2K - N/n and we need (2K - N/n)B < yN. This holds true
if n > 26KB/y, and so we set @ = 2f/y. Therefore, the work for
graph processing and local sorting can be charged to swapping the
keys, and the total work bound is O((n + KB)(logg r + log B)).

The span per level for local sorting is O(n/K) since the total
number of blocks across sub-problems is at least K. The span for
global sorting of sub-problems, which are all executed in parallel,
is upper bounded by the span of the top-level since the number
of blocks per sub-problem is at most K. The span for the calls to
parallel comparison sort is O(log B) [13].

We now bound the auxiliary space across recursive calls. An ad-
ditional O(PBlogg r log n) space is needed to keep track of bucket
pointers per level and pointers in the stack for recursion. The calls
to parallel comparison sort require O(PB log n) space overall. When
run serially, at most one local sorting, graph construction, or global
sorting phase can happen at any time, leading to O(KBlog n) space.
A straightforward space bound of O(PKB log n) when using P pro-
cessors can be obtained by using Cilk’s space bound [10]. However,

a more careful analysis gives a tighter bound, as shown in the
following lemma.

LEMMA 4. The auxiliary space usage required by local sorting,
graph construction, and global sorting across all recursive calls is
O((K + P)Blogn).

Proor. For the worst case space analysis of local sorting and
regions graphs, we assume that each processor is working on a task
for which different auxiliary memory is allocated (we only need
to consider the space for P such tasks since the space at higher
levels of recursion has already been freed). Let N; be the size of
the sub-problem for the task that processor i is working on. The
total number of blocks across the P tasks is Zle [K - N;j/n] <
P+K Zle N;/n. At any point during the computation, each key
can be involved in only one sub-problem because the algorithm
recurses only when it is done processing the key at the current level.
Thus, we have Zle N; < nand Zle Nj/n < 1. Therefore, the total
number of blocks across the active tasks is bounded by K + P, and
the overall space used for local sorting, graph construction, and
global sorting is O((K + P)Blogn). O

At the beginning of the algorithm, we compute the range r
by finding the value of the maximum key. This can be done by
splitting the array into K sub-arrays, and in parallel across sub-
arrays, computing the maximum of each sub-array serially. Finally,
we use a prefix sum on the K results to get the overall maximum.
This requires O(n) work, O(n/K +log K) span, and O(K log n) space,
which does not increase our overall bounds. The following theorems
summarize the complexity of the two variants of our algorithm
using the cycle processing and 2-path processing strategies as a
function of n, K, B, P, and r.

THEOREM 5. Using cycle processing, Regions Sort takes O((n +

KB)(logg r+log B)) work, O((n/K+KB?)log r) span, and O((PBlog r+

KB)log n) auxiliary space.

THEOREM 6. Using 2-path processing, Regions Sort takes O((n +
KB)(logg r + log B)) work, O((n/K + B(log(KB) + B))logg r) span,
and O((PBlogg r + KB) log n) auxiliary space.

Our algorithm sets K to be ©(P) for the initial call to radix
sort, and B to be a constant. With these parameter settings, our
2-path variant takes O(nlogr) work, O((n/P + log P)logr) span,
and O(Plogrlogn) additional space. The algorithm achieves lin-
ear parallel speedup for P = O(n/logn) although we need P =
o(n/(lognlogr)) to have an in-place algorithm. The bounds are
summarized in the following theorem.

THEOREM 7. Using 2-path processing withK = ©(P) and B = ©(1),
Regions Sort takes O(nlog r) work, O((n/P + log P)logr) span, and
O(Plog rlog n) additional space.

A processor-oblivious parallel in-place algorithm can be obtained
by setting K = o(n/(log nlogr)), and the value of K trades off be-
tween span and auxiliary space. For example, K = ©(n/(log nlogr)?)
gives an algorithm with O(n log r) work, O(log? nlog® r) span and
O(Plog rlogn + n/(log nlog? r)) auxiliary space.

4 IMPLEMENTATION AND OPTIMIZATIONS

Implementation. We implemented the two variants of Regions
Sort using Cilk Plus [27], which provides a provably-efficient work-
stealing scheduler [10]. We found the 2-path variant to always be
faster due to avoiding the overhead of cycle finding, and being
able to effectively use the early recursion optimization that we
will describe. To represent the regions graph in the 2-path variant,
we use two edge lists per vertex, one for the incoming edges and
one for the outgoing edges. This makes it easy to match incoming
and outgoing edges to form 2-paths with a particular vertex as the
broker. Each edge is stored only on the vertex that will be processed
first instead of on both endpoints. Newly created edges are added
to the end of an edge list. To represent the regions graph in the
cycle processing variant, we only store outgoing edges of vertices
and there are no new edges that get created.

