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Abstract—Many selection procedures involve ordering candi-
dates according to their qualifications. For example, a university
might order applicants according to a perceived probability
of graduation within four years, and then select the top 1000
applicants. In this work, we address the problem of ranking
members of a population according to their “probability” of
success, based on a training set of historical binary outcome
data (e.g., graduated in four years or not). We show how to
obtain rankings that satisfy a number of desirable accuracy and
fairness criteria, despite the coarseness of the training data. As
the task of ranking is global (the rank of every individual depends
not only on their own qualifications, but also on every other
individuals’ qualifications), ranking is more subtle and vulnerable
to manipulation than standard prediction tasks.

Towards mitigating unfair discrimination caused by inaccura-
cies in rankings, we develop two parallel definitions of evidence-
based rankings. The first definition relies on a semantic notion
of domination-compatibility: if the training data suggest that
members of a set S are more qualified (on average) than the
members of T , then a ranking that favors T over S (where
T dominates S) is blatantly inconsistent with the evidence, and
likely to be discriminatory. The definition asks for domination-
compatibility, not just for a pair of sets, but rather for every
pair of sets from a rich collection C of subpopulations. The
second definition aims at precluding even more general forms
of discrimination; this notion of evidence-consistency requires
that the ranking must be justified on the basis of consistency
with the expectations for every set in the collection C. Somewhat
surprisingly, while evidence-consistency is a strictly stronger
notion than domination-compatibility when the collection C is
predefined, the two notions are equivalent when the collection C

may depend on the ranking in question.

Index Terms—ranking; prediction; algorithmic fairness;

I. INTRODUCTION

Since its inception as a field of study roughly one decade

ago [1]–[4], research in algorithmic fairness has exploded, es-

pecially in the machine learning community [5]–[13]. Much of

this work focuses on so-called “group fairness” notions, which

address the relative treatment of different demographic groups.

More theoretical work has advocated for “individual fairness”

which, speaking intuitively, requires that people who are

similar, with respect to a given classification task, should be

treated similarly by classifiers for that task. Both approaches

face significant challenges: group notions provide notoriously

weak protections to individuals and are provably incompatible

with one another; individual fairness requires task-specific

similarity information for every pair of individuals, which

may be unavailable. The past two years have seen exciting

developments on several fronts in theoretical computer science

that strive to bridge the gap between group and individual

notions of fairness for the tasks of scoring, classifying, and

auditing [14]–[18].

In this work, we turn our attention to fairness when ranking

individuals based on the perceived probability of an outcome.

Rankings are of interest for several reasons. First, ranking is

at the heart of triage, say, in disaster relief. Second, ranking

is often the underlying impetus for scoring, for example in

university admissions. Third, some approaches to affirmative

action involve stratifying the population according to some

criterion, e.g., high school (as done in California and Texas)

or education level of mother [19]. Students within each stratum

are ranked by grades (in California and Texas), or hours

spent on homework [19], and the top-ranked students from

each stratum are admitted. Fourth, studying ranking informs

our understanding of what we should demand of a scoring

function.

Note that in the above examples, grades and hours spent

on homework are proxies for qualities that are difficult to

articulate and even more difficult to measure. They may

capture intuition about “probability” or “chance” of (say)

graduation within 4 years, but the meaning of an individual

probability has long been debated (see [20]1 and the references

therein as well as the discussion in Section I-B).

In this work, we will not assume access to individual

probabilities, even in the training data. Rather, we follow

the approach taken for scoring functions initiated in [14]

and rely for training only on 0/1 outcome data (e.g., did,

or did not, graduate within 4 years). In other words, even

if we posit the existence of a scoring function p∗ mapping

each individual x to its “true probability” p∗(x) of a positive

outcome, these probabilities can be accessed only indirectly,

e.g. by computing outcome statistics based on observational

data. Note that, even ensuring evidence-consistent treatment

for a relatively large and homogeneous set of individuals,

all sharing a known value p∗(x) = v, may be impossible

without knowledge about the rest of the population, as their

rank may vary dramatically based on the p∗ values outside the

set. Despite this challenging setup, we develop definitions and

methods for powerful protection against unfair discrimination.

A. Contributions and Results

Occam’s Razor for Rankings. In general, no two scor-

ing functions p∗ and p̃ that are statistically close can be

distinguished based on a small sample of outcomes, and it

1Written in response to the use of machine learning to estimate recidivism
risk.
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is easy to think of examples where obtaining an accurate

ranking is beyond reach. For example, if half of the individuals

receive a positive outcome with probability 1, but this set is

computationally indistinguishable from its complement, where

individuals receive a positive outcome with probability 0, then

coming up with an accurate ranking will be computationally

infeasible. Computational considerations aside, if the partition

between 1’s and 0’s were truly random, then learning an

accurate ranking from a bounded training sample would be

information-theoretically impossible. It is, thus, natural to

define an accurate ranking to be one where individuals are

ranked by their values according to a function p̃ that is

statistically close to p∗, as this is the best we can hope for.

Our first result is an Occam’s Razor Theorem for (agnos-

tically) learning rankings. We show that, given a class R
of rankings, there is an algorithm that, given a sample of

size growing as log(|R|), returns an approximately optimal

ranking. (The running time depends polynomially on the size

of R.) The proof of this theorem is qualitatively very different

from the standard Occam’s Razor Theorem for PAC learning:

standard proofs of Occam’s Razor-style results evaluate the

“quality” of each hypothesis separately based on the data,

and argue that a hypothesis with maximum quality is an

approximate optimizer. We argue that any such approach,

which considers the quality of each ranking on its own, will

fail in our setting. Consider the example from above, in

which half of the population has p∗(x) = 1 and the other

half has p∗(x) = 0. In this case, a random ranking could

disguise itself as being accurate: an observer who only sees

the binary outcome data cannot distinguish the situation in

which everyone is either a 0 or 1 from one consistent with

p(x) = 1/2. Under such a p, a random ranking will appear as

accurate as any other ranking, despite its inconsistencies with

p∗. Instead, our proof relies on the accurate ranking revealing

the inaccuracy of other rankings. Quantitatively, the theorem

is different from, and a bit weaker than, the analogue for PAC

learning (and we prove that this is unavoidable).

Protecting Groups. Learning rankings that are highly

accurate for most individuals may be computationally or

information-theoretically infeasible, and mis-ranked individ-

uals may experience harmful outcomes. Thus, individual fair-

ness is impossible in the setting considered by this paper,

and we focus on protecting a large collection of intersecting

groups (sets) of individuals. As noted above, even for a large

and homogeneous set, we cannot reason about the fairness

of its members’ rankings in isolation. For example, suppose

all members of a set S have p∗ value 1/3. Outside S, two

homogeneous sets T1 and T0 have members with p∗ values of

1 and 0, respectively. A scoring rule p̃ that is perfect on S, but

assigns the value 1/2 to all the members of T1 ∪ T0, would

still induce a ranking that dramatically downplays the fitness

of S. This potential harm to the members of S cannot be

detected or reasoned about without considering the outcomes

of individuals outside the set S.

Despite these considerable challenges, we develop defini-

tions and methods that provide powerful protection against

unfair discrimination. Our starting point is to focus on the

relative treatment of members of pairs of sets in the collection.

For a simple example, consider a pair S, T of disjoint sets, and

suppose that, empirically, a larger fraction of the members of

S have positive outcomes (graduate within 4 years) than than

do the members of T . Then a ranking that puts all elements of

T (the less successful group) ahead of all those in S would be

considered “unfair.” In the above example, even ranking all the

members of S below all the members of T0 is unfair. Our goal

is much more ambitious than defeating this simple example:

we require our rankings to be simultaneously fair (defined

formally below) for all pairs of groups defined by a rich

collection C of possibly-intersecting subsets of the population.

The choice of sets in C is an important one, as the fairness

conditions will not be guaranteed to apply to sets not in C.

But how can we ensure awareness of which groups should

be included? Even well-intentioned algorithm designers can

be ignorant of some types of discrimination, the number of

potentially relevant categories may be daunting2, and mem-

bers of an historically-oppressed group may have internalized

the negative stereotypes and not see their treatment for the

oppression it is [22]. For these and other reasons, such as lack

of resources and power, it is inappropriate to expect members

of an oppressed group S to insist that S be included in C.

Our approach follows in the footsteps of [14] and follow-up

works in defining sets from a complexity-theoretic perspective.

As the examples above indicate, we may fail to protect sets

that we cannot efficiently identify (e.g. the set of ones that

are randomly mixed with the set of zeros). A natural goal

that we adopt here is to protect every set that we can identify

with some given computational resources (e.g., sets that can

be defined with a small decision tree or by circuits of a

given size) in accordance with two fairness notions. The key

technical requirement is that the sets be fixed in advance and

membership in every set can be computed from an individual’s

data.

Domination-Compatibility. We construct two paral-

lel notions of increasingly strong fairness requirements.

Domination-Compatibility aims to preclude rankings in which

a qualified group is consistently undervalued in the ranking

when compared to another, less qualified group. We formalize

the situation where a ranking favors one group over another

via the notion of domination. For a given ranking and equal-

size sets S and T , we say that S dominates T if there exists

a matching between S and T in which every member of S is

matched to a person in T whose rank is worse. In fact, we will

work with a more general notion that allows for approximate

domination between sets of different sizes (Definition IV.2).

A ranking that does not exhibit this type of unfair behavior

for any pair of sets in a class C is said to be (C, α)-domination-

compatible.

2Social psychologist Claude Steele writes, “There exists no group on
earth that is not negatively stereotyped in some way – the old, the young,
northerners, southerners, WASPs, computer whiz kids, Californians, and so
forth.” [21].
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Definition (Domination-Compatibility, informal). We say that

a ranking is (C, α)-domination compatible if for every two

subsets S, T ∈ C:

If S dominates T , then Ex∼DS
[p∗(x)] + α ≥ Ex∼DT

[p∗(x)]

where x ∼ Ds denotes a random unlabeled sample from the

distribution on universe elements, conditioned on x ∈ S, and

analogously for DT .

The formal definition also accounts for approximate dom-

ination (see Definition IV.4). An important advantage of this

definition is that it can both be obtained and audited from

labeled data, as it only considers expectations of p∗ on sets in

C.

Evidence-Consistency. Evidence-Consistency is specified

in terms of a ranking’s consistency with a scoring function that

satisfies increasingly demanding accuracy conditions. Here,

accuracy is specified with respect to expectations of the 0/1

outcomes data in a training set, which we think of as the

“evidence”. Thus, we require that our rankings be consistent

with the evidence.

Definition (Evidence-Consistency, informal). A ranking is

(C, α)-evidence-consistent if there exists a scoring function p̃
that is consistent with the ranking, and for which the following

holds:

∀S ∈ C,
∣

∣

∣

∣

E
x∼DS

[p∗(x)]− E
x∼DS

[p̃(x)]

∣

∣

∣

∣

≤ α.

Importantly, we show that the global consistency guar-

antee provided by evidence-consistency is a more powerful

guarantee that implies the pairwise protections provided by

domination-compatibility.

Theorem 1 (Evidence-Consistency implies Domination Com-

patibility, informal). If a ranking is (C, α)-evidence-consistent,

then it is also (C, 2α)-domination-compatible.

In fact, evidence-consistency is strictly stronger than

domination-compatibility. In Section IV-D, we demonstrate

that there are choices of C and α, such that there exist

rankings that are (C, 0)-domination-compatible but are not

(C, α)-evidence-consistent. Further, we prove that domination-

compatibility is equivalent to a significantly weaker notion

of pairwise-consistency. On an intuitive level, domination-

compatibility can be justified by a separate explanation for

every pair of sets; evidence-consistency, however, requires a

single explanation that simultaneously justifies the rankings of

all sets.

Strengthening the protections through self-reference.

Somewhat surprisingly, we show that even for a rich col-

lection C, evidence-consistency (and thus also domination-

compatibility) can leave the door open to harms that directly

affect sets included in the collection C, including harms that

can be audited from labeled data. As an example, let S be a

set of individuals whose p∗ values are all 0.8, whereas outside

of S all individuals have p∗ value 0.5. If we rank according

to p∗, then the individuals in S should be ranked highest. We

argue that for any choice of C (comprised of sufficiently large

sets), there exists a blatantly unfair ranking that is C-evidence-

consistent and that systematically degrades the ranks in S.

To see this, consider a scoring function p̃ constructed by

assigning the correct value of 0.8 to every individual in S, and

for every individual x /∈ S sampling an outcome uniformly

at random from {0, 1}. With high probability, p̃ has accurate

expectations for all sets in C. Thus, the ranking rp̃ induced

by p̃ is evidence-consistent; however, this ranking harms the

members of S, who receive median ranks rather than being

ranked at the top. Moreover, this harm is demonstrable from

the data: if we consider the set T of individuals ranked above

the members of S, we see that this set dominates S in the

ranking, even though the expectation of its labels is lower!

The issue is that the set T is only defined a posteriori, after

we are given the ranking.

Motivated by this example, we strengthen both domination-

compatibility and evidence-consistency by asking that they

hold for a richer family of sets defined by the ranking under

consideration. Intuitively, once a ranking is proposed, the sets

that are implied by these rankings – sets of individuals that

are identically ranked, which we will refer to as quantiles –

become relevant. Furthermore, the quantiles within every set

in C are also relevant.

