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ABSTRACT

With rapid innovation in the electronics industry, product
obsolescence forecasting has become increasingly
important. More accurate obsolescence forecasting would
have cost reduction effects in product design and part
procurement over a product’s lifetime. Currently many
obsolescence forecasting methods require manual input or
perform market analysis on a part by part basis; practices
that are not feasible for large bill of materials. In response,
this paper introduces an obsolescence forecasting
framework that is capable of being scaled to meet industry
needs while remaining highly accurate. The framework
utilizes machine learning to classify parts as active, in
production, or obsolete and discontinued. This
classification and labeling of parts can be useful in the
design stage in part selection and during inventory
management with evaluating the chance that suppliers
might stop production. A case study utilizing the proposed
framework is presented to demonstrate and validate the
improved accuracy of obsolescence risk forecasting. As
shown, the framework correctly identified active and
obsolete products with an accuracy as high as 98.3%.

1 INTRODUCTION

As many products and systems continue to improve at an
ever increasing rate, obsolescence becomes an accelerating
problem by volume as well as in costs. Currently, 3% of
the world’s electronic components become obsolete every
month [1]. The flood of electronics components into
traditionally non-electronics products further exacerbates

the problem of product obsolescence. Further, today’s
approaches to dealing with obsolescence are
predominately reactionary rather than being strategically
planned or implemented. Such approaches have led to an
escalation of non-value added tasks and associated high
costs of averting and resolving problems.

Currently proactive obsolescence forecasting methods are
hindered by their inability to scale to meet larger needs of
industry. This paper describes a new approach that seeks
to solve this problem, leveraging the advantages of
machine learning and provide estimates of part status as
discontinued or actively in production. This industry
friendly approach to predicting product obsolescence risk
level will provide valuable insights for proactive
obsolescence management.

The remainder of this paper is organized as follows: In
section 2, a brief overview of how obsolescence is handled
in industry is presented, including: (1) current
obsolescence risk forecasting methods, and (2) difficulties
experienced in industry. In section 3, a brief overview of
machine learning is presented. In section 4, Obsolescence
Risk Forecasting using Machine Learning (ORML)
method is presented. Section 5 provides a case study of
ORML that is used to predict obsolescence in the cell
phone market. Section 6 provides conclusions that include
a discussion of research contribution and future work
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2 OBSOLESCENCE

Obsolescence can have an immensely negative effect on
many industries; the ramifications of which have generated
a large body of research around obsolescence related
decision making and more generally studying products
through the product life cycle. Obsolescence can be broken
into three main categories: technical, functional, and style
obsolescence. Technical obsolescence refers to parts that
are rendered obsolete by technically superior products
entering the market. Functional obsolescence is caused
when an organization suspends support of a product and
the product then is render obsolete due to the lack of
functional parts. An example of this would be a
manufacturer of printers discontinuing the cartridges
compatible with a particular printer model. Even though
that model remains functional and capable of printing, the
lack of new ink cartridges renders the printer functionally
obsolete. And finally, style obsolescence, occurs largely
due to shifts in preference of how products look to the
consumer. Examples of this would be the shift in
computer case color from beige to black, updates to logos,
or curvature changes in the case that may appear more
sleek or modern.

Throughout the life span of a product, maintaining and
managing obsolescence can be a costly undertaking. In a
2006 Department of Defense report, the cost of
obsolescence and obsolescence mitigation for the U.S.
government was estimated at $10 billion annually [2]. The
excessive cost is largely due to limited reaction time when
obsolescence occurs which leads to costlier reactionary
solutions as opposed to a more proactive management
system. Some examples of short term obsolescence
alleviation include lifetime buy, last-time buy, aftermarket
sources, identification of alternative or substitute parts,
emulated parts, and salvaged parts [3, 4]. More sustainable
long term solutions include redesign and design-refresh.

