Kevin Lesniak

Computer Science and Engineering,
The Pennsylvania State University,
University Park, PA 16802

e-mail: kal5544@psu.edu

Janis Terpenny

Industrial and Manufacturing Engineering,
The Pennsylvania State University,
University Park, PA 16802

e-mail: jpt5311@engr.psu.edu

Conrad S. Tucker
Engineering Design,

Industrial and Manufacturing Engineering,
The Pennsylvania State University,
University Park, PA 16802

e-mail: ctucker4@psu.edu

Chimay Anumba
Design, Construction and Planning,
University of Florida,

Gainesville, FL 32611

e-mail: anumba@ufl.edu

Sven G. Bilén
Engineering Design,

Electrical Engineering,

The Pennsylvania State University,

'.) Check for updates

Immersive Distributed Design
Through Real-Time Capture,
Translation, and Rendering of
Three-Dimensional Mesh Data’

With design teams becoming more distributed, the sharing and interpreting of complex
data about design concepts/prototypes and environments have become increasingly chal-
lenging. The size and quality of data that can be captured and shared directly affects the
ability of receivers of that data to collaborate and provide meaningful feedback. To miti-
gate these challenges, the authors of this work propose the real-time translation of physi-
cal objects into an immersive virtual reality environment using readily available red,
green, blue, and depth (RGB-D) sensing systems and standard networking connections.
The emergence of commercial, off-the-shelf RGB-D sensing systems, such as the Micro-
soft Kinect, has enabled the rapid three-dimensional (3D) reconstruction of physical
environments. The authors present a method that employs 3D mesh reconstruction algo-
rithms and real-time rendering techniques to capture physical objects in the real world
and represent their 3D reconstruction in an immersive virtual reality environment with
which the user can then interact. Providing these features allows distributed design teams
to share and interpret complex 3D data in a natural manner. The method reduces the
processing requirements of the data capture system while enabling it to be portable. The
method also provides an immersive environment in which designers can view and inter-
pret the data remotely. A case study involving a commodity RGB-D sensor and multiple
computers connected through standard TCP internet connections is presented to demon-

University Park, PA 16802
e-mail: shilen@psu.edu

1 Introduction

The availability of low-cost computing and networking infra-
structure is enabling design teams to collaborate in a distributed
manner. The value of interpreting complex data about design con-
cepts/prototypes and environments is highly dependent on the size
and quality of the data being shared. The emergence of affordable
immersive virtual reality hardware, such as the Oculus Rift [1],
HTC Vive [2], and the PlayStation virtual reality (VR) [3], is
transforming the manner in which distributed teams are able to
interact with virtual concepts/prototypes and environments. For
example, a truly realistic virtual environment may be used to
expedite training processes [4,5], allow immersive remote obser-
vation of job sites or educational events [6], or reduce travel costs
for design reviews. Using a system that provides the above fea-
tures allows design teams to work more efficiently and produc-
tively while remaining distributed [7].

The availability of off-the-shelf color and depth, RGB-D, sens-
ing systems has opened many opportunities for technological
advancement into 3D rendering and reconstruction [8]. The
democratization of these technologies is enabling everyday indi-
viduals to process large amounts of data into usable 3D models
and virtual representations. RGB-D sensor systems are commonly
used to scan real-world objects and output a 3D model that can
then be imported and viewed or edited in traditional cap software
[9-11]. RGB-D sensing systems have also been used to scan large
environments and generate virtual representations in interactive

12016 Best Paper Award: ASME IDETC-CIE Virtual Environments and Systems
(VES); Conference Version: DETC-2016-59762.

Contributed by the Computers and Information Division of ASME for publication
in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received September 15, 2016; final manuscript received October 10, 2016; published
online February 16, 2017. Editor: Bahram Ravani.

Journal of Computing and Information Science in Engineering

strate the viability of the proposed method. [DOI: 10.1115/1.4035001]

3D environments. These large scans required the original software
for the sensor systems to be expanded with new algorithms that
allow the sensors to move around the environment being scanned
[12,13]. One of the major limitations of this kind of algorithm is
the lack of interaction and visibility in real time. Whelan et al.
[13] captured data sets using a Kinect sensor attached to a laptop
computer. These recorded data sets were later processed by their
algorithm on a separate machine. This prevents the user from
interacting with, moving around in, or fully visualizing the recon-
struction as it is being created.

Incorporating color data into the virtual reconstruction allows
the receivers of the information to gain a deeper understanding of
the environment of interest. This is due to the receivers of the
information having access to a more natural representation of the
space. Research has shown that having this natural representation
allows the user to gather information similarly to viewing the
physical environment [14]. The Kinect Fusion Explorer-WPF C#
Sample, which is heavily based on the work of Newcombe et al.
[15], is able to incorporate color data into a real-time reconstruc-
tion [16]. However, their method lacks the ability to share the
reconstruction with distributed design teams or interact with the
reconstruction. Turner et al. also incorporated color data into their
algorithm. However, the resulting reconstruction did not occur at
the same time the data were being captured, and also had limited
detail for small objects in the environment [17].

This paper presents a method that enables the real-time creation
of the virtual representation of physical environments with which
the user can subsequently interact. In order to achieve this, both
the depth and color information from an RGB-D sensor are
dynamically rendered in a virtual environment that is remotely
connected to the sensor. The proposed method enables the sensing
system to be independent of the computer that is rendering the vir-
tual environment. The proposed method provides the ability to
generate realistic virtual representations of real-world objects and

SEPTEMBER 2017, Vol. 17 / 031010-1

Copyright © 2017 by ASME

as19l/z191019/0101€0/€/ 2 L /4pd-a1o1e/Bunssulbuabunndwos/Bi0 swse’ uoios||jooleybipawse//:sdpy woly papeojumoq

€0 210 ¢

0202 Y2IEIA |0 UO Josn AjisIoaiun 9jels elueAiAsuuad 8yl Aq Jpd-0L0LE0

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4035001&domain=pdf&date_stamp=2017-02-16

locations and allows users to view this process in real time in a
virtual reality environment.

The remaining sections of this paper are organized as follows:
Section 2 presents literature closely related to this work. The
method for dynamically creating interactive, virtual representa-
tions of physical environments is presented in Sec. 3, while Sec. 4
presents a case study that demonstrates the feasibility of the pro-
posed method. Section 5 presents the results of the case study, and
Sec. 6 concludes the paper and outlines areas for future
expansion.