For a collection C and a ranking r, we consider an aug-

mented collection of subsets Cr; loosely and informally, Cr in-

cludes the quantiles induced by the ranking r, and the intersec-

tions of each of these quantiles with every set in S ∈ C. Defini-

tion V.4 provides a formal treatment. Returning to the example

above, once the ranking rp̃ is suggested, sets related to T
will appear in Cr. Thus, asking for domination-compatibility

or evidence-consistency with respect to Cr (rather than C),

yields stronger notions of reflexive domination-compatibility

and reflexive evidence-consistency (respectively). While the

weaker (non-reflexive) notions were not equivalent to one

another, the reflexive notions are equivalent!

Theorem 2 (Equivalence of Reflexive Notions). If a ranking is

(C, α)-reflexive-evidence-consistent then it is (C, 2α)-reflexive-

domination-compatible. If a ranking is (C, α)-reflexive-

domination-compatible then it is (C, α)-reflexive-evidence-

consistent.

Learning Evidence-Consistent Rankings. Generally

speaking, we can learn an evidence-consistent ranking by

directly learning the scoring function required in the definition,

and using the ranking that it induces. For (non-reflexive)

evidence-consistency, this entails learning a function p̃ : X →
[0, 1] that (approximately) respects all of the expectations of

subsets S ∈ C. The task of learning such a function has been

recently studied in the context of fair prediction [14], [18],

these works show how to learn such a p̃ from a small number

of binary samples.

Reflexive evidence-consistency, however, requires the exis-

tence of a scoring function that respects all of the expectations

of subsets in Cr. This collection is defined adaptively: the sets

are only defined after a particular ranking r is specified. The
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aforementioned algorithm only works for a family of sets that

are fixed in advance, and thus it cannot be directly applied

towards the stronger definition.

Instead, we turn our attention to the stronger notion of multi-

calibration studied by [14]. Loosely, a function p̃ is multi-

calibrated for a collection C if it is calibrated on every set in

C. Calibration, which has been well studied in the statistics

literature, where weather forecasting is often a driving exam-

ple, says that the fraction of positive outcomes among those

elements assigned a score of v ∈ [0, 1] is equal to v, for all v
simultaneously. We show that multi-calibration and reflexive

evidence-consistency are closely related.

Theorem 3 (Connection to multi-calibration, informal).

The ranking induced by a (C, α)-multi-calibrated function

is (C, α)-reflexive-evidence-consistent. Further, any consisten

scoring function that exhibits the correct expectations defined

by a (C, α)-reflexive-evidence-consistent ranking is statisti-

cally close to being (C, α)-multi-calibrated.

We develop this result formally in Section V-C. Leverag-

ing the connection to multi-calibration, we can use known

algorithms for learning multi-calibrated functions to obtain re-

flexively evidence-consistent rankings from labeled data. For

arbitrary collections C, the learning algorithms of [14] run in

polynomial time in |C|; however, for structured, agnostically-

learnable, collections C, the running time may be improved,

depending on the efficiency of the agnostic learner. This

theorem gives further motivation for learning multi-calibrated

scoring functions in the context of predictions.

Stronger Notions Yet? The reader may wonder if there

are natural notions in the evidence-consistency and domina-

tion compatibility hierarchies. Stronger notions could always

exist and exploring them is an excellent direction for further

research; nevertheless, we note that we do not expect to

see examples demonstrating weaknesses of reflexive evidence-

consistent rankings of the sort that we demonstrated for plain

evidence-consistent rankings. This is because, for a sufficiently

rich family of sets, reflexive evidence-consistent rankings will

be highly accurate (in the sense discussed in the context of

the Occam’s Razor theorem). In other words, it is natural

to expect that any weakness of reflexive evidence-consistency

would exploit a weakness in the family of sets C, and would

fail for a sufficiently-rich family C.

B. Discussion

The Meaning of Probabilities. As discussed above, the

notion of an individual probability p∗(x) is debatable. Still,

assuming some underlying scoring function p∗ is a useful (and

common) abstraction that aims at capturing some underlying

uncertainty. We therefore follow tradition and specify our

definitions based on an hypothesized p∗. We stress that all

but one of our results hold if we replace p∗ with the function

o that assigns to individual x its outcome o(x).3

An insight exciting to us is the perspective that the notion

of Evidence-Consistency gives into the idea of p∗. Consider

3The only exception is the Occam’s Razor result.

outcomes that are completely deterministic – half of the

individuals will see a positive outcome with probability 1 and

the rest will see it with probability 0. If the set of 1’s is

computationally indistinguishable from a uniform set, then, we

argue, it is legitimate to view p∗ as assigning all individuals the

value 1/2. But what if we have richer information specifying

all of the expectations for a family of sets C? By analogy to the

preceding argument, any multi-calibrated scoring function p̃ is

a legitimate candidate for the role of p∗. Thus, any evidence-

consistent ranking may legitimately be considered “accurate.”

So even if individual probabilities are always beyond reach

(when only given a sample of outcomes), we can still assign

putative individual probabilities that respect a rich body of

evidence.

The Choice of C in Light of Evidence-Consistency.

Fairness, as specified in our framework, ultimately hinges on

the expressive power of the sets in C, which relies in turn

on the richness of the individual data and the computational

resources. To see this, consider disjoint sets of students S and

T , where the students in S attend a wealthy high school and

the students in T attend an impoverished school. Members

of S may have access to advanced placement (AP) classes,

whereas members of T may not. Thus, it may be impossible

for AP-capable students in T to demonstrate their ability to

excel in advanced courses. Even multi-calibration does not

necessarily guarantee equal discriminative capability on S and

T : there is no way for an algorithm to extract information that

is not present in the data.

It is possible that we could define (if not always efficiently

measure) the inadequacy of the expressive power of C, from

the perspective of this work. For example, given a ranking p̃
we can define, for each S ∈ C, VS(p̃) to be the fraction of

members of S whose rank is in the top ten per cent. If the

value of VS(p̃) varies greatly on a pair of evidence-consistent

rankings, then the evidence – as interpreted via the sets in C
– is not reliably capturing the qualifications of the members

of S: different rankings consistent with the evidence yield

very different values. The variability of the set of the space of

evidence-consistent rankings is closely tied to the legitimacy

of viewing a multi-calibrated p̃ as a vector of true probabilities.

Ranking versus Predicting. In many settings, a position

within a ranking is as useful as a score. For example, an

experienced clinician can translate a claim that a patient is

in the top 10% among the population at risk for developing a

given ailment into an absolute estimate of this risk. This leads

to an important observation: a ranking together with a training

set of historical outcome data (the clinician’s experience with

previous patients) yields a scoring function. This practical

insight is born out theoretically, yielding an equivalence:

any scoring function immediately induces a ranking; given

a ranking and sufficient training data, we can efficiently

find a calibrated scoring function that induces this ranking

(Section II-C).
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C. Further Related work

The most closely related work, and the technical spring-

board for our contributions, is the definition and construction

of multi-calibrated scoring functions [14]. The approach to

fair affirmative action proposed in [4] makes no explicit use

of rankings but is “morally equivalent” to the approaches of

Roemer and the universities of Texas and California mentioned

above, and kindled our interest in rankings. The work of

[23] follows the approach of Roemer more explicitly and

aims to select individuals from different (known and non-

overlapping) populations in accordance with their population-

specific ranking. Unlike the present work, they assume direct

access to the underlying real-valued outcomes (what we refer

to as p∗).

The use of machine learning techniques to rank instances

is called learning to rank (see also the literature on rank ag-

gregation for the Web, including [24] and references therein).

Within this broad literature training samples in the pairwise

approach are ordered pairs (x, x′) ∈ X × X , signifying that

x is of higher rank than x′ under an assumed true ranking,

while a training sample in the pointwise approach consists of

a single instance x ∈ X , annotated with either a numerical

or ordinal score. The special case in which the scores are

constrained to be binary is known as the bipartite ranking

problem and has been in studied in [25], [26]. [27] also study

the connections between prediction and ranking, proving weak

regret transfer bounds (where the mapping for transforming a

model from one problem to another depends on the underlying

distribution) between the problems of binary classification,

bipartite ranking, and class-probability estimation.

Typically, the objective in learning to rank is to minimize

the probability that a randomly chosen pair (x, x′) is mis-

ordered, meaning: in the true ranking x is ranked above x′,

but in the published ranking x′ is ranked above x. Various

popular ranking algorithms operate by minimizing a convex

upper bound on the empirical ranking error over a class of

ranking functions (see e.g. RankSVM [28] and RankBoost

[26]). Recently, [29] proposed cross-AUC, a variant of the

standard AUC metric that corresponds to the probability that

a random positive example from one group is ranked below a

random negative example from the other group. This is similar

yet significantly weaker variant of our notion of domination.

Finally, several recent works have considered fairness in rank-

ings from the perspective of information retrieval, where the

objective is to guarantee fair representation in search results

[30]–[32].

II. RANKINGS AND PREDICTORS

In this section, we give an overview of our formal goals for

learning rankings from binary outcome data. We begin with

some notation and preliminaries. Then, we discuss technical

issues of how we represent rankings and what it means to

recover a “good” ranking from a small sample of outcome

data. Finally, we show various connections between the world

of ranking and that of prediction; along the way, we prove a

number of lemmas and introduce concepts that will be useful

throughout Sections III and IV.

a) Notation and preliminaries.: We use X to denote

a discrete universe over individuals and Y = {0, 1} to

denote the space of binary outcomes. For any function f :
X → [0, 1], we denote the support of f as supp(f) =
{v ∈ [0, 1] : ∃x ∈ X s.t. f(x) = v}.

We assume that there is a fixed, but unknown distribution

DX over individuals; for any subset S ⊆ X , we denote by

x ∼ DS a random (unlabeled) sample from DX conditioned on

x ∈ S. Given an individual, we assume there is a distribution

DY |X over outcomes; specifically, we assume that there is

some function p∗ : X → [0, 1] such that y ∼ DY |X is sampled

according to Ber(p∗(x)); that is Pr[y = 1 | x] = p∗(x).
Together, DX and DY |X induce a joint distribution over

X×Y . We denote by (x, y) ∼ DX ,Y a random labeled sample.

We say a predictor is a function p : X → [0, 1] that aims to

approximate p∗. Throughout, unless otherwise specified, we

measure closeness to p∗ in terms of ℓ1-distances, where we

let

‖p− p∗‖1 = E
x∼DX

[|p(x)− p∗(x)|] .

For a predictor p : X → [0, 1] and a subset S ⊆ X , we denote

the (canonical) median of p over S as

med
x∼DS

[p(x)] = inf
v′

{

v′ ∈ argmin
v∈[0,1]

E
x∼DS

[|v − p(x)|]
}

.

We use ‖p− p′‖∞ to denote supx∈X |p(x)− p′(x)|.

A. Rankings, predictors and recovery goal

In this work, we formalize the idea of learning rankings

over DX from binary outcomes sampled from DY |X . Before

discussing the learning model, we discuss how we represent

rankings over DX . In the case where we have a fixed universe

of individuals X = [n], a natural way to represent a ranking

is as a permutation π, where the “best” individual x ∈ X is

π−1(1) and the “worst” π−1(n). For our setting where we

wish to learn a ranking over a fixed but arbitrary distribution

DX , we generalize the idea of a permutation-based ranking.

Definition II.1 (Ranking). A function r : X → [0, 1] is a

ranking over DX if for all τ ∈ supp(r)

Pr
x∼DX

[r(x) < τ ] = τ.

We denote by R ⊆ [0, 1]X the set of all rankings.

Note that this definition allows rankings to specify groups

of individuals at the same rank; specifically, for any threshold

τ ∈ [0, 1], the top τ -fraction of the distribution of individuals

DX will have r(x) ≤ τ . This definition has the appealing

property that it does not require the ranking to distinguish

between every pair of individuals if there is not enough infor-

mation. In particular, a ranking r ∈ R specifies equivalence

classes of individuals according to their rank r(x). Still, some

applications may call for rankings that do not allow for ties.

Formally, we say that a ranking r ∈ R is strict if r is injective.
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Note that any ranking satisfying Definition II.1 can be turned

into such a strict ranking by randomly breaking ties.

Given a set of labeled samples (x1, y1), . . . , (xm, ym) ∼
DX×Y , we hope to recover a ranking that approximates the

ranking according to p∗. More generally, given any predictor

p : X → [0, 1], we can discuss a natural ranking rp ∈ R
that orders X in descending order according to their p values,

defined as follows.

Definition II.2 (Induced ranking). Given a predictor p : X →
[0, 1], the induced ranking rp ∈ R is defined as follows.

rp(x) = Pr
x′∼DX

[p(x′) > p(x)]

Thus, if we could learn p∗ exactly, then we could implement

the induced ranking by comparing individuals according to

predictor p∗. (Lemma II.7 below formalizes this intuitive

claim.)

Approximating the true ranking. Still, from a sample

of labeled data, we cannot hope to learn p∗ : X → [0, 1]
exactly; the best approximation we could hope for is an

ℓ1-approximation. We might hope that the ℓ1-approximate

recovery of p∗ would translate to approximate recovery of the

induced ranking. In particular, suppose ‖p− p∗‖1 ≤ ε; what

can we say about rp as compared to rp
∗

? We argue that we

cannot make nontrivial guarantees about the closeness of rp

and rp
∗

using standard measures of distance, like ℓ∞ or ℓ1.

To see this, consider the following example.