The remainder of this section describes optimizations for both
the 2-path and cycle processing variants to improve performance.

Processing 2-cycles. When processing 2-paths that are not cycles,
after performing a swap, only one of the keys will be in the correct
country. However, if we process a 2-cycle, then both keys will be in
the correct country after swapping. Furthermore, no new edge has
to be created in the regions graph. Therefore, processing as many
2-cycles as possible will reduce the overall work. Our algorithm
first finds and processes all 2-cycles on a vertex before processing 2-
paths that are not cycles. Although there is additional work needed
to determine 2-cycles, we found that the overall work decreases
since a swap places two keys in the correct country instead of one,
and no new edges have to be formed in the regions graph.

Parallelization Across Cycles and 2-paths. In our cycle process-
ing algorithm, we process all cycles for a vertex v before moving to
the next vertex. We first find all of the cycles for vertex v serially,
but allow edges to have their weight split across multiple cycles,
so that all of ©’s outgoing edges will be contained in one or more
cycles. Then we execute the swaps associated with all of the cy-
cles in parallel. Finally, we remove v from the graph. While this
optimization does not improve the worst-case span (cycle-finding
is still done serially), it provides more parallelism during global
sorting.

For the 2-path processing variant, our implementation finds the
2-paths on a broker using a serial merging algorithm, as we found
that the number of edges was too small to benefit from parallelism.
However, after finding all of the 2-paths on the broker vertex, we
execute the swaps for all of them in parallel.

Early Recursion. After processing all of the 2-paths or cycles
associated with a vertex, there will be no more swaps in and out of
the corresponding country. Therefore, we can recursively call radix
sort on the keys in the country before we finish processing 2-paths
or cycles of other vertices. This increases the available parallelism
and improves overall performance. This optimization fuses together
Lines 9-11 and Lines 12-15 of Algorithm 2.

Country Sorting. There is more work in the countries with more
keys, and with early recursion it is beneficial to recurse on the larger
countries first to generate more available parallelism. Therefore,
we sort the countries by size and process 2-paths or cycles from
countries in decreasing order of size. The edges in the regions

graph will only be stored on the vertex corresponding to the larger
country, as that country will be processed first. For the 2-path
variant, this optimization improves performance significantly in
skewed distributions, where the country sizes vary widely. For
the the cycle processing variant, the optimization does not help as
much, since most of the work is done on the first vertex anyway
regardless of whether or not we sort the countries.

Coarsening. Our algorithm includes multiple levels of coarsening.
When n is less than 32, we switch to serial insertion sort. Otherwise,
when K = 1 or when n is smaller than 20000, we use Ska Sort, an
optimized serial in-place radix sort [40]. To reduce overheads of
parallelism, when executing parallel loops, we use a parallel for-
loop (cilk_for) when the number of iterations is greater than 4000,
and otherwise we use a serial for-loop.

5 EVALUATION

Experimental Setup. We evaluate the performance of Regions
Sort on an AWS EC2 c5.18.xlarge instance with two 18-core
processors with hyper-threading (Intel Xeon Platinum 8124M at
3.00 GHz with a 24.75 MB L3 cache), for a total of 36 cores and
72 hyper-threads. The system has a total of 144 GB of RAM. We
compile our code using g++ version 7.3.1 (which has support for
Cilk Plus), and we used the -03 optimization flag.

The datasets we use include inputs of only integer keys as well as
inputs of integer key-value pairs. We test on both 4-byte and 8-byte
keys/values (inputs with larger values can be sorted by storing a
pointer to the value). Our inputs unif(x, y) are inputs of length y
with uniform random integers in the range x. Our inputs zipfy (x, y)
are inputs of length y drawn from a Zipfian distribution of range x
with parameter 6 [17]. We also test on several degenerate inputs of
length 10°: an all equal input (allEqual(10%)), an input with 10°/2
copies of 10%/2 distinct values placed equally apart (v/nEqual(10%)),
a sorted input (sorted(10°)), and an almost sorted input with 109/2
random keys out of place (almostSorted(10°)).