Obsolescence management strategies are important during
the design stage and throughout the product life cycle.
With 80-85% of life cycle costs resulting from decisions
made during the design stage, the ability to forecast
product obsolescence of components is important to
reductions of cost from design through production [5].
Methods and tools that help designers and supply chain
managers understand risks and make informed choices
associated with design alternatives and evaluate
substitutable parts are sorely needed to the proactive
planning and management of obsolescence.

2.1 Obsolescence Forecasting

Current methods for forecasting obsolescence fall into two
broad categories: obsolescence risk and life cycle.
Obsolescence risk methods calculate a risk index or
probability a part will become obsolete [5—8]. Life cycle
methods estimate part life span in an attempt to predict the
date when the part reaches end of life [9—13]. Both the risk
levels and end date estimations have unique applications
and if accurate, are extremely helpful to industry.

Currently two simple models have been established in the
literature for forecasting obsolescence risk level; both use
high, medium and low rating of different key factors
related to obsolescence risk [5, 6, 8]. Rojo conducted a
survey of organizations’ obsolescence manager and
compiled a best practice list of factors for forecasting
obsolescence risk. The key obsolescence factors are
numbers of manufacturers, years to end of life, stock
available vs. consumption rate, and operational impact
criticality as key indicator for potential parts with high
obsolescence risk [9]. Josias and Terpenny also created a
risk index to measure obsolescence risk levels with the key
metrics of manufacturers’ market share, number of
manufacturers, life cycle stage, and company’s risk level
[6]. Josias and Terpenny’s method allows for weights to be
changed between each factor to more approximately fit the
model to different industries [6]. Unlike Rojo and other
obsolescence risk forecasting methods, Josias and
Terpenny’s method uses a numerical index and not a
percentage to measure the risk level. This allows only for
comparison between parts on a bill of material (BOM) and
not as easily between separate bills of materials. Another
approach introduced by van Jaarsveld uses demand data to
estimate the risk of obsolescence. The method manually
groups similar parts and watches the demand over time [8].
A formula is given to measure how a drop in demand
increases the risk of obsolescence [8]. However, this
method cannot predict very far into the future because it
does not attempt to forecast out demand, which causes the
obsolescence risk to be more reactive and proactive [8].

2.2 Industry Obsolescence Forecasting Adoption

Although proactive obsolescence mitigation is a much
more cost effective solution and obsolescence forecasting
methods exist, companies and governments still largely do
not deploy obsolescence forecasting in their obsolescence
management strategies. Currently many organizations use
web  services that aggregate information from
manufacturer’s and supplier’s websites to determine which
products are currently in production or discontinued [15].
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The reason for the lack of market adoption of obsolescence
forecasting method is largely due to the insufficient ability
for current methods to scale to industry needs. For a
method to be scalable, the method must have the ability to
adjust the capacity of predictions with minimal cost in
minimal time over a large capacity range [16]. Currently,
obsolescence risk forecasting methods have three key
attribute that prevent scalability. First, many methods
require the continual collection and updating of part’s sales
data. Second, systems requiring manual human inputs or a
human interpretation of a market are costly due to the time
and man-power required to maintain the system. The
introduction of human perception into a prediction model
causes immense bias in the model and predictions will vary
widely depending on the operator. Third, many forecasting
methods use growth over time of a single part
specification, like memory, to predict when a product will
become obsolete. The method works well for products that
can be distinguished with one feature, like memory for the
flash memory market, but with more complex products like
a cellphone the method can not be implemented [10, 11].
In Table 1, current obsolescence risk forecasting
methodologies from the literature are compared against the
three key attribute necessary to scale to industry needs. All
three methods are able to handle multi-feature products,
but all methods require some form of human input either
through asking a market expert for their opinions or
manually manipulating the bill of material to remove parts
the operator feels has a low obsolescence risk.