Example II.3. Let ε > 0. For a pair of injective functions

with bounded values, ξ∗, ξ : X → [−ε/2, ε/2], let p∗, p :
X → [0, 1] be defined as follows.

p∗(x) = 1/2 + ξ∗(x) p(x) = 1/2 + ξ(x)

Note that ‖p− p∗‖1 ≤ ε, but the induced rankings could

be arbitrarily different; for instance, we could take ξ(x) =
−ξ∗(x) for all x ∈ X . In particular, the induced ranking rp is

determined entirely by the choice of ξ, which contributes at

most ε to ‖p− p∗‖1 by construction.

In other words, very small changes in a predictor can make

very large changes in the outputs of the induced ranking, and

thus we cannot hope to recover a ranking r with nontrivial

guarantees on
∥

∥r − rp
∗
∥

∥. Thus, to learn rankings from binary

labeled data with nontrivial guarantees, we need a different

notion of recovery. Note that in the example above, even

though the numerical value of the induced ranking may change

significantly under small changes in p (e.g. go from 0 to 1),

in a sense, both rankings rp and rp
∗

seem reasonable because

|p∗(x)− p∗(x′)| is very small for every pair x, x′ ∈ X × X .

Intuitively, if p∗ and p are statistically-indistinguishable – and

thus, are equally valid in a standard prediction setting – then

our measure of quality of a ranking should not distinguish

between the induced rankings rp and rp
∗

that arise from these

predictors. This example further highlights the motivation for

allowing for non-strict rankings that allow for indistinguish-

able individuals to receive that same rank.

Consistent predictors. To formalize this intuition, we need

to take a dual perspective: rather than evaluating the quality of

a ranking r in terms of its closeness to the ranking rp
∗

induced

by p∗, we evaluate closeness by comparing p∗ to a predictor

that is consistent with r. In particular, a ranking induces a

collection of predictors that respect the ordering of the ranking.

Formally, we define consistency as follows.

Definition II.4 (Consistency with a ranking). For a ranking

r : X → [0, 1], a predictor p : X → [0, 1] is consistent with r
if for all x, x′ ∈ X × X :

• if r(x) < r(x′), then p(x) ≥ p(x′), and

• if r(x) = r(x′), then p(x) = p(x′).

We denote by P(r) ⊆ [0, 1]X the set of all the predictors that

are consistent with a ranking r.

Our recovery goal focuses on consistency: a ranking r is

close to optimal if there exists a predictor pr that is consistent

with r and close to p∗.

Definition II.5 (Adjacency). A ranking r is ε-adjacent to p∗

if there exists a consistent predictor pr ∈ P(r) such that

‖pr − p∗‖1 ≤ ε.

To illustrate the guarantees of adjacency as a way to

evaluate the quality of a rankings, we begin by revisiting the

construction given in Example II.3. While we argued that the

induced ranking rp could be almost arbitrarily far from rp
∗

in terms of
∥

∥rp − rp
∗
∥

∥

1
, note that rp is ε-adjacent to p∗.

In fact, because ‖p− p∗‖1 ≤ ε, p acts as a “certificate” of

the ε-adjacency of rp. Thus, as desired, from the perspective

of ε-adjacency, rp and rp
∗

are equivalent rankings. In fact,

it is not hard to verify that for this example, every ranking

r ∈ R is ε-adjacent to p∗ because |p∗(x)− p∗(x′)| ≤ ε for

all x, x′ ∈ X × X .

Thus, measuring adjacency to p∗ is a more flexible notion of

closeness of a ranking. To see that this notion of comparison

still provides a meaningful guarantee of recovery, consider the

following example.

Example II.6. Let ε > 0. Suppose X is partitioned into two

equally-sized sets S, T . Let p∗ : X → [0, 1] be defined as

follows.

p∗(x) =

{

3/4 if x ∈ S

1/4 if x ∈ T

As in Example II.3, any ranking r ∈ R that permutes

individuals within S and within T , but respects the order of

S before T may accrue significant differences in
∥

∥r − rp
∗
∥

∥

1
,

but will still be 0-adjacent to p∗ ∈ P(r).
Consider, however, a ranking that does not place all of

S before all of T . Intuitively, this “interleaving” is clearly

undesirable: there are members x ∈ S, with significantly

higher p∗(x) than all of T , being ranked below members

x′ ∈ T . Note that adjacency formalizes this intuition: as more

and more interleaving occurs in some r ∈ R, the optimal

‖p− p∗‖1 for p ∈ P(r) increases significantly.
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B. Efficiently approximating the induced ranking of a predic-

tor

Above, we argued that given a predictor p : X → [0, 1], the

induced ranking rp ∈ R is a well-defined function. Still, if we

want to evaluate the ranking rp(x) exactly on an individual

x ∈ X , then in principle, we might have to evaluate p(x′)
for all other x′ ∈ X . Here, we show that given oracle access

to a predictor p and a small number of unlabeled samples

from DX , we can produce an approximation r̃p of the induced

ranking of p. Specifically, we produce a ranking r̃p with which

p ∈ P(r̃p) is consistent (i.e. r̃p(x) < r̃p(x′) only if p(x) >
p(x′)); further, r̃p will be a pointwise approximation to the

exact induced ranking rp (i.e. ‖rp − r̃p‖∞ ≤ β).

Proposition II.7. Let β, δ > 0. For a predictor p : X → [0, 1],
let rp ∈ R denote the induced ranking of p. There exists an

efficient algorithm that given oracle access to p and m ≥
2 log(2/βδ)

β2 unlabeled samples x1, . . . , xm ∼ DX produces a

ranking r̃p : X → [0, 1] such that

• p ∈ P (r̃p); specifically, ∀x, x′ ∈ X × X :

r̃p(x) < r̃p(x′) =⇒ rp(x) < rp(x′).
• ‖rp − r̃p‖∞ ≤ β

with probability at least 1− δ.

Proof. For a threshold τ ∈ [0, 1], consider a Bernoulli ran-

dom variable Xτ distributed according the the indicator of

1[rp(x) < τ ] for x ∼ DX . Note that by the definition of a

ranking, the expectation E[Xτ ] = τ . Consider the empirical

estimate over m independent samples xi ∼ DX .

X̄τ =
1

m

m
∑

i=1

1[rp(xi) < τ ]

Let T = {β/2, β, . . . , 1− β/2, 1} be a set of 2/β equally

spaced thresholds. We can use Hoeffding’s inequality and

a union bound to bound the probability that the empirical

estimates X̄τ will be more than β/2 away from the true

expectation.

Pr
[∣

∣X̄τ − τ
∣

∣ > β/2
]

≤ exp

(−mβ2

2

)

Thus, if m ≥ 2 log(2/βδ)
β2 with probability at least 1 − δ, the

empirical estimates of X̄τ for all 2/β thresholds τ ∈ T will

be accurate up to β/2.

Given the predictor p, we can implement a comparison

oracle that given a pair of inputs x, x′ ∈ X × X , returns the

indicator of 1[p(x) > p(x′)]. Thus, given some x ∈ X and the

unlabeled sample, we can estimate rp(x) as follows.

r̃p(x) =
1

m

m
∑

i=1

1[p(xi) > p(x)]

=
1

m

m
∑

i=1

1[rp(xi) < rp(x)]

We can bound this estimate from below and above as follows.

Suppose rp(x) ∈ [τ−, τ+] for consecutive τ− ≤ τ+ ∈ T .

1

m

m
∑

i=1

1[rp(xi) < τ−] ≤ r̃p(x) ≤ 1

m

m
∑

i=1

1[rp(xi) < τ+] (1)

Pr
x′∼DX

[rp(x′) < τ−]− β/2 ≤ r̃p(x)

≤ Pr
x′∼DX

[rp(x′) < τ+] + β/2 (2)

Pr
x′∼DX

[rp(x′) < rp(x)]− β ≤ r̃p(x)

≤ Pr
x′∼DX

[rp(x′) < rp(x)] + β (3)

where (1) follows by the assumption that rp(x) ∈ [τ−, τ+];
(2) follows by the accuracy of the empirical estimates in T ;

and (3) follows by the fact that |τ+ − τ−| = β/2 for all

consecutive τ− < τ+ ∈ T . Thus, the empirical estimate r̃p(x)
will be within β of the true rp(x).

In particular, note that given the sample of unlabeled data,

we can build a data structure that given oracle access to p can

efficiently approximate the rank rp(x) for any x ∈ X . Further,

note that all of the arguments used to prove Proposition II.7

work equally well if we restrict our attention to some subset

S ⊆ X . Thus, if we have access to samples from DS ,

we can similarly evaluate the ranking of individuals within

the subpopulation DS . Such a procedure may be useful for

identifying individuals in the most qualified individuals across

different subsets.

Corollary II.8. Suppose β, δ, τ > 0. Given access to a pre-

dictor p : X → [0, 1], a subset S ⊆ X , and Õ
(

log(1/δ)/β2
)

unlabeled samples from DS , there is an efficient procedure

that identifies the top τ ′-fraction of individuals over DS for

some τ ′ ∈ [τ − β, τ + β] with probability at least 1− δ.

C. Transforming a ranking into a predictor through calibra-

tion

Next, we turn our attention to obtaining a predictor given a

ranking. As discussed, given a ranking r ∈ R, there may be

many consistent predictors that form the collection P(r). Our

goal will be to recover a predictor p : X → [0, 1] that approx-

imates the “best” consistent predictor pr ∈ P(r). Formally, if

r is ε-adjacent to p∗, we want to compute a predictor p such

that ‖p− p∗‖1 is close to ε. Without any further information

about p∗, this goal is impossible; however, we show that a

small set of labeled samples (x1, y1), . . . , (xm, ym) ∼ DX ,Y

provides enough information about p∗ to pin down a predictor

p that achieves essentially optimal ‖p− p∗‖1.4 The structure

of the proof will introduce a number of concepts that will

be useful for identifying the best ranking in a given class (see

Section III), and will motivate our notions of fairness presented

in Section IV.

4A conceptually similar result is shown in [27].
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Our approach to transforming a ranking r ∈ R into a

predictor follows the intuition that the partition of X induced

by a ranking, which we call the quantiles, identify useful

structure in p∗ when r is ε-adjacent to p∗ (for small ε > 0).

Definition II.9 (Quantiles according to a ranking). For a

ranking r ∈ R, the quantiles of r, denoted by Qr, partition

X as

Qr = {Qr,τ : τ ∈ supp(r)}
where Qr,τ = {x ∈ X : r(x) = τ} .

Intuitively, the quantiles of a ranking r capture the “knowl-

edge” contained in r and the number of quantiles (i.e. the

support size of r) indicates the “confidence”. For example, at

one extreme, the constant ranking r0 ∈ R, where r0(x) = 0
for all x ∈ X , has a single quantile and makes no distinctions

between individuals; at the other extreme, a strict ranking has

quantiles at an individual-level resolution. While the quantiles

are well-defined for any ranking, operationally, we will often

need to work with quantiles that are sufficiently coarse.

Definition II.10 (γ-coarse ranking). A ranking r ∈ R is γ-

coarse if for all τ ∈ supp(r′),

Pr[x ∈ Qr,τ ] ≥ γ/2.

Note that a γ-coarse ranking is supported on at most 2/γ
quantiles (where the factor of 2 is an arbitrary constant factor

chosen for convenience). Importantly, given any ranking r ∈
R, we can turn it into a γ-coarse ranking that approximates

r. In general, such a coarse approximation will not be unique;

we establish the existence of a canonical γ-coarse ranking that

preserves certain structure of r.

Lemma II.11 (Canonical γ-coarse ranking). For any ranking

r ∈ R and γ > 0, there exists a canonical γ-coarse ranking,

denoted rγ ∈ R, that satisfies the following consistency

properties:

• r′ maintains consistency with r: P(r′) ⊆ P(r);
• for all predictors pr ∈ P(r) consistent with r, there exists

a predictor pγ-med
r ∈ P(rγ) such that

∥

∥pr − pγ-med
r

∥

∥

1
≤

γ.

Intuitively, we form the canonical γ-coarse ranking by

merging the quantiles of r into quantiles of probability density

of about γ. To maintain consistency, we need to ensure that

for all x, x′ such that r(x) = r(x′), then rγ(x) = rγ(x′),
which may require quantiles of larger size, which results in

some technical subtlety.

Proof. We define rγ ∈ R by greedily building quantiles of

probability density at least 2γ/3. Starting with an index i = 1

and threshold τ1 = 0, let

Qi ←
{

x : Pr
x′∼DX

[r(x′) ≤ r(x)] ≥ τi + 2γ/3

}

\
⋃

j<i

Qj ;

∀x ∈ Qi : rγ(x)← inf
x′∈Qi

{r(x′)} ;

τi+1 ← sup
x∈Qi

{r(x)} ;

i← i+ 1;

until τi > 1 − 2γ/3. Suppose at termination, i = t. Add the

remaining x ∈ X \⋃i≤t Qi, to Qt−1 and set rγ(x) = τt. By

construction, rγ ∈ R is a γ-coarse ranking: each quantile will

have probability density at least 2γ/3; and any x, x′ where

r(x) = r(x′) will be included in the same quantile of rγ .

To see the property in the proposition statement, consider

some predictor pr ∈ P(r) and the predictor pγ-med
r ∈ P(rγ)

defined to give the median value of pr over each quantile.

Specifically, for each i ∈ [t] and each x ∈ Qi, let

pγ-med
r (x) = med

x′∈DQi

[pr(x
′)] .

Consider that statistical distance between pr and pγ-med
r .