Unless otherwise specified, we use an 8-bit radix (B = 256)
and an initial value of K = 5000 for the 2-path variant and K =
P for the cycle processing variant, which we found to give the
best performance overall. The high value of K benefits the 2-path
variant of our algorithm because it allows the blocks to more easily
fit in cache and helps Cilk load balance work among processors
more effectively. The cycle processing variant benefits from these
effects well, but in practice it does not improve for high values of
K because the length of cycles becomes too large, which degrades
performance.

Other Algorithms. The only existing parallel in-place radix sort
algorithm we are aware of is PARADIS [12], but there is no publicly-
available code, and we were unable to obtain the code from the
authors. Therefore, we perform a rough comparison based on the
results reported in their paper.

We compare against the following sorting implementations: the
state-of-the-art serial in-place radix sorting algorithm Ska Sort [40],
a parallel in-place sample sort IPS*o by Axtmann et al. [3], a parallel
out-of-place radix sort RADULS [24, 25], a parallel out-of-place
radix sort from the Problem Based Benchmark Suite (PBBS) [38], a
parallel out-of-place sample sort from PBBS, and a parallel out-of-
place comparison sorting algorithm from MCSTL [39].

Ska Sort 2-path Cycle IPS*o RADULS PBBS PBBS MCSTL

Regions Sort Regions Sort Radix Sort Sample Sort Sort
Input T T [Ts6n| SU || Tt [Ten[SU || Ti [Tsen] SU [| Ty [Ts6n| SU || Ty [T36n| SU || Tt [Tsen] SU [| Ti [Tsn] SU
unif(109, 10%) 23.02 [[14.19]0.49 (28.96|| 19.48 | 0.72 |27.06|| 33.52 | 0.93 [36.04||27.79| 1.79 | 15.53|| 14.40| 0.62 | 23.23|| 81.41 | 1.81 [44.98||100.36| 2.54 |39.51
unif(10°, 109)7pairs 34.59 (]/20.05]0.84 |23.87| 27.66 | 1.31|21.11||139.44| 3.01 |46.33 ||41.11| 3.49 |11.78||28.00| 1.23 | 22.76 || 92.16 | 2.34 |39.38||116.94| 4.27 |27.39
unif(2%3, 10%) 38.12 [[32.27] 1.00 |32.27 (| 92.12 | 1.42 |64.87 | 35.99 | 1.15|31.30|15.15|0.78 | 19.42||42.60 | 1.50 | 28.40 | 136.00 | 2.93 |46.41||103.12| 4.62 |22.32
unif(2%3, 109)7pairs 54.91 [|40.05| 1.78 [22.50(119.80| 2.37 | 50.55||144.22 | 3.32 |43.44|23.12| 1.67 | 13.84||59.60 | 2.96 | 20.14 | 148.00 | 3.31 |44.71{|119.50| 7.71 | 15.50
zipf0_75(109, 10%) 22.02 [|14.81]0.55(26.93 | 20.05 | 0.70 |28.64|| 29.66 | 0.82 [36.17||28.86 | 1.93 |14.95||14.70| 0.68 | 21.62|| 77.57 | 1.74 [44.58|| 94.52 | 2.54 |37.21
zipf0,75(109, 109)—pairs 33.04 [/20.61]0.98(21.03| 29.32 | 1.32 |22.21|[139.30 | 3.03 |45.97 || 43.81| 3.64 | 12.04||36.50 | 1.33 | 27.44|| 92.71 | 2.57 |36.07||120.09 | 4.58 |26.22
allEqual(109) 6.60 6.77 [0.20 |33.85|| 6.63 |0.22|30.14|| 2.32 |0.29 | 8.00 |{30.29| 1.87 [16.20{|17.70| 0.88 |20.11|| 22.84 | 0.77 [29.66|| 13.65 | 0.84 |16.25
\/ﬁEqual(log) 15.07 ||11.43|0.43 |26.58|| 12.56 | 0.66 [19.03|| 13.71 | 0.42 |32.64||28.47| 2.28 [12.49||16.70| 0.60 [27.83 || 39.22 | 1.36 |28.84|| 30.85 | 1.23 |25.08
sorted(107) 14.54 ||14.51/0.31|46.81|| 16.36 | 0.38 [43.05|| 24.60 | 0.62 [39.68|]30.25| 1.67 [18.11||14.70| 0.60 [24.50 || 42.20 | 1.25 |33.76|| 19.65 | 0.94 |20.90
almostSorted(10°%) 18.47 |(|16.41)|0.36 [45.58(| 17.30 | 0.39 |44.36|| 25.16 | 0.62 |40.58 || 28.55| 2.27 [12.58 || 16.60| 0.60 |27.67 || 43.70 | 1.25 [34.96|| 22.62 | 2.62 | 8.63

Table 2: Serial times (T7) and parallel (T54;) times (seconds), as well

as the parallel speedup (SU) on a 36-core machine with

two-way hyper-threading. The fastest parallel time for each input is bolded.