Table 1: Risk Level Methods and Scalability Factors

Sales Data ~ Human Multi-Feature
Methods Required Inputs  Capable
Josias et al. (2009) - v v
van Jaarsveld et al. (2010) v v v
Rojo et al. (2012) - /¥ v

Notes: *Human bias due to manually filtering the BOM
3 MACHINE LEARNING

Machine learning is a method of pattern recognition in data
analysis. It can be used to cluster instances and to predict
an output. Machine learning algorithms build predictive
models using data sets. These data sets can be continuously
added to and will often improve the prediction model as
the model “learns” from new instances. For obsolescence
forecasting, the ability for a data set to be continuously
updated is an important attribute for an effective predictive
model. As parts become obsolete and new products are

introduced, the data can be updated and the model will
“learn” and adjust automatically.

Machine learning has grown to be a prominent tool in data
analysis. The application of machine learning ranges
widely from recommendations systems on Netflix and
Amazon to facial recognition in pictures to cancer
prediction and prognosis [16—18]. Machine learning has
also been applied in the design field to help designers to
more effectively gather information and feedback from
previously under utilize sources. An example of this is
using data mining to gather public reviews of products to
better understand how consumer use and feel about
individual features in products [20]. Additionally, social
media can be mined to gather similar feedback about
products and even predict new features consumers desire
[21].

Researchers in France, applied machine learning to
improve the search results for articles on a newspaper’s
website. The researcher used machine learning to show
how manually present search grouping (tags) could
become obsolete over time [22]. For example, the
abbreviation CDC could stand for ‘Caisse des Dépdts et
Consignations’ but if there is a disease outbreak, CDC as a
search term on a news website could change meanings to
‘Center of Disease Control’ [22]. The machine learning
approach was able to notify the newspapers of changing
trends and identify potential tags that need updating. An
overlooked contribution of the study was the first and only
application of machine learning to predict obsolescence.
However, the application area is rather unique and a
generalizable obsolescence forecasting form was not
provided.

Currently in the area of product obsolescence forecasting,
creating automatic and scalable prediction models is one
of the largest hindrances too large scale industry adoption.
Machine learning is commonly utilized for creating nimble
prediction models capable of rapidly updated with
changing data too large for an individual. The following
sections introduces the combination of these application
areas to create a methodology to improve obsolescence
forecasting models.

4 OBSOLESCENCE RISK FORECASTING WITH
MACHINE LEARNING

This section will serve as an introduction to the concept of

machine learning and a basic overview of how it works.
Then will introduce the obsolescence risk forecasting using
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machine learning (ORML) methodology. Lastly, potential
outputs will be discussed.

Machine learning can be broken into two main groups:
unsupervised and supervised. Supervised learning
develops prediction models that are capable of predicting
a label. These models are created from using data with
known labels. An example of this is over time, as users
mark more and more emails as spam and mark other emails
as important, email clients predict the label of an incoming
email based on past email attributes like certain word
counts. Unsupervised learning does not have a label output
and instead clusters similar data points together. A
common use case of unsupervised learning is clustering
voters in an election. Voters with similar views and wants
are grouped together then each individual group is
analyzed and candidates can target their campaigns at
certain groups that they wish to gain support from during
the election.

For this method, supervised learning will be employed to
predict the label of active or discontinued. The attributes
that will be used as inputs are the technical specifications
of each product.

The ORML process can be seen in Figure 1. First,
components with known active or obsolete labels and their
specifications are fed into the machine learning algorithm
and the algorithm generates a prediction model.
Components with unknown labels have their specifications
inputted into the prediction model. The model then outputs
the label with the highest probability for each of the
unknown components.

The use of technical specifications as the input for the
prediction model allows for the model to calculate how
individual features indicate if a product is obsolete or is

Features, software,
and other technical
specifications data

Known Input

Obsolescence Known Output

Label

Features, software,
and other technical
specifications data

Unknown Input

still actively in production. Because the model is created
using known historical data, the model benchmarks
unknown components against historical trends in the
market. As the historical data grows with time, the machine
learning algorithm will update the model and the
relationships between certain features and the chance a
component is obsolete. This aspect of a machine learning
based approach to obsolescence forecasting makes ORML
one of the most powerful and easily maintained methods.