∥

∥pγ-med
r − pr

∥

∥

1

= E
x∼DX

[
∣

∣pγ-med
r (x)− pr(x)

∣

∣

]

=

t
∑

i=1

Pr
x∼DX

[x ∈ Qi] · E
x∼DQi

[∣

∣pγ-med
r (x)− pr(x)

∣

∣

]

=
t

∑

i=1

Pr
x∼DX

[x ∈ Qi] · E
x∼DQi

[∣

∣

∣

∣

med
x′∼DQi

[pr(x
′)]− pr(x)

∣

∣

∣

∣

]

(4)

With this expansion of
∥

∥pγ-med
r − pr

∥

∥

1
, we split the analysis

of individual terms based on the the probability density of the

quantiles. Note that

E
x∼DQi

[
∣

∣

∣

∣

med
x′∼DQi

[pr(x
′)]− pr(x)

∣

∣

∣

∣

]

(5)

≤ sup
x∈Qi

∣

∣

∣

∣

med
x′∼DQi

[pr(x
′)]− pr(x)

∣

∣

∣

∣

(6)

≤ 1

2
·
(

sup
x∈Qi

pr(x)− inf
x∈Qi

pr(x)

)

(7)

where (6) follows because an expectation is always upper

bounded the maximum supported value; and (7) follows by

the definition of the median. Thus, for some i ∈ [t], if Pr[x ∈
Qi] ≤ 2γ, then the contribution of the ith quantile to the sum

in (4) is bounded by γ ·
(

supx∈Qi
pr(x)− infx∈Qi

pr(x)
)

.

On the other hand, if Pr[x ∈ Qi] > 2γ, we claim term can

be bounded by

Pr
x∼DX

[x ∈ Qi] · E
x∼DQi

[
∣

∣

∣

∣

med
x′∼DQi

[pr(x
′)]− pr(x)

∣

∣

∣

∣

]

≤ 2γ

3
·
(

sup
x∈Qi

pr(x)− inf
x∈Qi

pr(x)

)

.

113



To see this, note that by the construction of rγ , such a

large quantile can only arise in rγ if it merged a large

quantile from r; in turn, this implies that pγ-med
r (x) =

medx′∼DQi
[pr(x

′)] for a large fraction of Qi. Specifically,

there can be at most 2γ/3 probability mass before merging

with a large quantile of r (and 2γ/3 after the large quantile,

in the case of Qt by the termination condition). All other

x ∈ Qi satisfy pγ-med
r (x) = medx′∼DQi

[pr(x
′)], and thus,

contribute 0 to
∥

∥pγ-med
r − pr

∥

∥

1
. Again, by properties of the

median, this means that the total contribution cannot exceed
1
2 ·

(

supx∈Qi
pr(x)− infx∈Qi

pr(x)
)

per each of the ≤ 4γ/3
probability mass.

Picking up at (4), we continue to bound the distance by

showing the sum telescopes.

(4) ≤
t

∑

i=1

γ ·
(

sup
x∈Qi

pr(x)− inf
x∈Qi

pr(x)

)

≤ γ ·
(

sup
x∈X

pr(x)− inf
x∈X

pr(x)

)

(8)

≤ γ

where (8) follows by the fact that pr is consistent with r so

supx∈Qi
pr(x) ≤ infx∈Qi+1

pr(x) and the sum telescopes; the

final inequality follows by the fact that pr : X → [0, 1].

Given the quantiles of a ranking, there is a natural predictor

that gives the expected value of p∗ on each quantile, which

we call its calibration.

Definition II.12 (Calibration of a ranking). For a ranking r ∈
R, the calibration of r is the predictor pcalr : X → [0, 1] where

for each τ ∈ supp(r), for all x ∈ Qr,τ ,

pcalr (x) = E
x′∼DQr,τ

[p∗(x′)] = E
x′∼DX

[p∗(x′) | r(x′) = τ ] .

The γ-calibration of r is the predictor pγ-cal
r , obtained by

calibrating the γ-coarse ranking rγ .

The next proposition shows that that the γ-calibration

approximates the optimal consistent predictor pr =
argminp∈P(r) ‖p− p∗‖1.

Proposition II.13. For any r ∈ R and γ > 0, let pγ-cal
r be

the γ-calibration of r. If r is ε-adjacent to p∗ for some ε ≥ 0,

then
∥

∥p∗ − pγ-cal
r

∥

∥

1
≤ 2ε+ 2γ.

Proposition II.13 shows closeness between p∗ and the

exact γ-calibration, pγ-cal
r . While in general, we can’t hope

to compute the calibration of a ranking exactly, given suf-

ficiently many labeled samples from DX ,Y , we can estimate

E [p∗(x) | rγ(x) = τ ] for each τ ∈ supp(rγ). Specifically, we

can use the empirical expectations over the quantiles over a

small set of m ≥ Ω̃
(

log(1/δ)
γ4

)

labeled samples; this argument

is similar to formal arguments presented in the subsequent

proof of Theorem III.1.

To demonstrate Proposition II.13, we first prove the fol-

lowing lemma, which will also be useful for establishing

subsequent results.

Lemma II.14. Suppose for t ∈ N, S = {Si}i∈[t] is a partition

of X . Let pS : X → [0, 1] give the expected value of p∗

on each partition; that is, for each i ∈ [t], for x ∈ Si,

pS(x) = Ex′∼DSi
[p∗(x)]. Let pS0 : X → [0, 1] be any

piecewise constant predictor over the partition S; that is, for

each i ∈ [t], for x ∈ Si, pS0 (x) = vi for some constant

vi ∈ [0, 1]. Then,

∥

∥pS − pS0
∥

∥

1
≤

∥

∥p∗ − pS0
∥

∥

1
,

∥

∥pS − p∗
∥

∥

1
≤ 2 ·

∥

∥pS0 − p∗
∥

∥

1
.

Proof. Consider
∥

∥pS − p∗
∥

∥

1
. First, we apply the triangle

inequality as follows.

∥

∥pS − p∗
∥

∥

1
≤

∥

∥pS − pS0
∥

∥

1
+
∥

∥pS0 − p∗
∥

∥

1

Next, we show that
∥

∥pS − pS0
∥

∥

1
≤

∥

∥pS0 − p∗
∥

∥

1
.

∥

∥pS − pS0
∥

∥

1
=

∑

i∈[t]

Pr
x∼X

[x ∈ Si] ·
∣

∣

∣

∣

E
x∼DSi

[p∗(x)]− vi

∣

∣

∣

∣

≤
∑

i∈[t]

Pr
x∼X

[x ∈ Si] · E
x∼DSi

[|p∗(x)− vi|] (9)

=
∥

∥p∗ − pS0
∥

∥

1

where (9) follows by Jensen’s inequality.

With this lemma in place, we are ready to prove Proposi-

tion II.13.

Proof of Proposition II.13. For a ranking r ∈ R that is ε-

adjacent to p∗, for γ > 0, let Qr,γ be the quantiles of rγ

and let pγ-cal
r : X → [0, 1] be the γ-calibration of r. Let

pr = argminp∈P(r) ‖p− p∗‖1, and let pγ-cal
r ∈ P(r) be the

predictor that gives the median prediction of pr on each γ-

quantile, as in Lemma II.11. Then, we can derive the following

inequalities.

∥

∥pγ-cal
r − p∗

∥

∥

1
≤ 2 ·

∥

∥pγ-med
r − p∗

∥

∥

1
(10)

≤ 2 ·
(
∥

∥pγ-med
r − pr

∥

∥

1
+ ‖pr − p∗‖1

)

≤ 2γ + 2ε (11)

where (10) follows by Lemma II.14 because pγ-med
r is piece-

wise constant over the γ-quantiles and (11) follows by the

assumption that r is ε-adjacent to p∗ and Lemma II.11. �

Note that in Proposition II.13, when we convert an ε-

adjacent ranking to a predictor, we can guarantee a predictor

that is (2ε + γ)-adjacent for any constant γ > 0; further,

by concentration arguments deferred to Section III, this same

guarantee can be achieved using an a small random sample

to estimate the γ-calibration. We argue that in our learning

model, with access to binary samples (x, y) ∼ DX ,Y , the

factor of 2 loss between the adjacency and the ℓ1-distance

of the recovered predictor is optimal.

Observation II.15 (Informal). For any c < 2, there is an

ε > 0 and a distribution DX ,Y , such that no algorithm that

is given access to a ranking r ∈ R that is ε-adjacent to p∗
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and a bounded number of labeled samples (x, y) ∼ DX ,Y can

produce a predictor pr such that

‖pr − p∗‖1 ≤ c · ε.

Proof Sketch. Let X = [N ] be a finite universe and DX be

the uniform distribution over X . Suppose r ∈ R is the constant

ranking; that is, r(x) = 0 for all x ∈ X . We construct a hard

distribution over the choice of p∗ : X → [0, 1], where we can

bound the adjacency of r to p∗, but it is impossible to recover

a predictor that always achieves the optimal ℓ1 error.

For some ε > 0, let pε : X → [0, 1] be defined as pε(x) = ε
for all x ∈ X . For some subset S ⊆ X , let pS : X → 0, 1
be defined as pS(x) = 1 if x ∈ S and pS(x) = 0 for x 6∈ S.

Let Sε ⊆ X be a random subset sampled by independently

sampling x ∈ Sε with probability ε for each x ∈ X . Then,

consider the following distribution over the choice of p∗:

p∗ =

{

pε w.p. 1/2

pSε
w.p. 1/2

for a randomly drawn Sε. Note for a bounded set of samples

(say, o(
√
N) samples), with probability 1−o(1), there will be

no x ∈ X sampled more than once; conditioned on this event,

the labeled samples (x, y) ∼ DX ,Y for either choice of p∗ are

identically distributed.

Despite the identical distribution of labeled samples, the

feasible minimizer of ‖pr − p∗‖1 is not the same. In particular,

because r is the constant ranking, to be consistent pr ∈ P(r)
must be constant over X . When p∗ = pε, then pε is the

minimizer, and r is 0-adjacent to p∗. In other words, if we

output any predictor pr other than pε, then with probability

1/2, then ‖pr − p∗‖1 > c · ε for every constant c. Thus, to get

any multiplicative approximation to the best ℓ1 error, every

algorithm must output pε.

But consider when p∗ = pSε
; in this case, the constant

predictor p0(x) = 0 for all x ∈ X will minimize the ℓ1 error

to p∗, with ‖p0 − p∗‖1 ≤ ε + o(1). Using pε as the estimate

of p∗, we can bound the expected ℓ1 error as follows.

E [‖pε − p∗‖1] = Pr[p∗(x) = 1] · (1− ε) + Pr[p∗(x) = 0] · ε
= ε · (1− ε) + (1− ε) · ε
= 2ε− 2ε2

Taking ε > 0 to be an arbitrarily small constant, we can see

that the recovery guarantee approaches 2ε, which approaches

a factor 2 worse than optimal. �

III. IDENTIFYING THE BEST RANKING

Proposition II.13 shows that given a ranking r ∈ R and a

small sample of labeled data, we can recover an approximately

optimal predictor that is consistent with r. Still, because

we only see the realization of y ∼ Ber(p∗(x)), it is not

immediately obvious how to evaluate the ℓ1-distance between

the derived predictor and p∗. Thus, from the analysis in

Section II alone, given a collection of rankings R ⊆ R, it’s

not clear whether we can find the best r ∈ R.

In this section, we prove an agnostic “Occam’s Razor”-style

theorem for rankings. That is, we show that given a class

of rankings R ⊆ R, it is information-theoretically possible

to identify the (approximately) best ranking r ∈ R from a

small set of m labeled samples (x1, y1) . . . (xm, ym) ∼ DX ,Y .

Slightly more formally, for any ε > 0, if there is an ε-adjacent

ranking r ∈ R, we give an algorithm that runs in polynomial-

time in |R| and m, and returns an O(ε)-adjacent ranking r′ ∈
R.

Because we only have access to samples of binary out-

comes, our access to p∗ is very limited. As such, the proof

differs significantly from classic proofs of identifiability for

boolean functions, as in [33], or for rankings given comparison

data of the form 1[p∗(x) > p∗(x′)]. Indeed, given an individual

sample (x, y) ∼ DX ,Y , we cannot reliably determine any

conclusive information about p∗(x). With a small sample

complexity, it is exceedingly unlikely to see any x ∼ DX

twice, let alone enough times to accurately estimate the bias.

Further, as discussed earlier, even if we could learn p∗ exactly

on significant portions of DX , if there are non-trivial portions

where we are still uncertain, it is impossible to extract a

globally consistent ranking.

While the result is self-contained and does not directly im-

pact the subsequent discussion of learning evidence-consistent

rankings, it introduces some key insights about how to extract

information about the “true” ranking induced by p∗ from

binary outcomes. In particular, the proof hinges on the fact

that the empirical expectations of outcomes on (sufficiently-

large) subsets of X will concentrate around their expectation.

Further, the proof clarifies the intuition that the rankings

in the class R can help to identify structure in the true

ranking rp
∗

, even if rp
∗

is not in the class. This intuition

is paramount to developing our strongest notion of reflexive

evidence-consistency in Section IV.

Theorem III.1. Suppose R is a class of rankings such that

there exists an ε-adjacent r ∈ R. For any γ, δ > 0, there is

an algorithm that given m ≥ Ω̃
(

log(|R|/δ)
γ5

)

labeled samples

(x1, y1), . . . , (xm, ym) ∼ DX ,Y with probability at least 1− δ
produces some r′ ∈ R that is (3ε+γ)-adjacent. The algorithm

runs in poly(|R| ,m) time.