Running Times. Table 2 shows the single-thread, 72-thread, and
parallel speedup of all of the algorithms on our inputs.

We see that our 2-path processing strategy always outperforms
the cycle processing variant. The two variants of Regions Sort
achieve a parallel speedup of between 19-65x on 36 cores with
hyper-threading. While we use Ska Sort as a base case, our single-
threaded time for 2-path processing is usually faster than the highly-
optimized serial Ska Sort. Although Regions Sort incurs more work,
our local sorting phase has better temporal locality because we split
the input into blocks which can more easily fit into cache.

IPS%0 is the fastest publicly-available parallel in-place sorting al-
gorithm, and the 2-path variant of Regions Sort achieves a 1.1-3.6x
speedup over it in parallel across all inputs, except for y/nEqual(10°)
on which we are about 1.02x slower. IPS%0, described more in Sec-
tion 6, is a comparison sorting algorithm, which is more general
than our algorithm, and incurs more work to determine the bucket
that a key belongs in. The two variants of Regions Sort as well as
IPS*0 use a negligible amount of auxiliary memory compared to the
original input size (less than 5%). PBBS sample sort and MCSTL sort
are almost always slower than IPS*o and Regions Sort, and require
auxiliary space proportional to the input size. Again, PBBS sample
sort and MCSTL sort are comparison sorting algorithms, which
are more general. Compared to PBBS radix sort, which is a parallel
out-of-place radix sorting algorithm, the 2-path variant of Regions
Sort is between 1.2-4.4x faster in parallel. Compared to RADULS,
another out-of-place radix sorting algorithm, we are between 1.3x
slower to 9.4x faster. We are slightly slower than RADULS on the
inputs with 8-byte key ranges, and we believe that RADULS has
been optimized for very large key ranges.

Since the PARADIS code is not publicly-available, we perform
a rough comparison based on the numbers reported in their pa-
per [12]. On an input of random 8-byte key-value pairs of size 107,
PARADIS reports a running time of approximately 6 seconds using
16 cores of two Intel Xeon E7-8837 processors running at 2.67GHz.
On 16 cores without hyper-threading on our machine, the 2-path
variant of Regions Sort takes about 3 seconds on unif(2°3, 10°)-pairs.
We do not know the range of the keys PARADIS used, and so we
chose a very large range for our experiments. We believe that even
accounting for differences in machine specifications, Regions Sort
would still be faster. Furthermore, Regions Sort has much stronger
theoretical guarantees than PARADIS.

Parallel Scalability. Figures 6 and 7 show the speedup of the
algorithms over the single-threaded running time of 2-path as a

404 —&— 2-path
—4&— Cycle

35 = IPsio
=} —#— MCSTL
< TaQ
230 RADULS
N —%— PBBS radix sort
g 254 —4— PBBS samplesort
2
@
£ 201
=)
2151
51
2
o 10

5

70

60

30 40 50
Threads
Figure 6: Speedup over single-thread performance of 2-path

vs. thread count for unif(10°, 10°).

0 10 20

2-path

Cycle

IPSdo

MCSTL
RADULS

PBBS radix sort
PBBS samplesort

301

——
—
-
——
—-—

%1

201

Speedup over serial 2-path

60 70

50

30 40
Threads
Figure 7: Speedup over single-thread performance of 2-path

vs. thread count for zipf0,75(109, 10%).

0 10 20

function of thread count for unif(10°, 10%) and zipfo_75(109, 10%),
respectively. The algorithms all obtain reasonable parallel speedup
as the thread count increases, except RADULS which gets worse
at higher thread counts. We see that the 2-path variant of Regions
Sort outperforms all of the other algorithms on all thread counts.

Input Size Scalability. Figure 8 shows the performance of all of
the algorithms on uniform random inputs of varying size, with a
range of 108, For the 2-path variant in this experiment, we decreased
K proportionally with the input size. As expected, the running times
of all of the algorithms increase with the input size. The 2-path
variant is always the fastest on all of the different input sizes.