2 Literature Review

2.1 Digital Representation of Physical Artifacts Through
3D Scanning. Advancements in commercial, off-the-shelf tech-
nologies have enabled the digital representation of physical arti-
facts in a timely and efficient manner [18]. For example,
Newcombe et al. [15] developed the KinectFusion library to allow
commodity RGB-D sensors to construct accurate virtual represen-
tations of the real world. The group focused on scanning a fixed
area, with either a static sensor or a moving sensor. The resulting
system is able to produce high-fidelity virtual representations of
the scanned area and incorporate color data into the representa-
tion. However, the system only integrates data into a predefined
area around the position where the sensor started scanning. This
means that the area to scan is predefined and limited in size to the
range of the sensor. This can be seen in the Kinect Fusion
Explorer-WPF C# Sample [16] that was used as a basis for a por-
tion of the method proposed in this paper. The Kinect Fusion
Explorer application has a maximum scanning limit of ~8m
cube. Anything outside of the cube will not be included in the
reconstruction. This was due to how the application handles mem-
ory and the incorporation of new data. If the reconstruction vol-
ume is made any bigger, there are problems storing and
processing all of the data in the reconstruction.

Roth and Vona [12] and Whelan et al. [13] sought to expand
the range of the KinectFusion library [15] by altering the manage-
ment of data and incorporation of new frames. These teams cre-
ated algorithms in which the volume of space being reconstructed
is moved as the RGB-D sensor is moved in the real world. This
allows for space that was outside of the reconstruction volume
when it was initialized to be considered for reconstruction as the
sensor moves. In essence, this allows for the scanning of much
larger environments, while maintaining a small working set of the
reconstruction for data integration. The limitation for these sys-
tems is that prerecorded data sets are being used as the input to
the developed algorithms. This prevents the real-time representa-
tion of the reconstruction to be shown in the VR environment.
These systems also only incorporate the depth image data, and not
the RGB images. The result is a mesh representation of the envi-
ronment without any color data incorporated.

Hamzeh and Elnagar [19] used a commodity RGB-D sensor to
create an algorithm that generates floor maps of the area being
scanned to use with robot navigation and planning operations in
environments where it is dangerous or difficult to send people in
to produce a map. Hamzeh et al. did not incorporate color, or
build a complete 3D representation of the environment being
scanned. Turner et al. [17] built an algorithm to model and texture
large scanned environments. However, their method lacks the
real-time rendering and interaction component that has been
shown to result in a deeper conceptual understanding of an envi-
ronment [14]. The algorithm proposed by Turner et al. [16] runs
on a data set that was prerecorded and then processed by the
developed algorithm. The goal was to represent architectural fea-
tures by generating a floor plan from the scanned data and extrud-
ing a 3D building model from them. The result is a more
structured 3D model, but lacks the features and detail of the pro-
posed method. Also, the algorithm used the RGB images captured
by the sensor to texture the resulting model, but did not

031010-2 / Vol. 17, SEPTEMBER 2017

incorporate the RGB data into the point cloud generated from the
depth data. Incorporating the RGB data directly into the point
cloud, as is proposed in this paper, gives each vertex that is being
rendered a color. This allows the resulting colored mesh from the
proposed method to appear accurate under various lighting
schemes and from differing perspectives in the VR environment.

Some groups, like Roth and Vona [12], Whelan et al. [13], and
Turner et al. [17], sought to overcome the limitation of the size of
the volume being scanned by building an algorithm that allowed
the volume being scanned to move while the RGB-D sensor
moves. This allows an increase in size of the volume being
scanned, but requires that the data capture system is portable, lim-
iting the amount of processing power that is available to the algo-
rithm in real time. Recorded data sets are captured using a sensor
attached to a computer and later processed by the developed algo-
rithm to produce mesh results. Using this method, the same qual-
ity of scans is achieved, but the real-time reconstruction of
Newcombe et al. [15] and the Kinect Fusion Explorer example
[16] is lost. Turner et al. [17] developed an algorithm that integra-
tes the color data that are being captured by the RGB-D sensor
into their textured 3D reconstruction, which was something lack-
ing in Roth and Vona [12] algorithm and the algorithm of Whelan
et al. [13]. Others, like Hamzeh and Elnagar [19], were only
focused on building a floor plan rather than a full 3D reconstruc-
tion of the space. This greatly lowered the processing power
requirement, but resulted in a much simpler and less accurate rep-
resentation of the space. Hamzeh and Elnagar [19] did incorporate
a networking component into their algorithm that allowed the con-
structed maps and the video feed to be sent back to a remote user
who was tele-operating the robot to which their sensor was
attached. While this improved the usability of the system, the
developed algorithm did not send the complete RGB-D data set,
and only sent a simplified reconstruction after processing.

The proposed method improves upon existing systems by pro-
viding a system that allows the receiver of information to view
and interact with the reconstruction as it is being built. The color
data from the sensor system are also incorporated into the recon-
struction to provide a level of realism to the resulting virtual envi-
ronment that is missing from existing systems [12,13,17]. The
process also allows for the separation of the sensor system from
the machine that processes the data, meaning that the RGB and
depth data can be streamed from a remote location to the process-
ing machine in real time, unlike the data recording process used in
existing systems [12,13,17]. The proposed method also incorpo-
rates a mesh subdivision algorithm to limit the size of the virtual
objects that will be rendered in the immersive environment. This
subdivision keeps individual virtual objects under a specified
number of vertices to meet memory and rendering requirements.
The proposed method is divided into three components that are
networked together to allow data to pass between them across
standard Transmission Control Protocal (TCP) connections. This
allows the processing to be distributed across as many as three
computers, increasing efficiency and improving the flexibility of
the system. The three components are separated to focus on the
capturing and formatting of data, the processing and integration of
data into the virtual reconstruction, and the rendering of the result
of the virtual reconstruction. Having the three components share
data over a network allows the RGB-D sensor and computer run-
ning the capturing component to be in a remote location, sending
data back to a machine running the processing and integration
component, which can then send the reconstruction result to a
remote user running the rendering component to view the result.

Table 1 shows related systems and the features they support.
The green entries show features that the corresponding system
supports. Table 1 reveals that, while others have implemented a
subset of the features we are providing, to the best of our knowl-
edge, none has achieved them in a combined manner. The authors
of this paper present a method that allows for the reconstruction
of an accurate colored 3D representation of a physical space. A
remote user can view and interact with this reconstruction in real

Transactions of the ASME

as19l/z191019/0101€0/€/ 2 L /4pd-a1o1e/Bunssulbuabunndwos/Bi0 swse’ uoios||jooleybipawse//:sdpy woly papeojumoq

€0 210 ¢

0202 Y2IEIA |0 UO Josn AjisIoaiun 9jels elueAiAsuuad 8yl Aq Jpd-0L0LE0

Table 1 Literature review of supported features, compared to what is being proposed in this paper

Mesh Color Data Real-Time Real-Time Virtual Reality Distributed Real-Time
. . . . Hardware X .
Reconstruction | Incorporation | Reconstruction | Rendering e— Processing and Interaction
PP Rendering

Network-

Hamzeh et al.
(2015) [19]

Curless et al.
(1996) [25]

Whelan et al.
(@u12)113]

Roth et al.
(2012)[12]

Turner ef al.
(2015)[16]

Newcombe et
al. (2011) [18]

Kinect Fusion
Explorer Microsoft
(2013) [15]

Lesniak et al.
(2017) (this
paper)

Partial Feature

Full Feature

time, due to the distribution of data capture, data processing, and
rendering into separate network-enabled components. The result-
ing reconstruction is also rendered in a modern VR environment
that allows for a more complex representation, including physics,
VR hardware integration, and the ability of the user to interact
with the virtual reconstruction.