Proof. For γ > 0, we will show how to recover a (3ε+ c ·γ)-
adjacent ranking for some constant c; the theorem follows by

choosing γ′ = γ/c, losing only a constant factor in the sample

complexity. For each r ∈ R, let rγ denote its canonical γ-

coarse ranking. For every two rankings r ∈ R and q ∈ R,

consider the predictor pγ-cal
rq : X → [0, 1] defined to give the

expected value of p∗ over each of the intersections of quantiles

according to rγ and qγ , where for all x ∈ Qrγ ,τ ∩Qqγ ,σ ,

pγ-cal
rq (x) = E

x′∼D
[p∗(x′) | rγ(x′) = τ, qγ(x′) = σ] .

For each q ∈ R, we define the following loss function.

LR(q) = min
p∈P (q)

max
r∈R

∥

∥pγ-cal
qr − p

∥

∥

1
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The theorem follows by showing that the r ∈ R that

minimizes (the empirical estimate of) LR is an approximately

optimal ranking over R. In particular, suppose for every q, r ∈
R × R, we can find a empirical estimate of pγ-cal

qr , which we

denote p̂qr : X → [0, 1], that satisfies
∥

∥p̂qr − pγ-cal
qr

∥

∥

1
≤ O(γ).

Let the empirical loss function L̂R(q) be defined as

L̂R(q) = min
p∈P (q)

max
r∈R
‖p̂qr − p‖1 .

We bound the distance of the ranking that minimizes the

empirical loss to p∗.

Suppose q = argminr∈R L̂R(r) is the minimizer of L̂R

over R and let pq ∈ P(q) denote a consistent predictor for

q that achieves the minimum value of maxr∈R ‖p̂qr − pq‖1.

Further, let r∗ = argminr∈R minp∈P(r) ‖p− p∗‖1 be the

optimal ranking in R; specifically, we assume that r∗ is ε-

adjacent to p∗ for some ε > 0. Let pr∗ ∈ P(r∗) denote a

consistent predictor for r∗ such that ‖p∗ − pr∗‖1 = ε.

Using the triangle inequality, we expand the ℓ1-distance

between pq and p∗ as

‖pq − p∗‖1
≤ ‖pq − p̂qr∗‖1 +

∥

∥

∥
p̂qr∗ − pγ-cal

qr∗

∥

∥

∥

1
+
∥

∥

∥
pγ-cal
qr∗ − p∗

∥

∥

∥

1

≤ L̂R(q) +O(γ) +
∥

∥

∥
pγ-cal
qr∗ − p∗

∥

∥

∥

1

where ‖pq − p̂qr∗‖1 ≤ L̂R(q) = maxr∈R ‖pq − p̂qr‖1 by the

definition of pq , and
∥

∥p̂qr − pγ-cal
qr

∥

∥

1
≤ O(γ) by assumption.

We will bound L̂R(q) and

∥

∥

∥
pγ-cal
qr∗ − p∗

∥

∥

∥

1
separately.

For r ∈ R, let pγ-med
r ∈ P(r) be the canonical predictor

associated with rγ from Lemma II.11. Then, by the fact that

q minimizes L̂R, we can bound L̂R(q) as follows.

L̂R(q) ≤ L̂R(r
∗)

= min
p∈P(r∗)

max
r∈R
‖p̂r∗r − p‖1

≤ max
r∈R

∥

∥

∥
p̂r∗r − pγ-med

r∗

∥

∥

∥

1
(12)

≤ max
r∈R

{∥

∥

∥
p̂r∗r − pγ-cal

r∗r

∥

∥

∥

1
+
∥

∥

∥
pγ-cal
r∗r − pγ-med

r∗

∥

∥

∥

1

}

≤ O(γ) +
∥

∥

∥
p∗ − pγ-med

r∗

∥

∥

∥

1
(13)

≤ ‖p∗ − pr∗‖1 +
∥

∥

∥
pr∗ − pγ-med

r∗

∥

∥

∥

1
+O(γ)

≤ ε+O(γ) (14)

where (12) follows by the fact that pγ-med
r∗ ∈ P(r∗); (13)

follows by the assumption that

∥

∥

∥
p̂r∗r − pγ-cal

r∗r

∥

∥

∥

1
≤ O(γ) and

applying Lemma II.14 to bound

∥

∥

∥
pγ-cal
r∗r − pγ-med

r∗

∥

∥

∥

1
because

for each partition defined by the quantiles of r∗γ and rγ ,

pγ-cal
r∗r gives the expectation over the partition and pγ-med

r∗ is

piecewise constant; finally, (14) follows by the assumption that

‖p∗ − pr∗‖1 ≤ ε and applying Proposition II.11 to pr∗ .

Next, we bound

∥

∥

∥
pγ-cal
qr∗ − p∗

∥

∥

∥

1
. Let pγ-med

qr∗ denote the

predictor that gives the median value of pr∗ over the partition

defined by pγ-cal
qr∗ . Specifically, for all x ∈ X such that

pγ-cal
qr∗ (x) = v,

pγ-med
qr∗ (x) = med

x′∼D

[

pr∗(x
′) | pγ-cal

qr∗ (x′) = v
]

.

Then, we can bound

∥

∥

∥
pγ-cal
qr∗ − p∗

∥

∥

∥

1
as follows.

∥

∥

∥
pγ-cal
qr∗ − p∗

∥

∥

∥

1
(15)

≤ 2 ·
∥

∥

∥
pγ-med
qr∗ − p∗

∥

∥

∥

1
(16)

≤ 2 ·
(
∥

∥

∥
pγ-med
qr∗ − pr∗

∥

∥

∥

1
+ ‖pr∗ − p∗‖1

)

≤ 2 ·
(
∥

∥

∥
pγ-med
r∗ − pr∗

∥

∥

∥

1
+ ‖pr∗ − p∗‖1

)

(17)

≤ 2γ + 2ε. (18)

where (16) follows by Lemma II.14 applied to the piecewise

constant predictor pγ-med
qr∗ ; (17) follows by the observation that

∥

∥

∥
pγ-med
qr∗ − pr∗

∥

∥

∥

1
≤

∥

∥

∥
pγ-med
r∗ − pr∗

∥

∥

∥

1
, which can be seen by

the convex optimization interpretation of the median as the

minimizer of ℓ1; and (18) follows again by the assumption

that r∗ is ε-adjacent to p∗ and

∥

∥

∥
pγ-med
r∗ − pr∗

∥

∥

∥

1
≤ γ by

Lemma II.11. Thus, we see that ‖pq − p∗‖1 ≤ 3ε+O(γ).
Thus, it remains to bound the sample complexity necessary

to recover for each r, q ∈ R×R a p̂rq : X → [0, 1] such that
∥

∥p̂rq − pγ-cal
rq

∥

∥

1
≤ O(γ).

Note that to bound this ℓ1-error, it suffices to estimate the

statistical queries

E
x∼D

[p∗(x) | rγ(x) = τ, qγ(x) = σ]

up to γ additive error for each r, q ∈ R×R and τ ∈ supp(rγ),
σ ∈ supp(qγ).

First, suppose that for each r, q ∈ R×R and τ ∈ supp(rγ),
σ ∈ supp(qγ), we can obtain s labeled samples directly

over each of the subsets of interest (x1, y1), . . . , (xs, ys) ∼
DQrγ,τ∩Qqγ,σ,Y . Then, applying Hoeffding’s inequality, we

can bound the probability that the empirical estimate on the

sample deviates significantly from the actual expectation.

Pr

[∣

∣

∣

∣

∣

1

s

s
∑

i=1

yi − E
x∼D

[p∗(x) | x ∈ Qrγ ,τ ∩Qqγ ,σ]

∣

∣

∣

∣

∣

> γ

]

≤ 2 exp
(

−2sγ2
)

.

Thus, if s ≥ log(2/δ0)
2γ2 , then the probability the estimate

deviates by more than γ is at most δ0. Because there are

at most O
(

|R|2

γ2

)

statistical queries to estimate, then given

s ≥ Ω
(

log(|R|2/γ2δ)
γ2

)

on each subset of interest, by a union

bound, all of the expectations will be accurate up to γ with

probability at least 1− δ/2.

Next, we argue that we can exclude intersections of quan-

tiles Qrγ ,τ ∩Qqγ ,σ that are smaller than γ3 probability mass;

this allows us to bound the sample complexity from DX ,Y

necessary to guarantee that each subset of interest has at least
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s samples. Note that for each r, q ∈ R×R, the predictor p̂rq
will be supported on at most Ω

(

1/γ2
)

values. Thus, in order

to obtain a γ additive ℓ1-approximation, it suffices to provide

guarantees on the estimates for the sets where such that

Pr
x∼X

[x ∈ Qrγ ,τ ∩Qqγ ,σ] ≥ γ3.

In particular, ignoring all sets where

Prx∼DX
[x ∈ Qrγ ,τ ∩Qqγ ,σ] < γ3 incurs at most an

additional γ3 ℓ1-error per set, so γ3 · O
(

1/γ2
)

f = O(γ)
overall.

Thus, we may assume that for every intersection of interest

Prx∼DX
[x ∈ Qrγ ,τ ∩ Qqγ ,σ] ≥ γ3. Again, by Hoeffding’s

inequality, if we take l ≥ log(2s/δ)
γ3 the probability that every

sample misses such a set is at most δ/2s. Thus, if we take m ≥
sl ≥ Ω̃

(

log(|R|/δ)
γ5

)

samples, then another union bound shows

that with probability at least 1−δ/2, each Qrγ ,τ∩Qqγ ,σ in our

collection will have at least s samples. Thus, with probability

at least 1 − δ, every estimate will be accurate up to O(γ)
additive error.

IV. EVIDENCE-BASED RANKINGS

Section III shows that, information-theoretically, given a

class of rankings R ⊆ R, we can identify an approxi-

mately optimal ranking r ∈ R. Still, when the class R isn’t

sufficiently-expressive to contain a ranking that is ε-adjacent

to p∗ for small ε, approximate recovery may not be enough to

guarantee the fairness of the eventual ranking. Consider the

following simple example that illustrates how an ε-adjacent

ranking allows for a subset of fraction ε to be significantly

mistreated.

Example IV.1. Let ε > 0 and S1 ⊆ X be a subset such that

Prx∼DX
[x ∈ S1] ≤ ε. Suppose p∗, p : X → [0, 1] is defined

as follows.

p∗(x) =

{

1 if x ∈ S1

0.01 otherwise
p(x) =

{

0 if x ∈ S1

0.01 otherwise

Note that in the induced ranking of p∗, S1 is the top ε-fraction,

but in the induced ranking of p, S1 is the bottom ε-fraction.

Still, despite the fact that the rank of S1 has moved arbitrarily

far, ‖p− p∗‖1 ≤ ε.

This example highlights the fact that ε-adjacency, while

a reasonable recovery goal, is not enough to guarantee fair

treatment for groups of size less than ε. Note, however, that

such a blatant mistreatment can be detected from the 0/1

data we have at hand! This motivates a further study of fair

rankings, that aims to protect sufficiently large subsets of X .

A. Domination-Compatibility and Evidence-Consistency

The example above demonstrated one way in which signifi-

cant groups can be blatantly mistreated. Intuitively, if a “fair”

ranking gives preference to a subset S over another subset T ,

we would expect that S should be more qualified than T in

terms of p∗, at least on average. We begin by formalizing what

we mean when we say that a ranking r gives preference to S
over T , which we refer to as domination.

Definition IV.2 (Domination). Let S, T ⊆ X be two subsets

and γ ≥ 0. For a ranking r ∈ R, we say that S γ-dominates

T in r if for all thresholds τ ∈ [0, 1],

Pr
x∼DS

[r(x) < τ ] + γ ≥ Pr
x∼DT

[r(x) < τ ].

That is, S dominates T if for every threshold τ ∈ [0, 1],
the fraction (with respect to D) of individuals from S that are

ranked below τ is at least as large as the fraction of individuals

in T , up to a slack of γ.

Intuitively, there is a natural combinatorial interpretation of

the domination condition in terms of matchings. Specifically,

in the special case where S and T are discrete sets of equal

cardinality and the distribution of interest DX is the uniform

distribution, then S γ-dominates T if, after discarding a γ-

fraction of the individuals from each group, there exists a

perfect matching M : S → T in which where every x ∈ S
is matched to some M(x) ∈ T , whose rank in r is no

better than that of x; that is, r(x) ≤ r(M(x)). We use

Definition IV.2 because it allows for comparison between

S and T that are arbitrarily-intersecting subsets of arbitrary

probability densities.

We argue that domination formally captures the intuition

that a ranking strongly prefers one subset over another. In

particular, the following lemma shows that if S dominates T
in a ranking r, then every consistent predictor p ∈ P(r), favors

S over T on average.

Lemma IV.3. If S γ-dominates T in r, then for every p ∈
P(r),

E
x∼DS

[p(x)] + γ ≥ E
x∼DT

[p(x)] .

Proof. For a ranking r ∈ R, let p ∈ P(r) be consistent

predictor. By consistency, for each v ∈ supp(p), there exists

some τv ∈ supp(r) (the minimum τ where r(x) = τ and

p(x) = v) such that for any subset S ⊆ X
Pr

x∼DS

[p(x) > v] = Pr
x∼DS

[r(x) < τv] .