5 CASE STUDY IN THE CELLPHONE MARKET

The case study will demonstrate the accuracy and
scalability of ORML as a method to forecast obsolescence.
The data contains specification information for 7000
unique models of cellphones and whether the phone is in
production or discontinued. The specifications include
weight (g.), screen size (inch.), screen resolution (pixels),
talk time on one battery (min.), primary and secondary
camera size (Megapixels), type of web browser, and if the
phone has the following: 3.5 mm headphone jack,
Bluetooth, email, push email, radio, SMS, MMS, thread
text messaging, GPS, vibration alerts, or a physical
keyboard.

The data was web scraped from GSM Arena, a popular
online forum for comparing cellphones and can be
downloaded at connor.github.io/research.html. The forum
data was all user submitted so there is missing values and
even misreported information. The errors and lack of
information reflects some industries limitations on finding
complete data sets. Even with these short falls with the data
set, the machine learning algorithms can still create
accurate obsolescence risk prediction models.

Machine
Learning
Algorithm

Label of Activelyin
Production or Discontinued

Predictive Predicted Output

Model

Figure 1: Obsolescence Risk Supervised Learning Process
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The case study was conducted by splitting the data set into
two random groups. The first group contains 2/3 of the data
set and is called the training set because the model will be
trained using this data. The second data set represents the
other 1/3 of the data and is called the test set because the
accuracy of the prediction model, created from the training
set, will be tested using the test set. The practice of splitting
the data into a training and test set is a common method for
model wvalidation [23]. However, currently in most
obsolescence forecasting model literature the same data is
used in model creation and model testing [5, 7-12].
Because of this, the model’s accuracy will tend to be
artificially higher in other literature than the true model
accuracy. The training and test sets are for an initial
analysis of the accuracy of the prediction model using
confusion matrixes. A more in-depth analysis was
performed to investigate how the change in the proportion
of train set size to test size effects the model accuracy
(Table 4).

After splitting the data, the training sets were run through
a machine learning algorithm to generate a prediction
model. Machine learning has many algorithms and each
algorithm has sub-variations that can be implemented to
increase the accuracy. In this case study, three algorithms
were used to create prediction models, artificial neural
networks (ANN), support vector machines (SVM), and
random forest (RF) [23-25]. ANN was selected because of
it’s use for predicting obsolescence of descriptive tags in
the newspaper industry that was discussed in Section 3. In
the list, “Top 10 Algorithms in Data Mining”, RF and
SVM, were ranked the top three algorithms in machine
learning and data mining. The other algorithm named in
the top three was K-mean. The ORML method requires
supervised algorithms and since K-means is an
unsupervised method, it will not be used in this case study.

Then the algorithms were tested on four key areas
identified in Zhang & Bivens 2007, accuracy, evaluation
speed, interpretability, and maintainability/flexibility [27].
Accuracy is accessed by the percent of cellphones
classified correctly. The evaluation speed was calculated
by taking the average time for creating 10 prediction
models for each of the three algorithms tested.
Interpretability = was a  non-performance  based
characteristic used to measure the ability for obsolescence
managers to glean information from the prediction model.
Maintainability/flexibility,  another  non-performance
based characteristic, measures the ability of the algorithm
to adapt and scale to industries needs.

The first step was processing the data. All missing numeric
values were replaced with the median of the variable and
all missing categorical variables were replaced with the
most common category for each variable. This was done
by using the na.roughfix function from the randomForest
package [28]. For the ANN and SVM, all categorical
variables were converted to numeric variables. If the
variable category did not have an obvious order, each
category was split into a binary variable that was assigned
1 if the cellphone belonged to that category and 0 if not.

The first algorithm tested was neural networks. The nnet
function from the nnet R package was utilized to create the
prediction models. All the ANN in this study were
constructed with 2 hidden layers. The confusion matrix is
shown in Table 2. The confusion matrix is a visual
representation of how the model classified products. The
columns represent the status of the product as predicted by
the model and the rows represent the true status of the
product. 1295 phones were classified as available and were
available while 860 phones were classified as discontinued
and were discontinued. However, 67 models were
classified as discontinued when they were available and
129 phones were predicted available when actually
discontinued. All of these 2351 instances were classified
correctly giving the algorithm an accuracy of 91.66%.