2.2 Virtual Reality Environments. Two of the major Virtual
Reality environments are the Unreal Engine [20] and Unity [21].
These are both video game engines that aim to allow users to
design and build 3D applications. Both of these systems have
been adding support for VR hardware to allow for more immer-
sive experiences. The companies backing both engines have
recently announced support for using the entirety of their editor in
a VR system similar to what is shown in Fig. 1.

A VR environment is necessary to handle the rendering and
interaction components of the proposed system. Once data
describing the environment of interest have been captured and
processed, they need to be rendered in a form that users can then
view and interpret. The VR environment is also responsible for
accepting inputs from the user and responding to them. These
inputs can include signals from a keyboard and/or mouse, move-
ment of a tracked device, like a controller or VR system, or even
speech input. These inputs are then translated into a form of inter-
action with the virtual world. The combination of rendering and

Journal of Computing and Information Science in Engineering

interaction allows the VR environment to provide a high-quality
immersive experience for the user.

While both of the VR environments mentioned above have
these capabilities, Unity [21] provides direct support for VR sys-
tems and also supports programming in the same language as the
processing library the authors are using. Having direct support for
VR systems allows the results to be easily displayed on a number
of VR systems and standard two-dimensional display system.

Fig. 1 Head mounted virtual reality display

SEPTEMBER 2017, Vol. 17 / 031010-3

9s19[/21.91.019/0101£0/€/. | /ipd-ajoie/buussuibuabunndwoo/bio-swse uonos|joolenbipawse//:sdiy woly papeojumoq

0 €0 10 ¢

0202 YoIBN L0 UO Josh AysioAlun ejels elueajAsuusd ay) Aq 4pd-0L0Le

Direct support also improves the performance of the VR environ-
ment by optimizing the rendering process for the VR system that
is being used. Unity [21] also has the capability to create applica-
tions for a variety of target platforms, including Windows, OS X,
and gaming consoles. This allows the method to accommodate
more design teams and target platforms. This makes Unity [21] a
strong choice for the VR environment used to display the resulting
virtual representation. Due to the distributed nature of the pro-
posed method, the VR environment is interchangeable to suit the
needs of the user. As long as the chosen VR environment can read
and process data from a TCP connection, it can be used to display
the results of the authors’ algorithm.

3 Method

The method presented in this paper allows for the distribution
of the process to construct a 3D mesh of a physical location
and visualize it in a VR system with multiple computers in
different locations. This method allows for distributed teams and
remote experts to collaborate in a more natural manner,
increasing efficiency and the ability to share information. Figure 2
shows the three components of the method. The component to
capture and format the data from the sensor is shown in the
box labeled component 1. The RGB-D sensor and Algorithm 1 are
connected to this component. The component to process and
integrate the data is shown in the box labeled component 2.
Algorithm 2 is connected to this component. The component to
render the result is shown in the box labeled component 3. This is
the component to which the VR system is connected. The
individual steps in the method are discussed in detail in Secs.
3.1-3.4.

Algorithm 1: Capturing and Formatting Sensor Data
Input: C-> RGB image as byte|[]

D-> Depth image as ushort/[]

Params-> Internal camera parameters

Output: jA-> Downsampled RGB image as JPG
JjB-> Formatted Depth image as JPG

—_

. Initialize sensor;
2. Initialize output network connection, O;
THREAD 1
3. Receive C and D from sensor;
THREAD 2
4. For rowD ¢D do
a. For pixel ¢ rowD do
i. Map pixel to color space using Params
ii. If pixel is in color space
1. Add color pixel to A;
iii. End
iv. Convert pixel to byte, pB;
v.Add pBto B
b. End
End
. Encode A into JPG, jA;
. Encode B into JPG, jB;
. Send jA and jB over O;

0N oW

3.1 Acquisition of 3D Mesh Data. Using RGB-D sensing
systems, 3D mesh data representing a physical object can be cap-
tured and stored in digital form. RGB-D sensors are needed
because both color (i.e., RGB) and depth (D) data are needed for
the real-time reconstruction of 3D objects in an immersive, VR
environment. The depth data are required to construct the 3D
mesh of the environment being scanned and the RGB data are
required to associate color values with each vertex of the 3D
mesh.

The depth data are formatted as a grayscale image, D, where
each pixel value, D(i, j), is equal to the distance from the sensor
into the environment being scanned at an angle relative to the
pixel location in the image. This means that the top right pixel in
the image is at the largest horizontal and vertical angle of the
depth sensor’s field of view.

The color data are formatted as a color image, C, and are cap-
tured by the sensor at the same time that the corresponding depth
image, D, is captured. Each pixel in the color image, C(i, j), repre-
sents the color of the world at an angle from the direction the sen-
sor is facing, relative to the pixel location in the image. The top
right pixel represents the color captured at the largest horizontal
and vertical angle of the RGB sensor’s field of view.

3.2 Formatting of RGB-D Image Data. The two main uses
of the color image in the proposed method are (i) to enhance the
camera tracking algorithm and (ii) to map color data into the vir-
tual reconstruction. For the camera tracking, both the depth and
color image need to have the same pixel dimensions. To achieve
this, the larger of the two images needs to be down-sampled to
match the dimensions of the smaller image. To map the color data
into the virtual reconstruction, the pixels in the color image that
match to vertices calculated from the depth image need to be
extracted from the full resolution color image. To do this, the rela-
tionship between the color and depth cameras are used to deter-
mine which color pixel matches each depth pixel. This allows one
pixel value to be mapped to each vertex calculated from the depth
image.

Due to limitations in RGB-D sensor technology, the depth
image is, in most cases, a factor smaller than the RGB image [22].
Because of this, the RGB image can be down-sampled to match
the dimensions of the depth image. The algorithm for capturing
and formatting the depth and RGB images can be seen in Algo-
rithm 1. The internal parameters of the depth and color camera are
used to calculate the pixels in the color image that map to pixels
in the depth image. The depth data contained in D are then format-
ted so that each pixel of data fits into a single byte. This is done
by limiting the range of accepted values for depth data.