Suppose S γ-dominates T . Consider the difference in expec-

tations of p(x) under DS and DT , which we expand using the

identity for nonnegative random variables E[X] =
∫

v
Pr[X >

v]dv.

E
x∼DT

[p(x)]− E
x∼DS

[p(x)]

=

∫ 1

0

(

Pr
x∼DT

[p(x) > v]− Pr
x∼DS

[p(x) > v]

)

dv

=

∫ 1

0

(

Pr
x∼DT

[r(x) < τv]− Pr
x∼DS

[r(x) < τv]

)

dv

≤ γ

where the final inequality bounds the difference in probabilities

by γ-domination.

Lemma IV.3 suggests a natural group fairness notion for

rankings. Suppose Ex∼DT
[p∗(x)] is significantly larger than
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Ex∼DS
[p∗(x)] but S γ-dominates T for some small γ. Then,

Lemma IV.3 show that no consistent predictor p ∈ P(r) can

respect the true potential of S and T , even on average! Such a

reversal under r – where the expected potential of T is higher

than that of S, but S dominates T in r – represents a form

of blatant discrimination against T : either the individuals of

T are being significantly undervalued or the individuals in S
are being overvalued by the ranking r.

With this in mind, a baseline notion of fairness for a ranking

r would be that r does not exhibit any such blatant reversals

for any pair of subsets from some rich collection C; formally,

we call this notion domination-compatibility.

Definition IV.4 (Domination-compatibility). Let C ⊆ {0, 1}X
be a collection of subsets and α ≥ 0. A ranking r ∈ R is

(C, α)-domination-compatible if for all pairs of subsets S, T ∈
C × C and for every γ ≥ 0, if S γ-dominates T in r, then

E
x∼DS

[p∗(x)] + (γ + α) ≥ E
x∼DT

[p∗(x)]

Looking ahead, since the expectations Ex∼DS
[p∗(x)] and

Ex∼DT
[p∗(x)] will eventually be estimated from the sample

of binary labels, the definition allows for an additional additive

slack of α.

A (C, α)-domination-compatible ranking r guarantees that

if S dominates T in r, then the true expectation of p∗ over S
is not significantly lower than that over T . Intuitively, the fact

that S receives preferential treatment compared to T in r is

“justified” by DY |X .

As discussed, one reason that violating the domination-

compatibility criteria seems so objectionable is that there does

not exist any consistent predictor p ∈ P(r) that exhibits the

true expectations on the identified sets S ∈ C. This observation

motivates a notion of fair rankings from the perspective

of consistent predictors, which we call evidence-consistency.

Evidence-Consistency goes a step further than domination-

compatibility and requires that a consistent predictor exists

that exhibits the correct expectations of p∗ for every subset in

the collection.

Definition IV.5 (Evidence-Consistency). Let C ⊆ {0, 1}X be

a collection of subsets over X . A ranking r ∈ R is (C, α)-
evidence-consistent if there exists a consistent predictor p̃ ∈
P(r) where for every S ∈ C,

∣

∣

∣

∣

E
x∼DS

[p∗(x)]− E
x∼DS

[p̃(x)]

∣

∣

∣

∣

≤ α.

In other words, a ranking r is evidence-consistent with

respect to a class C if there is a consistent predictor p ∈ P(r)
that cannot be refuted using the statistical tests defined by

the class C. If C represents the collection of tests that can

be feasibly carried out (from a computational or statistical

perspective), then from this perspective, an evidence-consistent

ranking is a plausible candidate for the ranking induced by p∗.

As a definition, a ranking that is evidence-consistent over

a class C provides a guarantee of consistency to p∗ that is

parameterized by the expressiveness of C; for a fixed value of

α, the richer the class C, the stronger the guarantee provided

by consistency with the actual expectations. Viewing C as a

complexity class of “efficiently-identifiable” subsets, evidence-

consistency guarantees that no inconsistencies in the ranking

can be identified within the computational bound specified by

C.

B. Evidence-Consistency implies Domination-Compatibility

By requiring a globally-consistent predictor that respects the

expectations defined by subsets S ∈ C, evidence-consistency

guarantees that the ranking does not misrepresent the (average)

potential of any S ∈ C compared to another T ∈ C. In partic-

ular, if a ranking satisfies evidence-consistency with respect to

a class C then it also satisfies domination-compatibility with

respect to the class.

Theorem IV.6 (Formal restatement of Theorem 1). Let C ⊆
{0, 1}X be a collection of subsets over X and let α ≥ 0.

If a ranking r ∈ R is (C, α)-evidence-consistent, then r is

(C, 2α)-domination-compatible.

Proof. Suppose for α ≥ 0 a ranking r ∈ R is (C, α)-evidence-

consistent. Let S, T ∈ C be two sets where S γ-dominates T ,

for some γ ≥ 0.

By the definition of evidence-consistency, we know that

there exists a predictor pr ∈ P (r) such that

E
x∼DS

[p∗(x)] ≥ E
x∼DS

[pr(x)]− α

E
x∼DT

[p∗(x)] ≤ E
x∼DT

[pr(x)] + α

Further, by Lemma IV.3, because S γ-dominates T , we know

that

E
x∼DS

[pr(x)] ≥ E
x∼DT

[pr(x)] + γ.

Combining the three inequalities, we can derive the following

inequality.

E
x∼DS

[p∗(x)] ≥ E
x∼DT

[p∗(x)] + γ − 2α

Thus, for every pair S, T ⊆ C ×C where S γ-dominates T ,

the expectation of p∗ over S and T satisfy the domination-

compatibility requirement with additive slack 2α.

C. Learning an evidence-consistent ranking

With the above implication in place, one way to learn a

ranking that satisfies (C, α)-domination-compatibility is to first

learn a predictor p̃ : X → [0, 1] that respects all of the

expectations of subsets S ∈ C (up to α/2 tolerance), and then

convert p̃ into its induced ranking r̃. To see this, recall that

the predictor p̃ ∈ P(r̃) is consistent with its induced ranking.

Further, because such a p̃ exhibits the correct expectations

over the collection C, it can witness the predictor required in

the definition evidence-consistency; that is, p̃ certifies that its

induced ranking r̃ is (C, α/2)-evidence-consistent.

The task of learning a predictor that respects the expec-

tations over a collection of sets C ⊆ {0, 1}X has been
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studied recently in the context of fair prediction [14], [18].5

These works, which refer to such a condition as (C, α)-multi-

accuracy, show how to learn such a p̃ from a small number

of binary samples.

Proposition IV.7 ( [14]). Let α, γ, δ > 0 and C ⊆ {0, 1}X be

a fixed collection of subsets. There is an algorithm that given

m ≥ Ω̃
(

log(|C|/δ)
γα2

)

labeled samples (x1, y1), . . . , (xm, ym) ∼
DX ,Y learns a predictor p̃ : X → [0, 1] such that with

probability 1−δ, for every S ∈ C where Prx∼DX
[x ∈ S] ≥ γ,

∣

∣

∣

∣

E
x∼DS

[p∗(x)]− E
x∼DS

[p̃(x)]

∣

∣

∣

∣

≤ α.

The algorithm runs in poly(|C| ,m) time.

[14] also show that for structured classes C, the running

time of the algorithm can be improved, by reducing the task

of learning a (C, α)-multi-accurate predictor to the task of

agnostic learning the class C in the sense of [35], [36].

D. A separation between domination-compatibility and

evidence-consistency

We conclude this section by showing that when the sets we

aim to protect are predefined, domination-compatibility is a

strictly weaker notion than evidence-consistency. Specifically,

while evidence-consistency implies domination compatibility,

the reverse implication does not hold. The following examples

demonstrates a ranking that is C-domination-compatible but is

not C-evidence-consistent.

Example IV.8. Let X be a universe of 100 individuals, split

into two disjoint sets A and B, each of size 50. Let DX be

the uniform distribution on X . Further assume that there are

two subsets A′ ⊂ A, B′ ⊂ B, each of size 10. Define p∗ as

follows:

p⋆(x) =











1.0 x ∈ B

0.0 x ∈ A′

0.5 x ∈ A−A′

Let C = {A,B,C}, where C = A′ ∪ B′. Then the true

expectations are, Ex∼DXA
[p∗(x)] = 0.4, Ex∼DXB

[p∗(x)] =
1.0, and Ex∼DXC

[p∗(x)] = 0.5. Now, consider the ranking

r : B −B′ ≻ C ≻ A−A′.

Note that r is C-domination compatible, because the dom-

ination criterion holds for every two sets in C. Indeed: for

{A,B}, B 0-dominates A in r and the true expectation of B
is greater than the true expectation of A; for {A,C}, C 0-

dominates A in r and the true expectation of C is greater than

the true expectation of A; finally, for {B,C}, B 0-dominates

C in r and the true expectation of B is greater than the true

expectation of C.

On the other hand, we claim that r isn’t (C, α)-evidence-

consistent, for every α < 0.1. Fix α < 0.1 and as-

sume for contradiction that it is, and let p ∈ P(r) be

5Earlier work in pseudorandomness studied the question of existence and
circuit complexity of such predictors [34].

a predictor that is simultaneously α−consistent with the

expectations of {A,B,C}. To maintain consistency with

Ex∼DXB
[p∗(x)] = 1.0, Ex∼DX

B′
[p(x)] ≥ 1−α. This implies

that Ex∼DX
B′

[p(x)] ≥ 1− 5α (because |B′| = 0.2 · |B|). To

maintain consistency with Ex∼DXC
[p∗(x)] = 0.5, this implies

that Ex∼DX
A′

[p(x)] ≤ 3α. Finally, to maintain consistency

with Ex∼DXA
[p∗(x)] = 0.4, Ex∼DX

A−A′
[p(x)] ≥ 0.5 − 2α.

But note that since the members of A′ are ranked before the

members of A−A′ by r, the fact that p ∈ P(r) means that the

scores of A′ should be greater-equal than the scores of A−A′,

or 3α ≥ 0.5− 2α, or that α ≥ 0.1, which is a contradiction.

Pairwise-consistency. In fact, C-domination-compatibility

is equivalent to a significantly weaker notion, which we refer

to as pairwise-consistency.

Definition IV.9 (Pairwise-consistency). Let C be a family

of sets over X . A ranking r ∈ R satisfies (C, α)-pairwise-

consistency if for every two sets S, T ∈ C × C, there exists a

predictor p ∈ P(r) such that

∣

∣

∣

∣

∣

(

E
x∼DS

[p∗(x)]− E
x∼DS

[p(x)]

)

−
(

E
x∼DT

[p∗(x)]− E
x∼DT

[p(x)]

)

∣

∣

∣

∣

∣

≤ α (19)

Note that definition relaxes evidence-consistency in two

aspects. First, while evidence-consistency requires that there

is a single, global predictor p to be simultaneously accurate in

expectation for all sets, pairwise-consistency instead requires

that for every pair of sets, there exists a predictor consistent

with expectations; in particular, there may be a different

consistent predictor for each pair of sets separately. This switch

of quantifiers represents a significantly weaker requirement,

similar in spirit to the domination criterion that only com-

pares two sets at a time. Second, while in Definition (IV.5)

the consistent predictor had to have approximately accurate

expectations on both S and T , here it is only required to not

distort the relative distance between their expectations.

With this definition in place, we can show that domination-

compatibility is equivalent to this weaker notion of pairwise-

consistency.

Theorem IV.10. Let C ⊆ {0, 1}X be a collection of subsets

over X and let α ≥ 0. A ranking r ∈ R is (C, α)-pairwise-

consistency if and only if r is (C, α)-domination-compatible.

Proof. First, we show that pairwise-consistency implies

domination-compatibility. Let α ≥ 0 and assume that a

ranking r satisfies (C, α)-pairwise-consistency. Let S, T ∈ C
be two sets where S γ-dominates T , for some γ ≥ 0. From

pairwise-consistency, we know that there exists a predictor

p ∈ P (r) for which the condition in Equation (19) holds. In
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particular, this implies that

E
x∼DS

[p∗(x)]− E
x∼DT

[p∗(x)]

≥
(

E
x∼DS

[p(x)]− E
x∼DT

[p(x)]

)

− α

Lemma (IV.3), on the other hand, guarantees that

Ex∼DS
[p(x)] − Ex∼DT

[p(x)] ≥ γ. Together, these two

facts imply that

E
x∼DS

[p∗(x)] + (γ + α) ≥ E
x∼DT

[p∗(x)]

which concludes the proof of the first direction.

Next, we show that domination-compatibility implies

pairwise-consistency. Let α ≥ 0 and assume that r satisfies

(C, α)-domination-compatibility. Let S, T ∈ C be any two sets

such that Ex∼DT
[p∗(x)] ≥ Ex∼DS

[p∗(x)]. We split into cases

as follows.

First, consider the case that Ex∼DT
[p∗(x)] −

Ex∼DS
[p∗(x)] ≤ α. Consider the predictor

p(x) , Ex∼DT
[p∗(x)] − Ex∼DS

[p∗(x)]. Since it

treats everyone identically, it is consistent with any

ranking, and in particular with r. Also, by definition,

Ex∼DT
[p(x)]− Ex∼DS

[p(x)] = 0, so

∣

∣

∣

∣

∣

(

E
x∼DS

[p∗(x)]− E
x∼DS

[p(x)]

)

−
(

E
x∼DT

[p∗(x)]− E
x∼DT

[p(x)]

)

∣

∣

∣

∣

∣

= E
x∼DT

[p∗(x)]− E
x∼DS

[p∗(x)] ≤ α

r satisfies pairwise-consistency constraint in this case.