—e— 2-path
25001 —A— Cycle
—&— PS40
—4— MCSTL
2000 RADULS
—#— PBBS radix sort
i —4— PBBS samplesort
Z 1500
1
ﬁ
1000 4
5001
0 r r r r r
0.2 0.4 0.6 0.8 1.0
Length x10°

Figure 8: 36-core running time vs. input size n for unif(10%, n).

4000
—e— 2-path
35001 ~* Cycle
—&— [PSdo
: | —#— MCSTL
3000 RADULS
5 —#— PBBS radix sort
=z 2500 - —4— PBBS samplesort /
2 2000
& 1500
1000 1
5001 l _:_E: ' ! %
0

00100 10t 100 105 107 108 10°
Range
Figure 9: 36-core running time vs. range r for unif(r, 10°).

- | —* 2-path
35007 o Cycle
—&— PS40
30001 —4— MCSTL
RADULS
2500 4 —%— PBBS radix sort
= —— PBBS samplesort /‘/’\’
= 20001
2
& 15001
1000+ ’/‘/‘\0/’/’/‘\0
"1 M
0

102 10° 10t 10° 106 107 105 10°
Range
Figure 10: 36-core running time vs. range r for zipfy 75(r, 10°).

Effect of Key Range. In Figures 9 and 10, we plot the running
time of the algorithms as a function of the range of the input keys
on uniform random inputs. As expected, the running times of the
algorithms increase with key range. However, the increase for both
variants of Regions Sort as well as PBBS radix sort and RADULS is
sub-linear in log r, the worst-case number of levels of recursion for
radix sort, because the algorithms switch to comparison sort when
the input size is small enough.

Effect of Skewness in Zipfian Distributions. In Figure 11, we
show the performance of the algorithms on zipfy(10°, 10%) with
varying 0 parameter. A larger parameter increases the skew of
the distribution. We observe that the performance of both variants
of Regions Sort is robust across different 6 values as the number

50001 —— 2-path
—&— Cycle
—&— PS40
40004 —#— MCSTL
RADULS
—#— PBBS radix sort
/ETS(](](]- —4— PBBS samplesort
= +— + &+
< \
£ 9000
2000 # # \
1000 E ' ‘
0 T T T T
0.25 0.50 0.75 1.00

Theta
Figure 11: 36-core running time vs. 6 for zipfy(10°, 10°).

N Remaining levels
Il First level local sort

7. First level planning
= First level swap

NN,
7

\

= A
uniform zipf

Figure 12: Breakdown of 36-core running time for the 2-path

variant of Regions Sort on unif(10%, 10%) and zipfy 75(10°, 107).

M First level update

s N

of levels of recursion depends mostly on the range, which is fixed
in this experiment. The comparison sorting algorithms perform
better when the skew is higher because having fewer unique keys
reduces the number of recursive calls needed. The 2-path variant
of Regions Sort still performs the best across different 6 values.

Breakdown of Running Time. In Figures 12, we show the break-
down of running time for the 2-path variant of Regions Sort on
the unif(10%, 10%) and zipfy 75(10, 10°) inputs. We break down the
running time into various phases of the first level of recursion and
group together the time for the remaining levels. For these two
inputs, there are four levels of recursion since we use an 8-bit radix.
We see that the first level of radix sort takes a significant fraction
of the total time (over half for unif(10°, 10°) and almost half for
zipfo_75(109, 10%)). The remaining levels of recursion are relatively
faster since the problem size decreases and is more likely to fit in
cache. Within the first level, local sorting and performing the swaps
associated with 2-paths dominate the running time. Finding the
2-paths (labeled as “First level planning”) and updating the graph
(labeled as “First level update”) take very little time (under 10% of
the first level time).

Effect of Radix Size. Figures 13 and 14 shows the impact of vary-
ing the number of bits of the radix on the performance of the two
variants of Regions Sort on unif(10%, 10%) and zipfy 75(10°, 10°), re-
spectively. We achieve the best performance on 8-bit radices, but
the performance on 6-bit and 7-bit radices is almost as good. For
smaller radices, more passes are needed before the problem size
fits into cache, which leads to worse performance. Increasing the
number of bits beyond 8 makes it so that the buckets during local
sorting are less likely to fit in L1 cache (32 KB on our machine),
which causes performance degradation.