The result will be a down-sampled color image, A, and a for-
matted depth image, B, that have the same pixel dimensions. This
is necessary for the proper integration of these two data sets into
the virtual reconstruction. These down-sampled images are then
encoded as JPG [23] images into memory. Storing the images as
JPGs [23] in memory minimizes the size of the data being sent
over the network. The JPG encoding algorithm [23] is a common
image format, and the EMGU wrapper for OpenCV in C# [24]
allows the JPG encoding [23] to be integrated directly into the
components of the method.

Data Capture
and Formatting

RGB-D Sensor

=)

Algorithm 1

Component 1

Component 2

Component 3

Fig.2 Flow diagram of proposed method

031010-4 / Vol. 17, SEPTEMBER 2017

Transactions of the ASME

as19l/z191019/0101€0/€/ 2 L /4pd-a1o1e/Bunssulbuabunndwos/Bi0 swse’ uoios||jooleybipawse//:sdpy woly papeojumoq

€0 210 ¢

0202 UYoJBIN L0 UO Josn ANSISAIUN S1elS elueAjisuusd oy Aq 1pd-0L0LED

Depending on the capture rate of the RGB-D sensor, there is a
possibility that the sensor is capturing data faster than the avail-
able network bandwidth can send it, or the processing component
can integrate it into the virtual reconstruction. To prevent
unnecessary transmission of data, the data capture component
waits until the processing component signals for a depth image,
color image, or both. Once it receives this signal, it sends the next
available frame of data, whether that is currently in memory or
once it is done being formatted. Waiting for this signal means that
any frames that cannot be handled by the network or the process-
ing component are dropped before transmission. This dropping of
frames prevents wasting resources on data that would otherwise
not be integrated into the reconstruction. This dropping of data is
discussed further in Sec. 3.4.

3.3 Integration of RGB and Depth Data. The processing
component takes the formatted RGB and depth images, described
above in Sec. 3.2, and integrates the images into the current vir-
tual reconstruction. The process for this can be seen in Algorithm
2. In the processing component, one thread is responsible for read-
ing the data received from the network and storing them in local
memory. This thread reads the encoded JPG [23] images from the
network and decodes the images into their raw pixel formats.
Once the images are decoded, the pixel data are available to be
integrated into the virtual reconstruction by another thread.

Algorithm 2: Integration of RGB and Depth Data
Input: jJA-> RGB image as JPG
JB-> Depth image as JPG

Output: cV-> Vertex[] as compressed byte[]
¢N-> Vertex Normal[] as compressed byte[]
¢C -> Vertex Color[] as compressed byte[]

1. Initialize virtual reconstruction;

2. Initialize input network connection, /;

3. Initialize output network connection, O;

THREAD 1
4. Receive jA and jB from sensor;
5. Decode jA-> A, RGB image as byte[], and jB-> B,
Depth image as byte[];
6. Convert A to int[], B to ushort[];
THREAD 2

7. Track sensor position using B, and Aif necessary;

8. Integrate A and B into virtual reconstruction;

9. Calculate pointcloud P from virtual reconstruction;

THREAD 3

10. Construct Colored Mesh M from P;

11. Extract V, Vector3[] of Vertices, N, Vector3[] of
Vertex Normals, and C, int[] of Vertex Colors, from
M,

12. Convert V-> bV, Vertex|[] as byte[], N-> bN, Ver-
tex Normal[] as byte[], and C-> bC, Vertex Color[]
as byte[];

13. Compress bV -> ¢V, Vertex[] as compressed
byte[], bN-> ¢N, Vertex Normal[] as compressed
byte[], and bC-> ¢C, Vertex Color[] as compressed
byte[];

14. Send ¢V, ¢N, and cCover O;

A second thread is responsible for integrating the new local
data into the virtual reconstruction in a stepwise fashion and cal-
culating the sensor’s movement between frames of data. First, the
depth image is converted into a point cloud of vertices in 3D
space. By taking the position of the sensor, the angle of each
pixel, and the distance value stored in the pixel, each pixel in the
depth image can be converted into a Vector3 representing a posi-
tion in the virtual reconstruction. This depth image is also used to
calculate the sensor’s movement by aligning the 3D points the
pixels in the depth image represent to the point cloud from the vir-
tual reconstruction that already exists. This alignment provides

Journal of Computing and Information Science in Engineering

the movement that the sensor underwent between frames relative
to the reconstruction volume. This approach to tracking the move-
ment of the sensor is beneficial because of its speed and reliance
on only the depth image. If tracking with only the depth image
fails, a color image is requested from the capturing component
and a separate algorithm is used that combines both the depth and
color image to determine the movement of the camera. While the
algorithm using both depth and color data is more accurate, it is
considerably slower. The benefits of faster tracking and higher
frame rate are discussed further in Sec. 3.5. Once the movement
of the sensor is known, the 3D points from the current depth
image can be properly integrated into the point cloud of the virtual
reconstruction based on the new position of the sensor. Being able
to move the sensor allows for more complete scans of environ-
ments by capturing multiple angles and facets of the objects in the
environment. The next step is to map the color image into the
point cloud. Since the down-sampled color image contains pixels
that match to pixels in the depth image, the pixel values of the
color image can be assigned as the color values for the corre-
sponding vertices that are added into the virtual reconstruction
from the depth image.

A third thread is responsible for constructing the 3D colored
mesh and sending the resulting data to be rendered. This mesh is
constructed using a Truncated Signed Distance Function algo-
rithm [25]. From this mesh, we can extract the vertices, normals,
and vertex colors necessary for rendering. The mesh does not
need to be rebuilt after each new frame of data. Since the con-
struction of the mesh and the transmission of the extracted mesh
data take time, this thread will wait until the mesh has been fully
constructed and transmitted before reconstructing an updated
mesh. During the time it takes for a mesh to be constructed and
transmitted, the other threads in the processing application are
busy receiving and integrating more data. This multithreaded
approach allows the mesh to stay up to date while allowing data to
be constantly integrated.

The components of the mesh that is required for rendering are
the vertex array, the normal array, the vertex color array, and the
triangle indices array. The vertex array is simply an array of Vec-
tor3’s in which each element is a vertex in 3D space. The normal
array is the normal of the surface from each vertex. The first nor-
mal in the array matches to the first vertex, the second normal to
the second vertex, etc. The vertex color is an array of four-byte
integers, where each byte in the integer represents an RGBA
value. The first vertex color in the array is the color of the first
vertex in the vertex array, the second vertex color matches the
second vertex, etc. A triangle indices array is also needed to cor-
rectly render the resulting vertices in the VR environment. The tri-
angle indices array is an array of integers that lists which sets of
three vertices create a triangle in the mesh. Each integer repre-
sents an index into the vertex array. Each set of three values in the
triangles array creates a triangle in the mesh. The vertex, normal,
and vertex color arrays can be arranged so that the triangle indices
are in sequential ascending order. This eliminates the need to send
the triangle indices array over the network, reducing the band-
width required by the algorithm.