Next, consider the case that Ex∼DT
[p∗(x)] >

Ex∼DS
[p∗(x)] + α. Denote Ex∼DT

[p∗(x)] =
Ex∼DS

[p∗(x)] + (α+ γ) where γ > 0.

Observe that the fact that r satisfies (C, α)-domination-

compatibility implies that in this case, S does not γ-dominate

T . This implies that there exists some threshold τ ∈ [0, 1] for

which

∆τ , Pr
x∼DT

[r(x) < τ ]− Pr
x∼DS

[r(x) < τ ] > γ (20)

Next, choose ε as follows: if ∆τ ≤ γ + 2α, let ε = 1.

Otherwise, choose ε such that γ
∆τ ≤ ε ≤ γ+2α

∆τ . Note that

0 < ε ≤ 1. Define the following predictor p. If r(x) ≥ τ ,

p(x) = 0. If r(x) < τ , then p(x) = ε. Now, by definition:

E
x∼DS

[p(x)] = Pr
x∼DS

[r(x) < τ ] · E
x∼DS

[p(x) | r(x) < τ ]

= ε · Pr
x∼DS

[r(x) < τ ]

Similarly, Ex∼DT
[p(x)] = ε · Prx∼DT

[r(x) < τ ]. Thus,

E
x∼DT

[p(x)]− E
x∼DS

[p(x)] = ε ·∆τ

To conclude the proof, observe that γ < ε · ∆τ ≤ γ + 2α.

This is from the definition of ε, as well as Equation (20). We

therefore have:

γ ≤ E
x∼DT

[p(x)]− E
x∼DS

[p(x)] ≤ γ + 2α

E
x∼DT

[p∗(x)]− E
x∼DS

[p∗(x)] = γ + α

Thus, the absolute value of the difference between the two is

smaller than α, and so by definition, r satisfies (C, α)-pairwise-

consistency.

V. PROTECTING QUANTILES YIELDS STRONGER

EVIDENCE-BASED NOTIONS

The results of Section IV-A establish that the strength of

evidence-consistency hinges on the expressiveness of C; the

richer C is, the stronger the “semantic” protections provided by

consistency with the actual expectations in sets in C. Somewhat

surprisingly, we argue that these protections may be too weak,

even for a rich class C. Indeed, any approach that only

explicitly protects a predefined collection of subpopulations

can leave the door open to abuses, including ones that we

show can be audited from labeled data. In this section, we

build up to increasingly stronger notions of both domination

compatibility and evidence-consistency, which we refer to

as reflexive domination compatibility and reflexive evidence-

consistency.

To highlight the potential weakness of evidence-consistency,

consider the following example, reiterated from the introduc-

tion. Suppose C has two sets S and S′ where the learner

knows that Ex∼DS
[p∗(x)] = 0.8 and Ex∼DS′

[p∗(x)] = 0.5.

In order to promote the individuals of S′ (potentially unfairly)

above the those of S, an adversary could rank (an arbitrary)

half of S′ first, followed by S, then the remainder of S′,

while maintaining (C, 0)-evidence-consistency. In particular,

the predictor p̃ that gives p̃(x) = 1.0 to the first half of x ∈ S′,

p̃(x) = 0.8 to all of x ∈ S, and p̃(x) = 0.0 to the remaining

x ∈ S′ is consistent with the ranking and satisfies all of the

expectations defined by C. Such adversarial manipulation of

evidence-consistency is possible regardless of the structure of

p∗ within S and S′.

In fact, this failure to satisfy domination-compatibility for

subpopulations defined by the ranking is not only a problem

of adversarial manipulation of this notion. We argue that

such violations can arise unintentionally, even from rankings

learned from data in seemingly-objective ways. Continuing

the example with two sets, suppose S and S′ have nontrivial

intersection, where T = S∩S′; again, let Ex∼DS
[p∗(x)] = 0.8

and Ex∼DS′
[p∗(x)] = 0.5. Given these expectations, a natural

ranking might put S \ T first, followed by T , then S′ \ T .6

Nevertheless, it could be the case that T contains the strongest

members of the population, with Ex∼DT
[p∗(x)] > 0.8. In

this case, the proposed ranking would violate domination-

compatibility between S and T . Indeed, this example exploits

6For example, such an ordering is the induced ranking of the maximum
entropy predictor.
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the fact that the relevant subset T is not included in C.

Still, with the ranking in hand, T is identifiable; T is one

of the quantiles! This example shows that without explicitly

considering the quantiles of the ranking themselves, violations

of domination-compatibility between the sets defined by the

ranking may arise in insidious ways.

A. Ordering the quantiles via domination-compatibility

These examples demonstrate that while a (C, α)-evidence-

consistent ranking r provides strong overall protections for

the sets in C, it provides limited guarantees to sets defined

by r itself, specifically the quantiles, which may intersect

nontrivially with the sets in C. This observation motivates

enforcing some notion of consistency, not just with respect to

C, but also to ensure the quantiles of r are ordered according to

their expected p∗ value. We argue that a ranking that satisfies

domination-compatibility over its quantiles satisfies a certain

approximate ordering property.

Recall, for a ranking r ∈ R we denote the quantiles of r
as Qr = {Qr,τ : τ ∈ supp(r)}, where Qr,τ = {x : r(x) = τ}
for each τ ∈ supp(r). We observe that because the quantiles

partition X according to the order implied by the ranking,

then ordering the quantiles Qr,τ and Qr,τ ′ by domination

corresponds to the total order induced by comparing the

corresponding ranks τ and τ ′.

Lemma V.1. Let r ∈ R be ranking. Suppose for τ, τ ′ ∈
supp(r), Sτ ⊆ Qr,τ and Tτ ′ ⊆ Qr,τ ′ are each subsets of

a quantile. If τ ≤ τ ′, then Sτ 0-dominates Tτ ′ .

Proof. The proof of the lemma follows immediately from the

definition of quantiles and γ-domination. For a ranking r ∈ R,

let τ ≤ τ ′ ∈ [0, 1] and let Sτ ⊆ Qr,τ and Tτ ′ ⊆ Qr,τ ′ . We

argue that for all thresholds σ ∈ [0, 1]

Pr
x∼DSτ

[r(x) ≤ σ] ≥ Pr
x∼DT

τ′

[r(x) ≤ σ] .

In particular, by the fact that the ranking r is constant on each

quantile, the statement is equivalent to

1 [τ ≤ σ] ≥ 1 [τ ′ ≤ σ] ,

which holds for all σ by the assumption that τ ≤ τ ′.

As such, requiring a ranking to satisfy domination-

compatibility over its quantiles implies the quantiles are (ap-

proximately) correctly ordered according to their expectations.

Corollary V.2. Suppose a ranking is (Qr, α)-domination-

compatible. Then, for all τ < τ ′ ∈ supp(r),

E
x∼DQr,τ

[p∗(x)] ≥ E
x∼DQ

r,τ′

[p∗(x)]− α.

Note that the motivating examples from above fail to satisfy

(Qr, α)-domination-compatibility for sufficiently small α > 0.

In particular, in each example, there is a pair of quantiles

where τ < τ ′, but Ex∼DQr,τ
[p∗(x)] is significantly smaller

than Ex∼DQ
r,τ′

[p∗(x)], violating the ordering condition of

Corollary V.2.

With this mind, one way to augment the notions of

domination-compatibility and evidence-consistency from Sec-

tion IV would be to add the quantiles to the set C to

protect. Specifically, we could require a new evidence-based

notion (C ∪ Qr, α)-evidence-consistency that would imply

(C∪Qr, 2α)-domination-compatibility by Theorem IV.6. Such

a notion is strong enough to mitigate the concerns raised

in the examples so far; still, we argue that simply adding

the quantiles to the collection of sets to protect may not be

enough. In particular, some of the attacks demonstrating the

weaknesses of evidence-consistency can be “scaled down” to

work, not at the level of X , but within the subpopulations

S ∈ C.

Example V.3. Suppose X is partitioned into two (disjoint)

sets: T , consisting of 80% of X , and S. Suppose further that

S is partitioned into two equally-sized sets, S0 and S1, and

similarly T is partitioned into two equally sized sets T0, T1.

Define p∗ as follows:

p∗(x) =

{

1.0 x ∈ S1 ∪ T1

0.0 x ∈ S0 ∪ T0

And suppose that C = {S, T}. Now, consider the following

ranking

r(x) =

{

0 x ∈ T1 ∪ S0

0.5 x ∈ T0 ∪ S1

That is, r correctly identifies the top individuals in the majority

T , but “flips” the ranking within S. We claim that this

ranking satisfies domination-compatibility even if we include

the quantiles. The quantiles induced by r are Zr,0 = T1 ∪ S0

and Qr,0.5 = T0 ∪ S1. Thus,

C ∪ Qr = {S, T, T1 ∪ S0, T0 ∪ S1}

Whose true expectations under p∗ are Ex∼DS
[p∗(x)] =

0.5, Ex∼DT
[p∗(x)] = 0.5, Ex∼DQr,0

[p∗(x)] = 0.8, and

Ex∼DQr,0.5
[p∗(x)] = 0.2.

It’s left to verify that r is (C∪Qr)-domination-compatibility.

Note that Qr,0 0-dominates all the other three sets, and indeed

has the highest expectation. Note that since S, T both have the

same expectation, the domination criterion will always hold.

Finally, T, S both 0-dominate Qr,0.5 and indeed have a higher

expectation.

B. Incorporating the quantiles into evidence-based notions

Example V.3 demonstrates that without a very expressive

class C, simply adding the quantiles to the set C over which we

require evidence-consistency may still suffer from undesirable

transpositions of subgroups within the sets defined in C. In this

section, we show a way to incorporate the quantiles to provide

a much stronger guarantee. Intuitively, rather than protecting

the union of the set system C with the quantiles Qr, we protect

the intersections of sets S ∈ C and each Qr,τ ∈ Qr.

Given a collection of subsets C ⊆ {0, 1}X , a ranking r ∈
R, and an approximation parameter α, consider the following
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set system derived by intersecting subsets S ∈ C with those

defined by the quantiles of r.

Definition V.4 (Quantile-augmented collection). Let α ≥ 0
and C ⊆ {0, 1}X be a collection of subsets of X . For a ranking

r ∈ R with |supp(r)| = s ∈ N, the α-quantile-augmented

collection of r, denoted Cαr ⊆ {0, 1}X , is a collection of

subsets defined as follows.

Cαr =











Sr,τ :

S ∈ C ∪ {X} ,
τ ∈ supp(r),

Pr
x∼S

[x ∈ Sr,τ ] ≥ α/s











where Sr,τ = S ∩Qr,τ .

We make two remarks about the collection Cαr . First, note

that because we consider S = X as one of our sets, the

reflexive level sets are a superset of the level sets. Second,

note that we exclude quantiles that are sufficiently small,

anticipating the fact that we wish to learn such rankings from

random samples. Indeed, if Prx∼X [x ∈ Xr,τ ] is very small,

then we might not see any individuals from Xr,τ in our random

sample. Note, however, that the size of sets that we deem

too small is parameterized by the support size of r; as the

support size increases, we become more stringent, requiring

that smaller quantiles satisfy the evidence-based constraints.

If the ranking is γ-coarse for sufficiently large γ compared to

α, then we will not exclude any of the quantiles.

As before, we can consider domination-compatibility and

evidence-consistency with respect to this augemented collec-

tion of sets.

Definition V.5 (Reflexive domination-compatibility). Let α ≥
0 and C ⊆ {0, 1}X be a collection of subsets. A ranking r ∈
R is (C, α)-reflexive-domination-compatible if it is (Cαr , α)-
domination-compatible.

Definition V.6 (Reflexive evidence-consistency). Let α ≥ 0
and C ⊆ {0, 1}X be a collection of subsets. A ranking r ∈ R
is (C, α)-reflexive-evidence-consistent if r is (Cαr , α)-evidence-

consistent; that is, if there exists some p̃ ∈ P(r) such that for

all Sτ ∈ Cαr ,
∣

∣

∣

∣

E
x∼DSτ

[p∗(x)]− E
x∼DSτ

[p̃(x)]

∣

∣

∣

∣

≤ α.

Again, by the characterization of these stronger “reflexive”

notions as domination-compatibility and evidence-consistency

over a richer collection of sets, the fact that reflexive-evidence-

consistency implies reflexive-domination-compatibility fol-

lows as a corollary of Theorem IV.6.

Corollary V.7. Let C ⊆ {0, 1}X be a collection of subsets

over X and let α ≥ 0. If a ranking r ∈ R is (C, α)-reflexive-

evidence-consistent, then r is (C, 2α)-reflexive-domination-

compatible.

Recall that without augmenting the class C, domination-

compatibility is a strictly weaker notion than evidence-

consistency. The main result of this section shows that

reflexive-domination-compatibility is equivalent to reflexive-

evidence-consistency. That is, any ranking that satisfies the

domination-compatibility conditions for a rich enough class of

sets (informed by the ranking itself) implies the existence of

a globally consistent predictor that has the correct expectation

on the same class of sets.

Theorem V.8. Let C ⊆ {0, 1}X be a collection of subsets

over X and let α ≥ 0. If a ranking r ∈ R is (C, α)-reflexive-

domination-compatible, then r is (C, α)-reflexive-evidence-

consistent.