Table 1: Neural Networks confusion matrix

0120061 542 /E€0VF0.LZ00A/E066+/9 1 0203 SIN/Pd-sBuIpasdoid/O3 SIN/BI0"awse  uoioa||ooje)bipawse//:sdyy woly papeojumoq

Prediction
Available Discontinued Total
Actual  Available 1295 67 1362 (95.0%%
Discontinued 129 860 989 (86.96%0)
Total 1424 (90.94%) 927 (92.77%) 2351 (91.6%%

Next, the accuracy of support vector machines was tested.
Support vector machines creates cuts between the groups
of available parts and discontinued parts [26]. The svm
function from the e1071 R package was used to create the
model and a radial basis kernel was selected [29]. The
resulting prediction model was able to achieve an accuracy
of 92.41% and increase of .75% over neural networks
(Table 3).

Table 2: Support Vector Machine confusion matrix

IBIN LOjuO Jagn AysiaAlun ajels elueajAsuuad ay) Aq jpd Gzog:

Prediction
Available Discontinued Total
Actual Available 1218 76 1294 (94.13"/@
Discontinued 92 827 919 (89.99%§
Total 1310 (92.98%) 903 (91.58%) 2213 (92.41%)
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The last algorithm tested was random forest. Random
forest creates decision trees used to classify parts based on
a series of conditional statements based on the product’s
specifications [25]. The R package randomForest function
randomForest was used to create the prediction model. In
each model 500 trees were generated for each forest [28].
The prediction model created by the random forest
algorithm was able to obtain an accuracy of 92.56%, an
accuracy higher than both neural networks and support
vector machines (Table 4).

Table 3: Random Forest confusion matrix

The statistical difference between the accuracies of the
algorithms at each training size level was tested using a
standard hypothesis test. For training set sizes 80% and
90%, the difference in training set accuracy between
random forest compared to ANN and random forest
compared to SVM was statistically significant. All other
comparisons showed no significant difference. This
means random forest is more accuracy than neural
networks and support vector machines in larger training
sizes, but there is no difference between neural networks
and support vector machines.

The next metric evaluated in the study was the speed which

Prediction .
. — a prediction model can be constructed. Ten models were
Available Discontinued _ Total created for each training using the same varying training
Actual  Available 1243 72 1315 (94.52%)  set size steps as above in Table 5, the creation times were
Discontinued 98 873 971 89.91%)  recorded and then averaged for each algorithm for each
Total 1341 (92.69%) 945 (92.38%) 2286 (92.56%)  raining set step. The results of this were plotted in Figure

2. Neural Networks were the slowest model but saw a drop
as the training set grew in size. However, random forest
and support vector machines grow at a constant rate as the
training set grew.

To better understand the relationship between training set
size and model accuracy, a sensitivity analysis was
conducted to investigate the relationship. Table 4, shows
the results of that analysis. The training set was set at 50%
of the data set then 60% all the way to 100%; this change
can be seen in the left most column.

™
[=]
i

Machine Learning

g T, Algorithm

[ B N, - »
The prediction models were fitted using the training set, % ) < Support Vactar Machin
then the models predicted the labels for the training set and @ . AN Newral Network
testing set and the overall data set (both the training and E 107 Randam Forest

test combined). To assess the accuracies, each training set o=, ; . | 5 .
: : . s 50 6l 70 a0 a0 100

size was done teq times randomly sampling a new training Training Dataset Fraction {%)

set of the same size, then the average accuracy was taken

for the training, testing and overall. Figure 2: Overall average evaluation speed by training

dataset fraction
Although random forest and support vector machine have
relatively close results in the confusion matrix analysis, a
study of the change of training set size gives a greater
sense of random forest’s superiority.