This information is used to render the mesh in the VR environ-
ment by using these data to build objects that the VR environment
knows how to render. The triangle array is used to assign vertices,
normals, and vertex colors to objects in the VR environment to
represent the physical artifacts that were scanned. Any limit
imposed by the virtual environment on the size or format of the
objects being rendered is taken into consideration in this step to
ensure a complete render of the scanning data.

Figure 3 shows a sample result of the mesh reconstruction. The
sensor is on the left, with each green line representing a depth
point that was captured by the sensor, converted into a point in the
point cloud, and output as a vertex of the mesh. The blue triangles
represent triangles in the output mesh. Since RGB-D sensors can
capture large amounts of data, the resulting meshes contain a large
number of vertices. Due to rendering requirements in VR

SEPTEMBER 2017, Vol. 17 / 031010-5

as19l/z191019/0101€0/€/ 2 L /4pd-a1o1e/Bunssulbuabunndwos/Bi0 swse’ uoios||jooleybipawse//:sdpy woly papeojumoq

€0 210 ¢

0202 Y2IEIA |0 UO Josn AjisIoaiun 9jels elueAiAsuuad 8yl Aq Jpd-0L0LE0

Fig. 3 Mesh constructed from sensor data

Fig.4 Subdivided meshes from reconstructed mesh

environments, these large meshes need to be subdivided into a
series of smaller meshes that can be rendered. The vertices, nor-
mal, vertex colors, and triangles are subdivided into smaller
groups representing a series of meshes that, when rendered
together, show the entirety of the colored mesh that was recon-
structed. Figure 4 presents an example of how the constructed
mesh is subdivided for rendering in the VR environment. Data are
the same as that from Fig. 3, but the single mesh from Fig. 3 has
been divided into three separate meshes to accommodate render-
ing in the VR environment. The mesh separation allows the large
output mesh to be broken down so that the VR environment can
handle rendering each subdivided mesh without running into any

Component 1:
RGB-D Sensor for Data Capture

Component 2:
Networked Processing Machine

kind of constraint. If the mesh is left as one large series of trian-
gles, the VR environment cannot handle the rendering calcula-
tions necessary to properly display the mesh. This is a limitation
derived from both memory capacity and performance require-
ments of the rendering software. The threshold for subdividing the
mesh into smaller pieces can be changed to match the limitation
of the VR environment that is being used. The subdivided meshes
are then transmitted individually over the network to the rendering
component. This minimizes the size of each object being sent
over the network.

3.4 Real-Time Rendering of Scanned Data in the VR
Environment. In order for 3D mesh data to be rendered in a VR
environment in real time, a multithreaded approach is needed.
Since each set of subdivided meshes is approximately 2.2 MB in
size, trying to read that data within the same thread that is per-
forming the rendering of the VR environment would cause the
rendering to slow down and/or freeze until all of the data have
been received. The first thread is responsible for receiving subdi-
vided meshes from the network. Once a subdivided mesh has been
received, it is placed into the virtual space to align with the other
subdivided meshes from the virtual reconstruction. A second
thread is responsible for rendering the results for the user to visu-
alize. This allows the user to have a fluid, uninterrupted experi-
ence in the VR environment while new data are being added.

Using this multithreaded, multicomputer approach, the rending
of the virtual environment happens in real time with the data cap-
ture. This allows the user to be in the VR environment while the
data are being captured, processed, and rendered. The user will be
able to see new data as they are being processed and rendered in
the VR environment, and be able to move around and interact
with the reconstruction. Figure 5 shows an example of how the
proposed method could be used distributed across the globe. A
sensor located in a remote location, illustrated by the photo in the
top left of the figure, transmits data to a powerful processing
machine at a separate location, like the one shown in the lower
left of the figure, which then transmits the resulting reconstruction
to a third computer in a third separate location that the user can
then visualize through VR hardware. This system promotes col-
laboration and globalization while maintaining a high level of
quality for information and feedback.

3.5 Quantify Frame Rate Importance in Data Processing.
Two key factors in the proposed method are the frame rate at
which the data images for depth and color are received and the

Component 3:
View in VR System

Fig.5 Distributed components of method

031010-6 / Vol. 17, SEPTEMBER 2017

Transactions of the ASME

2s10(/Z1.91019/01 0L £0/S/Z L/ipd-ajonue/bunssuibusbunndwos/bio swse uonoajjoojeybipawse//:sdiy wolj papeojumoq

€0 210 ¢

0202 UYoJBIN L0 UO Josn ANSISAIUN S1elS elueAjisuusd oy Aq 1pd-0L0LED

frame rate at which they are integrated into the virtual reconstruc-
tion. These frame rates are important to be able to maintain track-
ing of the sensor while it is moving to capture as much of the real-
world environment as possible. The main method for tracking the
sensor’s movements uses the depth image independently. Maxi-
mizing the frame rate at which the depth images are received and
integrated minimizes the movement of the sensor between frames
of data. This, in turn, allows the sensor to be moved faster by the
user while still being able to accurately calculate the position of
the sensor relative to the reconstruction and correctly integrate the
data that are received.

If the amount of data being captured by the sensor is greater
than what the bandwidth of the network connection can transmit,
there will be a delay between when the data are captured and
when they are processed. This kind of delay prevents the recon-
structed meshes from containing the most recent data, and there-
fore prevents the VR environment from displaying the most
recent data to the remote user. If the hardware where the process-
ing component is running cannot keep up with the amount of data
it is receiving from the network, frames of data will be discarded
while the application waits for the reconstruction to be ready for
the next frame of data to be integrated.

Two of the obstacles to maintaining a high frame rate are the
amount of data being sent over the network and the speed of inte-
grating the data into the reconstruction. The size of the images
being sent is minimized by using a JPG encoding algorithm [23]
to encode them before transmission and decode them afterward.
This encoding algorithm minimizes the space that is used in mem-
ory and on the network by the images without sacrificing quality
or data integrity. To help reduce transmitting unused data, the pro-
posed method contains two-way communication between the cap-
turing component and the processing component. The processing
component will signal the capturing component when it is ready
for a depth image, a color image, or both. Based on the signal that
is received in the capturing component, it will transmit the appro-
priate images. If there are frames that are captured by the sensor
in the capturing component before the next signal is received
from the processing component, these frames are discarded before
they are transmitted over the network. This prevents data that will
not be integrated into the reconstruction from taking up valuable
network resources. By using a faster camera tracking algorithm
whenever possible, the proposed method aims to maximize the
speed at which new data are integrated into the reconstruction.
The overall structure of the proposed method also helps to maxi-
mize the speed of data integration by allowing each of the three
components to focus on a single step in the process. Each compo-
nent can then take full advantage of the resources available on
their respective computers to maximize the efficiency of each
step.