Effect of K. Figures 15 and 16 show the running time for different
values of K for the 2-path variant of Regions Sort on unif(10°, 10%)

. —&— 2-path
35007 —a— Cycle

1000 1

5004

0

1 2 3 4 5 6 7 8 9 10 11 12
Radix
Figure 13: 36-core running time vs. radix size for

unif(10%, 10°).

60001 —e— 2-path
—&— Cycle

5000
4000 A

(ms

30001

me

T

2000 4

1000

1 2 3 4 5 6 7 8§ 9 10 11 12
Radix
Figure 14: 36-core running time vs. radix size for

Zipfo_75(109, 109).

1000
—e— 2-path
800
Z 600
o
i
= 4004
200
0-— g y g r r
0 2000 4000 6000 8000 10000

K
Figure 15: 36-core running time vs. K for unif(10°, 10°).

and zipfy_75(10%, 10%), respectively. We see that the running time
for large values of K is much lower than for small values of K. For
small values of K, the local sorts in the first level are less likely to
fit in cache, which increases the overall running time.

6 ADDITIONAL RELATED WORK

Axtmann et al. propose a parallel in-place sample sorting algorithm
called IPS*o [3]. In sample sort, a sample of keys is sorted and pivots

are chosen from the sorted sample to determine bucket boundaries.

The remaining keys are inserted into the buckets, and each bucket
is recursively sorted. In IPS*0, each processor maintains k buffers
of size b, where k is the number of buckets and b is a constant. In

10004 —* 2path

800

600 1

Time (ms)

400

2001

0 2000 4000 6000 8000 10000
K

Figure 16: 36-core running time vs. K for zipfy 75(10°, 10°).

the first phase, each processor scans a subarray of n/P keys, placing
each key into a buffer corresponding to its bucket; whenever a
buffer becomes full, the b keys in the buffer (which we call a chunk)
are copied to the beginning of the subarray for that processor.
The counts of the number of keys belonging to each bucket are
maintained, and a prefix sum across all processors gives the total
number of keys per buckets and determines bucket boundaries.
In the second phase, each processor moves chunks that are out
of place from buckets in its subarray to its target bucket, using a
swap buffer of size b. If the source chunk swaps with a chunk in
the target bucket, the target chunk is placed in the swap buffer
and the processor continues to swap it; otherwise it processes the
next chunk in its own subarray. Atomics are needed to increment
pointers and implement readers-writer locks on buckets as they can
be read and written by multiple processors. The amount of auxiliary
space needed by IPS*o0 is O(bkPlogn). In contrast to IPS*o, our
algorithm does not require locks or swap buffers. We compare with
the performance of IPS*0 in Section 5. We note that our regions
graph idea could also be used inside a sample sorting algorithm, and
it would be an interesting direction for future work to implement
such an approach.

There has been significant work in the literature on parallel inte-
ger sorting. With the exception of PARADIS [12], these algorithms
all require Q(n) additional space. A standard linear-work and sub-
linear span stable integer sorting algorithm is described in [44].
Rajasekaran and Reif describe a linear-work polylogarithmic-span
integer sorting algorithm for integers in the range [n logo(l) n], al-
though the algorithm is non-stable [33]. Several super-linear work
and polylogarithmic-span stable integer sorting algorithms have
been described [1, 5, 18, 19, 29, 34]. However, obtaining a stable
linear-work polylogarithmic-span integer sorting algorithm has
been a long-standing open problem.

There has also been significant prior work on parallel algorithms
for comparison sorting (e.g., [2, 6-8, 11, 13, 14, 16, 20, 21, 28, 35, 38,
42, 47]). In terms of implementations, IPS*o is one of the most recent
and has been shown to achieve state-of-the-art performance [3].

Berney et al. present parallel in-place algorithms for constructing
implicit search tree layouts from sorted sequences [4]. Our work is
complementary in that we can efficiently generate sorted sequences
of integers in-place, which can be used as inputs to their algorithms.
One of their approaches uses cycles to represent a series of swaps.

The cycles in their approach are determined statically, while in our
cycle processing algorithm, the cycles are determined dynamically.

7 CONCLUSION

We have introduced Regions Sort, a novel parallel in-place radix
sorting algorithm that is work-efficient and highly-parallel. Our
experiments show that Regions Sort achieves good scalability and
almost always outperforms existing parallel in-place sorting algo-
rithms. Future work includes optimizing our algorithm for NUMA
characteristics to improve scalability, designing a work-efficient
in-place radix sorting algorithm with both polylogarithmic span
and polylogarithmic space, and using our ideas to design other
parallel in-place algorithms.