Proof. Suppose r ∈ R is (C, α)-reflexive-domination-

compatible. For a subset S ⊆ X and τ ∈ supp(r), let Sr,τ =
S∩Qr,τ denote the intersection of S with the quantile Qr,τ . To

demonstrate that r is (C, α)-reflexive-evidence-consistent, we

construct a predictor p̃ ∈ P(r) that has the (approximately)

correct expectations on all Sτ ∈ Cαr . Consider the predictor

p̃ : X → [0, 1] that for all x ∈ Qr,τ gives:

p̃(x) = min
τ ′:τ ′≤τ∈supp(r)

E
x′∼DQ

r,τ′

[p∗(x′)] .

First, we argue that p̃ is consistent with r. Note that for any

x, x′ ∈ X × X where r(x) = r(x′), p̃(x) = p̃(x′). Second,

consider two x, x′ ∈ X × X where r(x) = τ and r(x′) = τ ′

for τ < τ ′. By the definition of p̃, which assigns the x ∈
Qr,τ the minimum expectation of p∗ over all Qr,τ ′ for τ ′ ≤
τ ∈ supp(r), we know that p̃(x′) cannot exceed p̃(x); that is,

p̃(x) ≥ p̃(x′).
It remains to show that p̃ satisfies the evidence-consistency

constraints on the expectations of Sr,τ . We break the inequality

in Definition V.6 into two inequalities. Specifically, we show

that for all S ∈ C ∪ {X}, for all τ ∈ supp(r),

E
x∼DSr,τ

[p̃(x)]− E
x∼DSr,τ

[p∗(x)] ≥ −α (21)

E
x∼DSr,τ

[p̃(x)]− E
x∼DSr,τ

[p∗(x)] ≤ α (22)

First, note that p̃ is constant over the quantiles of r, so for all

x ∈ Qr,τ :

p̃(x) = E
x′∼DSr,τ

[p̃(x′)] = min
τ ′:τ ′≤τ∈supp(r)

E
x∼DQ

r,τ′

[p∗(x)] .

We can see (21) by invoking Lemma V.1 to argue that Qr,τ ′

0-dominates Sr,τ for all τ ′ ≤ τ ∈ supp(r). Thus, by (Cαr , α)-
domination-compatibility, we derive

E
x∼DSr,τ

[p̃(x)] = min
τ ′:τ ′≤τ∈supp(r)

E
x∼DQ

r,τ′

[p∗(x)]

≥ E
x∼DSr,τ

[p∗(x)]− α.

Similarly, we can see (22) by invoking Lemma V.1 to argue

that Sr,τ 0-dominates Qr,τ . Again, by (Cαr , α)-domination-

compatibility, we derive

E
x∼DSr,τ

[p̃(x)] = min
τ ′:τ ′≤τ∈supp(r)

E
x∼DQ

r,τ′

[p∗(x)]

≤ E
x∼DQr,τ

[p∗(x)]

≤ E
x∼DSr,τ

[p∗(x)] + α
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Thus, (C, α)-reflexive-domination-compatibility implies

(C, α)-reflexive-evidence-consistency.

As such, the following equivalence between reflexive

domination-compatibility and reflexive evidence-consistency

holds.

Theorem V.9 (Restatement of Theorem 2). If a rank-

ing is (C, α)-reflexive-evidence-consistent, then it is (C, 2α)-
reflexive-domination-compatible. If a ranking is (C, α)-
reflexive-domination-compatible, then it is (C, α)-reflexive-

evidence-consistent.

C. Reflexive evidence-based rankings and multi-calibrated

predictors

Next, we turn our attention to learning a reflexive-

evidence-consistent ranking. Note that while (C, α)-reflexive-

evidence-consistency is defined similarly to (C, α)-evidence-

consistency, in terms of a predictor exhibiting the correct

expectations on a collection of subsets, we cannot apply the

algorithm from Proposition IV.7 directly. The problem with

this approach is that Proposition IV.7 assumes that C ⊆ 0, 1X

is a fixed, nonadaptive collection of subsets. Note that the

augmented collection Cαr is defined adpatively; that is, these

sets are defined in terms of the ranking r and are not well-

specified until r is specified. Thus, we need a different

approach for learning such a predictor.

To this end, we turn to the concept of calibration studied

in scoring and prediction, and recently in the context of

fair prediction [14], [37]. Intuitively, a predictor is well-

calibrated if the probability of y = 1 over the individuals

who receive score v ∈ [0, 1] is actually close to v. At two

extremes, the optimal predictor p∗ and the “average” predictor

p(x) = Ex′∼DX
[p∗(x′)] for all x ∈ X are both calibrated.

Formally, we work with the following technical definition of

approximate calibration.

Definition V.10 (Calibrated predictor). Suppose p : X → [0, 1]
is a predictor and |supp(p)| = s. For α > 0 and a subset

S ⊆ X , p : X → [0, 1] is α-calibrated over S if for all

v ∈ supp(p), if Prx∼DS
[p(x) = v] ≥ α/s, then

∣

∣

∣

∣

E
x∼DS

[p∗(x) | p(x) = v]− v

∣

∣

∣

∣

≤ α.

We say that a predictor p : X → [0, 1] is α-calibrated if it is

α-calibrated over X . Note that a calibrated predictor provides

guarantees about the expectations on the level sets defined

by the predictor. Still, reflexive evidence-consistency requires

a ranking to reason about the intersections of the quantiles

with every S ∈ C. An analogous strengthening of calibration,

referred to as multicalibration, was introduced and studied in

[14].

Definition V.11 (Multi-calibration). Let C ⊆ {0, 1}X be a

collection of subsets of X and let α ≥ 0. A predictor p : X →
[0, 1] is (C, α)-multi-calibrated if p is α-calibrated on every

S ∈ C ∪ {X}.

Analogous to reflexive evidence-consistency, a predictor

that is multi-calibrated over a class C provides strong con-

sistency guarantees on the expectations defined by the in-

tersection of sets S ∈ C and the level sets defined by the

predictor. We show that this analogy can be made formal

and that a (C, α)-multi-calibrated predictor induces a (C, α)-
reflexive-evidence-consistent ranking.

Proposition V.12. Let C ⊆ {0, 1}X be a collection of subsets

over X and let α ≥ 0. If a predictor p̃ : X → [0, 1] is

(C, α)-multi-calibrated, then its induced ranking rp̃ is (C, α)-
reflexive-evidence-consistent.

Proof. For any predictor p : X → [0, 1], let rp ∈ R
denote its induced ranking, and for convenience, for every

v ∈ supp(p), let p−1(v) denote some canonical member

x ∈ {x′ ∈ X : p(x′) = v}. Note that by the definition of an

induced ranking for every x, x′ ∈ X , p(x) = p(x′) if and only

if rp(x) = rp(x′); thus |supp(p)| = |supp(rp)| = s. This

means that for any subset S ⊆ X and for any v ∈ supp(p),
there exists a unique τv ∈ supp(rp) such that

Sp,v , {x ∈ S : p(x) = v} = {x ∈ S : rp(x) = τv} = Srp,τv

where τv = rp(p−1(v)). Thus, suppose p̃ : X → [0, 1] is

a (C, α)-multi-calibrated predictor. Using the bijection above

and the definition of multi-calibration, this means that for all

S ∈ C and τv ∈ supp(rp̃) where Prx∼DS

[

rp̃(x) = τv
]

≥
α/s,

∣

∣

∣

∣

∣

E
x∼DS

rp̃,τv

[p∗(x)]− E
x∼DS

rp̃,τv

[p̃(x)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E
x∼DSp̃,v

[p∗(x)]− E
x∼DSp̃,v

[p̃(x)]

∣

∣

∣

∣

∣

≤ α.

Thus, rp̃ is (C, α)-reflexive-evidence-consistent.

As such, an algorithm that learns a (C, α)-multi-calibrated

predictor can be used to learn a (C, α)-reflexive-evidence-

consistent ranking. [14] provide such an algorithm.

Proposition V.13 ( [14]). Let α, γ, δ > 0 and C ⊆ {0, 1}X be

a fixed collection of subsets. There is an algorithm that given

m ≥ Ω̃
(

log(|C|/δ)
γ3/2α11/2

)

labeled samples (x1, y1), . . . , (xm, ym) ∼
DX ,Y learns a (C, α)-multi-calibrated predictor p̃ : X → [0, 1]
with probability 1 − δ. The algorithm runs in poly(|C| ,m)
time.

Again, as with (C, α)-multi-accuracy, the running time of

the algorithm for learning a (C, α)-multi-calibrated predictor

can be improved for agnostically learnable C.

Thus, the algorithm of [14] demonstrates that we can learn

a (C, α)-reflexive-unassailable predictor from labeled outcome

data. Note, however, that the definition of reflexive evidence-

consistency does not explicitly require that the predictor

p̃ ∈ P(r) be multi-calibrated, so it is not immediately obvious

whether learning a multi-calibrated predictor and converting it
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to a ranking is the best way to learn a reflexive evidence-

consistent ranking. Next, we show that any algorithm that

learns a (C, α)-reflexive-evidence-consistent ranking, paired

with a small set of labeled samples, implies an algorithm

for learning a multi-calibrated predictor. In particular, we

show that the predictor p̃ that witness the reflexive evidence-

consistency of r (essentially) must be multi-calibrated.

Proposition V.14. Let C ⊆ {0, 1}X be a collection of subsets

over X and let α ≥ 0. Suppose r ∈ R is (C, α)-reflexive-

evidence-consistent. For any consistent predictor p̃ ∈ P(r)
where for all Sr,τ ∈ Cαr

∣

∣

∣

∣

E
x∼DSr,τ

[p∗(x)]− E
x∼DSr,τ

[p̃(x)]

∣

∣

∣

∣

≤ α,

and for any constant ε > 0, there exists a predictor q̃ ∈ P(r)
such that ‖p̃− q̃‖∞ ≤ ε and q̃ is (C, α+ ε)-multi-calibrated.

Proof. Suppose p̃ ∈ P(r); then by consistency with r, for

all x, x′ ∈ X if r(x) = r(x′), then p̃(x) = p̃(x′). Suppose

that for r(x) = τ , p̃(x) = vτ . Consider defining q̃ ∈ P(r)
by mapping each x where r(x) = τ to a unique uτ where

|uτ − vτ | ≤ ε for some arbitrarily small constant ε > 0; thus,

|supp(r)| = |supp(q̃)| = s and ‖p̃− q̃‖∞ ≤ ε. Then, there

is a bijection between the augmented sets Sr,τ ∈ Cαr and the

sets induced by the level sets of q̃.

Sr,τ = {x ∈ S : r(x) = τ} = {x ∈ S : q̃(x) = uτ} , Sq̃,uτ

Thus, suppose r ∈ R is (C, α)-reflexive-evidence-consistent.

Using the bijection above and the definition of evidence-

consistency, this means that for all S ∈ C and uτ ∈ supp(q̃)
where Prx∼DS

[q̃(x) = uτ ] ≥ α/s,
∣

∣

∣

∣

uτ − E
x∼DS

[p∗(x) | q̃(x) = uτ ]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x∼DS

[q̃(x) | q̃(x) = uτ ]− E
x∼DS

[p∗(x) | q̃(x) = uτ ]

∣

∣

∣

∣

≤
∣

∣

∣

∣

E
x∼DS

[p̃(x) | q̃(x) = uτ ]− E
x∼DS

[p∗(x) | q̃(x) = uτ ]

∣

∣

∣

∣

+ ε

=

∣

∣

∣

∣

E
x∼DSr,τ

[p̃(x)]− E
x∼DSr,τ

[p∗(x)]

∣

∣

∣

∣

+ ε

≤ α+ ε.

As such, q̃ is (C, α+ ε)-multi-calibrated.

We remark that the proposition shows that for an evidence-

consistent ranking r, every p̃ ∈ P(r) is statistically close

to a multi-calibrated predictor. This is largely a technicality;

maintaining the bijection between the quantiles of r and the

level sets of q̃ ensures that any sets Sr,τ where Prx∼DS
[r(x) =

τ ] < α/s (for which we have no guarantees) remain small

enough in Prx∼DS
[q̃(x) = uτ ] < α/s that we need not

provide a guarantee on their expectation. We also remark that a

similar proof shows that the calibration of an (C, α)-reflexive-

evidence-consistent ranking (even if it is not consistent) is

(C, 2α+ ε)-multi-calibrated.

Thus, we can conclude the following tight connection be-

tween the notions of reflexive evidence-consistency and multi-

calibration.

Theorem V.15 (Restatement of Theorem 3). The ranking in-

duced by a (C, α)-multi-calibrated function is (C, α)-reflexive-

evidence-consistent. Further, any consisten scoring function

that exhibits the correct expectations defined by a (C, α)-
reflexive-evidence-consistent ranking is statistically close to

being (C, α)-multi-calibrated.

This theorem establishes the fact that that reflexive

domination-compatibility, reflexive evidence-consistency, and

multi-calibration are all tightly connected concepts of fairness.

We can interpret the theorem from the perspective of ranking

or from the perspective of prediction. First and most pertinent

to the present work, the theorem shows that in order to

learn a ranking that satisfies our strongest notion of fairness,

it is (essentially) necessary and sufficient to learn a multi-

calibrated predictor. On the other hand, when the goal is to

learn a fair and accurate predictor, this result shows that multi-

calibrated predictors satisfy strong, desirable non-transposition

properties. As we’ve discussed, ranking is an inherently global

task; thus, the result supports the intuitive idea that in order

to satisfy multi-calibration, learning a predictor that performs

well on the majority population is not sufficient, but instead

global learning is required.
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