4 Application of Proposed Method

This section describes our process for capturing the RGB and
depth data, processing the data into a reconstruction, and output-
ting the resulting mesh into a 3D environment. The case study uti-
lizes the Kinect hardware [22], coupled with the
KinectFusionExplorer-WPF C# sample provided by Microsoft
[15]. This sample is based in part on the KinectFusion algorithm
developed by Newcombe et al. [15]. The hardware our process
uses consists of an unmodified Kinect for Windows v2 sensor
[22], a tablet computer running Windows 10 as the Capture
Machine, a desktop computer running Windows 10 as the Process-
ing Machine, and a desktop computer running Windows 10 as the
Rendering Machine.

4.1 Acquisition of 3D Mesh Data. The first component is the
RGB-D sensor. An unmodified Kinect for Windows v2 sensor
[22] is used for capturing RGB and depth data. The authors split
the KinectFusion algorithm [15] into two components. The first
component runs on the Capture Machine that is hardwired to the

Journal of Computing and Information Science in Engineering

Kinect v2 [22] sensor that captures RGB and depth images. This
component captures the RGB and depth images from the sensor,
formats them to be transmitted, and waits for a signal from the
Processing Machine specifying which images are needed.

4.2 Formatting of RGB-D Image Data. Both images are
formatted to the required size, 512 x 424 pixels, by down-
sampling them if they are too large. For the Kinect for Windows
v2 sensor [22], the color image is down-sampled from
1920 x 1080 to 512 x 424 pixels. This is done by mapping each
point of the depth image into the color image and placing the cor-
responding pixel into a down-sampled color image. The depth
data contained in the depth image have possible values of 0—4096
and are stored in 12-bits of an ushort. These data are formatted to
values between 1024 and 3064. They are then reduced by 1024, to
use a zero base, and then divided by 8 to store the data in a single
byte. This reduces the size of the depth data by one half while
maintaining an accuracy of § mm in the depth data. The resulting
images are then converted into arrays of bytes. These byte arrays
are then encoded into JPG [23] images using the Emgu C# wrap-
per of OpenCV [24]. These JPG [23] images are then ready to be
transmitted over the TCP connection established between the Cap-
ture Machine and the Processing Machine. Once the signal has
been received from the processing component requesting certain
frames, the requested compressed arrays are sent over the net-
work. If a frame has already been compressed and is prepped to
send but another frame of data arrives from the sensor before the
signal from the processing component, the prepped frame is dis-
carded so that it does not unnecessarily use up network resources.
This ensures that the most current data are always transmitted
over the network when they are requested by the processing
component.

4.3 Integration of RGB and Depth Data. The second piece
of the KinectFusion algorithm runs on the Processing Machine.
This program acts as the hub for the data and handles the process-
ing of the RGB and depth data. This program receives the data,
integrates them into the existing reconstruction, constructs a col-
ored mesh from the reconstruction, and then transmits the colored
mesh.

The RGB and depth data are received on the Processing
Machine from the network over a TCP connection. The resulting
JPG images are then decompressed using the Emgu library in C#
[24]. Byte arrays can then be read from the JPG images and parsed
back into the raw RGB and depth images. These images are then
used to determine the movement of the sensor since the last frame
of data. Once the sensor’s position is known, the position is used
to integrate the new data into the reconstruction using the Kine-
ctFusion [15] library. After a series of new frames of data have
been integrated, a colored mesh is built from the reconstruction
using the KinectFusion library. Instead of trying to construct a
mesh after every new frame of data, the mesh is constructed and
output in a separate thread. As soon as the mesh data are done
being sent, the thread starts building a new mesh with all the new
data that have been integrated while it was creating the previous
mesh. This ensures that each new mesh contains as much new
data as possible, while updating the resulting mesh as often as
possible. This allows for each new mesh construction to incorpo-
rate a noticeable amount of new data. This mesh reconstruction
process reduces the processing that is done on the Processing
Machine, while allowing the user in the VR environment to see
the data appear in sections as it is processed.

From the colored mesh, three arrays are extracted. These arrays
represent the vertices, normal, and vertex colors for the colored
mesh. Since the colored mesh created from the reconstruction can
be very large, these arrays are subdivided to create a series of
meshes that the rendering application can handle. Since Unity has
a limit of 65,534 vertices per mesh object, the parsed arrays are
divided into multiple meshes, each containing fewer vertices than

SEPTEMBER 2017, Vol. 17 / 031010-7

as19l/z191019/0101€0/€/ 2 L /4pd-a1o1e/Bunssulbuabunndwos/Bi0 swse’ uoios||jooleybipawse//:sdpy woly papeojumoq

€0 210 ¢

0202 Y2IEIA |0 UO Josn AjisIoaiun 9jels elueAiAsuuad 8yl Aq Jpd-0L0LE0

the limit. The vertices (Vector3 array), normals (Vector3 array),
and vertex colors (integer array) for each subdivided mesh are
converted into byte arrays. The byte arrays are sent to a Unity
[21] application on the Rendering Machine using a TCP connec-
tion. Having a machine solely for rendering allows all available
resources on the machine to focus on achieving the desired frame
rate for the VR environment. This will help reduce any negative
side effects from using the VR environment.

While the authors use the KinectFusion [15] library to handle
some of the data integration and processing, the networking and
real-time mesh reconstruction are novel processes. The ability to
integrate new data from a remote source and construct mesh
objects containing data as they are scanned extends the capabil-
ities of existing systems. The separation of the resource-intensive
processing from the data capturing and rendering allows for sys-
tems to be specialized for each portion of the proposed algorithm.

4.4 Real-Time Rendering of Scanned Data in the VR
Environment. The final component in the proposed method is the
Unity application that runs on the Processing Machine. This appli-
cation is used to parse the mesh data from the KinectFusion algo-
rithm and display them in an immersive, interactive 3D
environment. The Unity application receives the vertices, nor-
mals, and vertex colors from a TCP connection as byte arrays.
Each set of vertices, normal, and vertex colors represents a subdi-
vided piece of the entire color mesh from the reconstruction.

The Unity game engine then handles the rendering of the mesh
objects. Unity provides interfaces for some of the more common
VR systems that are available, namely the Oculus Rift [1]. This
allows for the rendered data to be easily viewed and interacted
with from within a VR system. The user is also able to move
around in the Unity application to better immerse themselves in
the virtual representation created by the proposed method. This
provides another level of immersion for remote viewing over a
simple video conference or static prerendered environment.