Acknowledgments. This research was supported by DARPA SDH
Award #HR0011-18-3-0007, Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC and
DARPA, DOE Early Career Award #DE-SC0018947, and NSF CA-
REER Award #CCF-1845763.

REFERENCES

[1] Susanne Albers and Torben Hagerup. 1997. Improved Parallel Integer Sorting
without Concurrent Writing. Information and Computation 136, 1 (1997), 25 - 51.
Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. 2015.
Practical Massively Parallel Sorting. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 13-23.

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. 2017. In-place

Parallel Super Scalar Samplesort (IPS*0). In European Symposium on Algorithms.

K. Berney, H. Casanova, A. Higuchi, B. Karsin, and N. Sitchinava. 2018. Beyond

Binary Search: Parallel In-Place Construction of Implicit Search Tree Layouts. In

IEEE International Parallel and Distributed Processing Symposium (IPDPS). 1070~

1079.

[5] P.C.P.Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena. 1991.
Improved deterministic parallel integer sorting. Information and Computation 94,
1(1991), 29-47.

[6] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.
Internally Deterministic Parallel Algorithms Can Be Fast. In ACM SIGPLAN
Symposium on Proceedings of Principles and Practice of Parallel Programming
(PPoPP). 181-192.

[7] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low
Depth Cache-oblivious Algorithms. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 189-199.

[8] Guy E.Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2016. Parallelism in Random-

ized Incremental Algorithms. In ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA). 467-478.

Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J.

Smith, and Marco Zagha. 1991. A Comparison of Sorting Algorithms for the

Connection Machine CM-2. In ACM Symposium on Parallel Algorithms and Ar-

chitectures (SPAA). 3-16.

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded

Computations by Work Stealing. 7. ACM 46, 5 (Sept. 1999), 720-748.

[11] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa

Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.

2008. Efficient implementation of sorting on multi-core SIMD CPU architecture.

In International Conference on Very Large Data Bases (VLDB). 1313-1324.

Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent Ku-

landaisamy, and Ruchir Puri. 2015. PARADIS: An Efficient Parallel Algorithm for

In-place Radix Sort. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1518-1529.

Richard Cole. 1988. Parallel Merge Sort. SIAM J. Comput. 17, 4 (Aug. 1988),

770-785.

Richard Cole and Vijaya Ramachandran. 2017. Resource Oblivious Sorting on

Multicores. ACM Trans. Parallel Comput. 3, 4, Article 23 (March 2017).

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3. ed.). MIT Press.

Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. 2006. GPUT-

eraSort: High Performance Graphics Co-processor Sorting for Large Database

Management. In ACM SIGMOD International Conference on Management of Data.

325-336.

[17] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J.

Weinberger. 1994. Quickly Generating Billion-record Synthetic Databases. In
ACM SIGMOD International Conference on Management of Data. 243-252.

[2

=

E

=

[4

flaa

=

[10

[12

[13

[14

[16

(18

[19

[20

[25

[26

[27

[28

™
20,

[30

(31]

[32

[33

[34

@
2

[36

(37

[38

[39

[40

[41

[42]

[43

[44

[46

[47

Torben Hagerup. 1987. Towards optimal parallel bucket sorting. Information and
Computation 75, 1 (1987), 39 - 51.

Torben Hagerup. 1991. Constant-time Parallel Integer Sorting. In ACM Sympo-
sium on Theory of Computing (STOC). 299-306.

David R. Helman, David A. Bader, and Joseph JaJa. 1998. A Randomized Parallel
Sorting Algorithm with an Experimental Study. J. Parallel and Distrib. Comput.
52,1(1998), 1 - 23.

H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. 2007. AA-Sort: A New
Parallel Sorting Algorithm for Multi-Core SIMD Processors. In International
Conference on Parallel Architecture and Compilation Techniques (PACT). 189-198.
J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.
Daniel Jiménez-Gonzalez, Juan J. Navarro, and Josep-L. Larrba-Pey. 2001. Fast
Parallel In-memory 64-bit Sorting. In International Conference on Supercomputing
(ISC). 114-122.

Marek Kokot, Sebastian Deorowicz, and Agnieszka Debudaj-Grabysz. 2017. Sort-
ing Data on Ultra-Large Scale with RADULS. In Beyond Databases, Architectures
and Structures. 235-245.