Table 4: Average Accuracy of Predictions by Training Size

Training Size (%)

Random Forest Neural Network Support Vector Machine

Training Testing Overall Training Testing Overall Training Testing Overall

(%) (%) (%) (%) (%) (%) (%) (%) (%)
50 98.8 92.2 95.5 91.8 91.2 91.5 90.9 91.7 91.3
60 98.5 92.5 96.1 91.4 91.7 91.5 91.0 92.2 91.4
70 98.5 92.9 96.8 91.5 91.9 91.6 91.3 92.3 91.6
80 98.2 93.3 97.2 91.7 91.1 91.6 91.6 91.7 91.6
90 98.2 94.3 97.8 91.7 91.2 91.6 91.7 91.2 91.6
100 - - 98.3 - - 91.1 - - 91.6
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After the performance characteristics are assessed, the non
performance  characteristics,  interpretability  and
maintainability/flexibility were evaluated. Random forest
ranked highest in both of these categories due to the ease
of use and simplicity of decision trees and also the ability
to handle numeric and categorical variables while SVM
and ANN must convert all categorical variables into
numeric.

Table 5: Summary of model preference ranking

RF ANN SVM
Performance based characteristics
Accuracy Ist 2nd 2nd
Evaluation Speed 2nd 3rd Ist
Non-performance based characteristics
Interpretability Ist 3rd 2nd
Maintainability/flexibility Ist 2nd 3rd

The last step in the case study analysis was to tally all four
key metrics for the three algorithms (Table 5). Random
forest was able to capture an impressive three 1% place
ranks and one 2" This means random forest is the best
algorithm to employ for predicting obsolescence risk in the
cellphone market. Support vector machine was second
overall and neural networks came in last place with two 2"
and two 3" places.

6 CONCLUSION

In this paper, a framework for using supervised machine
learning to predict product obsolescence risk was
introduced. The method, ORML, was then applied to
classify products as available or discontinued using 7000
unique cell phone models. The case study demonstrated the
power of Obsolescence Risk forecasting using Machine
Learning (ORML) by correctly identifying available and
discontinued cell phone with an accuracy as high as 98.3%.
Of the three algorithms tested, random forest was selected
as the best candidate for creating obsolescence risk
prediction models in the cell phone data. Random forest
was selected because it was ranked highest in accuracy,
interpretability, and maintainability/flexibility and second
highest in creation speed.

The machine learning based method was able to predict
obsolescence risk level with a high degree of accuracy and
speed. The high accuracy of these prediction models
validates machine learning as an appropriate approach to
forecasting product obsolescence. Another benefit of this

result is to show how fast ORML can accurately predict
obsolescence. The slowest ORML models were all still
under a minute; compared to many of the current
obsolescence forecasting methods that require manual
manipulations and inputs which would take days to predict
7000 cellphones.

With obsolescence effecting almost all industries, reducing
the cost of impact would save millions of dollars annually.
The easiest way to reduce the impact is by involving
obsolescence mitigation planning in earlier phases of
design and supply chain management. This shift from a
reactionary approach to a proactive approach would only
be possible through more accurate obsolescence
forecasting that can scale to industries’ needs. This
research establishes machine learning as a capable
technique to meet industries’ large scale needs while
maintaining an extremely high accuracy for predicting
obsolescence.

The successful application of ORML in the cell phone
market case study demonstrates that the ORML
methodology can be utilized by industry, the next step is to
create more value added tools to take advantage of the
ORML framework. In future works, additional industry
case studies would demonstrate the robustness of this
model between industries and markets. In this paper, the
obsolescence status of only one product type (cell phones)
was predicted, the ORML framework could be applied to
many products, these many product predictions could be
applied to a bill of materials. A system could be design for
designers to submit differing bills of materials to a ORML
enabled framework and obsolescence risk levels of every
component is returned. The individual risk levels could be
combined to make a composite score to compare between
differing designs to assess which design has the highest
risk of obsolescence.
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