5 Results and Discussion

Figure 6 shows a rendering of the resulting 3D mesh from the
proposed method in the VR environment. This shows the quality
of the mesh and the information that can be gathered from view-
ing the resulting mesh. Using a VR system to view the results in
an immersive manner, provides the user with a more natural
method for collecting information. This allows the user to gain a
better understanding of the physical world without having to be
physically present in it.

The proposed method was only run for 1 min for the scan that
was used to collect the data for Table 2. Table 2 shows statistics

Fig. 6 Real time mesh reconstruction in the Unity VR
environment

031010-8 / Vol. 17, SEPTEMBER 2017

Table 2 Network and resource usage statistics for 60s run of
proposed method

Depth Color Mesh
Total frames 1320 300 5
Frames/second 22 5 N/A
Data/frame (MB) 0.05 0.15 22
Total data (MB) 66 45 11

of network and resource usage from the proposed method. The
metrics that the authors tracked are the total number of frames of
data that were processed, the average frames per second (FPS)
being processed, the size of each frame of data in megabytes, and
the total amount of data in megabytes. FPS was not used as a met-
ric for the mesh column because the colored mesh is not being
reconstructed after every frame of data. Also, the rendering com-
ponent receives a single subdivided mesh at a time and adds it
into the VR environment to be rendered. This allows the subdi-
vided meshes to be received over a period of time without affect-
ing the frame rate of any of the components. These metrics
provide valuable information about the amount of network band-
width and processing resources required to run the proposed
method and achieve similar results.

Table 2 shows that the network bandwidth required for running
the proposed method is approximately 2 MB/s. This means that it
is entirely feasible to run the algorithm on commodity networking
hardware, without the need for specialized connection to facilitate
data transmission. Table 2 also shows that processing require-
ments for constructing the mesh are not a limiting factor for the
algorithm being run. The data for Table 2 were collected from the
proposed method running on an AMD Radeon R9 270x graphics
card [25]. This card is considered to be a midlevel graphics card
for individuals looking for affordable performance in gaming and
other 3D applications. Between the network bandwidth that is
used and the ability to run the algorithm on commodity hardware,
the proposed method does not limit itself to being run in special-
ized environments.

6 Conclusion

The proposed method has been shown to provide a believable
virtual representation of a physical space in real time. The system
shown in Sec. 4 uses a commodity RGB-D sensor to provide the
required data to construct this virtual representation. This system
intends to improve the immersive experience of remote viewing
and interacting to reduce costs and increase the awareness and
familiarity of the user with the space.

By expanding upon existing systems, namely Newcombe et al.
[15] and the Kinect Fusion Explorer [16], the authors are able to
provide a new method for the incorporation of real-time RGB-D
scanning data into a VR environment. Section 4 presented a use
case in which the method was shown to provide convincing results
while using readily available commodity sensors and
environments.

The method proposed by the authors leaves room for expansion
and extension:

e Optimizations in the (un)packing of data for transmission
could further decrease the bandwidth requirements and
increase the amount of data incorporated by the method.

e Improvements could be made to the down-sampling algo-
rithms to make them faster, allowing for a higher frame rate
for capturing and sending the RGB and depth images.

e Algorithms similar to Roth and Vona [12] and Whelan et al.
[13] could be incorporated into the method presented in this
paper. This would allow for larger areas to be scanned to pro-
vide a more complete virtual representation in the VR
environment.

Transactions of the ASME

as19l/z191019/0101€0/€/ 2 L /4pd-a1o1e/Bunssulbuabunndwos/Bi0 swse’ uoios||jooleybipawse//:sdpy woly papeojumoq

€0 210 ¢

0202 Y2IEIA |0 UO Josn AjisIoaiun 9jels elueAiAsuuad 8yl Aq Jpd-0L0LE0

e The mesh subdivision algorithm could be extended by
attempting to identify and separate objects that are being
scanned into individual meshes.

e The resulting scan could be physics-enabled in the VR envi-
ronment to allow the user more possibilities for interaction.

e A more powerful Graphics Processing Unit could be used to
process the RGB-D data being captured, allowing for more
frequent updates to the reconstructed mesh.

Inspections are common in many production and maintenance
environments. This kind of inspection normally consists of an
expert reviewing a product or location to determine if there are
any issues that need to be addressed or to determine the best
course of action to fix a problem. This can become exceptionally
difficult if there are only a limited number of experts for a particu-
lar task or if the expert is located far away from the product or
location of interest. The proposed method provides a solution for
this kind of situation by allowing the expert to view the product or
location of interest remotely. An individual can scan the object or
location of interest, stream the data to a dedicated processing
machine, and the results can be viewed by the expert remotely, in
real time. This allows the expert to communicate with the individ-
ual performing the scan or others involved with the inspection
process in real time, promoting collaboration and the sharing of
information during the inspection process.

Acknowledgment

This research is funded in part by NSF DUE #1449650 and
Penn State’s Center for Online Innovation in Learning (COIL).
Any opinions, findings, or conclusions found in this paper are
those of the authors and do not necessarily reflect the views of the
Sponsors.

References

[1] Oculus, 2016, “Oculus Touch,” Oculus VR LLC, Irvine, CA, accessed Jan. 09,
2016, https://www.oculus.com/en-us/

[2] SteamVR, 2016, “SteamVR,” Valve Corporation, Bellevue, WA, accessed Jan.
09, 2016, http://store.steampowered. com/universe/vr

[3] PlayStation VR, 2016, “PlayStationVR,” Sony Interactive Entertainment LLC,
San Mateo, CA, accessed Jan. 09, 2016, https://www.playstation.com/en-au/
explore/ps4/features/playstation-vr/

[4] Rudarakanchana, N., Van Herzeele, 1., Bicknell, C. D., Riga, C. V., Rolls, A.,
Cheshire, N. J., and Hamady, M. S., 2014, “Endovascular Repair of Ruptured
Abdominal Aortic Aneurysm: Technical and Team Training in an Immersive
Virtual Reality Environment,” Cardiovasc. Interventional Radiol., 37(4),
pp. 920-927.

[5] Sacks, R., Perlman, A., and Barak, R., 2013, “Construction Safety Training Using
Immersive Virtual Reality,” Constr. Manage. Econ., 31(9), pp. 1005-1017.

[6] Bednarz, T., James, C., Widzyk-Capehart, E., Caris, C., and Alem, L., 2015,
“Distributed Collaborative Immersive Virtual Reality Framework for the

Journal of Computing and Information Science in Engineering

Mining Industry,” Machine Vision and Mechatronics in Practice, Springer,

Berlin, pp. 39-48.

Larsson, A., 2003, “Making Sense of Collaboration: The Challenge of Thinking

Together in Global Design Teams,” International ACM SIGGROUP Confer-

ence on Supporting Group Work, pp. 153-160.