Marek Kokot, Sebastian Deorowicz, and Maciej Dhugosz. 2018. Even Faster
Sorting of (Not Only) Integers. In Man-Machine Interactions 5. 481-491.
Shin-Jae Lee, Minsoo Jeon, Dongseung Kim, and Andrew Sohn. 2002. Partitioned
Parallel Radix Sort. J. Parallel Distrib. Comput. 62, 4 (April 2002), 656-668.
Charles E. Leiserson. 2010. The Cilk++ concurrency platform. The Journal of
Supercomputing 51, 3 (2010).

Hui Li and Kenneth C. Sevcik. 1994. Parallel Sorting by Over Partitioning. In
ACM Symposium on Parallel Algorithms and Architectures (SPAA). 46-56.

Yossi Matias and Uzi Vishkin. 1991. On parallel hashing and integer sorting.
Journal of Algorithms 12, 4 (1991), 573-606.

Peter M. Mcllroy, Keith Bostic, and M. Douglas McIlroy. 1993. Engineering Radix
Sort. Computing Systems 6, 1 (1993), 5-27.

Duane Merrill and Andrew Grimshaw. 2011. High Performance and Scalable
Radix Sorting: A Case Study of Implementing Dynamic Parallelism for GPU
Computing. Parallel Processing Letters 21, 02 (2011), 245-272.

Orestis Polychroniou and Kenneth A. Ross. 2014. A Comprehensive Study of
Main-memory Partitioning and Its Application to Large-scale Comparison- and
Radix-sort. In ACM SIGMOD International Conference on Management of Data.
755-766.

S. Rajasekaran and J. H. Reif. 1989. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM J. Comput. 18, 3 (1989), 594-607.

Rajeev Raman. 1990. The Power of Collision: Randomized Parallel Algorithms
for Chaining and Integer Sorting. In Foundations of Software Technology and
Theoretical Computer Science. 161-175.

Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,
Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. 2011. TritonSort:
A Balanced Large-scale Sorting System. In USENIX Conference on Networked
Systems Design and Implementation (NSDI). 29-42.

N. Satish, M. Harris, and M. Garland. 2009. Designing efficient sorting algo-
rithms for manycore GPUs. In IEEE International Parallel Distributed Processing
Symposium (IPDPS). 1-10.

Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.
Lee, Daehyun Kim, and Pradeep Dubey. 2010. Fast Sort on CPUs and GPUs: A Case
for Bandwidth Oblivious SIMD Sort. In ACM SIGMOD International Conference
on Management of Data. 351-362.

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Brief announcement:
the Problem Based Benchmark Suite. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 68-70.

Johannes Singler, Peter Sanders, and Felix Putze. 2007. MCSTL: The Multi-core
Standard Template Library. In Euro-Par. 682-694.

Malte Skarupke. 2016. I Wrote a Faster Sorting Algorithm. https://probablydance.
com/2016/12/27/i-wrote- a-faster-sorting-algorithm/.

Andrew Sohn and Yuetsu Kodama. 1998. Load Balanced Parallel Radix Sort. In
International Conference on Supercomputing (ISC). 305-312.

E. Solomonik and L. V. Kalé. 2010. Highly scalable parallel sorting. In IEEE
International Symposium on Parallel Distributed Processing (IPDPS). 1-12.

Elias Stehle and Hans-Arno Jacobsen. 2017. A Memory Bandwidth-Efficient
Hybrid Radix Sort on GPUs. In ACM SIGMOD International Conference on Man-
agement of Data. 417-432.

Uzi Vishkin. 2010. Thinking in Parallel: Some Basic Data-Parallel Algorithms
and Techniques.

Jan Wassenberg and Peter Sanders. 2011. Engineering a Multi-core Radix Sort.
In Euro-Par. 160-169.

Marco Zagha and Guy E. Blelloch. 1991. Radix sort for vector multiprocessors.
In ACM/IEEE Conference on Supercomputing (SC). 712-721.

K. Zhang and B. Wu. 2012. A Novel Parallel Approach of Radix Sort with Bucket
Partition Preprocess. In IEEE International Conference on Embedded Software and
Systems. 989-994.

https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/
https://probablydance.com/2016/12/27/i-wrote-a-faster-sorting-algorithm/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Parallel In-Place Radix Sort
	3.1 Global Sorting Strategies
	3.2 Analysis

	4 Implementation and Optimizations
	5 Evaluation
	6 Additional Related Work
	7 Conclusion
	References