Nguyen, C. V., Izadi, S., and Lovell, D., 2012, “Modeling Kinect Sensor Noise

for Improved 3D Reconstruction and Tracking,” Second International Confer-

ence on 3D Imaging, Modeling, Processing, Visualization and Transmission

(3DIMPVT), pp. 524-530.

[9] Tucker, C. S., John, D. B. S., Behoora, 1., and Marcireau, A., 2014, “Open
Source 3D Scanning and Printing for Design Capture and Realization,” ASME
Paper No. DETC2014-34801.

[10] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and MacIntyre, B.,
2001, “Recent Advances in Augmented Reality,” IEEE Comput. Graphics
Appl., 21(6), pp. 34-47.

[11] Fernando, R., and Kilgard, M. J., 2003, The Cg Tutorial: The Definitive Guide
to Programmable Real-Time Graphics, Addison-Wesley Longman Publishing,
Boston, MA.

[12] Roth, H., and Vona, M., 2012, “Moving Volume KinectFusion,” Proceedings of
the British Machine Vision Conference (BMVC), pp. 112.1-112.11.

[13] Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and McDonald,
J., 2012, “Kintinuous: Spatially Extended Kinectfusion,” Report No. MIT-
CSAIL-TR-2012-020.

[14] Cutting, J. E., 1997, “How the Eye Measures Reality and Virtual Reality,”
Behav. Res. Methods, Instrum., Comput., 29(1), pp. 27-36.

[15] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.
J., Kohi, P., Shotton, J., Hodges, S., and Fitzgibbon, A., 2011, “KinectFusion:
Real-Time Dense Surface Mapping and Tracking,” 10th IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 127-136.

[16] Microsoft, 2013, “KINECT FUSION EXPLORER-WPF C# SAMPLE,” Microsoft, Redmond,
WA, accessed Sept. 14, 2016, https://msdn.microsoft.com/en-us/library/
dn193975.aspx

[17] Turner, E., Cheng, P., and Zakhor, A., 2015, “Fast, Automated, Scalable Gener-
ation of Textured 3d Models of Indoor Environments,” IEEE J. Sel. Top. Signal
Process., 9(3), pp. 409—421.

[18] Vasudevan, N., and Tucker, C. S., 2013, “Digital Representation of Physical
Artifacts: The Effect of Low Cost, High Accuracy 3D Scanning Technologies
on Engineering Education, Student Learning and Design Evaluation,” ASME
Paper No. DETC2013-12651.

[19] Hamzeh, O., and Elnagar, A., 2015, “A Kinect-Based Indoor Mobile Robot
Localization,” 10th International Symposium on Mechatronics and Its Applica-
tions (ISMA), pp. 1-6.

[20] Epic Games, 2016, “What is Unreal Engine 4,” Epic Games, Inc., Cary, NC,
accessed Sept. 14, 2016, https://www.unrealengine.com/what-is-unreal-engine-4

[21] Unity Technologies, 2016, “Unity—Game Engine,” Unity Technologies, San
Francisco, CA, accessed Sept. 14, 2016, https://unity3d.com/

[22] Microsoft, 2014, “Kinect Hardware,” Microsoft, Redmond, WA, accessed Sept.
14, 2016, https://developer. microsoft.com/en-us/windows/kinect/hardware

[23] Joint Photographic Experts Group, 1994, “JPEG—IJPEG,” Joint Photographic
Experts Group Committee, accessed Sept. 14, 2016, https://jpeg.org/jpeg/
index.html

[24] EmguCV, 2016, “Emgu CV: OpenCV in.NET (C#, VB, C++ and More),”
EmguCV, accessed Sept. 14, 2016, http://www.emgu.com/wiki/index.php/
Main_Page

[25] Curless, B., and Levoy, M., 1996, “A Volumetric Method for Building Com-
plex Models From Range Images,” 23rd Annual Conference on Computer
Graphics and Interactive Techniques, pp. 303-312.

[26] Advanced Micro Devices, 2016, “Radeon™ R9 Series Graphics CardslAMD,”
Advanced Micro Devices, Inc., Sunnyvale, CA, accessed Sept. 14, 2016, http://
www.amd.com/en-us/products/graphics/desktop/ro#

[7

8

SEPTEMBER 2017, Vol. 17 / 031010-9

as19l/z191019/0101€0/€/ 2 L /4pd-a1o1e/Bunssulbuabunndwos/Bi0 swse’ uoios||jooleybipawse//:sdpy woly papeojumoq

€0 210 ¢

0202 Y2IEIA |0 UO Josn AjisIoaiun 9jels elueAiAsuuad 8yl Aq Jpd-0L0LE0

https://www.oculus.com/en-us/
http://store.steampowered.com/universe/vr
https://www.playstation.com/en-au/explore/ps4/features/playstation-vr/
https://www.playstation.com/en-au/explore/ps4/features/playstation-vr/
http://dx.doi.org/10.1007/s00270-013-0765-1
http://dx.doi.org/10.1080/01446193.2013.828844
http://dx.doi.org/10.1145/958160.958184
http://dx.doi.org/10.1145/958160.958184
http://dx.doi.org/10.1109/3DIMPVT.2012.84
http://dx.doi.org/10.1115/DETC2014-34801
http://dx.doi.org/10.1109/38.963459
http://dx.doi.org/10.1109/38.963459
http://dx.doi.org/10.5244/C.26.112
http://hdl.handle.net/1721.1/71756
http://hdl.handle.net/1721.1/71756
http://dx.doi.org/10.3758/BF03200563
http://dx.doi.org/10.1109/ISMAR.2011.6092378
https://msdn.microsoft.com/en-us/library/dn193975.aspx
https://msdn.microsoft.com/en-us/library/dn193975.aspx
http://dx.doi.org/10.1109/JSTSP.2014.2381153
http://dx.doi.org/10.1109/JSTSP.2014.2381153
http://dx.doi.org/10.1115/DETC2013-12651
http://dx.doi.org/10.1109/ISMA.2015.7373469
https://www.unrealengine.com/what-is-unreal-engine-4
https://unity3d.com/
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://jpeg.org/jpeg/index.html
https://jpeg.org/jpeg/index.html
http://www.emgu.com/wiki/index.php/Main_Page
http://www.emgu.com/wiki/index.php/Main_Page
http://dx.doi.org/10.1145/237170.237269
http://dx.doi.org/10.1145/237170.237269
http://www.amd.com/en-us/products/graphics/desktop/r9#
http://www.amd.com/en-us/products/graphics/desktop/r9#

	s1
	f1
	l
	s2
	s2A
	s2B
	1
	1
	s3
	s3A
	s3B
	2
	s3C
	s3D
	s3E
	5
	3
	4
	s4
	s4A
	s4B
	s4C
	s4D
	s5
	s6
	6
	2
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

